This disclosure relates to medical fluid cassettes and related systems and methods.
Dialysis is a treatment used to support a patient with insufficient renal function. The two principal dialysis methods are hemodialysis and peritoneal dialysis.
During hemodialysis (“HD”), the patient's blood is passed through a dialyzer of a dialysis machine while also passing a dialysis solution or dialysate through the dialyzer. A semi-permeable membrane in the dialyzer separates the blood from the dialysate within the dialyzer and allows diffusion and osmosis exchanges to take place between the dialysate and the blood stream. These exchanges across the membrane result in the removal of waste products, including solutes like urea and creatinine, from the blood. These exchanges also regulate the levels of other substances, such as sodium and water, in the blood. In this way, the dialysis machine acts as an artificial kidney for cleansing the blood.
During peritoneal dialysis (“PD”), a patient's peritoneal cavity is periodically infused with dialysis solution or dialysate. The membranous lining of the patient's peritoneum acts as a natural semi-permeable membrane that allows diffusion and osmosis exchanges to take place between the solution and the blood stream. These exchanges across the patient's peritoneum, like the continuous exchange across the dialyzer in HD, result in the removal waste products, including solutes like urea and creatinine, from the blood, and regulate the levels of other substances, such as sodium and water, in the blood.
Many PD machines are designed to automatically infuse, dwell, and drain dialysate to and from the patient's peritoneal cavity. The treatment typically lasts for several hours, often beginning with an initial drain cycle to empty the peritoneal cavity of used or spent dialysate. The sequence then proceeds through the succession of fill, dwell, and drain phases that follow one after the other. Each phase is called a cycle.
In one aspect of the invention, a medical fluid pumping system includes a medical fluid pumping machine defining a cassette enclosure and a medical fluid cassette configured to be disposed within the cassette enclosure of the medical fluid pumping machine. The medical fluid pumping machine includes a movable piston. The medical fluid cassette includes a base and a membrane attached to the base. The membrane and a region of the base cooperate to define a fluid pump chamber. The cassette is positionable within the cassette enclosure of the medical fluid pumping machine so that the membrane faces the piston and the membrane can be moved by the piston to decrease a volume of the fluid pump chamber. The medical fluid cassette also includes a member disposed within the fluid pump chamber and configured to apply an outward force to an inner surface of the membrane to increase the volume of the fluid pump chamber.
In another aspect of the invention, a medical fluid cassette includes a base and a membrane attached to the base. The membrane and a region of the base cooperate to define a fluid pump chamber. A member is disposed within the fluid pump chamber and is configured to apply an outward force to an inner surface of the membrane to increase the volume of the fluid pump chamber.
In a further aspect of the invention, a medical fluid delivery method includes drawing medical fluid into a fluid pump chamber defined between a membrane and a rigid base of a medical fluid cassette by applying an outward force to an inner surface of a portion of the membrane overlying the fluid pump chamber.
In an additional aspect of the invention, a medical fluid pumping system includes a medical fluid pumping machine defining a cassette enclosure and a medical fluid cassette configured to be disposed within the cassette enclosure of the medical fluid pumping machine. The medical fluid pumping machine includes a movable piston. The medical fluid cassette includes a base defining a recess and a member disposed within the recess of the base. The member and the base define a fluid pump chamber therebetween. The cassette is positionable within the cassette enclosure of the medical fluid pumping machine so that the member can be compressed by advancing the piston to force fluid out of the fluid pump chamber, and the member is configured to self-expand as the piston is retracted away from the member to draw fluid into the fluid pump chamber.
In a further aspect of the invention, a medical fluid cassette includes a base defining a recess and a member disposed within the recess of the base. The member and the base define a fluid pump chamber therebetween, and the member is self-expandable, such that after the member has been compressed to force fluid out of the fluid pump chamber, the member can self-expand to draw fluid into the fluid pump chamber.
In another aspect of the invention, a medical fluid delivery method includes drawing medical fluid into a fluid pump chamber defined between a self-expandable member and a rigid base of a medical fluid cassette by applying a compressive force to the self-expandable member and then allowing the self-expandable member to self-expand.
Implementations can include one or more of the following features.
In some implementations, the region of the base that together with the membrane defines the fluid pump chamber is a recessed region of the base.
In some implementations, the membrane together with the base further defines a flow pathway that leads from the fluid pump chamber to an inlet of the cassette and a flow pathway that leads from the fluid pump chamber to an outlet of the cassette.
In some implementations, the member is attached to the base of the cassette.
In some implementations, the member includes a first portion defining a recess configured to receive the piston head.
In some implementations, the member further includes a second portion attached to the first portion, and the second portion is moveable between an expanded position and a compressed position.
In some implementations, the first and second portions are integrally formed with one another.
In some implementations, the second portion is more flexible than the first portion.
In some implementations, the second portion is substantially cup-shaped in the expanded position and substantially planar in the compressed position.
In some implementations, the member includes a first portion and a second resilient portion attached to the first portion. The second resilient portion is configured to resiliently move between an expanded position and a compressed position, and the first portion is configured to apply the outward force to the membrane when the second resilient portion is moved from the compressed position to the expanded position.
In some implementations, the second resilient portion is substantially cup-shaped in the expanded position and substantially planar in the compressed position.
In some implementations, the second resilient portion is a cup-shaped member having a sidewall that defines multiple circumferentially spaced apertures.
In some implementations, the first portion defines a recess configured to receive the piston head.
In some implementations, the medical fluid pumping system further includes a resilient device positioned between the base of the cassette and the member disposed in the fluid pump chamber of the cassette. The resilient device is configured to apply a force to the member.
In some implementations, the resilient device is configured to self-expand after being compressed.
In some implementations, the resilient device includes a spring and/or an elastomeric member.
In some implementations, the medical fluid pumping machine includes a device configured to apply a force to the member disposed in the fluid pump chamber when the cassette is disposed in the cassette enclosure.
In some implementations, the device is a resilient device configured to self-expand after being compressed.
In some implementations, the device includes a spring and/or a spring-loaded piston.
In some implementations, the member has a stem portion disposed within an aperture of the base of the cassette.
In some implementations, the device contacts the stem portion when the cassette is disposed in the cassette enclosure.
In some implementations, the medical fluid pumping system further includes an o-ring surrounding the stem portion, and the o-ring is compressed between the stem portion and a portion of the base defining the aperture in which the stem portion is disposed.
In some implementations, the cassette further includes a seal secured to the base and disposed over the aperture defined by the base.
In some implementations, the device contacts the seal when the cassette is disposed in the cassette enclosure, and the seal is deformable such that a force can be transmitted from the device to the stem portion of the member via the seal.
In some implementations, the seal is configured to prevent fluid from exiting the cassette via the aperture when the force is transmitted to the stem portion.
In some implementations, the member is configured to create a vacuum pressure of about 150 mbar to about 200 mbar within the fluid pump chamber by applying an outward force to the membrane.
In some implementations, the member is configured to apply an outward force of at most about 250 N (e.g., about 20N to about 100N, about 55N) to the membrane.
In some implementations, the medical fluid pumping machine includes first and second movable piston heads, and the membrane and regions of the base cooperate to define first and second fluid pump chambers. The cassette is positionable within the cassette enclosure of the medical fluid pumping machine so that the membrane faces the first and second piston heads and the membrane can be moved by the first and second piston heads to decrease volumes of the first and second fluid pump chambers. First and second members are disposed within the first and second fluid pump chambers, respectively, and are configured to apply outward forces to the inner surface of the membrane to increase the volumes of the first and second fluid pump chambers.
In some implementations, the medical fluid pumping machine includes a rod having a first end region and a second end region, and the rod is configured such that the first end region can apply a force to the first member disposed in the first fluid chamber and the second end region can apply a force to the second member disposed in the second fluid chamber.
In some implementations, the rod is pivotable about a central pivot point such that when the first end region applies a force to the first member causing the first member to apply the outward force to the membrane, the second end region moves away from the second member, and when the second end region applies a force to the second member causing the second member to apply the outward force to the membrane, the first end region moves away from the first member.
In some implementations, the rod is configured so that forces can be transmitted to the rod by the first and second piston heads, and the rod is configured such that when the first piston head applies a force to the first end region of the rod, the rod pivots and the second end region of the rod applies a force to the second piston head, and when the second piston head applies a force to the second end region of the rod, the rod pivots and the first end region of the rod applies a force to the first piston head.
In some implementations, the base of the cassette is a molded tray-like base.
In some implementations, the membrane is attached only to a perimeter region of the tray-like base.
In some implementations, the base includes a planar surface and multiple raised features extending from the planar surface, and the multiple raised features contact the inner surface of the membrane when the membrane is pressed against the base.
In some implementations, at least one of the multiple raised features cooperate with the membrane to form the fluid pump chamber when the membrane is pressed against the base.
In some implementations, at least some of the raised features cooperate with the membrane to form fluid pathways in fluid communication with the fluid pump chamber when the membrane is pressed against the base.
In some implementations, the medical fluid pumping system is a dialysis system (e.g., a peritoneal dialysis system).
In some implementations, the medical fluid cassette is disposable.
In some implementations, the membrane and regions of the base cooperate to define first and second fluid pump chambers, and first and second members are disposed within the first and second fluid pump chambers, respectively, and are configured to apply outward forces to the inner surface of the membrane to increase the volumes of the first and second fluid pump chambers.
In some implementations, the medical fluid delivery method further includes expelling the medical fluid from the fluid pump chamber by applying an inward force to an outer surface of the portion of the membrane overlying the fluid pump chamber.
In some implementations, the outward force is applied to the membrane by a member disposed in the fluid pump chamber.
In some implementations, the member is a resilient member configured to self-expand after being compressed.
In some implementations, by applying the outward force to the inner surface of the portion of the membrane overlying the fluid pump chamber, a vacuum pressure of about 150 mbar to about 200 mbar is created within the fluid pump chamber.
In some implementations, an outward force of about 20N to about 100N (e.g., about 55N) is applied to the membrane.
In some implementations, the medical fluid is a dialysis solution.
In some implementations, the member disposed within the fluid pump chamber is a substantially planar spring.
In some implementations, the substantially planar spring is disposed in a region of the fluid pump chamber directly adjacent the membrane.
In some implementations, the substantially planar spring includes a hub portion and a plurality of circumferentially spaced legs extending radially outward from the hub portion.
In some implementations, the substantially planar spring further includes feet extending from ends of the legs opposite the hub portion, and at least one of the feet has a width that is greater than a width of the leg to which the at least one of the feet is attached.
In some implementations, the at least one of the feet has a curved configuration that substantially conforms to an adjacent surface of the base.
In some implementations, the substantially planar spring is formed of one or more metals.
In some implementations, the member disposed within the pump chamber includes a spring having an annular ring and a plurality of circumferentially spaced legs extending radially inward from the annular ring.
In some implementations, the annular ring defines a central aperture configured to receive a piston head therein.
In some implementations, the medical fluid pumping system further includes a membrane attached to the base.
In some implementations, a portion of the membrane covers the recess of the base such that the portion of the membrane is positioned between the piston and the member.
In some implementations, the membrane defines an aperture aligned with the recess of the base such that the when the cassette is positioned within the cassette enclosure of the medical fluid pumping machine and the piston is advanced, the piston directly contacts the member.
In some implementations, the member is a substantially-dome shaped member.
In some implementations, the substantially dome-shaped member has a surface that is contacted by the piston when the cassette is positioned within the cassette enclosure of the medical fluid pumping machine and the piston is advanced, and the surface is substantially flat.
In some implementations, the recess is substantially cylindrical.
In some implementations, the member is formed of a resilient polymeric material.
In some implementations, the member is formed of polyurethane.
In some implementations, the member is secured to the base in a liquid-tight manner.
In some implementations, the member includes a flange that is compressed against a surface of the base defining the recess to create the liquid-tight seal.
In some implementations, the base defines a fluid passage that extends to a port defined in a surface of the base adjacent the fluid pump chamber such that fluid can pass through the fluid passage and the port into the fluid pump chamber.
In some implementations, the passage extends substantially parallel to a longitudinal axis of the recess.
In some implementations, a portion of the base underlying the member defines a channel that is in fluid communication with the port.
In some implementations, wherein the member is configured to create a vacuum pressure of about 150 mbar to about 200 mbar within the fluid pump chamber as the member self-expands.
In some implementations, applying the compressive force to the self-expandable member causes medical fluid to be expelled from the fluid pump chamber.
In some implementations, applying the compressive force to the self-expandable member includes applying an inward force to an outer surface of a portion of a membrane overlying the member.
In some implementations, the expansion of the self-expandable member generates a vacuum pressure of about 150 mbar to about 200 mbar within the fluid pump chamber.
Implementations can include one or more of the following advantages.
In some implementations, a member disposed in the fluid pump chamber of the cassette is configured to apply an outward force to the inner surface of the membrane in order to increase the volume of the fluid pump chamber and draw medical fluid into the fluid pump chamber. Because the force applied to the membrane to increase the volume of the fluid pump chamber is a pushing force applied by the member disposed in the fluid pump chamber, rather than a pulling force applied by the piston head that acts on the outer surface of the membrane, the vacuum pressure used to draw the fluid into the pump chamber can be controlled independent of the piston head movement. This can help to maintain the vacuum pressure within a desired range in the event that an obstruction or blockage occurs in a delivery line that is fluidly connected to the fluid pump chamber. For example, if an obstruction or blockage occurs in the patient line leading to the cassette and causes the fluid flow rate into the fluid pump chamber to decrease, the retracting piston head will separate from the membrane and the member disposed in the fluid pump chamber will dictate the rate at which the membrane is forced away from the base of the cassette to increase the volume of the fluid pump chamber and draw fluid into the fluid pump chamber. This can help to prevent the vacuum pressure applied to the patient from exceeding a desired limit.
In certain implementations, the member used to apply the outward force to the membrane is a self-expanding mechanism that is part of the cassette itself. This can reduce the complexity of the overall system. For example, unlike certain prior systems, this arrangement does not require an external force, such as vacuum pressure, to be applied to the portion of the membrane overlying the fluid pump chamber in order to draw fluid into the fluid chamber. Nor does this arrangement require the user to take active steps to otherwise attach a piston head to the portion of the membrane overlying the pump chamber. Due to the relatively straightforward set up and operation of the systems described herein, the systems described herein are more user friendly than certain prior systems.
In some implementations, the member used to apply the outward force to the membrane is actuated by a moveable member (e.g., a piston) extending from the medical fluid pumping machine (e.g., extending from a door of the medical fluid pumping machine). In such implementations, the design of the cassette can be simplified, and thus the cassette can be produced relatively inexpensively. In addition, in certain implementations, the moveable member of the medical fluid pumping machine is adjustable such that the force applied to the membrane of the cassette can be adjusted as desired. As a result, a single cassette can be used for different applications that require different magnitudes of force to be applied to the membrane.
Other aspects, features, and advantages will be apparent from the description and drawings, and from the claims.
In certain aspects of the invention, a medical fluid cassette (e.g., a dialysis fluid cassette) includes a member disposed in a chamber formed between a membrane and a base of the cassette. During use, a piston of a medical fluid pumping machine (e.g., a dialysis machine) applies an inward force to the membrane and the member, forcing fluid out of the chamber. The piston is subsequently retracted, and, as the piston is retracted, the member disposed in the chamber applies an outward force to the membrane, causing fluid to be drawn into the chamber. Examples of medical fluid cassettes and medical fluid pumping machines are described below.
Referring to
Dialysis solution bags 122 are suspended from fingers on the sides of the cart 104, and a heater bag 124 is positioned on the heater tray 116. The dialysis solution bags 122 and the heater bag 124 are connected to the cassette 112 via dialysis solution bag lines 126 and a heater bag line 128, respectively. The dialysis solution bag lines 126 can be used to pass dialysis solution from dialysis solution bags 122 to the cassette 112 during use, and the heater bag line 128 can be used to pass dialysis solution back and forth between the cassette 112 and the heater bag 124 during use. In addition, a patient line 130 and a drain line 132 are connected to the cassette 112. The patient line 130 can be connected to a patient's abdomen via a catheter and can be used to pass dialysis solution back and forth between the cassette 112 and the patient during use. The drain line 132 can be connected to a drain or drain receptacle and can be used to pass dialysis solution from the cassette 112 to the drain or drain receptacle during use.
The pistons include piston shafts (shown in
Referring again to
Still referring to
The door 108, as shown in
The PD cycler 102 includes various other features not described in detail herein. Further details regarding the PD cycler 102 and its various components can be found in U.S. Patent Application Publication No. 2007/0112297, which is incorporated by reference herein.
Referring to
The inner surface of each cylindrical region 157A, 157B of the hollow projections 154A, 154B forms an annular channel around its perimeter. Each of the annular channels is configured to receive a corresponding structure of its associated spring member 161A, 161B to retain the spring member 161A, 161B in a fixed position within the pump chambers 138A, 138B.
The rigidity of the base 156 helps to hold the cassette 112 in place within the cassette compartment 114 of the PD cycler 102 and to prevent the base 156 from flexing and deforming in response to forces applied to the projections 154A, 154B by the piston heads 134A, 134B and in response to forces applied to the planar surface of the base 156 by the inflatable members 142.
The base 156 can be formed of any of various relatively rigid materials. In some implementations, the base 156 is formed of one or more polymers, such as polypropylene, polyvinyl chloride, polycarbonate, polysulfone, and other medical grade plastic materials. In certain implementations, the base 156 is formed of one or more metals or alloys, such as stainless steel. The base 156 can alternatively be formed of various different combinations of the above-noted polymers and metals. The base 156 can be formed using any of various different techniques, including machining, molding, and casting techniques.
Referring again to
An annular lip 179A extends radially outward from the rim of the resilient cup-shaped portion 169A. The annular lip 179A is sized and shaped to snap into the annular recess formed by the inner surface of the hollow projection 154A of the base 156. The spring member 161A can thus be secured to the base 156 by pressing the spring member 161A toward the base 156 until the annular lip 179A snaps into the annular recess of the hollow projection 154A. Any of various other attachment techniques, such as adhesive bonding, thermal bonding, mechanical fastening, etc., can alternatively or additionally be used to attach the spring member to the base.
As shown in
The material and shape of the resilient cup-shaped portion 169A can be selected to provide the resilient cup-shaped portion 169A with a desired resiliency. In certain implementations, the resilient cup-shaped portion 169A is configured to cause the rigid cup-shaped portion 171A to apply an outward force of about 20N to about 250N (e.g., about 20N to about 100N, about 55N). As discussed in greater detail below, applying such a force to the inner surface of the membrane 140 can create a vacuum pressure of about 150 mbar to about 200 mbar (e.g., about 150 mbar) within the pump chamber 138A and within fluid lines that are fluidly connected to the pump chamber. However, the resilient cup-shaped portion 169A can be formed in a way to apply higher or lower forces to the membrane 140, depending on the intended use or application of the spring member 161A.
Still referring to
The cup-shaped portions 169A, 171A of the spring member 161A can be formed of any of various materials that provide the spring member 161A with a desired resiliency. In some implementations, the cup-shaped portions 169A, 171A and the connector region 173A are formed of the same material(s). Alternatively, each of the cup-shaped portions 169A, 171A and the connector region 173A can be formed of different materials. Examples of materials from which the spring member 161A can be formed include polymers, such as acetal, polysulfone, polycarbonate, nylon, elastomeric polyester, and polyurethane, and/or metals, such as stainless steel.
Any of various techniques can be used to form the spring member 161B. In certain implementations, the spring member 161A is formed using an injection molding technique. In some implementations, for example, the spring member 161A is formed using a two-part mold. A first mold part is used to form the resilient cup-shaped portion 169A and a second mold part is used to form the rigid cup-shaped portion 171A. When forming the spring member 161A, the first and second mold parts are positioned adjacent one another and a mold insert is positioned between the two mold parts. The mold insert is used to form the connector region 173A between the two cup-shaped portions 169A, 171A. The mold insert typically includes two halves that slide together to form the connector region 173A. After molding the spring member 161A, the two mold parts are moved away from one another and the two halves of the mold insert are moved away from one another to allow the molded spring member 161A to be removed from the molding apparatus. As an alternative to or in addition to injection molding, other techniques, such as machining techniques, can be used to form the spring member 161A.
As noted above, the membrane 140 is attached to the periphery of the base 156. The portion of the membrane 140 overlying the central portion of the base 156 is typically not attached to the base 156. Rather, this portion of the membrane 140 sits loosely atop the raised ridges 165A, 165B, and 167 extending from the planar surface of the base 156. Any of various attachment techniques, such as adhesive bonding and thermal bonding, can be used to attach the membrane 140 to the periphery of the base 156. The thickness and material(s) of the membrane 140 are selected so that the membrane 140 has sufficient flexibility to flex toward the base 156 in response to the force applied to the membrane 140 by the piston heads 134A, 134B and the inflatable members 142. In certain implementations, the membrane 140 is about 0.100 micron to about 0.150 micron in thickness. However, various other thicknesses may be sufficient depending on the type of material used to form the membrane 140.
Any of various different materials that permit the membrane 140 to deflect in response to movement of the piston heads 134A, 134B and inflation of the inflatable members 142 without tearing can be used to form the membrane 140. In some implementations, the membrane 140 includes a three-layer laminate. In certain implementations, for example, inner and outer layers of the laminate are formed of a compound that is made up of 60 percent Septon® 8004 thermoplastic rubber (i.e., hydrogenated styrenic block copolymer) and 40 percent ethylene, and a middle layer is formed of a compound that is made up of 25 percent Tuftec® H1062 (SEBS: hydrogenated styrenic thermoplastic elastomer), 40 percent Engage® 8003 polyolefin elastomer (ethylene octene copolymer), and 35 percent Septon® 8004 thermoplastic rubber (i.e., hydrogenated styrenic block copolymer). The membrane can alternatively include more or fewer layers and/or can be formed of different materials.
The rigid base 156, the membrane 140, and the spring members 161A, 161B are typically formed separately and then assembled to make the cassette 112. In some implementations, for example, after forming the rigid base 156 and the spring members 161A, 161B, the spring members 161A, 161B are inserted into the recesses 163A, 163B formed by the hollow protrusions 154A, 154B of the rigid base 156. The annular lips 179A, 179B of the resilient cup-shaped portions 169A, 169B of the spring members 161A, 161B are then snapped into the annular recesses formed by the inner surfaces of the hollow projections 154A, 154B to secure the spring members 161A, 161B to the base 156. The membrane 140 is then attached to the perimeter of the rigid base 156.
Other manufacturing techniques can alternatively be used to make the cassette 112. As mentioned above, for example, other techniques can be used to secure the spring members 161A, 161B to the base 156. In addition, as an alternative to attaching the spring members 161A, 161B to the base 156, it is possible to integrally form the spring members 161A, 161B along with the base 156. In certain embodiments, for example, the base 156 and the spring members 161A, 161B can be machined from a single piece of material.
As shown in
While loading the cassette 112 into the PD cycler 102, the piston heads 134A, 134B are typically retracted within the piston access ports 136A, 136B. This positioning of the piston heads 134A, 134B can reduce the likelihood of damage to the piston heads 134A, 134B during installation of the cassette 112.
Referring to
During operation, with the cassette 112 secured within the compartment 114, the piston heads 134A, 134B are reciprocated to sequentially alter the volume of each of the pump chambers 138A, 138B. Typically, as the piston head 134A is extended, the other piston head 134B is retracted, and vice versa. As a result, dialysis solution is expelled from the pump chamber 138A at the same time that dialysis solution is drawn into the pump chamber 138B, and vice versa.
As shown in
Referring to
After expelling the dialysis solution from the pump chamber 138A, the piston head 134A is again retracted to the position shown in
After drawing the dialysis solution into the pump chamber 138A, the dialysis solution can then be forced out of the pump chamber 138A by again returning the piston head 134A to the position shown in
As noted above, while forcing dialysis solution into and out of the pump chambers 138A, 138B, certain inflatable members 142 of the PD cycler 102 can be selectively inflated to direct the pumped dialysis solution along desired pathways in the cassette 112.
Referring back to
After draining the spent dialysis solution from the patient, heated dialysis solution is transferred from the heater bag 124 to the patient. To do this, the pump of the PD cycler 102 is activated to cause the piston heads 134A, 134B to reciprocate and certain inflatable members 142 of the PD cycler 102 are inflated to cause the spent dialysis solution to be drawn into the pump chambers 138A, 138B of the cassette 112 from the heater bag 124 via the heater bag line 128 and then pumped from the pump chambers 138A, 138B to the patient via the patient line 130. This flow path of the dialysis solution through the fluid pathways 158 in the cassette 112 is shown in
Once the dialysis solution has been pumped from the heater bag 124 to the patient, the dialysis solution is allowed to dwell within the patient for a period of time. During this dwell period, toxins cross the peritoneum into the dialysis solution from the patient's blood. As the dialysis solution dwells within the patient, the PD cycler 102 prepares fresh dialysate for delivery to the patient in a subsequent cycle. In particular, the PD cycler 102 pumps fresh dialysis solution from one of the four full dialysis solution bags 122 into the heater bag 124 for heating. To do this, the pump of the PD cycler 102 is activated to cause the piston heads 134A, 134B to reciprocate and certain inflatable members 142 of the PD cycler 102 are inflated to cause the dialysis solution to be drawn into the pump chambers 138A, 138B of the cassette 112 from the selected dialysis solution bag 122 via its associated line 126 and then pumped from the pump chambers 138A, 138B to the heater bag 124 via the heater bag line 128. This flow path of the dialysis solution through the fluid pathways 158 in the cassette 112 is shown in
After the dialysis solution has dwelled within the patient for the desired period of time, the spent dialysis solution is pumped from the patient to the drain. The heated dialysis solution is then pumped from the heater bag 124 to the patient where it dwells for a desired period of time. These steps are repeated with the dialysis solution from two of the three remaining dialysis solution bags 122. The dialysis solution from the last dialysis solution bag 122 is typically delivered to the patient and left in the patient until the subsequent PD treatment.
While the dialysis solution has been described as being pumped into the heater bag 124 from a single dialysis solution bag 122, dialysis solution can alternatively be pumped into the heater bag 124 from multiple dialysis solution bags 122. Such a technique may be advantageous, for example, where the dialysis solutions in the bags 122 have different concentrations and a desired concentration for treatment is intermediate to the concentrations of the dialysis solution in two or more of the bags 122.
After completion of the PD treatment, the piston heads 134A, 134B are retracted away from the cassette 112 to a sufficient distance such that the piston heads 134A, 134B no longer contact the membrane 140. The door 108 of the PD cycler is then opened and the cassette 112 is removed from the cassette compartment and discarded.
The spring members 161A, 161B of the cassette 112 can help to ensure that the vacuum pressure provided to the fluid pathways 158 of the cassette 112 in order to draw dialysis solution into the pump chambers 138A, 138B is maintained within a desired range. In some implementations, for example, the spring members 161A, 161B are configured to limit the applied vacuum pressure to a range of about 150 mbar to about 200 mbar. This arrangement can be advantageous in the event of an obstruction or blockage in the patient line 130 leading from the patient to the cassette 112. In systems in which the piston head is attached to the membrane, such an obstruction or blockage can result in increased vacuum pressure within the pump chamber and thus increased vacuum pressure applied to the patient because the membrane travels with the piston head despite the diminished flow rate of the dialysis solution into the pump chamber. In contrast, in response to the decreased flow rate of the dialysis solution into the pump chambers 138A, 138B due to an obstruction or blockage, the piston heads 134A, 134B will retract at a greater rate than the membrane 140 and thus release from the membrane 140. The spring members 161A, 161B will continue to apply a force within a desired range (e.g., about 20N to about 250N, about 20N to about 100N, about 55N) to the membrane 140, maintaining the vacuum pressure applied to the patient via the patient line within a desired range (e.g., about 150 mbar to about 200 mbar).
In addition, because the PD system 100 does not require a vacuum system to move the portions 162A, 162B of the membrane 140 overlying the pump chambers 138A, 138B, a substantially airtight seal between the door 108 and the cassette interface 110 is typically not required. Thus, as compared to systems including a vacuum system adapted to retract portions of the cassette membrane overlying pump chambers, the door sealing mechanism of the PD cycler 102 can be simpler and more cost effective.
While certain implementations have been described, other implementations are possible.
While the side wall 175A of the resilient cup-shaped portion 169A of the spring member 161A has been described as including triangular and trapezoidal apertures 177A, apertures of any of various other shapes and sizes can be used to permit the resilient cup-shaped portion 169A to be compressed into a desired configuration. Further, while the resilient cup-shaped portion 169A has been described as being configured to be compressed into a flattened cup-shape configuration, in some implementations, the resilient cup-shaped portion 169A is configured to take on a substantially planar configuration when compressed. For example, the sizes and shapes of the apertures can be selected to allow the resilient cup-shaped portion 169A to be compressed into a flat planar shape.
While the spring members 161A, 161B have been described as having two opposing cup-shaped members, spring members of any of various other shapes that are capable of applying a desired outward force to the inner surface of the membrane 140 can be used. In certain implementations, for example, one or more leaf springs extend across the fluid pump chamber in a manner to apply an outward force to the inner surface of the membrane 140.
Each of the springs 661A, 661B includes a hub portion 663A, 663B from which multiple, elongate legs 665A, 665B extend. Enlarged pads or feet 667A, 667B are attached to the ends of the legs 665A, 665B. The feet 667A, 667B are circumferentially spaced around the outer edges of the springs 661A, 661B. The hub portion 663A, 663B and the legs 665A, 665B of each of the springs 661A, 661B are substantially flat or planar, while the feet 667A, 667B have a curved configuration. The radius of curvature of the feet 667A, 667B is substantially the same as the radius of curvature of the inner surface of the dome-shaped projections 654A, 654B in which the recessed regions 663A, 663B are formed.
The springs 661A, 661B are constructed with materials and dimensions that provide the springs 661A, 661B with a resiliency that permits the springs 661A, 661B to return to a flat or planar, undeformed position after a force that has been applied to the hub portions 663A, 663B to deflect the springs 661A, 661B into the pump chambers 638A, 638B (i.e., toward the base 656) is released. In some implementations, the springs 661A, 661B are formed of stainless steel (e.g., 302 stainless steel). However, other materials, such as steel, brass, phosphor bronze, polypropylene, polyetherimide (e.g., Ultem®), nylon, steel, brass, and/or phosphor bronze can alternatively or additionally be used to form the springs 661A, 661B. In certain implementations, the springs 661A, 661B are coated with a polymeric coating to increase the biocompatibility of the springs 661A, 661B. The springs 661A, 661B can, for example, be coated with a polytetrafluoroethylene (PTFE) coating.
In certain implementations, the springs 661A, 661B have a thickness of about 0.01 inch to about 0.04 inch. The springs 661A, 661B can have an outer diameter of about 2.0 inches to about 2.5 inches. Each of the legs 665A, 665B can have a length (i.e., the linear distance between the hub portion 663A, 663B and the foot 667A, 667B) of about 0.5 inch to about 1.0 inch and/or a width of about 0.12 inch to about 0.20 inch.
In some implementations, the springs 661A, 661B are formed of 302 stainless steel and have a thickness of about 0.020 inch, and each of the legs 665A, 665B has a length of 0.75 inches and a width of 0.16 inch.
To make each of the springs 661A, 661B, a stamping machine is typically used to stamp from a flat sheet of material a flat member having a shape that generally corresponds to the shape of the springs 661, 661B. The portions of the flat member that correspond to the feet 667A, 667B of the springs 661A, 661B are then formed into a curved shape using a subsequent forming process. Alternatively, the stamping machine can be provided with forming features that permit the springs 661A, 661B to produced in a single stamping/forming step. Any of various other material processing techniques, such as casting, molding, etching, etc. can alternatively or additionally be used to form the springs 661A, 661B.
Still referring to
The cassette 612 can be used in substantially the same way as the cassette 112 described above. In particular, the cassette 612 can be disposed in the cassette compartment 114 of the PD cycler 102 and the pistons of the PD cycler 102 can be reciprocated to draw fluid into and pump fluid out of the pump chambers 638A, 638B.
As shown in
Referring now to
By reciprocating the pistons associated with the pump chambers 638A, 638B, fluid can be sequentially drawn into and forced out of the pumps chambers 638A, 638B in the manner described above.
The cassette 612 can be assembled in a manner similar to the cassette 112 described above. Typically, after making the base 656 and the springs 661A, 661B, the springs 661A, 661B are inserted into the recessed regions 663A, 663B. Subsequently the membrane 140 is attached to the base 656, closing the springs 661A, 661B within the pump chambers 638A, 638B formed between the membrane 140 and the recessed regions 663A, 663B of the base 656.
While the pistons have been described as directly contacting the outer surface of the membrane 140 in the implementations described above, in certain implementations, a structure is positioned between each of the piston heads and the membrane 140. As shown in
The secondary spring assembly 680A includes a secondary spring 684A having a diameter that is substantially equal to the diameter of the spring 661A disposed in the pump chamber 638A of the cassette 612. The secondary spring 684A, like the spring 661A, is biased to a substantially flat or planar shape. The secondary spring 684A can be deformed to roughly conform to the shape of the piston head 634A as the piston head 634A is advanced into the recessed region 663A of the cassette base 656. The secondary spring 684A can be similar in design and construction to the springs 661A, 661B described above. Alternatively, other designs and constructions that provide the spring 684A with a planar bias while allowing the spring 684A to deform and roughly conform to the shape of the piston head 634A can be used.
A cover 686A is attached to the bottom surface of the secondary spring 684A. The cover 686A provides cushion between the springs 684A and 661A, and thus helps to prevent the membrane 140 from becoming damaged due to the forces of the springs 684A, 661A that act on the membrane 140. The cover 686A also helps to ensure that the portion of the membrane 140 overlying the spring 661A remains substantially smooth and wrinkle-free. This can help to increase the accuracy with which fluid is pumped from the pump chamber 638A. In some implementations, the cover 686A is formed of a foam material, such as polyurethane. However, other relatively soft materials that protect the membrane 140 from the springs 684A, 661A can be used. Examples of such materials include urethane foams and ethylene propylene diene monomer (EPDM).
As noted above, the secondary spring assembly 680A is releasably secured to the piston head 634A via the pin 682A. The pin 682A can be sized to create a press fit or friction fit with the secondary spring 684A and/or the cover 686A when the pin 682A is inserted into apertures 688A, 690A of those structures. Alternatively or additionally, the pin 682A can be equipped with a mechanical connector, such as a bayonet connector, that releasably engages the secondary spring 684A and/or the cover 686A when the pin 682A is inserted into the apertures 688A, 690A.
The piston with the attached secondary spring assembly 680A is used in the same manner as the piston described above to draw fluid into and force fluid out of the pump chambers 638A, 638B of the cassette 612. As the piston head 634A is advanced forward, the secondary spring assembly 680A contacts the outer surface of the membrane 140. Resistance to deformation of the secondary spring 684A causes the area of the membrane 140 positioned between the spring 661A and the secondary spring assembly 680A to be compressed between those structures as the piston advances forward. Similarly, due to the bias of each spring toward a flat or planar geometry, the portion of the membrane 140 positioned between the spring 661A and the secondary spring assembly 680A is compressed as the piston is retracted in those cases where the piston is retracted at a lower rate than or at the same rate that the spring 661A expands (i.e., returns to its planar configuration). This can improve the accuracy with which fluid is drawn into and pumped out of the pump chamber 638A.
While the secondary spring assembly 680A has been described as being releasably attached to the piston head 634A, permanent attachment techniques can alternatively be used to secure the secondary spring structure to the piston head. For example, the secondary spring structure can be thermally or chemically bonded to the piston head.
While the springs 661A, 661B have been illustrated as having eight discrete legs 665A, 665B extending from their hub portions 663A, 663B, the springs can have any number of legs that provide the springs with sufficient resiliency to apply a desired outward force to the membrane. In certain implementations, for example, the springs each include 16 legs extending from the hub portion. In some implementations, the hub portions of two of the above described springs are overlaid with one another and attached (e.g., thermally bonded, chemically bonded, or adhesively bonded) to one another. In such implementations, the springs can be arranged so that the fingers of one of the springs overlie the slots formed between adjacent fingers of the other spring.
Similarly, while the legs 665A, 665B of the springs 661A, 661B have been described and illustrated as discrete, elongate members, legs of other shapes and sizes can be used. As shown in
While the hub portions of the springs have been described as solid discs, in certain implementations, the hub portion of the spring includes slits between each of the fingers. As shown in
While the springs of
The springs 1061A, 1061B work in much the same way as the springs described above with respect to
The springs 1061A, 1061B can be formed of any of the various materials discussed above with respect to the springs of
While the cassettes described above use spring members to apply an outward force directly to the cassette membrane 140, other types of self-expanding members can be disposed within the pump chambers and used to directly or indirectly apply an outward force to the membrane 140. As shown in
As shown in
As an alternative to or in addition to the resilient block 269, another type of resilient member, such as a compression spring, could be positioned between the rigid base 256 and the cup-shaped member 271. Such a spring would work in a manner similar to the resilient block 269 discussed above to move the membrane 140 away from the rigid base 256 and increase the volume of the pump chamber 238 when the piston head 134A is retracted.
It should be understood that even though only one of the pump chambers of the cassette 212 has been illustrated, the cassette 212 includes two pump chambers each of which contains a cup-shaped member and a resilient member for moving the cup-shaped member within the pump chamber. As discussed above, the piston heads 134A, 134B can be reciprocated to repeatedly draw dialysis solution into the pump chambers and then expel the dialysis solution from the pump chambers.
While the cassettes discussed above include self-expanding members to apply an outward force to the membrane, in some implementations, the cassette is configured to cooperate with a moveable member of the PD cycler in a way such that the moveable member of the PD cycler can apply an outward force to the inner surface of the cassette membrane. Referring to
Still referring to
As shown in
It should be understood that even though only one of the pump chambers of the cassette 312 has been illustrated, the cassette 312 includes two pump chambers each of which contains a cup-shaped member that is actuated by a spring-loaded piston of the PD cycler during use. As discussed above, the piston heads 134A, 134B can be reciprocated to repeatedly draw dialysis solution into the pump chambers and then expel the dialysis solution from the pump chambers.
While the cassette 312 has been described as including an o-ring surrounding the stem portion 373 of the cup-shaped member 371 to prevent liquid from escaping from the pump chamber 338, other techniques can be used to seal the pump chamber 338. As shown in
Referring to
While the cap seal 475 has been described as including a post 477 that fits into the recess in the stem portion 473 of the cup-shaped member 471, any of various other configurations that permit the cap seal to be attached to the cup-shaped member can be used.
It should be understood that even though only one of the pump chambers of the cassette 412 has been illustrated, the cassette 412 includes two pump chambers each of which contains a cup-shaped member that is actuated by a spring-loaded piston of the PD cycler during use. As discussed above, the piston head 134A, 134B can be reciprocated to repeatedly draw dialysis solution into the pump chambers and then expel the dialysis solution from the pump chambers.
As an alternative to or in addition to using a spring-loaded piston 353 to apply a force to the stem portion 373 of the cup-shaped member 371 or to the cap seal 475, other types of self-expanding resilient members, such as compression springs or elastomeric members, can be used. The door 308 of the PD cycler 302 can, for example, be equipped with other types of self-expanding resilient members, such as a compression springs or elastomeric members, arranged to apply a force to the stem portion 373 of the cup-shaped member 371 or to the cap seal 475 during use. Such self-expanding resilient members would work in a manner similar to the resilient block 269 discussed above to move the membrane 140 away from the rigid base 356 of the cassette 312, 412 and increase the volume of the pump chamber 338 when the piston head 134A is retracted. Similarly, as an alternative to or in addition to self-expanding resilient members, the door 308 of the PD cycler 302 can include actuatable members, such as electrically, hydraulically, and/or pneumatically operated members, arranged to apply a force to the stem portion 373 of the cup-shaped member 371 or to the cap seal 475.
In some implementations, the self-expanding or actuatable members used to apply a force to the stem portion 373 of the cup-shaped member 371 or to the cap seal 475 can be adjustable to provide different magnitudes of force to the cup-shaped member 371 or to the cap seal 475. In certain implementations, the self-expanding or actuatable members used to apply a force to the stem portion 373 of the cup-shaped member 371 or to the cap seal 475 can be easily replaced with other self-expanding or actuatable members that provide different magnitudes of force. In such implementations, the cassettes 312, 412 can be used without modification for any of various different types of applications that require different magnitudes of force to be applied the inner surface of the membrane 140.
In certain implementations, the door of the PD cycler includes a mechanism configured to transfer an inward force of one of the cup-shaped members to the other cup-shaped member in the form of an outward force. For example, referring to
During use, the piston heads 134A, 134B of the PD cycler 502 are operated in an alternating fashion such that one of the piston heads is extended as the other piston head is retracted and vice versa. As shown in
While the piston heads 134A, 134B of the PD cyclers above have been described as being hemispherical, the piston heads could be any of various other shapes. In some implementations, for example, the piston heads can have flat end surfaces. In such implementations, the cup-shaped members disposed in the pump chambers of the cassette can have flat surfaces that abut the flat end surfaces of the piston heads during use. Similarly, while the piston heads 134A, 134B have been described as being formed using certain materials and manufacturing techniques, any of various other suitable materials and manufacturing techniques could alternatively be used.
While the members (e.g., springs) disposed within the pump chambers of the above-described cassettes are designed to allow liquid to pass therethrough, in certain implementations, the cassettes are equipped with liquid-impermeable self-expanding members such that liquid pumped into and out of the pump chambers of the cassettes is contained by the self-expanding members. As shown in
The base 956 of the cassette 912 is similar to the bases of those cassettes described above. However, the recessed regions 963A, 963B and fluid inlet and outlet passages leading to the recessed regions 963A, 963B have different configurations than corresponding features in the cassettes described above. As shown in
As shown in
As shown in
The dome-shaped members are sized so that a desired volume (e.g., 12.75 mL) of fluid is pumped into and out of the chambers 972A, 972B formed between the dome-shaped members 961A, 961B and the base 956 of the cassette 912 when the dome-shaped members 961A, 961B are fully compressed and then allowed to fully expand. The dome-shaped members 961A, 961B can, for example, have a diameter of about 50 mm to about 56 mm, a height (i.e., the perpendicular distance from the lower surface of the side wall to the top surface of the flat top 974A, 974B) of about 17 mm to about 23 mm, and a wall thickness of about 1.5 mm to about 3.5 mm.
In certain implementations, the dome-shaped members are formed of polyurethane, have a diameter of 53 mm, a height of 20 mm, and a wall thickness of 2.4 mm.
Referring again to
The cassette 912 is used to pump fluid in much the same way as the cassettes described above.
The cassette 912 can be assembled by press-fitting the dome-shaped members 961A, 961B into the recessed regions 963A, 963B of the base 956, and then attaching the membrane 140 to the periphery of the base 956 in the manner described above with respect to other cassettes.
While the flanges or rings 976A, 976B of the dome-shaped members 961A, 961B have been described as being pressed against flat inner surfaces of the cylindrical projections 954A, 954B, the inner surfaces of the cylindrical projections 954A, 954B can alternatively include annular depressions in which the flanges 976A, 976B are received. This arrangement results in a tortuous path between the flanges 976A, 976B of the dome-shaped members 961A, 961B and adjacent surfaces of the cylindrical projections 954A, 954B, which can also help to prevent liquid from passing between the flanges 976A, 976B and the cylindrical projections 954A, 954B.
As another alternative, the dome-shaped members 961A, 961B can be bonded (e.g., thermally bonded, chemically bonded, or adhesively bonded) to the cylindrical projections 954A, 954B of the base 956.
While the dome-shaped members 961A, 961B have been described as being press fit or bonded within the recessed regions 963A, 963B formed by the cylindrical projections 954A, 954B, the dome-shaped members 961A, 961B can alternatively be formed with the base 956 of the cassette 912 using a mold in technique. To form the dome-shaped members 961A, 961B in this way, a bottom portion of the base 956 would be removed and two-part molds would be inserted into the cylindrical projections 954A, 954B to form the dome-shaped members 961A, 961B. After forming the dome-shaped members 961A, 961B, the bottom portion of the base 956 would be re-attached.
While the membrane 140 has been described as extending over substantially the entire surface of the base 956, including the recessed regions 963A, 963B, in certain implementations, the membrane includes holes that align with the recessed regions 963A, 963B such that the piston heads directly contact the dome-shaped members 961A, 961B. In such implementations, the membrane is attached (e.g., thermally bonded or adhesively bonded) to the perimeter of each of the cylindrical members 954A, 954B to ensure a liquid-tight seal.
While the cassettes discussed above have been described as having two pump chambers, the cassettes can alternatively have more or fewer than two pump chambers.
While each of the pump chambers of the cassettes described above has been described as including a fluid inlet port and a fluid outlet port, the pump chambers can alternatively include a single port that is used as both an inlet and an outlet.
While the pistons described above have been described as having piston heads that are attached to shafts of the pistons, in certain implementations, the piston heads and shafts are integrally formed with one another. In some implementations, the piston heads are simply the flat end surfaces of the piston shafts themselves.
While certain cassettes have been described as being positioned between locating pins and a lower ledge extending from a cassette interface of the PD cycler in order to hold the cassette in a position such that the piston heads align with the pump chambers of the cassette, other techniques for ensuring that the piston heads align with the pump chambers can alternatively or additionally be used. In some implementations, for example, the cassette is placed against the door of the PD cycler with the hollow projections of the cassette disposed in recesses of the PD cycler's door. The cassette is held in this position by retainer clips attached to the door. Upon closing the door, the piston heads of the PD cycler align with the pump chambers of the cassette.
While certain PD cyclers above have been described as including a touch screen and associated buttons, the PD cycler can include other types of screens and user data entry systems. In certain implementations, for example, the cycler includes a display screen with buttons (e.g., feathertouch buttons) arranged on the console adjacent the display screen. Certain buttons can be arranged to be aligned with operational options displayed on the screen during use such that the user can select a desired operational option by pressing the button aligned with that operational option. Additional buttons in the form of arrow buttons can also be provided to allow the user to navigate through the various display screens and/or the various items displayed on a particular screen. Other buttons can be in the form of a numerical keypad to allow the user to input numerical values in order, for example, to input operational parameters. A select or enter button can also be provided to allow the user to select an operational option to which the user navigated by using the arrow keys and/or to allow the user to enter values that the user inputted using the numerical keypad.
While the doors of the PD cyclers described above are shown as being positioned on a front face of the PD cyclers, the doors can alternatively be positioned at various other locations on the PD cyclers. For example, the doors could be positioned on a top face of the PD cycler such that the cassette is slid into the cassette compartment in a substantially horizontal orientation instead of a substantially vertical orientation.
While some of the PD cyclers discussed above have been described as including inflatable pads in their doors to compress the cassette between the door and the cassette interface, the PD cyclers can alternatively or additionally include inflatable pads positioned behind the cassette interface.
While the cassettes described above have been described as being part of a PD system, these types of cassettes can be used in any of various other types of cassette-based medical fluid pumping systems. Other examples of medical fluid pumping systems with which cassettes described herein can be used include hemodialysis systems, blood perfusion systems, and intravenous infusion systems.
Similarly, while the cassettes have been described as being used to pump dialysis solution, other types of dialysis fluids can be pumped through the cassettes. As an example, in the case of cassettes used with hemodialysis machines, blood can be pumped through the cassettes. In addition, priming solutions, such as saline, can similarly be pumped through cassettes using the various different systems and techniques described above. Similarly, as an alternative to dialysis fluids, any of various other types of medical fluids can be pumped through the above-described cassettes depending on the type of medical fluid pumping machines with which the cassettes are used.
This application is a continuation of and claims the benefit U.S. Ser. No. 12/836,740, filed Jul. 15, 2010, which claims the benefit of U.S. Application Ser. No. 61/225,618, filed on Jul. 15, 2009. The contents of both of these priority applications are hereby incorporated by reference in their entireties.
Number | Name | Date | Kind |
---|---|---|---|
329773 | Perry | Nov 1885 | A |
2383193 | Herbert | Aug 1945 | A |
2453590 | Poux | Nov 1948 | A |
2529028 | Landon | Nov 1950 | A |
2658526 | Porter | Nov 1953 | A |
2711134 | Hughes | Jun 1955 | A |
2755745 | Lewis | Jul 1956 | A |
2871795 | Smith | Feb 1959 | A |
2886281 | Canalizo | May 1959 | A |
3083943 | Stewart, Jr. et al. | Apr 1963 | A |
3323786 | Boschi | Jun 1967 | A |
3556465 | Little | Jan 1971 | A |
3671814 | Dick | Jun 1972 | A |
3689025 | Kiser et al. | Sep 1972 | A |
3741687 | Nystroem | Jun 1973 | A |
3777625 | Andres | Dec 1973 | A |
3781141 | Schall | Dec 1973 | A |
3880053 | Trechsel et al. | Dec 1975 | A |
3927955 | Spinosa et al. | Dec 1975 | A |
3966358 | Heimes et al. | Jun 1976 | A |
3985135 | Carpenter et al. | Oct 1976 | A |
4026669 | Leonard et al. | May 1977 | A |
4047844 | Robinson | Sep 1977 | A |
4050859 | Vork | Sep 1977 | A |
4091812 | Helixon et al. | May 1978 | A |
4121584 | Turner et al. | Oct 1978 | A |
4152098 | Moody et al. | May 1979 | A |
4158530 | Bernstein | Jun 1979 | A |
4178940 | Au | Dec 1979 | A |
4273121 | Jassawalla | Jun 1981 | A |
4303376 | Siekmann | Dec 1981 | A |
4304260 | Turner et al. | Dec 1981 | A |
4312344 | Nilson | Jan 1982 | A |
4322201 | Archibald | Mar 1982 | A |
4333452 | Au | Jun 1982 | A |
4370983 | Lichtenstein | Feb 1983 | A |
4382753 | Archibald | May 1983 | A |
4410322 | Archibald | Oct 1983 | A |
4412553 | Kopp et al. | Nov 1983 | A |
4436620 | Bellotti et al. | Mar 1984 | A |
4453932 | Pastrone | Jun 1984 | A |
4479760 | Bilstad et al. | Oct 1984 | A |
4479761 | Bilstad et al. | Oct 1984 | A |
4479762 | Bilstad et al. | Oct 1984 | A |
4490621 | Watabe et al. | Dec 1984 | A |
4536201 | Brorsson et al. | Aug 1985 | A |
4558715 | Walton et al. | Dec 1985 | A |
4569378 | Bergandy | Feb 1986 | A |
4583920 | Lindner | Apr 1986 | A |
4597412 | Stark | Jul 1986 | A |
4610605 | Hartley | Sep 1986 | A |
4623328 | Hartranft | Nov 1986 | A |
4628499 | Hammett | Dec 1986 | A |
4639245 | Pastrone et al. | Jan 1987 | A |
4643713 | Viitala | Feb 1987 | A |
4657490 | Abbott | Apr 1987 | A |
4662598 | Weingarten | May 1987 | A |
4662906 | Matkovich et al. | May 1987 | A |
4676467 | Palsulich | Jun 1987 | A |
4690621 | Swain | Sep 1987 | A |
4703913 | Hunkapiller | Nov 1987 | A |
4705259 | Dolhen et al. | Nov 1987 | A |
4710166 | Thompson et al. | Dec 1987 | A |
4735558 | Kienholz et al. | Apr 1988 | A |
4778451 | Kamen | Oct 1988 | A |
4786240 | Koroly et al. | Nov 1988 | A |
4808161 | Kamen | Feb 1989 | A |
4826482 | Kamen | May 1989 | A |
4840542 | Abbott | Jun 1989 | A |
4842584 | Pastrone | Jun 1989 | A |
4846636 | Danby et al. | Jul 1989 | A |
4850980 | Lentz et al. | Jul 1989 | A |
4858883 | Webster | Aug 1989 | A |
4902282 | Bellotti et al. | Feb 1990 | A |
4906260 | Emheiser et al. | Mar 1990 | A |
4927411 | Pastrone et al. | May 1990 | A |
4950134 | Bailey et al. | Aug 1990 | A |
4974754 | Wirz | Dec 1990 | A |
4976162 | Kamen | Dec 1990 | A |
4995864 | Bartholomew et al. | Feb 1991 | A |
4997464 | Kopf | Mar 1991 | A |
5002471 | Perlov | Mar 1991 | A |
5006050 | Cooke et al. | Apr 1991 | A |
5011380 | Kovacs et al. | Apr 1991 | A |
5036886 | Olsen et al. | Aug 1991 | A |
5061236 | Sutherland et al. | Oct 1991 | A |
5088515 | Kamen | Feb 1992 | A |
5098262 | Wecker et al. | Mar 1992 | A |
5100380 | Epstein | Mar 1992 | A |
5100699 | Roeser | Mar 1992 | A |
5116021 | Faust et al. | May 1992 | A |
5116316 | Sertic et al. | May 1992 | A |
5146713 | Grafius | Sep 1992 | A |
5151019 | Danby et al. | Sep 1992 | A |
5167837 | Snodgrass et al. | Dec 1992 | A |
5171029 | Maxwell et al. | Dec 1992 | A |
5178182 | Kamen | Jan 1993 | A |
5193990 | Kamen et al. | Mar 1993 | A |
5211201 | Kamen et al. | May 1993 | A |
5238003 | Baidwan et al. | Aug 1993 | A |
5241985 | Faust et al. | Sep 1993 | A |
5247434 | Peterson et al. | Sep 1993 | A |
5249932 | Van Bork | Oct 1993 | A |
5252044 | Raines et al. | Oct 1993 | A |
5259352 | Gerhardy et al. | Nov 1993 | A |
5267956 | Beuchat | Dec 1993 | A |
5279556 | Goi et al. | Jan 1994 | A |
5302093 | Owens et al. | Apr 1994 | A |
5324422 | Colleran et al. | Jun 1994 | A |
5330425 | Utterberg | Jul 1994 | A |
5342182 | Montoya et al. | Aug 1994 | A |
5344292 | Rabenau | Sep 1994 | A |
5350357 | Kamen et al. | Sep 1994 | A |
D351470 | Scherer et al. | Oct 1994 | S |
5353837 | Faust | Oct 1994 | A |
5378126 | Abrahamson et al. | Jan 1995 | A |
5395351 | Munsch | Mar 1995 | A |
5413626 | Bartsch | May 1995 | A |
5415528 | Ogden et al. | May 1995 | A |
5421208 | Packard et al. | Jun 1995 | A |
5421823 | Kamen et al. | Jun 1995 | A |
5427509 | Chapman et al. | Jun 1995 | A |
5431626 | Bryant et al. | Jul 1995 | A |
5431627 | Pastrone et al. | Jul 1995 | A |
5431634 | Brown | Jul 1995 | A |
5438510 | Bryant et al. | Aug 1995 | A |
5441636 | Chevallet et al. | Aug 1995 | A |
5445506 | Afflerbaugh et al. | Aug 1995 | A |
5447286 | Kamen et al. | Sep 1995 | A |
5462416 | Dennehey et al. | Oct 1995 | A |
5462417 | Chapman | Oct 1995 | A |
5474683 | Bryant et al. | Dec 1995 | A |
5478211 | Dominiak et al. | Dec 1995 | A |
5480294 | Di Perna et al. | Jan 1996 | A |
5482438 | Anderson et al. | Jan 1996 | A |
5482440 | Dennehey et al. | Jan 1996 | A |
5482446 | Williamson et al. | Jan 1996 | A |
5484239 | Chapman et al. | Jan 1996 | A |
5486286 | Peterson et al. | Jan 1996 | A |
5514069 | Brown et al. | May 1996 | A |
5538405 | Patno et al. | Jul 1996 | A |
5540568 | Rosen et al. | Jul 1996 | A |
5547453 | Di Perna | Aug 1996 | A |
5551850 | Williamson et al. | Sep 1996 | A |
5551941 | Howell | Sep 1996 | A |
5551942 | Brown et al. | Sep 1996 | A |
5554013 | Owens et al. | Sep 1996 | A |
5570716 | Kamen et al. | Nov 1996 | A |
5573385 | Chevallier | Nov 1996 | A |
5578070 | Utterberg | Nov 1996 | A |
5586868 | Lawless | Dec 1996 | A |
5588816 | Abbott et al. | Dec 1996 | A |
5593290 | Greisch et al. | Jan 1997 | A |
5599174 | Cook et al. | Feb 1997 | A |
5609572 | Lang | Mar 1997 | A |
5614677 | Wamsiedler et al. | Mar 1997 | A |
5624409 | Seale | Apr 1997 | A |
5628908 | Kamen et al. | May 1997 | A |
5630710 | Tune et al. | May 1997 | A |
5634391 | Eady | Jun 1997 | A |
5634896 | Bryant et al. | Jun 1997 | A |
5640995 | Packard et al. | Jun 1997 | A |
5641405 | Keshaviah et al. | Jun 1997 | A |
5641892 | Larkins et al. | Jun 1997 | A |
5643205 | Utterberg | Jul 1997 | A |
5645531 | Thompson et al. | Jul 1997 | A |
5658133 | Anderson et al. | Aug 1997 | A |
5669764 | Behringer et al. | Sep 1997 | A |
5690602 | Brown et al. | Nov 1997 | A |
D390654 | Alsberg et al. | Feb 1998 | S |
5713865 | Manning et al. | Feb 1998 | A |
5713888 | Neuenfeldt et al. | Feb 1998 | A |
5718567 | Rapp et al. | Feb 1998 | A |
5741125 | Neftel et al. | Apr 1998 | A |
5743169 | Yamada | Apr 1998 | A |
5746708 | Giesler et al. | May 1998 | A |
5755683 | Houle et al. | May 1998 | A |
5764034 | Bowman et al. | Jun 1998 | A |
5769387 | Perez | Jun 1998 | A |
5771914 | Ling et al. | Jun 1998 | A |
5772635 | Dastur et al. | Jun 1998 | A |
5772637 | Heinzmann et al. | Jun 1998 | A |
5775371 | Pan et al. | Jul 1998 | A |
5782575 | Vincent et al. | Jul 1998 | A |
5782805 | Meinzer et al. | Jul 1998 | A |
5799207 | Wang et al. | Aug 1998 | A |
5816779 | Lawless et al. | Oct 1998 | A |
5840151 | Munsch | Nov 1998 | A |
5842841 | Danby et al. | Dec 1998 | A |
5843035 | Bowman et al. | Dec 1998 | A |
5868696 | Giesler et al. | Feb 1999 | A |
5873853 | Keilman et al. | Feb 1999 | A |
5902096 | Behringer et al. | May 1999 | A |
5906598 | Giesler et al. | May 1999 | A |
5921951 | Morris | Jul 1999 | A |
5925011 | Faict et al. | Jul 1999 | A |
5934885 | Farrell et al. | Aug 1999 | A |
5935099 | Peterson et al. | Aug 1999 | A |
5938634 | Packard | Aug 1999 | A |
5984897 | Petersen et al. | Nov 1999 | A |
5989423 | Kamen | Nov 1999 | A |
5993174 | Konishi | Nov 1999 | A |
5996634 | Dennehey et al. | Dec 1999 | A |
6013057 | Danby et al. | Jan 2000 | A |
6036668 | Mathis | Mar 2000 | A |
6036680 | Horne et al. | Mar 2000 | A |
6041801 | Gray et al. | Mar 2000 | A |
6053191 | Hussey | Apr 2000 | A |
6065389 | Riedlinger | May 2000 | A |
6065941 | Gray et al. | May 2000 | A |
6068612 | Bowman et al. | May 2000 | A |
6074359 | Keshaviah et al. | Jun 2000 | A |
6079959 | Kingsford et al. | Jun 2000 | A |
6099492 | Le Boeuf | Aug 2000 | A |
6106246 | Steck et al. | Aug 2000 | A |
6110410 | Owens et al. | Aug 2000 | A |
6118207 | Ormerod et al. | Sep 2000 | A |
6129517 | Danby et al. | Oct 2000 | A |
6132187 | Ericson | Oct 2000 | A |
6136565 | Best et al. | Oct 2000 | A |
6152705 | Kennedy et al. | Nov 2000 | A |
6154605 | Aonuma | Nov 2000 | A |
6164621 | Bouchard et al. | Dec 2000 | A |
6165154 | Gray et al. | Dec 2000 | A |
6168394 | Forman et al. | Jan 2001 | B1 |
6178996 | Suzuki | Jan 2001 | B1 |
6179801 | Holmes et al. | Jan 2001 | B1 |
6184356 | Anderson et al. | Feb 2001 | B1 |
6189857 | Zeger et al. | Feb 2001 | B1 |
6196987 | Holmes et al. | Mar 2001 | B1 |
6200287 | Keller et al. | Mar 2001 | B1 |
6206644 | Pereira et al. | Mar 2001 | B1 |
6208107 | Maske et al. | Mar 2001 | B1 |
6208497 | Seale et al. | Mar 2001 | B1 |
6210361 | Kamen et al. | Apr 2001 | B1 |
6220295 | Bouchard et al. | Apr 2001 | B1 |
6223130 | Gray et al. | Apr 2001 | B1 |
6227807 | Chase | May 2001 | B1 |
6227824 | Stehr | May 2001 | B1 |
6228047 | Dadson | May 2001 | B1 |
6229753 | Kono et al. | May 2001 | B1 |
6231537 | Holmes et al. | May 2001 | B1 |
6234989 | Brierton et al. | May 2001 | B1 |
6250502 | Cote et al. | Jun 2001 | B1 |
6258078 | Thilly | Jul 2001 | B1 |
6261065 | Nayak et al. | Jul 2001 | B1 |
6267242 | Nagata et al. | Jul 2001 | B1 |
6270673 | Belt et al. | Aug 2001 | B1 |
6280406 | Dolecek et al. | Aug 2001 | B1 |
6281145 | Deguchi et al. | Aug 2001 | B1 |
6284142 | Muller | Sep 2001 | B1 |
6285155 | Maske et al. | Sep 2001 | B1 |
6286566 | Cline et al. | Sep 2001 | B1 |
6294094 | Muller et al. | Sep 2001 | B1 |
6296450 | Westberg et al. | Oct 2001 | B1 |
6297322 | Ding et al. | Oct 2001 | B1 |
6312412 | Saied et al. | Nov 2001 | B1 |
6315707 | Smith et al. | Nov 2001 | B1 |
6315754 | Daoud et al. | Nov 2001 | B1 |
6316864 | Ormerod | Nov 2001 | B1 |
6322488 | Westberg et al. | Nov 2001 | B1 |
6325775 | Thom et al. | Dec 2001 | B1 |
6337049 | Tamari | Jan 2002 | B1 |
RE37553 | Ciavarini et al. | Feb 2002 | E |
6343614 | Gray et al. | Feb 2002 | B1 |
6348156 | Vishnoi et al. | Feb 2002 | B1 |
6361518 | Brierton et al. | Mar 2002 | B1 |
6364857 | Gray et al. | Apr 2002 | B1 |
6367669 | Au et al. | Apr 2002 | B1 |
6382923 | Gray | May 2002 | B1 |
6383158 | Utterberg | May 2002 | B1 |
6402486 | Steck et al. | Jun 2002 | B1 |
6406276 | Normand et al. | Jun 2002 | B1 |
6409696 | Toavs et al. | Jun 2002 | B1 |
6416293 | Bouchard et al. | Jul 2002 | B1 |
6419822 | Muller et al. | Jul 2002 | B2 |
6455676 | Weickert et al. | Sep 2002 | B1 |
6471855 | Odak et al. | Oct 2002 | B1 |
6481980 | Vandlik et al. | Nov 2002 | B1 |
6484383 | Herklotz | Nov 2002 | B1 |
6489896 | Platt et al. | Dec 2002 | B1 |
6491656 | Morris | Dec 2002 | B1 |
6494694 | Lawless et al. | Dec 2002 | B2 |
6497674 | Steele et al. | Dec 2002 | B1 |
6497676 | Childers et al. | Dec 2002 | B1 |
6503062 | Gray et al. | Jan 2003 | B1 |
6514225 | Utterberg et al. | Feb 2003 | B1 |
6519569 | White et al. | Feb 2003 | B1 |
6520747 | Gray et al. | Feb 2003 | B2 |
6524231 | Westberg et al. | Feb 2003 | B1 |
6529573 | Olsher et al. | Mar 2003 | B2 |
6537445 | Muller | Mar 2003 | B2 |
6542761 | Jahn et al. | Apr 2003 | B1 |
6558343 | Neftel | May 2003 | B1 |
6572604 | Platt et al. | Jun 2003 | B1 |
6579253 | Burbank et al. | Jun 2003 | B1 |
6582399 | Smith | Jun 2003 | B1 |
6592542 | Childers et al. | Jul 2003 | B2 |
6595948 | Suzuki et al. | Jul 2003 | B2 |
6603229 | Toye, IV | Aug 2003 | B1 |
6604908 | Bryant et al. | Aug 2003 | B1 |
6645166 | Scheunert et al. | Nov 2003 | B2 |
6645177 | Shearn | Nov 2003 | B1 |
6648861 | Platt et al. | Nov 2003 | B2 |
6663359 | Gray | Dec 2003 | B2 |
6670323 | Looker et al. | Dec 2003 | B1 |
6672841 | Herklotz et al. | Jan 2004 | B1 |
6695593 | Steck et al. | Feb 2004 | B1 |
6695803 | Robinson et al. | Feb 2004 | B1 |
6709417 | Houle et al. | Mar 2004 | B1 |
6716004 | Vandlik et al. | Apr 2004 | B2 |
6723062 | Westberg et al. | Apr 2004 | B1 |
6725726 | Adolfs et al. | Apr 2004 | B1 |
6726656 | Kamen et al. | Apr 2004 | B2 |
6730055 | Bainbridge et al. | May 2004 | B2 |
6743201 | Doenig et al. | Jun 2004 | B1 |
6746514 | Bedingfield et al. | Jun 2004 | B2 |
6746637 | Huss et al. | Jun 2004 | B1 |
6749403 | Bryant et al. | Jun 2004 | B2 |
6752172 | Lauer | Jun 2004 | B2 |
6752599 | Park | Jun 2004 | B2 |
6755801 | Utterberg et al. | Jun 2004 | B2 |
6758975 | Peabody et al. | Jul 2004 | B2 |
6759007 | Westberg et al. | Jul 2004 | B1 |
6759014 | Dales et al. | Jul 2004 | B2 |
6764460 | Dolecek et al. | Jul 2004 | B2 |
6764761 | Eu et al. | Jul 2004 | B2 |
6768425 | Flaherty et al. | Jul 2004 | B2 |
6774517 | Kowalski et al. | Aug 2004 | B2 |
6790014 | Bowen | Sep 2004 | B2 |
6790195 | Steele et al. | Sep 2004 | B2 |
6790198 | White et al. | Sep 2004 | B1 |
6800054 | Westberg et al. | Oct 2004 | B2 |
6808369 | Gray et al. | Oct 2004 | B2 |
6814547 | Childers et al. | Nov 2004 | B2 |
6821432 | Metzner | Nov 2004 | B2 |
6828125 | Hoffman et al. | Dec 2004 | B1 |
6846161 | Kline et al. | Jan 2005 | B2 |
6852090 | Burbank et al. | Feb 2005 | B2 |
6865981 | Wiechers | Mar 2005 | B2 |
6869538 | Yu et al. | Mar 2005 | B2 |
6905479 | Bouchard et al. | Jun 2005 | B1 |
6929751 | Bowman, Jr. et al. | Aug 2005 | B2 |
6939111 | Huitt et al. | Sep 2005 | B2 |
6949079 | Westberg et al. | Sep 2005 | B1 |
6953323 | Childers et al. | Oct 2005 | B2 |
6957952 | Steck et al. | Oct 2005 | B1 |
6984218 | Nayak et al. | Jan 2006 | B2 |
7021148 | Kuhn et al. | Apr 2006 | B2 |
7029245 | Maianti et al. | Apr 2006 | B2 |
7033539 | Krensky et al. | Apr 2006 | B2 |
7041076 | Westberg et al. | May 2006 | B1 |
7044432 | Beden et al. | May 2006 | B2 |
7049406 | Weickert et al. | May 2006 | B2 |
7083719 | Bowman, Jr. et al. | Aug 2006 | B2 |
7087036 | Busby et al. | Aug 2006 | B2 |
7107837 | Lauman et al. | Sep 2006 | B2 |
7115107 | Delnevo et al. | Oct 2006 | B2 |
7115228 | Lundtveit et al. | Oct 2006 | B2 |
7147613 | Burbank et al. | Dec 2006 | B2 |
7153286 | Busby et al. | Dec 2006 | B2 |
7160087 | Fathallah et al. | Jan 2007 | B2 |
7166231 | Westberg et al. | Jan 2007 | B2 |
7175606 | Bowman et al. | Feb 2007 | B2 |
7195607 | Westberg et al. | Mar 2007 | B2 |
7211560 | Looker et al. | May 2007 | B2 |
7232435 | Hildebrand et al. | Jun 2007 | B2 |
7236936 | White et al. | Jun 2007 | B2 |
7238164 | Childers et al. | Jul 2007 | B2 |
7255680 | Gharib | Aug 2007 | B1 |
7258534 | Fathallah et al. | Aug 2007 | B2 |
7261559 | Smith et al. | Aug 2007 | B2 |
7267661 | Susi | Sep 2007 | B2 |
7273465 | Ash | Sep 2007 | B2 |
7306578 | Gray et al. | Dec 2007 | B2 |
7331935 | Barere | Feb 2008 | B2 |
7338469 | Barker et al. | Mar 2008 | B2 |
7338472 | Shearn | Mar 2008 | B2 |
7345025 | Symonds et al. | Mar 2008 | B2 |
7347836 | Peterson et al. | Mar 2008 | B2 |
7390311 | Hildebrand et al. | Jun 2008 | B2 |
7398183 | Holland et al. | Jul 2008 | B2 |
7399637 | Wright et al. | Jul 2008 | B2 |
7404809 | Susi | Jul 2008 | B2 |
7410475 | Krensky et al. | Aug 2008 | B2 |
7422905 | Clague et al. | Sep 2008 | B2 |
7454314 | Holland et al. | Nov 2008 | B2 |
7461968 | Demers et al. | Dec 2008 | B2 |
7490021 | Holland et al. | Feb 2009 | B2 |
7500962 | Childers et al. | Mar 2009 | B2 |
7517387 | Chevallet et al. | Apr 2009 | B2 |
7553295 | Susi | Jun 2009 | B2 |
7556616 | Fathallah et al. | Jul 2009 | B2 |
7575564 | Childers | Aug 2009 | B2 |
7618948 | Kaemmerer | Nov 2009 | B2 |
7645258 | White et al. | Jan 2010 | B2 |
7648627 | Beden et al. | Jan 2010 | B2 |
7654976 | Peterson et al. | Feb 2010 | B2 |
7662133 | Scarborough et al. | Feb 2010 | B2 |
7662286 | Childers et al. | Feb 2010 | B2 |
7699966 | Qin et al. | Apr 2010 | B2 |
7717682 | Orr | May 2010 | B2 |
7789849 | Busby et al. | Sep 2010 | B2 |
7815595 | Busby et al. | Oct 2010 | B2 |
8038640 | Orr | Oct 2011 | B2 |
8142653 | Beden et al. | Mar 2012 | B2 |
8192401 | Morris et al. | Jun 2012 | B2 |
8197231 | Orr | Jun 2012 | B2 |
8197439 | Wang et al. | Jun 2012 | B2 |
8206338 | Childers et al. | Jun 2012 | B2 |
8292594 | Tracey et al. | Oct 2012 | B2 |
8366921 | Beden et al. | Feb 2013 | B2 |
8377293 | Beden et al. | Feb 2013 | B2 |
8409441 | Wilt | Apr 2013 | B2 |
8435408 | Beden et al. | May 2013 | B2 |
8562834 | Kamen et al. | Oct 2013 | B2 |
8721879 | van der Merwe et al. | May 2014 | B2 |
8721883 | Lauer | May 2014 | B2 |
8926835 | Beden et al. | Jan 2015 | B2 |
8932032 | Orr | Jan 2015 | B2 |
8986254 | Morris et al. | Mar 2015 | B2 |
9011114 | Farrell et al. | Apr 2015 | B2 |
9101709 | Beden et al. | Aug 2015 | B2 |
9180240 | Farrell et al. | Nov 2015 | B2 |
9421314 | Plahey et al. | Aug 2016 | B2 |
9500188 | Ly et al. | Nov 2016 | B2 |
9610392 | Farrell et al. | Apr 2017 | B2 |
9624915 | Medina | Apr 2017 | B2 |
20010034502 | Moberg et al. | Oct 2001 | A1 |
20010037763 | Deguchi et al. | Nov 2001 | A1 |
20010043450 | Seale et al. | Nov 2001 | A1 |
20020045851 | Suzuki et al. | Apr 2002 | A1 |
20020062109 | Lauer | May 2002 | A1 |
20020072718 | Brugger et al. | Jun 2002 | A1 |
20020098097 | Singh | Jul 2002 | A1 |
20020107474 | Noack | Aug 2002 | A1 |
20020147423 | Burbank et al. | Oct 2002 | A1 |
20030018395 | Crnkovich et al. | Jan 2003 | A1 |
20030028144 | Duchon et al. | Feb 2003 | A1 |
20030029451 | Blair et al. | Feb 2003 | A1 |
20030042181 | Metzner | Mar 2003 | A1 |
20030100882 | Beden et al. | May 2003 | A1 |
20030136189 | Lauman et al. | Jul 2003 | A1 |
20030194332 | Jahn et al. | Oct 2003 | A1 |
20030200812 | Kuhn et al. | Oct 2003 | A1 |
20030204162 | Childers et al. | Oct 2003 | A1 |
20030217957 | Bowman et al. | Nov 2003 | A1 |
20030217961 | Hopping et al. | Nov 2003 | A1 |
20030217975 | Yu et al. | Nov 2003 | A1 |
20030218623 | Krensky et al. | Nov 2003 | A1 |
20030220599 | Lundtveit et al. | Nov 2003 | A1 |
20030220605 | Bowman et al. | Nov 2003 | A1 |
20030220607 | Busby et al. | Nov 2003 | A1 |
20030220608 | Huitt et al. | Nov 2003 | A1 |
20030220609 | Childers et al. | Nov 2003 | A1 |
20030220627 | Distler et al. | Nov 2003 | A1 |
20040001766 | Maianti et al. | Jan 2004 | A1 |
20040010223 | Busby et al. | Jan 2004 | A1 |
20040019313 | Childers et al. | Jan 2004 | A1 |
20040019320 | Childers et al. | Jan 2004 | A1 |
20040031756 | Suzuki et al. | Feb 2004 | A1 |
20040064080 | Cruz et al. | Apr 2004 | A1 |
20040067161 | Axelsson | Apr 2004 | A1 |
20040082903 | Micheli et al. | Apr 2004 | A1 |
20040084647 | Beden et al. | May 2004 | A1 |
20040109769 | Jahn et al. | Jun 2004 | A1 |
20040115068 | Hansen et al. | Jun 2004 | A1 |
20040135078 | Mandro et al. | Jul 2004 | A1 |
20040136843 | Jahn et al. | Jul 2004 | A1 |
20040156745 | Vandlik et al. | Aug 2004 | A1 |
20040195190 | Min et al. | Oct 2004 | A1 |
20040238416 | Burbank et al. | Dec 2004 | A1 |
20050054968 | Giannella | Mar 2005 | A1 |
20050230292 | Beden et al. | Oct 2005 | A1 |
20060002823 | Feldstein | Jan 2006 | A1 |
20060079766 | Neer et al. | Apr 2006 | A1 |
20060079826 | Beden et al. | Apr 2006 | A1 |
20060195064 | Plahey et al. | Aug 2006 | A1 |
20070040454 | Freudenberger et al. | Feb 2007 | A1 |
20070112297 | Plahey et al. | May 2007 | A1 |
20070149913 | Busby, Jr. et al. | Jun 2007 | A1 |
20070193940 | Duchamp et al. | Aug 2007 | A1 |
20070213651 | Busby, Jr. et al. | Sep 2007 | A1 |
20070213653 | Childers et al. | Sep 2007 | A1 |
20070269340 | Dannenmaier et al. | Nov 2007 | A1 |
20070278155 | Lo et al. | Dec 2007 | A1 |
20080033346 | Childers et al. | Feb 2008 | A1 |
20080077068 | Orr | Mar 2008 | A1 |
20080125693 | Gavin et al. | May 2008 | A1 |
20080208103 | Demers et al. | Aug 2008 | A1 |
20080216898 | Grant et al. | Sep 2008 | A1 |
20080253912 | Demers et al. | Oct 2008 | A1 |
20090004033 | Demers et al. | Jan 2009 | A1 |
20090099498 | Demers et al. | Apr 2009 | A1 |
20090137940 | Orr | May 2009 | A1 |
20090169402 | Stenberg et al. | Jul 2009 | A1 |
20090198170 | Childers | Aug 2009 | A1 |
20090212248 | Kozak | Aug 2009 | A1 |
20100021313 | Devan et al. | Jan 2010 | A1 |
20100133153 | Beden et al. | Jun 2010 | A1 |
20100211044 | Dacquay et al. | Aug 2010 | A1 |
20100241062 | Morris et al. | Sep 2010 | A1 |
20100286614 | Ring | Nov 2010 | A1 |
20110015610 | Plahey et al. | Jan 2011 | A1 |
20110020156 | Van et al. | Jan 2011 | A1 |
20110092895 | Yardimci et al. | Apr 2011 | A1 |
20110125085 | McGill et al. | May 2011 | A1 |
20110137237 | Prisco et al. | Jun 2011 | A1 |
20110152785 | Chattaraj et al. | Jun 2011 | A1 |
20110274566 | Amirouche et al. | Nov 2011 | A1 |
20110293450 | Grimes et al. | Dec 2011 | A1 |
20120022354 | Beyer et al. | Jan 2012 | A1 |
20120061310 | Beden et al. | Mar 2012 | A1 |
20120065581 | Childers et al. | Mar 2012 | A1 |
20120073432 | Ingersoll et al. | Mar 2012 | A1 |
20120123322 | Scarpaci et al. | May 2012 | A1 |
20120136298 | Bendix et al. | May 2012 | A1 |
20120156097 | Beden et al. | Jun 2012 | A1 |
20120181225 | Weis | Jul 2012 | A1 |
20120181226 | Lauer | Jul 2012 | A1 |
20120181231 | Beden et al. | Jul 2012 | A1 |
20120209169 | Morris et al. | Aug 2012 | A1 |
20120224984 | Orr | Sep 2012 | A1 |
20120230844 | Farrell et al. | Sep 2012 | A1 |
20120232469 | Medina | Sep 2012 | A1 |
20120271226 | Farrell et al. | Oct 2012 | A1 |
20120308412 | Rochat | Dec 2012 | A1 |
20130118961 | Beden et al. | May 2013 | A1 |
20130118970 | Beden et al. | May 2013 | A1 |
20130183170 | Laermer | Jul 2013 | A1 |
20130184638 | Scarpaci et al. | Jul 2013 | A1 |
20130330208 | Ly et al. | Dec 2013 | A1 |
20130331774 | Farrell et al. | Dec 2013 | A1 |
20150098846 | Orr | Apr 2015 | A1 |
20150165105 | Beden et al. | Aug 2015 | A1 |
20160015882 | Farrell et al. | Jan 2016 | A1 |
20170203023 | Farrell et al. | Jul 2017 | A1 |
Number | Date | Country |
---|---|---|
2628238 | Jan 1978 | DE |
2827648 | Jan 1979 | DE |
4006785 | Sep 1990 | DE |
4336336 | May 1994 | DE |
19837667 | Mar 2000 | DE |
19919572 | Nov 2000 | DE |
10042324 | Feb 2002 | DE |
10046651 | Apr 2002 | DE |
19919572 | Apr 2002 | DE |
10053441 | May 2002 | DE |
69618766 | Aug 2002 | DE |
10143137 | Apr 2003 | DE |
10157924 | Jun 2003 | DE |
102007059239 | Jun 2009 | DE |
0257279 | Mar 1988 | EP |
0314379 | Feb 1991 | EP |
0410125 | Aug 1993 | EP |
0728509 | Aug 1996 | EP |
0848193 | Jun 1998 | EP |
0856321 | Aug 1998 | EP |
0947814 | Oct 1999 | EP |
0956876 | Nov 1999 | EP |
1529545 | May 2005 | EP |
1483702 | Aug 1977 | GB |
2101232 | Jan 1983 | GB |
2331796 | Jun 1999 | GB |
0396850 | Apr 1991 | JP |
04191755 | Jul 1992 | JP |
06154314 | Jun 1994 | JP |
06002650 | Nov 1994 | JP |
08028722 | Feb 1996 | JP |
1068383 | Mar 1998 | JP |
11347115 | Dec 1999 | JP |
2000070358 | Mar 2000 | JP |
2000346214 | Dec 2000 | JP |
8402473 | Jul 1984 | WO |
8601115 | Feb 1986 | WO |
WO1994015660 | Jul 1994 | WO |
9420155 | Sep 1994 | WO |
9625064 | Aug 1996 | WO |
1997016214 | May 1997 | WO |
1997016214 | May 1997 | WO |
9737703 | Oct 1997 | WO |
9822165 | May 1998 | WO |
WO1998022167 | May 1998 | WO |
0023140 | Apr 2000 | WO |
0033898 | Jun 2000 | WO |
0117605 | Mar 2001 | WO |
0225146 | Mar 2002 | WO |
0225225 | Mar 2002 | WO |
WO2007006030 | Jun 2007 | WO |
2009071069 | Jun 2009 | WO |
WO2010128914 | Nov 2010 | WO |
WO2011045167 | Apr 2011 | WO |
Entry |
---|
Bolegoh, Gordon, “Pumps: Reference Guide”, p. 24, 3rd edition, 2001. |
Ronco et al., “Evolution of Machines for Automated Peritoneal Dialysis”, in Automated Peritoneal Dialysis, Contributions to Nephrology, vol. 129, pp. 142-161, 1999. |
Sleep Safe Operating Instructions, Software Version 0.5, Apr. 1999. |
Sleep Safe Operating Instructions, Software Version 1.0, Oct. 2000. |
Sleep Safe Technical Manual, Dec. 2001. |
Sleep Safe Operating Instructions, Jan. 2002. |
Sleep Safe Communicating Therapy, Mar. 1998. |
Sleep Safe Kommunizierte Therapie, May 1998. |
Innovative Technologies in Peritoneal Dialysis, Sleep Safe Concept, Oct. 13, 1999 (4 attachments). |
TL™ Pump Brochure, TL Systems Corporation, Apr. 1975. |
Google definition for Hall Effect Sensor, accessed Jul. 30, 2015. |
Hall Sensor Effect—NPL Wayback Mar. 11, 2011. www.movingmagnet.com, Technologies, Magnetic and Hall effect Position Sensors. |
International Search Report and Written Opinion for PCT Application No. PCT/US2012/032672, dated Jun. 13, 2012, 13 pages. |
Gambro®, “DEHP-free cartridge blood sets,” © Nov. 2004, Gambro, Inc., Lakewood, CO, 4 pp. |
Gambro®, “Prisma® HF 1000, For Increased Filtration Capacity”, © Aug. 2001, Gambro Renal Products, Inc., Lakewood, CO, 2 pp. |
Gambro®, “Prisma® M60 and M100 Pre-Pump Infusion Sets—Introducing: The unique solution that enables Physicians to choose a predilution method that meets the needs of their patients”, © 2004, Gambro Inc., Lakewood, CO, 4 pp. |
Gambro®, “Prismaflex™ anticipating critical care needs and taking our innovative response . . . to new heights,” © 2004, Gambro Inc., Lakewood, CO, 8 pp. |
Glenn Avolio, “Principles of Rotary Optical Encoders,” Sensors Journal of Machine Perception, vol. 10, No. 4, pp. 10-18, 1993. |
Manns, Markus et al., “The acu-men: A new device for continuous renal replacement therapy in acute renal failure,” Kidney International, vol. 54, pp. 268-274, 1998. |
Liberty Cycler Operator's Manual, 2003-2004. |
Newton IQ Cycler Operator Manual, Part No. 470203 Rev. F, 2000-2006. |
Operator's Instructions, Fresenius 90/2 Peritoneal Therapy Cycler, Part No. 470016, Rev. B, 1991. |
Operator's Manual, Serena, Program Version 3.xx—English, 2002. |
Sleep Safe Operating Instructions, Software Version 0.9, Part No. 677 801 1; Aug. 2000. |
Sleep Safe Technical Manual, Part No. 677 807 1; Aug. 2000. |
Notification Concerning Transmittal of International Preliminary Report on Patentability for corresponding PCT Application No. PCT/US2012/032672, dated Oct. 31, 2013, 9 pages. |
International Search Report and Written Opinion, PCT/US2010 /041976, dated Dec. 2, 2010. |
Number | Date | Country | |
---|---|---|---|
20160331883 A1 | Nov 2016 | US |
Number | Date | Country | |
---|---|---|---|
61225618 | Jul 2009 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 12836740 | Jul 2010 | US |
Child | 15223208 | US |