Medical injectors may be used to deliver a medicament to a subject, and on-body injection devices have been the subject of continuing development in efforts to develop injection devices and methods that offer benefits such as greater comfort and less pain while providing effective subcutaneous injection.
Monitoring health or physiological parameters of a subject receiving treatment for a disease or health condition may be performed using a variety or approaches, such as collecting a biological sample and processing the sample for analyte detection.
Recognized herein is a need for new and/or improved apparatuses, systems and methods for injection of medicaments (e.g., drugs) from a reservoir, e.g., source vial or vials, to and into a subject. Further, recognized herein is a need for apparatuses, systems, and methods for monitoring a health or physiologic parameter prior to, during, and/or following injection of a medicament into a subject. Such an apparatus or system may be useful, for example, in regulatory procedures and patient monitoring.
The present disclosure provides apparatuses, systems, and methods that may be used for medical fluid transfer and injection, and methods for administering a substance (e.g., medicament) to a subject and monitoring the subject for one or more physical parameters or attributes before, during and/or after the administration of the substance.
In an aspect, disclosed herein is a method for measuring a health or physiological parameter from a subject, comprising: (a) providing (i) a reusable patch comprising a first housing comprising a sensor, and (ii) an injector having a second housing comprising a cannula in fluid communication with a fluid flow path and a reservoir comprising a substance, wherein the second housing is coupled to the first housing of the reusable patch, which patch is secured to a body of the subject; and (b) using the sensor to (i) measure the health or physiological parameter from the subject, and (ii) provide one or more outputs corresponding to the health or physiological parameter from the subject.
In some embodiments, the injector comprises the reservoir and the fluid flow path. In some embodiments, the injector is configured to administer a dosage of the substance from the reservoir through the fluid flow path and the cannula to the subject. In some embodiments, the reusable patch comprises a second sensor, wherein the second sensor is configured to measure one or more device parameters selected from the group consisting of: a dosage of the substance that is administered, a flow rate of dispensing of the substance, a volume of the substance that is administered, an occlusion of the cannula, a duration of contact of the cannula with the body of the subject, and contact of the cannula into the body of the subject. In some embodiments, the second housing is removably coupled to the first housing of the reusable patch. In some embodiments, the method further comprises subsequent to (b), sterilizing or cleaning the reusable patch. In some embodiments, the method further comprises providing a charging station configured to couple to the reusable patch. In some embodiments, the reusable patch comprises a rechargeable battery. In some embodiments, the reusable patch is secured to the body of the subject using an adhesive. In some embodiments, the health or physiological parameter comprises a member selected from the group consisting of: temperature, tissue thickness, heart rate, blood pressure, interstitial pressure, tissue density, skin distension, bleeding, sweat quantity, and analyte measurement. In some embodiments, the analyte is obtained from blood from the subject. In some embodiments, the health or physiological parameter comprises a fat or adipose tissue thickness. In some embodiments, the sensor comprises an ultrasound transmitter and an ultrasound receiver, and wherein (b) comprises transmitting an ultrasound signal from the ultrasound transmitter to a location within the body of the subject and using the ultrasound receiver to receive a signal from the location, and wherein, at least the signal is received by the ultrasound receiver and is used to measure the health or physiological parameter. In some embodiments, the reusable patch comprises a membrane comprising an opening. In some embodiments, the membrane is pierceable. In some embodiments, the opening of the membrane is pre-formed. In some embodiments, the reusable patch comprises a bandage. In some embodiments, the method further comprises depositing the bandage on the body of the subject. In some embodiments, the reusable patch comprises a communication interface. In some embodiments, the communication interface is configured to transmit data corresponding to the health or physiological parameter to an electronic device in communication with the communication interface. In some embodiments, the electronic device comprises a mobile device. In some embodiments, the method further comprises using a computer-implemented mobile application of the mobile device to monitor the health or physiological parameter over a period of time. In some embodiments, the communication interface is in communication with an additional communication interface of the injector. In some embodiments, the communication interface and the additional communication interface are used to locate the patch or the injector. In some embodiments, the one or more outputs comprises an output signal, wherein the output signal comprises one or more members selected from the group consisting of a vibration signal, an audio signal, a visual signal, a haptic signal, an electrical signal. In some embodiments, the method further comprises, subsequent to (b), using the injector to administer a dosage of the substance from the reservoir through the fluid flow path and the cannula to the subject.
In another aspect of the present disclosure, provided herein is a system for measuring a health or physiological parameter from a subject comprising: a reusable patch comprising a first housing having a sensor, which patch is configured to secure to a body of the subject; and an injector having a second housing comprising a cannula in fluid communication with a fluid flow path and a reservoir comprising a substance, wherein the second housing is configured to couple to the first housing of the reusable patch; wherein the sensor is configured to (i) measure the health or physiological parameter from the subject, and (ii) provide one or more outputs corresponding to the health or physiological parameter from the subject.
In some embodiments, the injector comprises the reservoir and the fluid flow path. In some embodiments, the injector is configured to administer a dosage of the substance from the reservoir through the fluid flow path and the cannula to the subject. In some embodiments, the reusable patch comprises a second sensor, wherein the second sensor is configured to measure one or more device parameters selected from the group consisting of: a dosage of the substance that is administered, a flow rate of dispensing of the substance, a volume of the substance that is administered, an occlusion of the cannula, a duration of contact of the cannula into the body of the subject, and contact of the cannula into the body of the subject. In some embodiments, the second housing is removably coupled to the first housing of the reusable patch. In some embodiments, the system further comprises a charging station configured to couple to the reusable patch. In some embodiments, the reusable patch comprises a rechargeable battery. In some embodiments, the reusable patch is secured to the body of the subject using an adhesive. In some embodiments, the health or physiological parameter comprises a member selected from the group consisting of: temperature, tissue thickness, heart rate, blood pressure, interstitial pressure, tissue density, skin distension, bleeding, sweat quantity, and analyte measurement. In some embodiments, the analyte is obtained from blood from the subject. In some embodiments, the health or physiological parameter comprises a fat or adipose tissue thickness. In some embodiments, the sensor comprises an ultrasound transmitter and an ultrasound receiver. In some embodiments, the reusable patch comprises a membrane comprising an opening. In some embodiments, the membrane is pierceable. In some embodiments, the opening of the membrane is pre-formed. In some embodiments, the reusable patch comprises a bandage. In some embodiments, the system further comprises a charging station configured to couple to the reusable patch. In some embodiments, the reusable patch comprises a communication interface. In some embodiments, the communication interface is configured to transmit data corresponding to the health or physiological parameter to an electronic device in communication with the communication interface. In some embodiments, the electronic device comprises a mobile device. In some embodiments, the mobile device comprises a computer-implemented mobile application configured to monitor the health or physiological parameter over a period of time. In some embodiments, the communication interface is in communication with an additional communication interface of the injector. In some embodiments, the communication interface and the additional communication interface are used to locate the patch or the injector. In some embodiments, the one or more outputs comprises an output signal, wherein the output signal comprises one or more members selected from the group consisting of a vibration signal, an audio signal, a visual signal, a haptic signal, an electrical signal.
In another aspect, provided herein is a system for measuring a health or physiological parameter from a subject, comprising: (a) a patch comprising a first housing having a sensor configured to: (i) measure said health or physiological parameter from said subject when said patch is secured to a body of said subject, and (ii) provide one or more outputs corresponding to said health or physiological parameter from said subject, wherein said first housing comprises an opening; and an injector having a second housing comprising a cannula in fluid communication with a fluid flow path, wherein said second housing is coupled to said first housing such that said cannula is directed through said opening and in contact with a body of said subject when said patch is secured to said body, wherein said injector is configured to (i) direct a substance from a reservoir to said fluid flow path in fluid communication with said reservoir, and (ii) direct said substance from said fluid flow path into said subject through said cannula.
In some embodiments, the system further comprises a pump integrated with the cannula, wherein the pump is configured to direct the substance from the fluid flow path into the subject through the cannula. In some embodiments, the cannula is configured to extend towards or retract away from the body of the subject. In some embodiments, the opening comprises a pierce-able membrane. In some embodiments, the pierce-able membrane is pierced by the cannula to generate the opening. In some embodiments, the reservoir is secured to the injector. In some embodiments, the reservoir is removable from the injector. In some embodiments, the reservoir is part of the injector. In some embodiments, the substance is a medicament. In some embodiments, the medicament is for treating one or more diseases selected from the group of cardiovascular, musculoskeletal, gastrointestinal, dermatology, immunology, ophthalmology, hematology, neurology, oncology, endocrinology, metabolic and respiratory disease. In some embodiments, the injector comprises the reservoir, wherein the reservoir is configured to contain a formulation having the substance. In some embodiments, the first housing is removably coupled to the second housing. In some embodiments, the patch comprises a communication interface for transmitting data corresponding to the plurality of health or physiological parameters to an electronic device in communication with the communication interface. In some embodiments, the communication interface comprises a wireless communication interface. In some embodiments, the communication interface comprises a Wi-Fi interface. In some embodiments, the communication interface comprises a near field communication interface. In some embodiments, the communication interface comprises a Bluetooth interface. In some embodiments, the communication interface comprises an optical wireless interface. In some embodiments, the communication interface comprises a direct electrical contact digital or analog interface. In some embodiments, an input transducer/sensor of the plurality of sensors is selected from the group consisting of a conductivity sensor, impedance sensor, capacitance sensor, charge sensor, humidity sensor, temperature sensor, heart rate sensor, interstitial pressure sensor, resistance sensor, optical sensor, distension sensor, acoustic sensor, vibration sensor, blood pressure sensor, color sensor, chemical sensor, and a substance-tracking sensor. In some embodiments, the system further comprises a second sensor, wherein the second sensor is configured to measure one or more device parameters chosen from the group consisting of: a dosage of the substance that is administered, a flow rate of dispensing of the substance, a volume of the substance that is administered, an occlusion of the cannula, and contact of the cannula into the body of the subject. In some embodiments, the patch or the injector comprises the second sensor. In some embodiments, the patch further comprises one or more transducers. In some embodiments, the one or more transducers is configured to generate an output signal, wherein the output signal comprises a vibration signal, audio signal, or visual signal. In some embodiments, an output transducer of the plurality of transducers is selected from the group consisting of a haptic (vibration) transducer, audio transducer, visual transducer, and direct electrical stimulation (e.g. transcutaneous electrical nerve stimulation/TENS).
In another aspect, disclosed herein is a method for measuring a plurality of health or physiological parameters from a subject, comprising: (a) providing: (i) a patch comprising a first housing having a plurality of sensors and comprising an opening, and (ii) an injector having a second housing comprising a cannula in fluid communication with a fluid flow path, wherein the second housing is coupled to the first housing of the patch, and wherein the injector comprises a reservoir comprising a substance and a fluid flow path in fluid communication with the reservoir; (b) securing the patch to a body of the subject; (c) when the patch is secured to the body of the subject, directing the cannula through the opening to (i) direct the substance from the reservoir to the fluid flow path, and (ii) direct the substance from the fluid flow path into the subject through the cannula; and (d) using the plurality of sensors to (i) measure the plurality of health or physiological parameters from the subject, and (ii) provide one or more outputs corresponding to the plurality of health or physiological parameters from the subject.
In some embodiments, the method further comprises using a pump integrated with the cannula to direct the substance from the fluid flow path into the subject through the cannula. In some embodiments, the cannula is configured to extend towards or retract away from the body of the subject. In some embodiments, the opening comprises a pierce-able membrane. In some embodiments, the pierce-able membrane is pierced by the cannula to generate the opening. In some embodiments, the reservoir is secured to the injector. In some embodiments, the reservoir is removable from the injector. In some embodiments, the reservoir is part of the injector. In some embodiments, the substance is a medicament. In some embodiments, the medicament is used for treating one or more diseases selected from the group of cardiovascular, musculoskeletal, gastrointestinal, dermatology, immunology, ophthalmology, hematology, neuroscience, oncology, endocrinology, metabolic and respiratory disease. In some embodiments, the injector comprises the reservoir, wherein the reservoir is configured to contain a formulation having the substance. In some embodiments, the first housing is removably coupled to the second housing. In some embodiments, the patch comprises a communication interface for transmitting data corresponding to the plurality of health or physiological parameters to an electronic device in communication with the communication interface. In some embodiments, the communication interface is a wireless communication interface. In some embodiments, the communication interface is a Wi-Fi interface. In some embodiments, the communication interface is a near field communication interface. In some embodiments, the communication interface is a Bluetooth interface. In some embodiments, the communication interface is an optical wireless interface. In some embodiments, an input transducer/sensor of the plurality of sensors is selected from the group consisting of a conductivity sensor, impedance sensor, capacitance sensor, charge sensor, humidity sensor, temperature sensor, heart rate sensor, interstitial pressure sensor, resistance sensor, distension sensor, acoustic sensor, vibration sensor, blood pressure sensor, color sensor, chemical sensor, and a substance-tracking sensor. In some embodiments, an output transducer of the plurality of transducers is selected from the group consisting of a haptic (vibration) transducer, audio transducer visual transducers, and direct electrical stimulation (e.g. transcutaneous electrical nerve stimulation/TENS).
In some embodiments, a second sensor of the plurality of sensors is selected from the group consisting of temperature sensor, humidity sensor, flow rate sensor, button position sensor, vibration sensor, audible sensor, skin sensor.
In yet another aspect, provided herein is an injector comprising; (a) a housing; (b) a medicament reservoir provided in the housing; (c) an injection cannula moveable within the housing between a pre-dispense position and a dispense position in fluid communication with the reservoir; (d) an injector transducer/sensor mounted on or within the housing; (e) a skin attachment layer attached to the housing, the skin attachment layer including an adhesive configured to secure the housing to a user's skin with a first holding force; (f) a patch removably secured to the housing with a second holding force, the patch including a sensor adhesive layer configured to secure the patch to a user's skin with a third holding force, a patch input transducer/sensor, output transducer and circuitry configured to receive data from the injector transducer/sensor and the patch transducer/sensor and transmit received data to a remote receiver; (g) wherein the third holding force is greater than the second holding force.
In some embodiments, the second holding force is greater than the first holding force and the patch is removably attached to the skin attachment layer. In some embodiments, the patch is removably attached to the skin attachment layer by perforations. In some embodiments, the patch is removably secured to the housing by a magnet. In some embodiments, a magnet is positioned within or on the housing of the injector and the patch includes a metallic portion configured to be engaged by the magnet. In some embodiments, the skin attachment layer includes an opening and the patch is positioned within the opening when it is removably secured to the housing of the injector. In some embodiments, the opening is centrally located in the skin attachment layer and the injection cannula of the injector passes through the opening of the skin attachment layer and an orifice of the patch when in the dispense position. In some embodiments, the patch includes an extension including the orifice through which the injection cannula of the injector passes when in the dispense position, the extension configured to compress a user's skin around an injection site. In some embodiments, the patch includes a printed circuit board upon which the circuitry is positioned and to which the sensor adhesive layer and the patch transducer/sensor are attached, the sensor adhesive layer including a central window through which the extension passes.
In some embodiments, the extension is generally conical shaped. In some embodiments, the patch includes a printed circuit board upon which the circuitry is positioned and to which the sensor adhesive layer and the patch sensor are attached. In some embodiments, the circuitry of the patch includes a microcontroller/microprocessor and a transmitter. In some embodiments, the sensor of the injector includes a transmitter and the circuitry of the patch further includes a receiver through which data is received from the injector transducers/sensors by wireless transmission and through which data is sent to transducers through wireless transmission. In some embodiments, the microcontroller/microprocessor, transmitter and receiver are combined into a single component. In some embodiments, the injector further comprises a wire connection between the injector transducers/sensor and the circuitry of the patch, the wire connection configured to disconnect as or after the injector is removed from the patient. In some embodiments, the microcontroller/microprocessor and the transmitter are combined into a single component. In some embodiments, the transmitter is a Bluetooth transmitter. In some embodiments, the injector sensor includes a plurality of input transducers/sensors and output transducers. In some embodiments, the patch sensor includes a plurality of input transducers/sensors and output transducers. In some embodiments, the patch sensor includes a plurality of either input transducers/sensors and output transducers.
In yet another aspect, provided herein is a method for collecting data from an injector and a patient comprising (a) attaching an injector including an injector sensor and a patch including a patch sensor, output transducers and circuitry to the patient; (b) receiving data from the injector sensor and the patch sensor using the patch circuitry; (c) transmitting the received data to a remote receiver using the patch circuitry; (d) removing the injector from the patient; (e) receiving additional data from the injector sensor using the patch circuitry after removal of the injector from the patient; and (f) transmitting the additional received data to a remote receiver using the patch circuitry.
In some embodiments, the injector and the patch are attached to the patient simultaneously. In some embodiments, (a) includes attaching the patch before the injector and, before attaching the injector to the patient, further comprising the steps of receiving data from the patch sensor using the patch circuitry transmitting the received data to a remote receiver using the patch circuitry. In some embodiments, the data collected from the patient includes measurable attributes that may be affected by a drug administered by the injector and/or injection of the drug using the injector. In some embodiments, the data collected from the patient includes measurable attributes that may affect or are indicators of the safety and/or efficacy of a drug administered by the injector and/or use of the injection.
In yet another aspect, provided herein is a method for monitoring an injection site of a patient for an injection site reaction comprising the steps of: (a) attaching an injector including a patch including a patch sensor and circuitry to the patient, where the patch sensor includes a skin temperature transducer/sensor and a skin color monitor; (b) receiving data from patch sensor using the patch circuitry; (c) transmitting the received data to a remote receiver using the patch circuitry, wherein the data includes an indication of temperature rise or change in skin color so that an injection site reaction may be identified.
In another aspect, disclosed herein is an injector comprising (a) a housing; (b) a medicament reservoir provided in the housing; (c) an injection cannula moveable within the housing between a pre-dispense position and a dispense position in fluid communication with the reservoir; (d) a patch sensor configured to receive and transmit data, the patch sensor removably secured to the housing with a first holding force; (e) an attachment layer attached to the patch sensor, the attachment layer including an adhesive configured to secure the patch sensor to a user's skin with a second holding force; (f) wherein the second holding force is greater than the first holding force so that the patch sensor remains attached to the user's skin as the housing is removed from the patch sensor.
In some embodiments, the body of the subject is skin. In some embodiments, the patch is configured to receive data from the injector. In some embodiments, the data is used to adjust a device parameter of the patch or the injector. In some embodiments, the device parameter comprises one or more device parameters selected from the group consisting of a dosage of the substance that is administered by the injector, a flow rate of dispensing of the substance of the injector, and a volume of the substance that is administered by the injector. In some embodiments, the data is used to generate a notification to the subject via a transducer. In some embodiments, the notification comprises one or more notifications selected from the group consisting of: a vibration, a sound, direct electrical stimulation, and a visual indicator.
There are several aspects of the present subject matter which may be embodied separately or together in the devices and systems described and claimed below. These aspects may be employed alone or in combination with other aspects of the subject matter described herein, and the description of these aspects together is not intended to preclude the use of these aspects separately or the claiming of such aspects separately or in different combinations as set forth in the claims appended hereto.
The present subject matter includes a transfer device and/or an injector of any suitable detailed construction but transfer and injectors that are particularly useful in combination with the apparatus here are described in U.S. Pat. No. 9,925,333, the contents of which are hereby incorporated by reference herein.
In an aspect, an injector includes a housing. A medicament reservoir is provided in the housing and an injection cannula is moveable within the housing between a pre-dispense position and a dispense position in fluid communication with the reservoir. An injector sensor is mounted on or within the housing. A skin attachment layer is attached to the housing and includes an adhesive configured to secure the housing to a user's skin with a first holding force. A patch is removably secured to the housing with a second holding force and includes a sensor adhesive layer configured to secure the patch to a user's skin with a third holding force. The third holding force is greater than the second holding force. The patch also includes a patch sensor and circuitry configured to receive data from the injector sensor and the patch sensor and transmit received data to a remote receiver.
In another aspect, a process is provided for collecting data from an injector and a patient includes the steps of: attaching an injector including an injector sensor and a patch including a patch sensor and circuitry to the patient; receiving data from the injector sensor and the patch sensor using the patch circuitry; transmitting the received data to a remote receiver using the patch circuitry; removing the injector from the patient; receiving additional data from the injector sensor using the patch circuitry after removal of the injector from the patient; and transmitting the additional received data to a remote receiver using the patch circuitry.
In still another aspect, a process for monitoring an injection site of a patient for an injection site reaction includes the steps of: attaching an injector including a patch including a patch sensor and circuitry to the patient, where the patch sensor includes a skin temperature sensor and a skin color monitor; receiving data from patch sensor using the patch circuitry; and transmitting the received data to a remote receiver using the patch circuitry, wherein the data includes an indication of temperature rise or change in skin color so that an injection site reaction may be identified.
In still another aspect, an injector includes a housing with a medicament reservoir provided in the housing. An injection cannula is moveable within the housing between a pre-dispense position and a dispense position in fluid communication with the reservoir. A patch sensor configured to receive and transmit data is removably secured to the housing with a first holding force. A skin attachment layer is attached to the patch sensor and is configured to secure the patch sensor to a user's skin with a second holding force, where the second holding force is greater than the first holding force.
Another aspect of the present disclosure provides a non-transitory computer readable medium comprising machine executable code that, upon execution by one or more computer processors, implements any of the methods above or elsewhere herein.
Another aspect of the present disclosure provides a system comprising one or more computer processors and computer memory coupled thereto. The computer memory comprises machine executable code that, upon execution by the one or more computer processors, implements any of the methods above or elsewhere herein.
Additional aspects and advantages of the present disclosure will become readily apparent to those skilled in this art from the following detailed description, wherein only illustrative embodiments of the present disclosure are shown and described. As will be realized, the present disclosure is capable of other and different embodiments, and its several details are capable of modifications in various obvious respects, all without departing from the disclosure. Accordingly, the drawings and description are to be regarded as illustrative in nature, and not as restrictive.
All publications, patents, and patent applications mentioned in this specification are herein incorporated by reference to the same extent as if each individual publication, patent, or patent application was specifically and individually indicated to be incorporated by reference. To the extent publications and patents or patent applications incorporated by reference contradict the disclosure contained in the specification, the specification is intended to supersede and/or take precedence over any such contradictory material.
The novel features of the invention are set forth with particularity in the appended claims. A better understanding of the features and advantages of the present invention will be obtained by reference to the following detailed description that sets forth illustrative embodiments, in which the principles of the invention are utilized, and the accompanying drawings (also “Figure” herein), of which:
While various embodiments of the invention have been shown and described herein, it will be obvious to those skilled in the art that such embodiments are provided by way of example only. Numerous variations, changes, and substitutions may occur to those skilled in the art without departing from the invention. It should be understood that various alternatives to the embodiments of the invention described herein may be employed.
Whenever the term “at least,” “greater than,” or “greater than or equal to” precedes the first numerical value in a series of two or more numerical values, the term “at least,” “greater than” or “greater than or equal to” applies to each of the numerical values in that series of numerical values. For example, greater than or equal to 1, 2, or 3 is equivalent to greater than or equal to 1, greater than or equal to 2, or greater than or equal to 3.
Whenever the term “no more than,” “less than,” or “less than or equal to” precedes the first numerical value in a series of two or more numerical values, the term “no more than,” “less than,” or “less than or equal to” applies to each of the numerical values in that series of numerical values. For example, less than or equal to 3, 2, or 1 is equivalent to less than or equal to 3, less than or equal to 2, or less than or equal to 1.
The term “subject,” as used herein, generally refers to a user of a device, system, or method of the present disclosure, or an individual on which a device, system, or method of the present disclosure is being used. The subject may be a patient (e.g., a patient that is being treated or monitored by a physician or healthcare provider). As an alternative, the subject may not be a patient. The subject may have or be suspected of having a disease or disorder. As an alternative, the subject may be asymptomatic with respect to a disease or disorder. The subject may be a vertebrate, a mammal (e.g., human or animal), a non-human primate, etc. The subject may be an animal, such as a rodent (e.g., rat or mouse), a canine (e.g., dog), a feline (e.g., cat), a bovine, or other animal.
The term “medicament,” as used herein, generally refers to a substance that is used for treating a health or physiological state or condition of a subject (e.g., medical treatment). The medicament may be a drug or therapeutic agent. The medicament may be a solid, liquid, gas, or combinations thereof. The medicament may be an aerosol, pill, tablet, capsule, pastille, elixir, emulsion, effervescent powder, solution, suspension, tincture, liquid, gel, dry powder, vapor, droplet, ointment, or a combination or variation thereof. A medicament may be used to treat an illness, ailment, or disease, or may be used as a health supplement (e.g., vitamins, minerals, probiotics, etc.).
The term “reusable,” as used herein, generally refers to an item that can be used more than once. An item may be reused for the same purpose or for a different purpose. The item may be treated after use prior to re-use. The item may be reused at least 1 time, at least 2 times, at least 3 times, at least 4 times, at least 5 times, at least 6 times, at least 7 times, at least 8 times, at least 9 times, at least 10 times, at least 20 times, at least 30 times, at least 40 times, at least 50 times, at least 60 times, at least 70 times, at least 80 times, at least 90 times, at least 100 times, at least 200 times, at least 300 times, at least 400 times, at least 500 times, at least 600 times, at least 700 times, at least 800 times, at least 900 times, at least 1000 times, at least 2000 times, at least 3000 times, at least 4000 times, at least 5000 times, at least 6000 times, at least 7000 times, at least 8000 times, at least 9000 times, at least 10000 times, or more.
The present disclosure provides devices, methods and systems for delivering a substance (e.g., a medicament) to a subject and monitoring the subject prior to, concurrently with and/or subsequent to delivering the substance. A device of the disclosure may be an injector that delivers the medicament. Alternatively, or in addition to, the device may be a patch that is configured to monitor the subject and/or communicate with the injector. In some examples, the injector and patch are separate devices (e.g., separable from each other). As an alternative, the injector and patch may be part of single device (e.g., not separable from each other).
Injector
Referring to
Referring to
Referring to
Referring to
Referring to
Referring to
Referring to
Referring to
Referring to
Referring to
Referring to
Referring to
Referring to
Referring to
Referring to
Referring to
Referring to
Referring to
Referring to
Referring to
Referring to
Referring to
Referring to
Referring to
Referring to
Referring to
Referring to
Referring to
This aspect of the transfer apparatus (simultaneous transferring and charging) is particularly beneficial. While the above applications show the injector 7 in a pre-filled or charged condition for injection of the substance 79 when the injector 7 is actuated, the present disclosure contemplates that the injector 7 can remain empty and the expandable member 78 in a more relaxed and un-filled condition, i.e., in a non-charged or non-filled condition, until administration of the substance is required. Only then is the substance mixed or processed as necessary and introduced into the injector 7, expanding the expandable member 78 to a filled (charged) condition. In the present disclosure, the drug is stored in its original container closure (vial) until the time of use. Because the substance will typically be injected within seconds to hours after transfer from the vial into injector 7, shelf life and material compatibility of the drug with the materials in the fluid pathway within the injector 7 are not significant issues. The challenges and expense of designing an injector 7 and selecting materials for an extended shelf life of pre-filled injector 7 are significantly reduced.
Referring to
Referring to
There are a number of different ways to cause an expandable member 78 to expand and/or contract in an arcuate manner as previously described. Referring back to
Referring to
Referring to
Referring to
Referring to
Referring to
Referring to
Referring to
Referring to
Referring to
Referring to
Referring to
Referring to
In accordance with further aspects of the present subject matter, when administering an injection with a syringe and cannula that is meant to be infused under the skin, it is desirable to know if the cannula is properly placed within the skin or improperly placed within a blood vessel. It is common for a user performing an intradermal (ID), subcutaneous (SC) or intramuscular (IM) injection to aspirate the syringe by pulling back on the plunger to create a pressure drop within the syringe to see if any visible blood comes up the cannula into the syringe. If blood is visualized, this means the tip of the cannula is in a blood vessel. A number of injectable drugs meant for infusion under the skin specifically indicate not to inject into a blood vessel. Blood aspiration using a syringe and cannula is a common technique and can be performed by anyone with adequate training. In some cases, an autoinjector may be used, and the autoinjector may comprise a mechanism for determining whether the autoinjector is properly placed.
Referring to
Referring to
Referring to
Another advantage of the extension 138 is compression of the tissue in the contact area 139 after the injection has completed. In the post-fired state, the button 77 has popped up alerting the user that the injector 7 has completed. The cannula 85 is fully retracted out of the puncture hole in the skin 99. The dwell time between when the injector 7 has completed dispense and is removed by the user can be several minutes or more, depending on the environment in which the user is in at the time of completion. For the same reasons described earlier, the compression of the tissue by the extension 138 in the contact area 139 increases the local density of tissue thus creating a higher-pressure zone compared to the surrounding adjacent tissue 99. Similar to how a nurse may apply pressure to an injection site with their thumb after injection, this pressure helps close the puncture hole and prevents injected fluid or drug from flowing back up the injection site and acts to reduce or minimize fluid leakage and/or bleeding from the puncture site.
Referring to
Referring to
Referring to
Referring to
When performing self-injections with automatic injectors, protecting the user from accidental cannula sticks is a beneficial requirement for the device. Typically, the cannula is retracted within the device before and after use, preventing the user from accessing the cannula. However, during the injection, the cannula can be extended outside of the device. In some instances, the automatic injector comprises a skin dislodgement sensor to automatically retract a cannula if the device becomes dislodged from the skin during the injection.
Referring to
When performing self-injections with a syringe and cannula, users may have the need to temporarily stop or pause the injection due to acute pain or irritation at the injection site. This pause in flow of injectable into the injection site, accomplished by removing pressure on the plunger rod of the syringe, helps to reduce the pain at the injection site by allowing the injectable fluid bolus more time to diffuse into the surrounding tissue and thus reducing the local pressure and associated pain and irritation. In some instances, the injector comprises a mechanism for pausing the injection, e.g., automatically or manually.
Referring to
Referring to
Referring to
Referring to
Referring to
Radiofrequency Compliance Monitoring
In some instances, the injector comprises a mechanism to alert the subject, the prescriber, the healthcare provider or another third-party participant when non-compliance or non-adherence is occurring.
In accordance with further aspects of the present subject matter, when administering an injection with an automatic injector, it is desirable to know when the prescription for the injector was initially filled or refilled as well as whether the injector was used properly and on time. While many prescription drugs are tracked at the time they are filled by the patient using specialized labeling, there are limited options to confirm if the patient actually took the medication. As more drugs are being presented in injectors, the ability to automatically track prescription initiation currently has limited usage. Further, the ability to automatically track whether the injector was used properly does not exist.
As described herein, automatic tracking both for adherence and compliance can be accomplished wirelessly using RF (radio frequency) techniques installed within or in cooperative association the transfer and/or injectors described herein. Current technology allows for the use of radio-frequency identification (RFID) to transfer data, for the purposes of automatically identifying and tracking tags or microcircuit chips attached to objects. As used herein, RF or RFID or RF tags or RF chips are used comprehensively and interchangeably and are intended to include wireless electronic tags or chips for transmitting data/information using any suitable wireless communication protocol or technology, such as Bluetooth or any other wireless technology (e.g., wireless LAN, wireless PAN, or other wireless technologies described in the Institute of Electrical and Electronics Engineers (IEEE) 802 standards).
RF tags or chips may be active or passive. While both types use RF energy communicate between a tag or transponder and a reader, the method of powering the tags is different. Active RFID uses an internal power source (such as a battery) within or associated with the tag to continuously power the tag and its RF communication circuitry, whereas passive RFID relies on RF energy transferred from the reader to the tag to power the tag. In the present subject matter, the injector or the transfer package may include an RFID tag, may optionally include a power source for the tag and be read or received by an external reader. In one embodiment, the RF tag or chip is removably associated with the injector such that it can be physically removed from the injector when the injector is used. This allows for the subsequent disposal of the injector free of the limitations or restrictions that might apply if the tag or chip remained as part of the injector after its use.
Referring to
Referring to
Location of the RF tab or chip outside of the injector may be desired for regulatory and/or disposability reasons. For example, the RF tag or chip 211 also may be associated with the transfer device or with another part of the system, such as for example, safety sleeve or pull tab 100 (see
Referring to
The RF tag or chip 211 may transmit or communicate data associated with the transfer or injector—in addition to use information. For example, the tag or chip may be configured, with memory storage capacity, to transmit the type of injector, lot number, fluid quantity administered, drug identification and other relevant information.
The Patient Module could include a memory that maintains data such as patient identification and related information. The Patient Module, in turn, communicates in an appropriate manner, such WIFI, cellular communication, telephone, hard wire link or other, with a Data Manager 254, which could be any appropriate data network or Cloud storage arrangement for receiving and/or storing data received from the Patient Module indicating injector status and/or usage in association with the particular identifying patient information. The Data Manager would be accessible by medical personnel responsible for the monitoring of the patient's use of the injector and patient compliance with any prescribed injection regimen. The Data Manager could also be configured to automatically relay patient compliance information to the appropriate medical personnel, such as a particular physician or clinic 256.
Other aspects of a compliance monitoring apparatus, system and method and use with an injector such as described herein are shown in
In some embodiments, a contactor ring is provided in the top of the of the injector housing and is prevented from making contact with sensing leads (which are attached to the injector button) when a safety strip is installed. When the safety strip is removed, the contactor ring of the housing makes contact with the sensing leads of the button. Different sequences of the injection process may then be tracked based on the connection status between the contactor ring and the sensing leads (i.e. position of the contactor ring with respect to the sensing leads). Infrared sensors may also be embedded in the injector to optically track delivery progress, such as by, for example, monitoring of the position of, or amount of injectable fluid in, expandable member of the injector.
Referring to
The button position sensing system in an embodiment of the device is illustrated in
The processing performed by the microcontroller/microprocessor module 265 in an embodiment of the device is presented in
The processing of blocks 308a can then performed to conserve the battery life of the device and compute timing of the device.
The microcontroller/microprocessor then checks the position of the device button (177 in
The processing of blocks 308b is then performed to conserve the battery life of the device and compute timing of the device by intermittently or alternately placing the processor in a low energy sleep mode and then awakening the processor at one second (or other suitable time) intervals.
The microcontroller/microprocessor then checks the position of the device button, as indicated by block 324. As indicated at 326, the above processing beginning with block 322 is repeated if the device button has not returned to the raised or up position. If the device button has moved into the up position, an end time for the delivery of the injectable is recorded, as indicated by block 332, and the device mode is set to “Completed”, as indicated by block 334. This mode is transmitted to the remote receiver, as indicated by block 336, where it is displayed to the user.
The processing of blocks 308c is then performed to conserve the battery life of the device and compute timing of the device, after which the “Completed” status of the device is again transmitted to the remote receiver (block 336).
Embodiments of the disclosure may provide ‘smart’ connected devices that enable patients to self-administer high volume/viscosity drugs, enabling and promoting patient freedom and mobility. Embodiments may provide the user with a safe, simple, and discreet drug delivery experience.
Embodiments of the disclosure may provide a smart device system to provide three pieces of information about the operation of the drug delivery system: 1) When the device is powered on, 2) when the device has started delivery and 3) when the delivery has been completed. The user interaction in some embodiments can comprise opening the mobile application on their device, as described elsewhere herein, and the smart device will do the rest without requiring additional operations from the subject or user.
Embodiments of the disclosure may provide advantages such as: small board footprint—the entire electronics package fits inside the existing button and is less than ⅜-inch (9.5 mm) in diameter. This allows for easy removal of the electronics (button) for electronic disposal and recyclability.
Embodiments of the disclosure may include smart device technology in the transfer device. For example, the transfer device may include electronics to track the usage of the transfer device. The electronics in the transfer device could communicate directly with an external receiving device and/or to the electronics in the patch/injector. Transducers/sensors within the transfer device electronics could provide information including but not limited to environmental conditions, opening of the outer box or packaging, removal of the transfer device from the outer packaging, orientation of the transfer device (tilt sensing), the position of the device (e.g., using a global positioning system, or GPS) whether the transfer device is located on a flat surface, vial insertion, plunger release (venting), and/or removal of the injector from the transfer device. Electronics in the transfer device could determine if the correct vial has been inserted based electronics within the vial or reading of bar codes/QRG codes. Activation of the electronics could occur when the outer box or packaging is opened, when the transfer device is removed. Additional electronics could be added to vibrate or make a sound if the device is not placed on a table or at an angle. The electronics in conjunction with an external receiver could provide voice commands to aid the user in using the device or provide instruction if something is done incorrectly.
In certain embodiments of the disclosure, the injector may utilize Bluetooth communications to provide data to the user. Furthermore, embodiments may integrate Bluetooth Low Energy (BLE) into the device. BLE can be designed for low power, low cost applications that require lower data throughput rates than traditional Bluetooth connections such as audio streaming or hands-free phone connections.
There are two major types of connections defined in the Bluetooth standard: Standard (bonded) mode and Broadcast (also known as “beacon”) mode. In standard or bonded connections, a host (smartphone with installed app) creates a saved connection with a peripheral (i.e., a smart device). In this scenario, through the pairing process, both the host and the peripheral share data to create a permanent connection that allows sharing between only one host and one peripheral. This method has the advantage of a secure connection allowing the exchange of encrypted information that cannot be decoded without the encryption key.
In broadcast mode (also called a “beacon”), the peripheral sends out data at regular intervals that can be read by any nearby host. In this scenario, the peripheral only broadcasts data; data is never received. There are several advantages to this mode, e.g., reduced power consumption. In some instances, further power savings can be achieved through lower power ‘sleep’ mode, waking up only when new data needs to be broadcast;
Additionally, as the peripheral can be configured to be a transmit-only device, enhanced security is provided as the hardware cannot be ‘hijacked’ or loaded with malicious software. This reduces or eliminates the risk of unauthorized remote control of the device. The software is loaded onto the device in the factory, preventing unauthorized alteration once deployed.
In some instances, installation of an application, as described elsewhere herein, may be used for securing data privacy. For instance, without proper application installation, the data can simply consist of an unusable list of binary numbers, lacking any text or other readable identifiers. Because of this, the lack of an encrypted connection does not expose any sensitive user information. The data may also exclude patient information—such as names or identification numbers—which could be associated with a specific individual (thereby following HIPAA Compliance).
An important attribute of the connected healthcare implementation within embodiments of the disclosure may be that it does not affect the essential performance functions of the drug delivery device. In some embodiments, this feature of the device only reports the status of the device and in no way alters the function of the drug delivery device. Even in the event of a critical failure of the Bluetooth components, such as the battery, some embodiments of the device will complete the delivery of the drug and provide the user with visual feedback as to the device status.
Utilizing the Bluetooth Low Energy broadcast mode and through an electronic chip in the button of the device, some embodiments of the disclosure can deliver real-time device performance information in a small, low cost, convenient package.
Injector with Patch
In an aspect, the present disclosure provides a system for measuring a health or physiological parameter from a subject. The system may comprise a patch comprising a first housing having one or more sensors configured to (i) measure the health or physiological parameter from the subject when the patch is secured to a body of the subject, and (ii) provide one or more outputs corresponding to the health or physiological parameter from the subject. The first housing may comprise an opening. The system may also include an injector having a second housing comprising a cannula in fluid communication with a fluid flow path. The second housing may be coupled to the first housing such that the cannula is directed through the opening and in contact with a body of the subject when the patch is secured to the body. The injector may be configured to (i) direct a substance from a reservoir to the fluid flow path in fluid communication with the reservoir, and (ii) direct the substance from the fluid flow path into the subject through the cannula. The injector may be configured to administer a dosage of the substance from the reservoir through the fluid flow path and the cannula to the subject.
The cannula may be configured to extend towards or retract away from the body of the subject. In some examples, the cannula extends towards the body of the subject to deliver the substance into the body of the subject (e.g., across a skin of the subject). Subsequent to delivery of the substance, the cannula may retract away from the body of the subject. The cannula may be connected to the reservoir via a fluid flow path. The cannula may extend to and/or retract from the body using a variety of mechanisms, e.g., mechanical, electrical, etc. The means for cannula extension and retraction may comprise pumps, springs, gears, diaphragms, screws, or other means to move the cannula, or variations or combinations thereof.
The injector may be detachable from the patch. The patch may comprise a first housing, and the injector may comprise a second housing, and the first and second housing may be removably coupled. In one example, the first housing of the patch may be mechanically coupled to the second housing of the injector using one or more fastening mechanisms. In some cases, the first housing and/or the second housing may comprise magnets that allow for removable coupling, as described elsewhere herein. In another example, the first housing and the second housing may be adhered, e.g., using adhesive tape. The adhesive force of the first housing and the second housing may be modulated based on desired properties. For example, it may be desirable to maintain the patch on the body of the subject while removing the injector. In such examples, an adhesive layer can be added to the patch that may facilitate securing of the patch to the body of the subject. This body-adhering adhesive layer may have a stronger adhesive force between the patch and the body of the subject than the adhesive force between the patch and injector. In yet another example, the first housing and the second housing may be mechanically coupled, e.g., using interlocking geometries of the first housing and the second housing. For example, the first housing may comprise threads (e.g., screw threads, internal threads, etc.) and the second housing may comprise complementary threads that may engage with the threads of the first housing. In conjunction or alternatively, the first housing and/or the second housing may comprise snap-fit joints (e.g., cantilever snap fits, annular snap fits, etc.) that allow for interlocking of the first housing to the second housing. Alternatively, or in conjunction, the first housing and/or the second housing may comprise components that allow for interference fits, force fits, shrink fits, location fits, etc. Other examples of fastening mechanisms may include, in non-limiting examples, form-fitting pairs, hooks and loops, latches, threads, screws, staples, clips, clamps, prongs, rings, brads, rubber bands, rivets, grommets, pins, ties, snaps, Velcro, adhesives (e.g., glue), tapes, vacuum, seals, a combination thereof, or any other types of fastening mechanisms. Alternatively, the injector may be permanently attached to the patch. For example, the first housing may be connected to the second housing or may be monolithically built into the second housing, or vice-versa.
In some instances, the patch and the injector can be fastened to each other via complementary fastening units. For example, the patch and the injector, or the housing of the patch and the housing of the injector, can complete a form-fitting pair. The patch can comprise a form-fitting male component and the injector can comprise a form-fitting female component, or vice versa. In some instances, an outer diameter of a protrusion-type fastening unit of the patch can be substantially equal to an inner diameter of a depression-type fastening unit of the injector, or vice versa, to form an interference fit. Alternatively, or in addition, the patch and the injector can comprise other types of complementary units or structures (e.g., hook and loop, latches, snap-ons, buttons, nuts and bolts, magnets, etc.) that can be fastened together. Alternatively, or in addition, the patch and the injector can be fastened using other fastening mechanisms, such as but not limited to staples, clips, clamps, prongs, rings, brads, rubber bands, rivets, grommets, pins, ties, snaps, Velcro, adhesives (e.g., glue), magnets or magnetic fields, tapes, a combination thereof, or any other types of fastening mechanisms.
In some instances, the patch and the injector can be fastened to each other via an intermediary structure. In some instances, the intermediary structure may be fastened to one or both of the patch and the injector through one or more of any of the fastening mechanisms described herein. The intermediary structure may comprise a solid material, semi-solid material, liquid material (e.g., a resin that is configured to solidify), or multiple material types. In some instances, the intermediary structure may undergo phase transitions (e.g., liquid to solid for an adhesive). For example, the intermediary structure may comprise a fluid adhesive that solidifies to achieve the fastening. In some instances, the intermediary structure may be capable of transforming from a first phase to a second phase, such as from liquid to solid or from solid to liquid, upon application of a stimulus (e.g., thermal change, pH change, pressure change, applied force, etc.) to achieve fastening or unfastening (or both). In some instances, the patch and/or the injector may comprise the intermediary structure. For example, the intermediary structure may be integral to the patch and/or the injector.
The fastening between the patch and the injector can be temporary, such as to allow for subsequent fastening and unfastening of the patch and injector without damage (e.g., plastic deformation, shear deformation, wear, compression deformation, etc.) to the patch or injector. Alternatively, the fastening can be permanent, such as to allow for subsequent unfastening of the two patches from the injector. In some cases, it may be desirable to deform either the patch or injector, and either the patch or injector may temporarily or permanently be deformed (e.g., stretched, compressed, etc.) and/or disfigured (e.g., bent, wrinkled, folded, creased, etc.) or otherwise manipulated when fastened to the injector or patch.
The opening may comprise a pierce-able membrane. The pierce-able membrane may be pierced by the cannula to generate the opening. The pierce-able membrane may be formed of a polymeric material, or the pierce-able membrane may be formed of multiple polymeric materials. The polymeric materials may be naturally occurring or may be synthetic. Non-limiting examples of polymeric materials include poly vinyl chloride (PVC), polyethylene, polyurethane. In some cases, the pierce-able membrane may further comprise an adhesive layer (e.g., acrylate, methacrylate, epoxy diacrylate, or other vinyl resins, etc.). In some cases, the pierce-able membrane may comprise a self-healing polymer or elastomeric material, such that the opening that is introduced by the cannula may be closed, e.g., after cannula retraction. In such cases, the pierce-able membrane may include an opening, e.g., hole or slit that is configured to form a seal in the absence of the cannula directed through the opening. In some examples, the pierce-able membrane may include an opening that is not configured to seal in the absence of the cannula directed through the opening. Alternatively, the opening may not comprise a pierce-able membrane and the opening may be configured to be in direct line of sight with the body of the subject. The opening may be any suitable shape, e.g., a slit, triangular, square, rectangular, rhombus, pentagonal, hexagonal, heptagonal, octagonal, polygonal, ellipsoid, annular, circular, etc. In some cases, the pierce-able membrane comprises an absorbent material, e.g., cotton, rayon, nylon, a polymer, a polymer blend, etc. In such cases, the pierceable membrane may be used as a bandage and can collect bodily fluids (e.g., sweat, blood, etc.) from the body of the subject. In some instances, the pierceable membrane may comprise an oxygen-permeable material, which may allow for exposure of the body of the subject, or portion thereof, to the ambient air. In some cases, the pierceable membrane may comprise a medicament (e.g., analgesic or medicament for treating pain).
In some cases, the patch comprises a membrane that is not pierced during injection. The membrane may comprise an opening (e.g., slit, hole) through which the cannula of the injector may pass when the cannula is directed from the injector to the body of the subject, and the opening may close following retraction of the cannula. The opening of the membrane may be pre-formed, or the opening may be generated (e.g., via piercing of the membrane). For instance, the membrane may be provided in an “open” configuration, in which the membrane is stretched by a mechanism (e.g., a “tissue tent” structure) on the patch and providing the opening. When the injector is separated from the patch, the mechanism may toggle to a “closed” configuration (e.g., via removing the “tissue tent” structure from the patch, thereby biasing the membrane to the closed configuration), and the membrane may return to the state prior to stretching. In some instances, the membrane may adhere or otherwise be secured to the body of the subject. In such cases, the membrane may comprise an absorbent material, e.g., to absorb bodily fluids (e.g., blood, sweat, etc.) from the subject. It will be appreciated that any of the above-described embodiments may comprise a patch comprising one or more sensors (e.g., on the PCB chip), and alternatively or in addition to, the patch may comprise the membrane, which may comprise an absorbent material.
In some instances, the patch comprises a bandage, which may be deposited on the body of the subject. The bandage may be deposited prior to or following injection. The bandage may comprise one or more polymeric materials. The polymeric materials may be naturally occurring or may be synthetic. Non-limiting examples of polymeric materials include poly vinyl chloride (PVC), polyethylene, polyurethane. In some cases, the bandage may further comprise an adhesive layer (e.g., acrylate, methacrylate, epoxy diacrylate, or other vinyl resins, etc.). In some cases, the bandage comprises a self-healing polymer or elastomeric material. In some instances, the bandage includes an opening, e.g., hole or slit that is configured to form a seal in the absence of the cannula directed through the opening. In some examples, the bandage may include an opening that is not configured to seal in the absence of the cannula directed through the opening. The opening may be any suitable shape, e.g., a slit, triangular, square, rectangular, rhombus, pentagonal, hexagonal, heptagonal, octagonal, polygonal, ellipsoid, annular, circular, etc. In some cases, the bandage comprises an absorbent material, e.g., cotton, rayon, nylon, a polymer, a polymer blend, etc. In such cases, the bandage can collect bodily fluids (e.g., sweat, blood, etc.) from the body of the subject. In some instances, the bandage may comprise an oxygen-permeable material, which may allow for exposure of the body of the subject, or portion thereof, to the ambient air. In some cases, the bandage may comprise a medicament (e.g., analgesic or medicament for treating pain).
The reservoir may be secured to the injector. In some cases, the reservoir is removable from the injector. For example, the reservoir may comprise a container or be a part of a container. The reservoir container may be removably coupled to the injector (e.g., attach and detach from the housing of the injector). The housing may contain fasteners to secure the reservoir. Alternatively, the geometry of the injector may be designed to fit the reservoir or reservoir container. In other cases, the reservoir may be part of the injector (i.e., not removable). In one example, a medicament reservoir may be provided in the housing and may be in fluid communication with the injection cannula. For example, the injection cannula may be moveable within the housing between a pre-dispense position and a dispense position in fluid communication with the reservoir. The reservoir may be configured to contain a formulation having the substance.
The substance may comprise a medicament. The medicament may be a solution or a mixture. The medicament may be used for treating diseases in a range of therapeutics areas including but not limited to cardiovascular, musculoskeletal, gastrointestinal, dermatology, immunology, ophthalmology, hematology, neuroscience, oncology, endocrinology/metabolic and respiratory. The medicament may be used to treat discomfort or pain of the subject. For instance, the medicament may comprise an analgesic, non-steroidal inflammatory drug (NSAID), or other pain-reducing, pain-alleviating, or other pain management substance.
The housing of the patch and/or the housing of the injector may comprise one or more polymer or plastic materials. Non-limiting examples of polymers include polyamides, polycarbonate, polyester, polyethylene, polypropylene, polystyrene, polyurethane, polyvinyl chloride, polyvinylidene chloride, acrylonitrile butadiene styrene, polymethyl methacrylate, polytetrafluoroethylene, polyimide, polylactic acid, phenolics, polyetheretherketone, or derivatives thereof (e.g., highly cross-linked, high density, etc.). The housing of the patch and/or the housing of the injector may comprise a single polymer type (e.g., a homopolymer) or more than one polymer type (e.g., a copolymer) and comprise a random or arranged organization of monomers. For example, a polymer may be a block polymer, an alternating copolymer, periodic copolymer, statistical copolymer, stereoblock copolymer, gradient copolymers, branched copolymers, graft copolymers, etc.
The patch or a portion thereof (e.g., a sensor, removably coupled housing, etc.) may be reusable. The patch or portion thereof that is reusable may be sterilized or cleaned prior to and/or following use. For instance, the subject or a user (e.g., the subject, a healthcare provider, clinician, etc.) may sterilize or clean the patch or portion thereof. The patch or portion thereof may be sterilized using, in non-limiting examples, chemical sterilization (e.g., using bleach, alcohol, hydrogen peroxide, acids, bases, or other chemical agents), radiation treatment (e.g., gamma or UV irradiation), heat (e.g., autoclave, microwave, etc.), or a combination thereof.
The patch, the injector, or both the patch and injector may comprise reusable parts and may be configured to couple to a docking or recharging station. For instance, the patch or portion thereof may be reusable, and the patch may comprise a rechargeable battery. The rechargeable battery may be removed from the housing of the patch and coupled to the docking or charging station, which may be used to recharge the battery. In other instances, the entire patch may be coupled to the docking or charging station. In some instances, the docking or charging station comprises a communication interface, which may be used, for instance, to transmit or upload data from the patch, the injector, or both. The docking station may also be used for providing software updates to the patch, the injector, or both. In some instances, the docking station may be configured to couple to multiple patches or injectors to facilitate use or to avoid wait times or latencies (e.g., due to duration of recharging), or to simplify workflows for the subject or user.
A sensor and/or transducer may comprise one or more sensors or transducers that allows for measuring or monitoring a health or physiological parameter or a plurality of health or physiological parameters or allow for indication of device function to the subject. Alternatively or in addition to, one or more sensors may allow for measuring of patch or injector parameters. Non-limiting examples of patch or injector parameters include determination of whether the patch is secured (e.g., to a body of the subject), whether the patch or injector is in communication with the communication interface, whether the cannula is in fluid communication with the reservoir, occlusion of the cannula, whether the patch and injector are properly coupled, flow rate of the substance through the cannula, etc. A sensor may be configured to measure a dosage of the substance that is administered to the subject, a duration of substance administration or injection (e.g., via measurement of a duration of contact of the cannula with the body or via measurement of a volume of the substance in the reservoir), contact of the cannula with the body of the subject, or any combination thereof.
A sensor of the plurality of input transducer/sensors may be selected from the group consisting of a conductivity sensor, impedance sensor, capacitance sensor, charge sensor, humidity and/or moisture sensor, temperature sensor, heart rate sensor, interstitial pressure sensor, resistance sensor, distension sensor, acoustic sensor, vibration sensor, blood pressure sensor, optical sensors (e.g., color sensor, light sensor, wavelength sensor), chemical sensor, movement and/or activity sensor, and a substance-tracking sensor. A sensor of the plurality of output transducers may be selected from the group consisting of haptic (vibration) transducers, audio transducers or visual transducers. The outputs may comprise an output signal, which output signal comprises a vibration signal, an audio signal, a visual signal, a haptic signal, an electrical signal, or a combination thereof. These sensors may be used to detect, in non-limiting examples, the environmental conditions in which the subject is using the injector, the subject's body temperature, heart rate, blood pressure, interstitial pressure, tissue density, tissue thickness (e.g., skin, fat or adipose tissue thickness), skin distension, bleeding (e.g., internal or external), delivery of the medicament, dosage of the medicament to deliver and/or delivered to the subject, sweat quantity of the subject, and/or a plurality of analyte measurements from the subject (e.g., blood glucose, blood oxygen, etc.), or sleep quality measurement. In some instances, the sensor comprises an ultrasound transmitter and an ultrasound receiver. In such instances, the method for measuring the health or physiological parameter may comprise transmitting an ultrasound signal from the ultrasound transmitter to a location within the body of the subject and using the ultrasound receiver to receive a signal from the same or different location. The signal may be received by the ultrasound receiver and used to measure the health or physiological parameter (e.g., tissue depth, thickness, etc.).
One or more measurements may be measured or monitored prior to, contemporaneously, or following securing of the patch to the subject. For example, the patch may be configured to measure one or more health or physiological parameters prior to injection to establish a baseline and/or calibration measurement of the one or more health or physiological parameters. The patch may be secured to the body of the subject separately from the injector. For example, the patch may be secured to the body of the subject and one or more measurements may be collected. Subsequent attachment of the injector (e.g., to the patch and/or the body of the user) may then allow for directing a substance to the subject.
The transducer may comprise any useful components, e.g., a solenoid, motor, or micro-electro-mechanical systems (MEMS) actuator. In such cases, the housing of the injector or patch may comprise electrically conductive contacts providing both mechanical attachment and electrical contact of the transducers or sensors, e.g., in an electronic sub-system housed in the injector.
The patch and/or injector may comprise a communication interface that allows for transmitting and/or receiving data corresponding to the plurality of health or physiological parameters of the subject and/or parameters of the patch or injector. The data may be transmitted to an electronic device in communication with the communication interface. The communication interface may be a wireless communication interface, a Wi-Fi interface, a near-field communication interface, or a Bluetooth interface, as described herein. The electronic device may be a device that may communicate with the communication interface, e.g., a mobile device (e.g., smart phone, tablet, laptop, etc.). Alternatively, the communication interface may be a wired communication interface. In some examples, the patch and/or injector may comprise a port for communication and/or power supply (e.g., universal serial bus (USB), USB-type C, etc.) for connection to the electronic device. The patch and/or injector may include an RFID tag that allows for information to be transferred to and optionally, recorded by the injector and/or patch including but not limited to information about the drug. This may allow data transmitted about the injection to include information about the device and the drug. In some instances, the patch comprises a communication interface and the injector comprises an additional communication interface, and the communication interfaces may be used to provide information on the other communication interface. For instance, the communication interface of the patch may be able to determine a parameter of the injector (e.g., via the additional communication interface). For example, the communication interfaces may be used to determine a location of the injector or patch and provide one or more outputs (e.g., audio, vibrational, or visual signal). In such cases, if a subject misplaces the injector or the patch, the patch or the injector (or the electronic device in communication with the patch and/or injector) may be used to track the misplaced item.
In some cases, the patch, injector, and/or electronic device may comprise methods for data processing, data storage, and/or one or more feedback loops. In one such example, the patch may monitor one or more physiological parameters of the subject after injection to produce data on the one or more physiological parameters of the subject. The data may be transmitted through the communication interface to the electronic device (e.g., mobile device). In some cases, the mobile device may comprise a method for processing the data and/or storing data (e.g., in computer readable memory). Examples of processing include measurement of a concentration of an analyte, identification of an analyte, comparing the concentration of an analyte to a standard, calibration of the measurement, summaries of information collected, statistics calculation, trend determination, etc. The processed data may subsequently be used to regulate, e.g., in a feedback loop, to regulate one or more parameters of the patch or injector. The processed data may also be sent directly to a third party for further evaluation. For example, a measurement of the physiologic parameter may measure the concentration of an analyte or a substance (e.g., a drug or medicament). The data may be transmitted to the electronic device, which may further process the data (e.g., calibrate the concentration, compare to a standard, determination if a dosage change is required etc.). Accordingly, the processed data may be used to change a device parameter, e.g., dosage of the substance to be administered, flow rate of dispensing of the substance, etc. The data, processed data, or other signal may then be relayed back to the patch or injector, such that the subsequent injection of the injector is modulated (e.g., the next dosage is higher or lower). In another example, a measurement of the physiologic parameter may measure patient bleeding (e.g., colorimetric, measurement of heme iron of blood, etc.). Detection of bleeding or substance leakage from the site may be used to modulate (e.g., in a feedback loop) the subsequent administration rate or injection. In such examples, presence of patient bleeding may allow for subsequent injections to be delayed, or to change a parameter of the cannula extension toward the body of the subject (e.g., force of injection, speed of injection, etc). In some cases, an electronic device may not be required, and the patch may be able to communicate with the injector directly or through a communication interface. In such cases, the patch and/or injector may measure a device and/or physiological parameter of the subject and subsequently use the measurement to regulate a parameter of the injector or patch. In one non-limiting example, the measurement of the parameter (e.g., blood glucose of the patient) may regulate the dosage of a subsequent injection of the injector.
In another example, the patch may monitor one or more parameters of the patch and/or injector to produce data on the one or more parameters of the injector and/or patch. The data may be transmitted through the communication interface to the electronic device (e.g., mobile device). In some cases, the mobile device may comprise a method for processing the data. Examples of processing include determination if device is properly secured (e.g., if the adhesion force of the patch to the body of the subject is above or below a threshold value), whether the patch is properly connected to the injector, etc. The processed data may subsequently be used to regulate, e.g., in a feedback loop, one or more parameters of the patch or injector. For example, a measurement of the adhesion force of the patch to the body of the subject may be conducted. The data may be transmitted to the electronic device, which may further process the data (e.g., determine insufficient adhesion force). Accordingly, the processed data may be used to change a device parameter, e.g., activation a notification to the subject or other user, as described herein. The data, processed data, or other signal may then be relayed back to the patch or injector, such that a parameter of the patch or injector is adjusted or requires adjustment before proceeding to inject again (e.g., administer another dosage of the substance). In some cases, an electronic device may not be required, and the patch may be able to communicate with the injector directly or through a communication interface. In such cases, the patch and/or injector may measure a parameter of the patch and/or injector and subsequently use the measurement to regulate that parameter or a different parameter of the injector or patch. In one non-limiting example, the measurement of an insufficient adhesion force of the patch may, in a feedback loop, prevent subsequent injection of the injector until the patch is measured as sufficiently adhered to the body of the subject.
The patch and/or injector may also be in communication or be capable of communication with the subject or other user. In some cases, the communication with the subject or other user may comprise a feedback system or loop. Alternatively, or in conjunction, the patch or injector may be capable of notifying the subject or other user (e.g., physician, nurse, medical practitioner, clinician, etc.) on a device parameter, health or physiological parameter, or both. For example, the patch or injector may be capable of producing sounds (e.g., to give directions to the subject or other user), producing motion (e.g., vibration), or may comprise visual indicators such as a light (e.g., light-emitting diode), a screen or display (e.g., a liquid-crystal display (LCD), organic light-emitting diode, quantum dot display, or variations or derivatives thereof), or other visual indicator. Alternatively, or in conjunction, the patch or injector may comprise a user interface module. In such examples, the subject or other user may be able to interact with the patch and/or injector. In one of such examples, the patch or injector may comprise a screen or display that may produce a string of characters or sounds that may be used to prompt the subject or other user to respond to a command. In another example, the patch or injector may comprise a screen or display that may produce a string of characters or sounds that may be used to display an output or result, such as the results of the measurement of a physiological parameter. The subject or other user may then be able to input a response or a command, e.g., through a microphone, which may be in the housing of the patch and/or injector, or through a button on the housing of the patch or the injector with which the subject can interact. In some cases, the subject's input into the patch or injector may result in modulation of a parameter of the patch or injector. In some cases, the subject or other user may be able to input a parameter, e.g., pain, discomfort, etc., that may not be easily measurable or accessible from the patch or injector. These parameters may then be communicated, e.g., through a communication interface, to an external device (e.g., mobile device). In some cases, the patch and/or injector may comprise feedback systems such that the input from the subject or other user may modulate a parameter of the patch or injector. For example, input of a pain parameter may result in modulation of the flow rate of the substance through the cannula or the frequency of administered doses of the substance.
The patch and/or injector may also be configured to communicate with a remote system. In some examples, the patch and/or injector may measure one or more physiological parameters of the subject or one or more parameters of the patch and/or injector to produce data on the one or more physiological parameters of the subject or the one or more parameters of the patch and/or injector. The data may be transmitted to a remote server, a distributed computing network (e.g., for cloud computing). Processing of the data may then occur separately from the patch and/or injector. In some cases, the processed data may then be transmitted to an electronic device (e.g., mobile device). In other cases, the processed data may then be transmitted to the patch and/or injector, for modulation of a parameter of the patch and/or injector. Transmission of data to a remote server and/or to an electronic device may allow for the subject to monitor the one or more physiological parameters, and/or may additionally or alternatively allow for physicians or caretakers to also monitor the one or more physiological parameters of the subject.
In another aspect, provided herein is a method for measuring one or more health or physiological parameters from a subject. The method may comprise (a) providing: (i) a patch comprising a first housing having a sensor and comprising an opening, and (ii) an injector having a second housing comprising a cannula in fluid communication with a fluid flow path. The second housing may be coupled to the first housing of the patch, and the injector may comprise a reservoir comprising a substance and a fluid flow path in fluid communication with the reservoir. The method may further comprise (b) securing the patch to a body of the subject; (c) when the patch is secured to the body of the subject, directing the cannula through the opening to (i) direct the substance from the reservoir to the fluid flow path, and (ii) direct the substance from the fluid flow path into the subject through the cannula; and (d) using the sensor to (i) measure the one or more health or physiological parameters from the subject, and (ii) provide one or more outputs corresponding to the one or more health or physiological parameters from the subject.
In another aspect, provided herein is a system for performing one or more processes or methods described herein. A system may comprise a patch comprising a first housing having a sensor and comprising an opening and an injector having a second housing comprising a cannula in fluid communication with a fluid flow path. The second housing may be coupled to the first housing of the patch, and the injector may comprise a reservoir comprising a substance and a fluid flow path in fluid communication with the reservoir. The patch may be configured to couple or secure to a body of the subject. The injector may be configured to direct the cannula through the opening to direct the substance from the reservoir to the fluid flow path and direct the substance from the fluid flow path into the subject through the cannula. The sensor may be configured to (i) measure the one or more health or physiological parameters from the subject, and (ii) provide one or more outputs corresponding to the one or more health or physiological parameters from the subject.
In yet another aspect, disclosed herein is a method for measuring a health or physiological parameter from a subject, comprising: (a) providing (i) a reusable patch comprising a first housing having a sensor, and (ii) an injector having a second housing comprising a cannula in fluid communication with a fluid flow path and a reservoir comprising a substance, wherein the second housing is coupled to the first housing of the reusable patch, which patch is secured to a body of the subject. The method may also comprise using the sensor to (i) measure the health or physiological parameter from the subject and (ii) provide one or more outputs corresponding to the health or physiological parameter from the subject.
In other aspects of the present disclosure, provided herein are systems that may be used to perform one or more methods or processes disclosed herein. The system may be used to measure a health or physiological parameter from a subject and may comprise: a reusable patch comprising a first housing having a sensor, which patch is configured to secure to a body of the subject, and an injector having a second housing comprising a cannula in fluid communication with a fluid flow path and a reservoir comprising a substance, wherein the second housing is configured to couple to the first housing of the reusable patch. The sensor may be configured to measure the health or physiological parameter from the subject and provide one or more outputs corresponding to the health or physiological parameter from the subject.
Using embodiments of the disclosure, a person with any number of physical and/or mental conditions treatable with drugs administered with an injector, such as the devices described above, can be monitored to ensure that the combination therapy (medicament and injector) is safe and efficacious. Data collected during monitoring of the patient and injector attributes can be used by patients, caregivers, providers, payers, drug and device manufacturers to provide feedback to any of the aforementioned parties including confirmation of claims/outcomes and allowing for manual and/or automatic intervention by the patient and/or device to improve the safety and effectiveness of the therapy.
In one embodiment, illustrated in
In addition to the skin attachment layer 406, a patch, indicated in general at 412 in
While the patch and the skin attachment layer are illustrated as having circular profiles, alternative shapes may be used.
A generally conical skin boundary displacement extension 414 extends from the bottom of the patch 412 and, as described previously, compresses the skin to help reduce tissue deflection or “tenting” upon cannula insertion. The extension 414 features a central orifice 416 that aligns with the dispense port of the injector.
In an alternative embodiment, as described in embodiments presented above, the skin boundary displacement extension may be part of, and extend from, the base 404 of the injector itself. In such an embodiment, a central hole may be provided in the center of the patch, with the hole being smaller than the diameter of the base of the extension. When the injector is positioned with the skin attachment layer securing the device against the skin, the extension expands the hole in the patch, and provides a path for the injector cannula or cannula to enter the skin when the device is activated or “fired” in the manner described above. The cannula may not pass directly through the material and provide for the opportunity to clog the cannula or inject foreign bandage material into the skin from the cannula, see
As in
As illustrated in
The injector 402 and the patch 412 are configured so that the patch is applied to the body (e.g., skin, digits) of a subject (e.g., user) as the injector is attached. Furthermore, the patch 212 remains after the injector 402 is removed. More specifically, as illustrated in
The use of magnets to secure the patch to the injector offers the advantage of no exposed residual adhesive on the patch as it remains on the patient. In addition, the magnets may be located precisely on the injector, and corresponding metallic portions located on the patch, so that we'll be able to control the amount and where the force is that is ‘pulling’ on the patch when the injector is removed. As an alternative to metallic portions on the injector, magnets may be used. In an alternative embodiment, the magnets may be located on the patch and the corresponding metallic portions may be located on the injector.
In an alternative embodiment, the patch 412 may be secured to the bottom of the injector by an adhesive (such as on the top side of sensor 422) that has less holding force than the skin-engaging adhesive on surface 430 of the sensor adhesive layer 426.
In another alternative embodiment, the patch 412 may be secured to the bottom of the injector using mechanical features built into either the patch, the injector or both with less holding force than the skin-engaging adhesive on surface 430 of the sensor adhesive layer 426. In such an embodiment, the skin attachment layer 406 of
As illustrated in
As illustrated in
In alternative embodiments, communication between the sensors 450a and 450b of the injector and the module 444 of the PCB chip 424 of the patch may be accomplished by alternative wireless communication arrangements know in the art. In further alternative embodiments, the sensors 450a and 450b may communicate with the module 444 of the PCB chip 424 via wire connection(s) that automatically disconnect when the injector is removed from the patch and patient.
Of course the number of sensors 436, 450a and 450b may be varied from what is illustrated in
The Bluetooth module 444 also enables the patch to transmit data collected from sensors 422, 450a and 450b to a remote receiver such as a personal data device (such as a smart phone), a computer system or network or the cloud. The remote receiver may collect the received data within, and build, a database.
In use, initially the injector features the patch attached (via the magnetic arrangement described above), as illustrated in
In the illustrated embodiment, the patch 412 has multiple functions. First it senses and transmits the state of the injector to a remote receiver (such as a personal data device, for example, a smart phone, a computer network or the cloud), i.e. has the injector been activated so that the injection is being given or has the injection been completed. The second thing is the patch transmits the state of the patient via data collected from the sensors to the remote receiver. This can be done before, during or after the injection and before, during or after attachment and or removal of the injector. For example, the temperature of the skin at the injection site and the skin ‘color’ may be detected via a simple temperature monitor combined with an LED/phototransistor circuit included in the sensor 422 for transmitting the tissue temperature and color during and after the injection. This feature can be useful during a clinical study, to alert the staff if there is an injection site reaction (ISR), and it could quantify the ISR based on temperature and tissue color. The third thing is the patch could interact directly injector based on data received from the injector and/or data received from the patient and/or data received from itself. The patch could interact with the injector as a control mechanism including adjustment of the flowrate (faster, slower or pause), vibrate for user notification and/or pain management, provide an audible sound to provide direction or notification to the user, visual indicators to indicate change, alerts, notifications or information to the user, or mechanical interactions to cause a change in state of the injector including but not limited to retraction of the button to stop the delivery in the instance of data from the patient (for example, pain) or data from the device (for example, premature removal or fall-off).
A heartrate sensor could also be included in sensors 422 to obtain a patient EKG signal if useful and/or a strain gage sensor may be provided to detect the skin pressure exerted by the extension 414
Upon completion of an injection by the injector, the injector can be removed from the patient's skin by pulling tab 408 (
Alternatively or in addition to, the patch could be initially decoupled from the injector and placed on the patient to monitor before start of administration/injection of a drug or drugs. This could provide baseline data about the patient prior to the administration/injection.
Alternatively or in addition to, the patch could be applied independently of the injector and placed on the patient to monitor baseline conditions (e.g., a baseline physiologic parameter) before the start of the administration/injection of drug or drugs. The injector could then be coupled to the patch prior to start of the injection.
Alternatively or in addition to, the patch may be provided separately from the injector, and in some instances, the patch, or a portion thereof, is reusable. In such instances, the patch may be secured to the body (e.g., skin) of the subject using an adhesive, which may be single-use or re-usable. In some instances, the patch or a portion thereof is reusable and may be sterilized or cleaned prior to or following use. For instance, the subject or a user (e.g., the subject, a healthcare provider, clinician, etc.) may sterilize or clean the patch or portion thereof. The adhesive may be applied or attached to the patch, which may then be used to secure the patch to the body of the subject. As described herein, the patch may be used to monitor a health or physiological parameter and may provide or monitor baseline conditions prior to an injection.
During injection or administration of the substance, the subject or user may attach the injector to the patch. Upon completion of administration or injection of the substance, the subject or user may remove the injector and leave the patch secured to the body of the subject. The patch may then continue to monitor the health or physiological parameters following the administration or injection. At any convenient or useful time, the subject or user may remove the patch (e.g., after the health or physiological parameter has been monitored for a certain duration or frequency following injection or administration).
In instances where the patch is reusable, the patch or portion thereof may be removed from the body of the subject and may be cleaned or sterilized. For instance, the patch or portion thereof (e.g., the sensor) may be removed from the subject or housing of the patch. The patch or portion thereof may then be sterilized using, in non-limiting examples, chemical sterilization (e.g., using bleach, alcohol, acids, bases, or other chemical agents), radiation treatment (e.g., gamma irradiation), heat (e.g., autoclave, microwave, heated water, etc.), or a combination thereof.
The patch or injector may be configured to couple to a docking or recharging station. In such instances, the patch or portion thereof may be reusable and may comprise a rechargeable battery. The rechargeable battery (comprised in the patch or portion thereof and/or in the injector) may be coupled to the docking or charging station, which may be used to recharge the one or more batteries. In some instances, the docking or charging station comprises a communication interface, which may be used, for instance, to transmit or upload data from the patch, the injector, or both. The docking station may also be used for providing software updates to the patch, the injector, or both. In some instances, the docking station may be configured to couple to multiple patches or injectors to facilitate use or to avoid wait times or latencies (e.g., due to duration of recharging), or to simplify workflows for the subject or user.
The patch 6401 may be coupled to the injector 6407 using an interlocking bayonet mechanism. For instance, the injector 6407 can comprise protruding elements 6409, which can interface with detents 6411 in the patch 6401. The detents 6411 may prevent free rotation of the patch 6401 and the protruding elements 6409 in a first configuration. Upon twisting of the patch 6401 or the injector 6407, the injector 6407 may be moved to a second configuration, in which the protrusions 6409 no longer couple to the detents 6411, and thus the injector 6407 can be de-coupled or removed from the patch 6401 (e.g., after the patch is secured to the body of the subject and the medicament has been delivered).
The patch 6601 may be coupled to the injector 6607 by coupling or mating parts 6609 and 6611. Part 6609 may be coupled to the injector 6607 (e.g., in a recess 6613) whereas part 6611 may be coupled to the patch 6601. Parts 6609 and 6611 may be magnets and may be secured to the recess 6613 of the injector 6607 and the patch 6601, respectively, via adhesive, interference fit, or other attachment arrangements. The adhesive layer 6603 can provide a holding force with the subject's body (e.g., skin) that is greater than the magnetic force holding the patch to the injector.
The patch 6701 may be coupled to the injector 6707. For instance, the sensor 6705 may be configured to couple to the injector 6707 by fitting into a recess 6713. The injector can comprise a safety tab or strip. The adhesive layer 6703 can provide a holding force with the subject's body (e.g., skin) that is greater than the magnetic force holding the patch to the injector.
The injector can comprise a latch 6717 connected to a spring (e.g., torsion spring) 6715. In Panel A, the patch and injector may be in a first configuration (“Ready position”), where the device is locked, and the patch remains attached to the injector. The button 6719, which can be used to direct the cannula toward the subject when depressed, is in a start or ready position and ready for actuation. In panel B, the injector may be transformed (e.g., via rotation, removal of the safety tab 6801, or both), into a second configuration (“Lock-out position”). In the second configuration, the torsion spring may be released, thereby translating the latch 6717 to a different position. In such a configuration, the injector is removable from the patch, and the button 6719 may be in the raised position illustrated in panel B, preventing depression of the cannula out of the injector.
In some instances, it may be useful to have both the patch and the injector secured to the body of the subject. In such cases, the injector may additionally comprise features that may be configured to couple the housing of the injector to the body of the subject. For example, the injector may comprise an adhesive layer. The adhesive layer of the injector may be separate from the mechanism used to secure the patch to the body of the subject.
In some cases, the patch or an opening of the patch may comprise a pierce-able or flexible membrane. The pierceable membrane may comprise an opening (e.g., slit, hole) through which the cannula of the injector may pass when the cannula is directed from the injector to the body of the subject. In some instances, the flexible membrane comprises an opening (e.g., slit or hole) through which the cannula of the injector may pass when the cannula is directed from the injector to the body, and the opening may close following retraction of the cannula. For instance, the membrane may be provided in an “open” configuration, in which the membrane is stretched by a mechanism (e.g., a “tissue tent” structure) on the patch. When the injector is separated from the patch, the mechanism may toggle to a “closed” configuration (e.g., via removing the “tissue tent” structure from the patch, thereby biasing the membrane to the closed configuration), and the membrane may return to the state prior to stretching. In some instances, the pierce-able membrane may adhere or otherwise be secured to the body of the subject. In such cases, the pierce-able membrane may comprise an absorbent material, e.g., to absorb bodily fluids (e.g., blood, sweat, etc.) from the subject. It will be appreciated that any of the above-described embodiments may comprise a patch comprising sensors (e.g., on the PCB chip), and alternatively or in addition to, the patch may comprise the pierce-able membrane, which may comprise an absorbent material.
In some examples, the patch may be configured to couple to an autoinjector.
Embodiments of the disclosure provide a combination of reporting both the injector and the patient state during and after the injection. The patch and associated battery and circuitry are initially physically coupled to the injector. In an alternative embodiment, the patch could be applied and allow for connection of the one or more injectors. The patch circuit can communicate, e.g., via a communication interface, to the receiver the one or more parameters of the injector before being secured to the patient. Once the patch/injector is secured to the patient, the patch communicates both the patient and injector states. When the injector is removed, the patch remains on the patient directly on the injection site to transmit the state of the injection site. The patch could remain there for just a few hours if that is enough time to insure no reaction has occurred, or the patch can remain until the next injector/patch is applied. That is, upon completion of an injection, a patient may remove the injector and keep the patch on. The patch may continue to provide data (up to several days) until the next administration where it is replaced.
There are a number of situations where the physician might be reluctant to let the patient self-administer at home because of potential adverse reactions. If the patch were able to monitor for any potential complications (ISR's, heart rate, respiration, temperature, etc), and transmit a signal to the physician if there was anything unusual, it might give the physician confidence to send the patient home for injections. In an outcome-based healthcare model, there is a significant benefit to the system knowing that the patient is improving with the therapy with quantitative data as evidence. In the instance where the patient's health is acutely changing (or over the long-term), the ability for a treating physician to get involved earlier through notification based on trends of continuously accumulated data and intervene has long term benefit to the patient and overall outcome.
This type of “detachable” monitoring patch can also be extremely useful in clinical studies. The patients could be monitored for a variety of parameters during the study that could increase compliance and reduce complications and could even make enrollment easier. For example, if a patient is required to remain in the physician's office for 4 hours after each injection to monitor for ISR's, they might be able to eliminate this wait with the patch monitoring, which could result in improved recruitment. Moreover, such a device can allow for longitudinal studies that measure patient compliance and that provide for increased accuracy of data transmission (e.g., by obviating the need for manual recording of data).
The patch concept is not limited to the injector described above. This patch with and/or without electronics can also be adapted to other injectors. These devices could include autoinjectors. In view of the above, embodiments of the disclosure may provide, for example, a patch that can include electronics or just comprise a bandage material (see e.g.,
As illustrated in
One or more sensors may be used to measure the device and/or patient attributes or physiological parameters. Non-limiting examples of types of sensors include temperature sensors, interstitial pressure sensors, skin resistance sensors, skin distention sensors, acoustic sensors, vibration sensors, heart rate sensors, blood pressure sensors (BP in
One or more sensors may be used to measure one or more device attributes, such as the presence of skin, tracking of the delivery of the substance, and/or occlusion of the device (e.g., the cannula of the injector).
As illustrated in
The patch may be used post-injection, after injector removal, for a variety of functions. In non-limiting examples, the patch may be used to close up the injection site to prevent bleeding, use moisture detection to detect any injection site leakage/bleeding, monitor skin temperature and color and pressure to detect ISR's, monitor heartrate/EKG, monitor patient position—upright or recumbent, and/or monitor skin chemistry/sweat.
In some embodiments, the patch can communicate with the patient to remind him or her of the next injection time, provide an alarm if there is injection site reaction or leakage, increase in temperature, color, heartrate etc. Communications between the patch and patient could be visual, audible or tactile.
Embodiments of the patch may be used during an injection to monitor the state of the injector/injector to determine if, for example, the injector is filled, the volume or quantity of the substance (e.g., drug or medicament) that has been filled into the injector, the injector is removed from storage or transfer device base, if the injector is placed on skin, if the safety strip is removed, if the button is pressed, that injection begins, the gas gauge position including delivery tracking, button depressed for pause, the button retracts cannula, injection complete, if the injector is removed from skin, or any of the post-injector parameters associated with measurement of patient physiological parameters previously discussed.
In alternative embodiments, a sensor may detect if another patch is transmitting, or the existing patch was removed. The patch could be clear to allow the patient to see the injection site, and it would be as unobtrusive as possible so the patient could wear the patch and continue to conduct daily activities (shower, swim, etc.).
In further alternative embodiments, sensing elements may be provided that can measure device attributes including: presence of skin (cannula retraction or fall-off sensing), delivery indicator tracking (including fill and dispense), occlusion detection, drug temperature, device status (On/Off Transfer Base, On/Off Patient, Button Status, Pause Events, etc), flowrate, internal injector pressure/injection pressure, adhesive adhesion.
Further embodiments may incorporate patient and device sensing elements to allow for manual and/or automatic intervention (management) on the injector. For example, the flow rate of the injector may be adjusted (e.g., faster, slower, stopped/paused) based on site reaction sensing information (automatic), pain information from patient (manual), bio-absorption rate (automatic) or any combination or variations thereof.
Further embodiments may vibrate (for pain management or notification to user)—Vibration element in injector and/or patch, based on site reaction sensing information, pain information from Patient (manual) or pain sensing information, interstitial pressure/site distention information (automatic), or any combination or variations thereof.
In further embodiments, sound may be provided (e.g., for notification and/or information transfer to the user)—Sound element in injector and/or patch and activated based on sensing information from the patient, device sensing elements (occlusion, drug temp, delivery indication, etc.), or combinations or variations thereof.
In further embodiments, visual indicators may be provided (e.g., indication change, for notification and/or information transfer to the user)— LED or equivalent on injector and/or patch and activated based on sensing information from patient, device sensing elements, the position of the retract button—e.g., to detect premature removal/falloff, sensing information from injector (skin sensing, etc.), sensing information from the patient (high pressure, temp, etc.), or combinations or variations thereof.
In further embodiments, a lockout for the injector button depression (e.g., for security or preventing drug mis-use) may be provided and activated based on sensing information from injector (drug temperature, etc.), sensing information from patient (skin sensing, etc.), sensing information from the mobile application (e.g., time since last injection, user authentication), or variations or combinations thereof.
In further embodiments, subcutaneous/transcutaneous electrical neural stimulation (TENS) (e.g., for pain management or bio-absorption) may be provided. In such cases, an electrode element in cannula and/or patch may be activated based on site reaction sensing information, pain information from patient (manual) or pain sensing information, interstitial pressure/site distention information (automatic), or variations or combinations thereof.
Further embodiments may predict remaining injection time based on e.g., sensing flow rate and fill volume, sensing device pressure and back pressure, drug temperature, body temperature, and fill volume.
Potential features of still further embodiments may also include: the patch sensing if another patch has been applied, the patch being clear to allow visualization of the tissue below, the patch communicating directly with the user/patient, audible signals (e.g., “hey—time for your next injection” or “Call the doctor—you have an ISR”), and/or other tactile options, vibration, electrical stimulation, visual options, light emitting diodes, of the patch regularly transmitting data to receiver or directly to the cloud or intermittent data broadcasting.
Mobile Applications
In another aspect, disclosed herein are systems and methods for generating mobile applications for monitoring one or more health or physiological parameters. A mobile application may be generated using a variety of methods, e.g., an application programming interface (API). The mobile application may comprise a plurality of useful features and may be configured to interact with other mobile applications. In some cases, the mobile application may be configured to display the measurements of one or more physiological parameters from the subject or a parameter of the patch and/or injector. The mobile application may comprise feedback systems that allow for subject or other user input, which may allow for modulation of the patch and/or injector (e.g., amount of substance dispensed). The mobile application may also communicate, e.g., through the communication interface, with a remote server. In some cases, the remote server may be a part of or communicate with a separate electronic device (e.g., mobile device, laptop), which may allow for a clinician or physician to monitor the physiological parameters of the subject. In some cases, the mobile application may allow for inputs from the subject of non-measurable parameters (e.g., pain, discomfort, etc.). The mobile application may also comprise software for data processing. Data processing may include, in non-limiting examples, statistical analysis of data, trend plotting and analysis, and graphical representation of the data. In some cases, the mobile application may be capable of interfacing or combining with other mobile applications, such as a lifestyle tracking application (e.g., to monitor diet and activity), or other useful mobile applications, e.g., location tracking, accelerometer, calendars (e.g., to send reminders), etc.
In an example, a subject (e.g., a patient) may complete an injection with the patch and injector system, remove the injector, and continue to wear the patch. The information from the patch may be automatically transmitted to another individual (e.g., clinician or healthcare provider) via the mobile application through a communication interface (e.g., Bluetooth connection) with an electronic device (e.g., mobile device, e.g., phone, laptop, tablet) or directly to the cloud. In this example, the subject may perform an injection for approximately a 1 min duration. The patch sensor may indicate a device parameter, such as the fill level or volume of medicament in the reservoir of the injector, in addition to the one or more health or physiological parameters. In one example, the patch sensor may indicate that the reservoir is full and that the subject has an elevated temperature and redness at the injection site. In such an example, the mobile application may alert the user to immediately contact a healthcare provider. The mobile application may allow for a direct, telehealth connection with a healthcare provider. In some instances, prior to the call or upon initiation of the call, the healthcare professional may be provided with all of the necessary and pertinent information about the patient, such as but not limited to the recent information on the injection and health or physiological parameter. The healthcare professional and the patient may conduct the telehealth conversation to determine how the subject is feeling, look at the injection site via a camera on the mobile device, and recommend additional medication or an in-person visit. The patch may be used to measure the subject's temperature or blood pressure. In the event of an emergency, the mobile application may be configured to automatically connect the subject to a designated caregiver or dial an emergency number (e.g., 911 in the U.S.) if any of the measured health or physiological parameters indicate a pathology (e.g., abnormal respiration, pulse, blood pressure, presence of an acute event, e.g., sudden acceleration or position change in the event of a fall.
In some instances, the patch may be used to monitor the subject while sleeping. In such cases, should a complication arise in the subject, the patch may provide an output to the subject (e.g., through an audio, haptic, vibrational, electrical, or tactile signal), or the patch may alert a designated caregiver or healthcare practitioner. In the event of an emergency, the mobile application in communication with the patch may dial an emergency number (e.g., 911 in the U.S.). In some instances, the patch may monitor or measure the health or physiological parameter of the subject while the subject is asleep, which may be useful in obtaining consistent or continuous data, or which may help eliminate physiological variables while the subject is asleep.
As described herein, a healthcare provider may have access to agglomerated data (e.g., several collected measurements of the health or physiological parameter of the subject). In some instances, the data may be stored in a database or library. The database or library may comprise compartments or structures to store data that is specific to subjects that use the same medicament. For instance, the database could store information on multiple subjects, including ISR frequency, injection comfort, safety information, efficacy information, which may be specific to the medicament delivered. Alternatively or in addition to, secondary data may be collected, such as activity, positioning, history of the mobile application (e.g., use thereof), questionnaire responses, etc., which may be used to monitor the safety or efficacy of the therapy. For instance, if a subject is taking a rheumatoid arthritis drug and demonstrates a low level of activity and indicates, via the mobile application, of having mild pain, the healthcare provider may decide to change the treatment. If the subject's condition improves (e.g., the subject reports higher activity and reduced pain), the treatment change may be marked as an improvement.
In some instances, the mobile application may comprise an additional function that allows the subject to interact or communicate with a community of subjects. For instance, a subject may connect electronically to multiple subjects that are using the same treatment and injector and patch system. The mobile application may include forums or group chats that allow for subjects or users to reply to one another, answer questions, or post questions, answers, comments, etc. In some instances, the interaction of the subjects may be made publicly available, e.g., such that medicament manufacturers or device manufacturers may review and survey.
Additional systems and methods for measuring a health or physiological parameter using, for instance, patch and injector systems, may include the systems and methods disclosed in U.S. patent application Ser. No. 16/785,408, filed on Feb. 7, 2020 and International Patent Application No. PCT/US2019/069142, filed on Dec. 31, 2019, each of which is incorporated herein by reference in its entirety.
The present disclosure provides computer systems that are programmed to implement methods of the disclosure.
The computer system 10001 includes a central processing unit (CPU, also “processor” and “computer processor” herein) 10005, which can be a single core or multi core processor, or a plurality of processors for parallel processing. The computer system 10001 also includes memory or memory location 10010 (e.g., random-access memory, read-only memory, flash memory), electronic storage unit 10015 (e.g., hard disk), communication interface 10020 (e.g., network adapter) for communicating with one or more other systems, and peripheral devices 10025, such as cache, other memory, data storage and/or electronic display adapters. The memory 10010, storage unit 10015, interface 10020 and peripheral devices 10025 are in communication with the CPU 10005 through a communication bus (solid lines), such as a motherboard. The storage unit 10015 can be a data storage unit (or data repository) for storing data. The computer system 10001 can be operatively coupled to a computer network (“network”) 10030 with the aid of the communication interface 10020. The network 10030 can be the Internet, an internet and/or extranet, or an intranet and/or extranet that is in communication with the Internet. The network 10030 in some cases is a telecommunication and/or data network. The network 10030 can include one or more computer servers, which can enable distributed computing, such as cloud computing. The network 10030, in some cases with the aid of the computer system 10001, can implement a peer-to-peer network, which may enable devices coupled to the computer system 10001 to behave as a client or a server.
The CPU 10005 can execute a sequence of machine-readable instructions, which can be embodied in a program or software. The instructions may be stored in a memory location, such as the memory 10010. The instructions can be directed to the CPU 10005, which can subsequently program or otherwise configure the CPU 10005 to implement methods of the present disclosure. Examples of operations performed by the CPU 10005 can include fetch, decode, execute, and writeback.
The CPU 10005 can be part of a circuit, such as an integrated circuit. One or more other components of the system 10001 can be included in the circuit. In some cases, the circuit is an application specific integrated circuit (ASIC).
The storage unit 10015 can store files, such as drivers, libraries and saved programs. The storage unit 10015 can store user data, e.g., user preferences and user programs. The computer system 10001 in some cases can include one or more additional data storage units that are external to the computer system 10001, such as located on a remote server that is in communication with the computer system 10001 through an intranet or the Internet.
The computer system 10001 can communicate with one or more remote computer systems through the network 10030. For instance, the computer system 10001 can communicate with a remote computer system of a user (e.g., Located at a physician's office or a physician's mobile device). Examples of remote computer systems include personal computers (e.g., portable PC), slate or tablet PC's (e.g., Apple® iPad, Samsung® Galaxy Tab), telephones, Smart phones (e.g., Apple® iPhone, Android-enabled device, Blackberry®), or personal digital assistants. The user can access the computer system 10001 via the network 10030.
Methods as described herein can be implemented by way of machine (e.g., computer processor) executable code stored on an electronic storage location of the computer system 10001, such as, for example, on the memory 10010 or electronic storage unit 10015. The machine executable or machine-readable code can be provided in the form of software. During use, the code can be executed by the processor 10005. In some cases, the code can be retrieved from the storage unit 10015 and stored on the memory 10010 for ready access by the processor 10005. In some situations, the electronic storage unit 10015 can be precluded, and machine-executable instructions are stored on memory 10010.
The code can be pre-compiled and configured for use with a machine having a processer adapted to execute the code or can be compiled during runtime. The code can be supplied in a programming language that can be selected to enable the code to execute in a pre-compiled or as-compiled fashion.
Aspects of the systems and methods provided herein, such as the computer system 10001, can be embodied in programming. Various aspects of the technology may be thought of as “products” or “articles of manufacture” typically in the form of machine (or processor) executable code and/or associated data that is carried on or embodied in a type of machine readable medium. Machine-executable code can be stored on an electronic storage unit, such as memory (e.g., read-only memory, random-access memory, flash memory) or a hard disk. “Storage” type media can include any or all of the tangible memory of the computers, processors or the like, or associated modules thereof, such as various semiconductor memories, tape drives, disk drives and the like, which may provide non-transitory storage at any time for the software programming. All or portions of the software may at times be communicated through the Internet or various other telecommunication networks. Such communications, for example, may enable loading of the software from one computer or processor into another, for example, from a management server or host computer into the computer platform of an application server. Thus, another type of media that may bear the software elements includes optical, electrical and electromagnetic waves, such as used across physical interfaces between local devices, through wired and optical landline networks and over various air-links. The physical elements that carry such waves, such as wired or wireless links, optical links or the like, also may be considered as media bearing the software. As used herein, unless restricted to non-transitory, tangible “storage” media, terms such as computer or machine “readable medium” refer to any medium that participates in providing instructions to a processor for execution.
Hence, a machine readable medium, such as computer-executable code, may take many forms, including but not limited to, a tangible storage medium, a carrier wave medium or physical transmission medium. Non-volatile storage media include, for example, optical or magnetic disks, such as any of the storage devices in any computer(s) or the like, such as may be used to implement the databases, etc. shown in the drawings. Volatile storage media include dynamic memory, such as main memory of such a computer platform. Tangible transmission media include coaxial cables; copper wire and fiber optics, including the wires that comprise a bus within a computer system. Carrier-wave transmission media may take the form of electric or electromagnetic signals, or acoustic or light waves such as those generated during radio frequency (RF) and infrared (IR) data communications. Common forms of computer-readable media therefore include for example: a floppy disk, a flexible disk, hard disk, magnetic tape, any other magnetic medium, a CD-ROM, DVD or DVD-ROM, any other optical medium, punch cards paper tape, any other physical storage medium with patterns of holes, a RAM, a ROM, a PROM and EPROM, a FLASH-EPROM, any other memory chip or cartridge, a carrier wave transporting data or instructions, cables or links transporting such a carrier wave, or any other medium from which a computer may read programming code and/or data. Many of these forms of computer readable media may be involved in carrying one or more sequences of one or more instructions to a processor for execution.
The computer system 10001 can include or be in communication with an electronic display 10035 that comprises a user interface (UI) 10040. Examples of UI's include, without limitation, a graphical user interface (GUI) and web-based user interface.
Methods and systems of the present disclosure can be implemented by way of one or more algorithms. An algorithm can be implemented by way of software upon execution by the central processing unit 10005. The algorithm can, for example, process data, perform statistical analyses, plot or graphically represent data, and provide feedback for one or more systems disclosed herein (e.g., the patch and/or injector).
While preferred embodiments of the present invention have been shown and described herein, it will be obvious to those skilled in the art that such embodiments are provided by way of example only. It is not intended that the invention be limited by the specific examples provided within the specification. While the invention has been described with reference to the aforementioned specification, the descriptions and illustrations of the embodiments herein are not meant to be construed in a limiting sense. Numerous variations, changes, and substitutions will now occur to those skilled in the art without departing from the invention. Furthermore, it shall be understood that all aspects of the invention are not limited to the specific depictions, configurations or relative proportions set forth herein which depend upon a variety of conditions and variables. It should be understood that various alternatives to the embodiments of the invention described herein may be employed in practicing the invention. It is therefore contemplated that the invention shall also cover any such alternatives, modifications, variations or equivalents. It is intended that the following claims define the scope of the invention and that methods and structures within the scope of these claims and their equivalents be covered thereby.
This application is a continuation of International Application No. PCT/US2021/039545, filed Jun. 29, 2021, which claims the benefit of U.S. Provisional Patent Application No. 63/047,471, filed Jul. 2, 2020, each of which is incorporated herein by reference in its entirety.
Number | Date | Country | |
---|---|---|---|
63047471 | Jul 2020 | US |
Number | Date | Country | |
---|---|---|---|
Parent | PCT/US2021/039545 | Jun 2021 | US |
Child | 18069858 | US |