This present disclosure relates generally to medical implants, and, more particularly, to medical grade Cotton and Evans osteotomy wedges.
For many years, orthopedic surgeons and surgical podiatry doctors have been creating ways to surgically correct a patients flatfoot deformity. Flatfoot deformity is an imbalance of both the medial (inside of the foot) and lateral (outside of the foot) column which are the bones on both sides of the foot. One such way to correct this imbalance is to perform an Evans osteotomy, which is an osteotomy of the calcaneas or the heel bone. An osteotomy is a surgical operation whereby a bone is cut to shorten, lengthen, or change its alignment. Evans first introduced the idea of medial and lateral column imbalance, as it applies to talipes equinovarus, in 1961. In this case he described the lateral column as long in comparison to the medial column. Evans later performed a calcaneal lengthening procedure to correct an early post-operative complication in a residual clubfoot patient and reported this in the orthopedic literature in 1975. The Evans osteotomy, as it is called now, is a lateral based opening wedge osteotomy that effectively lengthens the lateral column thus reducing forefoot abduction and transverse plane deformity. It offers triplanar correction of the symptomatic flexible flatfoot by adducting and plantarflexing the forefoot and supinating the subtalar joint.
Another such way to surgically correct a patients flatfoot deformity is the Cotton osteotomy. The Cotton osteotomy is a medial opening wedge osteotomy that is performed in the first cuneiform bone of the foot. Like the Evans, the Cotton osteotomy is a surgically corrective osteotomy to assist in the correction of the flatfoot deformity. Like the Evans, the Cotton osteotomy is an opening wedge osteotomy where the first cuneiform bone is “opened” by the osteotomy cut of the bone to obtain a certain amount of correction. The Cotton osteotomy is a powerful surgical procedure in the treatment of collapsing pes planovalgus with persistent rigid forefoot varus deformity.
Both the Evans and Cotton osteotomy procedures are “opening wedge” osteotomies whereas the bone, by using a surgical saw blade, is surgically cut open with an osteotomy to achieve correction, as described above. When you open the bones, the surgeon needs the bone to stay in the open position to maintain and hold the corrective procedure they have performed.
Various methods of maintaining the corrections of both Cotton and Evans osteotomies have been studied; from metal plates to bone molds that are inserted into the osteotomy to hold the correction. The bone graft molds or wedges have varied from autogenous bone (bone harvested from the patient's own body, often from the iliac crest), allograft (cadaveric bone usually obtained from a bone bank), or synthetic (often made of hydroxyapatite or other naturally occurring and biocompatible substances) with similar mechanical properties to bone. Most bone grafts are expected to be reabsorbed and replaced as the natural bone heals over a few months' time. Recently, titanium and porous metal alloy wedges have been used to replicate the opening space of the Cotton or Evans osteotomy and they inserted into the osteotomy opening similar to a bone graft mold or wedges.
In one or more embodiments, an osteotomy implant for surgical foot and/or ankle osteotomy bone corrections comprises a first end, a second end opposite the first end, an opening at the second end, and a threaded hole at the first end. The first end can be thicker than the second end in a side view. The opening can extend toward the first end in a plan view. The osteotomy implant can be composed of one or more medical-grade materials, the one or more medical-grade materials being radiolucent and/or osteoconductive. The osteotomy implant can be adapted to hold a bone correction achieved by an osteotomy cut. The threaded hole can be threaded for attachment of an insertion tool.
In one or more embodiments, a method comprises making an osteotomy cut of a bone to achieve a correction. The method can also include selecting a prefabricated osteotomy wedge implant based on one or more characteristics of the cut, and inserting the selected prefabricated osteotomy wedge implant into the cut to maintain the achieved bone correction. The selected prefabricated osteotomy wedge implant comprises a first end, a second end opposite the first end, and an opening at the second end. The opening can extend toward the first end in plan view. The selected prefabricated osteotomy wedge implant can be composed of one or more medical-grade materials, the one or more medical-grade materials being radiolucent and/or osteoconductive. The selected prefabricated osteotomy wedge implant can be adapted to maintain the bone correction achieved by the osteotomy cut.
In one or more embodiments, a method comprises making an osteotomy cut of a bone of a patient to achieve a correction. The method can also comprise selecting a trial wedge based on a characteristic of the cut, the patient, and/or a desired correction. The method can also comprise inserting the trial wedge into the cut. The method can also comprise determining whether an actual correction achieved with the trial wedge is acceptable. The method can also comprise, selecting, when the actual correction achieved with the trial wedge is acceptable, a prefabricated osteotomy wedge implant based on a characteristic of the accepted trial wedge. The method can also comprise inserting the selected prefabricated osteotomy wedge implant into the cut to maintain the achieved bone correction. The selected prefabricated osteotomy wedge implant comprises a first end, a second end opposite the first end, and an opening at the second end. The opening can extend toward the first end in plan view. The selected prefabricated osteotomy wedge implant can be composed of one or more medical-grade materials, the one or more medical-grade materials being radiolucent and/or osteoconductive. The selected prefabricated osteotomy wedge implant can be adapted to maintain the bone correction achieved by the osteotomy cut.
In one or more embodiments, an osteotomy wedge kit for surgical foot and/or ankle osteotomy bone corrections comprises a plurality of osteotomy implants and a plurality of trial wedges. The plurality of osteotomy implants can be of two or more types/sizes. Each of the trial wedges can be configured to represent a respective one of the types/sizes of the implants. Each osteotomy implant can comprise a first end, a second end opposite the first end, and an opening at the second end. The opening can extend toward the first end in a plan view. Each osteotomy implant can be composed of one or more medical-grade materials, the one or more medical-grade materials being radiolucent and/or osteoconductive. Each osteotomy implant can be adapted to hold a bone correction achieved by an osteotomy cut.
Objects and advantages of embodiments of the disclosed subject matter will become apparent from the following description when considered in conjunction with the accompanying drawings.
Embodiments will hereinafter be described with reference to the accompanying drawings, which have not necessarily been drawn to scale. Where applicable, some features may not be illustrated to assist in the illustration and description of underlying features. Throughout the figures, like reference numerals denote like elements. As used herein, various embodiments can mean one, some, or all embodiments.
The present inventors have recognized that the prior art does not disclose a medical grade thermoplastic or polymer osteotomy wedge used for various deformity corrections in foot and ankle bone surgery of adults and children. By the present application there is provided either a pre-determined or fabricated shape wedge made out of a medical grade thermoplastic or polymer material used for various deformity corrections in foot and ankle bone surgery of adults or children. Some embodiments include titanium alloy or other allow (e.g. porous metal alloy) osteotomy wedges. In some embodiments, one or more surfaces of the osteotomy wedge are coated with an osteoconductive coating such as, for example, a hydroxyapatite (HAp) coating.
The present disclosure overcomes deficiencies of possible complications using bone graft wedges and some embodiments provide radiolucency compared to metal wedges.
In one or more embodiments, a medical grade thermoplastic or polymer osteotomy wedge used for various flatfoot deformity corrections in bone surgery of adults and children is made from medical grade thermoplastic or polymer material, some of which have shown to be osteoconductive and radiolucent. The medical grade thermoplastic or polymer osteotomy wedge used for various flatfoot deformity corrections in bone surgery of adults and children can pre-determined or fabricated and may come in a variety of sizes depending on the required deformity correction. In one or more embodiments, at least one surface of the osteotomy wedge is coated with an osteoconductive material or compound such as, for example, hydroxyapatite (HAp).
In some embodiments, medical grade materials/polymers are used to replicate bone as an implant. There are various medically accepted materials/polymers including but not limited to polyetheretherketone (PEEK), polyehterketoneketone (PEKK), Carbon Fiber-PEKK combination, and other polymer composite material that have passed the review of the U.S. Food and Drug Administration (FDA) allowing them to be used as a medical implant. Some of these polymer composites have shown to be osteoconductive. In some embodiments, one or more surfaces are coated with an osteoconductive material or compound such as, for example, hydroxyapatite (HAp). Osteoconductivity is the process by which bone grows on a surface (e.g., new bone growth that is perpetuated by the native bone). Some such medical grade polymers have met the stringent manufacturing guidelines ISO 10993 biocornpatibility testing along with other accepted manufacturing and biocornpatibility guidelines. Medical grade polymers have the advantage of being able to be molded into any shape or design desired, such as, for example, those shown in
For purposes of promoting an understanding of the principles of the present disclosure, reference will now be made to the examples illustrated in the drawings and described in the following written specification. It is understood that no limitation to the scope of the present disclosure is thereby intended. It is further understood that the present disclosure includes any alteration and modifications to the illustrated examples and includes further applications of the principles disclosed herein as would normally occur to one skilled in the art to which this disclosure pertains.
Osteotomy wedge 102 is tapered in plan view from the first end 102 to the second end 104 (i.e., side surfaces 124 are angled inward from the first end 102 to the second end 104). The osteotomy wedge 100 is thicker at the first end 102 than the second end 104, as illustrated, for example, in
Corner surfaces 128 and 126 are curved and corner surfaces 128 have a larger curvature than corner surfaces 126. In some embodiments, corner surfaces 128 have a curvature 2.25 times larger than corner surfaces 126. In some embodiments, corner surfaces 124 can have a curvature twice as large as the curvature of the curved surfaces between the second end 104 and the inner surfaces 130. In some embodiments, corner surfaces 128 can have a curvature 4.5 times as large as the curvature of the curved surfaces between the second end 104 and the inner surfaces 130.
In some embodiments, the center of semicircular opening 110 can be at the center or substantially at the center of osteotomy wedge 100 in plan view. Although shown in
Although portions of lattice 112 are shown in
In some embodiments, the side surfaces 124 are not angled inward from the first end 102 to the second end 104. For example, in some such embodiments, side surfaces 124 are parallel or substantially parallel, as shown, for example, in
In some embodiments, planar surfaces 132 and 134 can include features 718/720 shown in
Although not shown in
In one or more embodiments, methods for performing an osteotomy (e.g., an Evans or Cotton osteotomy) employ any of the disclosed osteotomy implants or combinations thereof. For example,
At 602, prefabricated osteotomy wedge implants and trial wedges are provided. The implants can be of different sizes, types, and/or configurations. For example, the implants can include various sizes including one or more adult size implants and/or one or more child size implants. The implants can also be of different embodiments of the osteotomy wedge implants disclosed herein including, for example, the implants 100, 700, and 1100 shown in
At 604, an osteotomy cut is made of a bone to achieve a desired bone correction. For example, the osteotomy cut can be either a Cotton osteotomy or an Evans osteotomy. The desired bone correction can include, for example, a correction of a flatfoot deformity.
At 606, a trial wedge is selected. The trial wedge can be selected based on one or more characteristics of the cut, patient, and/or desired correction. The trial wedge can be selected from those provided at 602.
At 608, the trial wedge is inserted into the cut. The trial wedge can include a threaded hole similar to hole 716 of implants 700 and 1100 shown in
At 610, the correction achieved with the trial wedge inserted is measured and/or observed. For example, the location of the cut (e.g., the foot and/or ankle) can be x-rayed to evaluate the correction achieved.
At 612, it is determined whether a desired correction is achieved. If not, at 614, the trial wedge is removed and another trial wedge is selected at 606.
If it is determined, at 612, that a desired correction is achieved, then the trial wedge is removed at 616.
At 618, a prefabricated osteotomy wedge implant is selected to maintain the desired correction. A prefabricated osteotomy wedge implant can be selected from those provided at 602 based on the selected trial wedge with which a desired correction was achieved. The selected implant can be the type/size/configuration of implant to which the selected trial wedge corresponds.
At 620, the selected prefabricated osteotomy wedge implant is inserted into the cut to maintain the bone correction achieved.
Side surfaces 724 are parallel or substantially parallel to each other. Although not shown, in some embodiments, osteotomy wedge 702 is tapered in plan view from the first end 702 to the second end 704 (i.e., side surfaces 724 are angled inward from the first end 702 to the second end 704, as shown, for example, by side surfaces 124 in
Corner surfaces 728 and 726 are curved and corner surfaces 728 have a larger curvature than corner surfaces 726. In some embodiments, corner surfaces 728 have a curvature 2.25 times larger than corner surfaces 726. In some embodiments, corner surfaces 724 can have a curvature twice as large as the curvature of the curved surfaces between the second end 704 and the inner surfaces 730. In some embodiments, corner surfaces 728 can have a curvature 4.5 times as large as the curvature of the curved surfaces between the second end 704 and the inner surfaces 730.
The center of semicircular opening 710 is at the center or substantially at the center of osteotomy wedge 700 in plan view. Although shown in
Surfaces 718 and/or 720 are configured to improve bone ingrowth and/or provide anti-migration features when implanted. In some embodiments, surfaces 718 and/or 720 can be coated with an osteoconductive coating such as, for example, a hydroxyapatite (HAp) coating.
In some embodiments, osteotomy wedge 700 has dimensions of 16 mm×16 mm in plan view, a thickness at first end 702 of 7 mm, semicircle opening 710 has a diameter of 10 mm, opening 108 has a width of 3 mm, and hole 716 has a diameter of 2.5 mm. In some such embodiments, osteotomy wedge 700 has a thickness at the second end 704 of 2.503 mm or approximately 2.503 mm.
Side surfaces 724 of implant 1100 are parallel or substantially parallel to each other. Although not shown, in some embodiments, osteotomy wedge 1100 is tapered in plan view from the first end 702 to the second end 704 (i.e., side surfaces 724 are angled inward from the first end 702 to the second end 704, as shown, for example, by side surfaces 124 in
Corner surfaces 728 and 726 of implant 1100 are curved and corner surfaces 728 have a larger curvature than corner surfaces 726. In some embodiments, corner surfaces 728 of implant 1100 have a curvature 2.25 times larger than corner surfaces 726. In some embodiments, corner surfaces 724 of implant 1100 have a curvature twice as large as the curvature of the curved surfaces between the second end 704 and the inner surfaces 730. In some embodiments, corner surfaces 728 of implant 1100 have a curvature 4.5 times as large as the curvature of the curved surfaces between the second end 704 and the inner surfaces 730.
The center of semicircular opening 710 is at the center or substantially at the center of osteotomy wedge 1100 in plan view. Although shown in
Surfaces 718 and/or 720 are of implant 1100 are configured to improve bone ingrowth and/or provide anti-migration features when implanted. In some embodiments, surfaces 718 and/or 720 of implant 1100 can be coated with an osteoconductive coating such as, for example, a hydroxyapatite (HAp) coating.
In some embodiments, osteotomy wedge 1100 has dimensions of 20 mm×20 mm in plan view, a thickness at first end 702 of 7 mm, semicircle opening 710 has a diameter of 10 mm, opening 108 has a width of 3 mm, and hole 716 has a diameter of 2.5 mm. In some such embodiments, osteotomy wedge 1100 has a thickness at the second end 704 of 1.378 mm or approximately 1.378 mm.
Some embodiments provide the user with a medical grade thermoplastic or polymer osteotomy wedge for application and insertion into an adult or child of a flatfoot correction wedge to stabilize and maintain a Cotton or Evans wedge osteotomy procedure to correct a flatfoot deformity.
Although some embodiments herein have been described with respect to osteotomy wedges/implants for use with a human patient, embodiments of the disclosed subject matter are not limited thereto. Rather, embodiments can include osteotomy wedges/implants for use with an animal, for example.
In some embodiments, the medical grade thermoplastic or polymer osteotomy wedge can be provided in various sizes depending, for example, on the amount of correction required to correct the flatfoot deformity.
Although some embodiments herein have been described with respect to thermoplastic or polymer osteotomy wedges/implants, embodiments of the disclosed subject matter are not limited thereto. Rather, embodiments can include titanium alloy or other alloy (e.g., porous metal alloy) osteotomy wedges/implants.
In this application, unless specifically stated otherwise, the use of the singular includes the plural and the use of “or” means “and/or.” Furthermore, use of the terms “including” or “having,” as well as other forms, such as “includes,” “included,” “has,” or “had” is not limiting. Any range described herein will be understood to include the endpoints and all values between the endpoints.
Features of the disclosed embodiments may be combined, rearranged, omitted, etc., within the scope of the invention to produce additional embodiments. Furthermore, certain features may sometimes be used to advantage without a corresponding use of other features.
It is, thus, apparent that there is provided, in accordance with the present disclosure, medical grade Cotton and Evans osteotomy wedges. Many alternatives, modifications, and variations are enabled by the present disclosure. While specific embodiments have been shown and described in detail to illustrate the application of the principles of the invention, it will be understood that the invention may be embodied otherwise without departing from such principles. Accordingly, Applicant intends to embrace all such alternatives, modifications, equivalents, and variations that are within the spirit and scope of the present invention.
The present application claims the benefit of U.S. Provisional Application No. 61/997,027, filed May 20, 2014, which is hereby incorporated by reference herein in its entirety.
Number | Date | Country | |
---|---|---|---|
61997027 | May 2014 | US |