The present invention relates to a medical heat and moisture exchanger (HME).
More specifically, the present invention may be used to advantage, though not exclusively, in anaesthesiology and intensive care, to which the following description refers purely by way of example.
As is known, a heat and moisture exchanger (HME) is a device used in anaesthesiology and intensive care on intubated patients undergoing artificial ventilation.
In such conditions, in fact, the patient's upper air passages being bypassed, and so not assisting in heating and moistening the cold, dry ventilation gas, an HME is inserted in the respiratory circuit, between the so-called “catheter mount” and “patient-side Y connector”, to retain heat and moisture from the gas exhaled by the patient and heated and moistened by the lower air passages, and release large part of the retained heat and moisture to the air supply inhaled by the patient.
Inserting an HME in the circuit, however, increases the “circuit dead space”, on account of both the location and form of the HME, both of which factors assist in mixing the inhaled and exhaled gases.
Dead space is formed on the side of each physiological (i.e. anatomical and alveolar) dead space, and possibly on the artificial respiratory system side, and constitutes a volume of air taking no part in oxygen-carbon dioxide exchange, which only takes place in alveoli perfused with blood. The physiological dead space therefore obviously varies according to various factors, whereas the portion produced by the respiratory circuit is of an artificial nature and affected by different factors.
Circuit dead space is clinically undesirable, by causing stagnation and mixing of the fresh gas supply to the patient and the gas exhaled by the patient; so much so that this volume is taken into account and compensated for in the ventilation setting.
Moreover, in the case of a pediatric or newborn patient, the gas flow rate and volumes involved make the presence of a stagnant volume of ventilation gas a serious issue.
Nevertheless, in prior-art devices, even the presence of an HME normally poses problems.
It is therefore an object of the present invention to provide a medical HME designed to eliminate the aforementioned drawbacks, and which at the same time is cheap and easy to produce.
According to the present invention, there is provided a medical HME as claimed in the accompanying Claims.
The HME according to the present invention operates on the principle of eliminating (ideally all) the dead space typically associated with its presence in the respiratory circuit.
The HME according to the present invention is particularly suitable for use in anaesthesiology and intensive care, to passively heat and moisten respiratory gas supply to the patient.
More specifically, the present invention proposes to eliminate the dead space typically associated with an HME located in respiratory circuits, downstream (in the ventilator-patient direction) from the Y connector.
The HME according to the invention comprises, inside, a heat and moisture exchange septum (or filter), which is only swept on one side by the exhaled gas to accumulate heat and moisture.
To the incoming, normally cold, dry inhaled gas, the septum (or filter), which is only swept on the other side by the exhaled gas, releases the accumulated heat and moisture to administer adequately heated, moistened gas to the patient.
Operation as described above is achieved by separating the paths of the two (respectively, inhaled and exhaled) gases on the opposite surfaces of the septum (or filter). In fact, where there is no volume traversed in both respiratory flow directions, there is no dead space.
A number of non-limiting embodiments of the present invention will be described by way of example with reference to the accompanying drawings, in which:
In the first embodiment, exchanger 10 comprises a substantially tubular first connector 11 connected to a tracheal tube (not shown) of a patient (not shown).
Exchanger 10 also houses a substantially tubular second connector 12, along which flows inhaled gas produced by a ventilator (not shown) and indicated by arrow F1.
Exchanger 10 also comprises a substantially tubular third connector 13, along which exhaled gas F2 is fed back to the ventilator.
Finally, exchanger 10 comprises a substantially parallelepiped-shaped main body 14 interposed between first connector 11, on one side, and connectors 12, 13, on the other.
Main body 14 houses a septum (or filter) 15, by which heat and moisture is exchanged between the outflow gas and inflow gas. As shown in detail in
The substantially parallelepiped-shaped pack so formed is potted (sealed) on part of its lateral walls 15a, 15b, and on the whole of a first end wall 15c (
The inhaled gas from connector 12 is thus forced to flow through an exposed area A1 of lateral wall 15a and through a second end wall 15d, opposite first end wall 15c, to connector 11.
Alternately, the exhaled gas flows into septum (or filter) 15 through the non-potted second end wall 15d, is forced to flow through an exposed area A2 of lateral wall 15b, and is ultimately fed through connector 13 to the ventilator.
In this first embodiment, septum (or filter) 15 obviously constitutes no patient dead space, which, in fact, in exchanger 10, is defined solely by the volume of connector 11.
As shown in detail in
“Fan-folding” units 150a one on top of the other produces a first set of passages 150b (each defined by two contiguous units 150a connected by a fold 150d) (
The gases are directed in known manner by two one-way valves (not shown) in the ventilator (not shown). When inhaling, the inhale valve is open and the exhale valve closed; conversely, when exhaling, the exhale valve is open and the inhale valve closed, so that the gases flow along whichever way is clear.
The two gases—inhaled (arrow F1) and exhaled (arrow F2)—therefore never come into direct contact with each other, and simply exchange heat and moisture via septum (or filter) 15, which, as stated, may advantageously, though not necessarily, be made from a sheet 150 of hygroscopic paper.
Exchanger 10 could also be made into an HME filter with practically no dead space, by applying a filtering membrane (not shown) inside connectors 12 and 13 or possibly over exposed areas A1 and A2.
As shown in
A continuous streak 32 of potting compound is deposited parallel to and along the whole length of a first long side 31c of sheet 31. Along a second long side 31d (parallel to first side 31c), on the other hand, short segments 33 of potting compound are deposited, each “astride” a respective fold 31b.
As shown in
Continuous streak 32, segments 33, and spots 34 are deposited on both a first face FC1 (
When sheet 31 is pleated at folds 31b, folds 31b are sealed completely along side 31c, coated with continuous streak 32 of potting compound, to form a first end wall 30a (
As shown in
Alternately, the exhaled gas flows into septum (or filter) 30 through second end wall 30b, is forced to flow through septum (or filter) 30 and an exposed area A2 of lateral wall 30d, and is ultimately fed to the ventilator through connector 13 (
Spots 34 combine to form a support to maintain correct spacing of the folds, so that the gases flow through the open gaps.
In the third embodiment, an HME 100 (
As shown in
Similarly, the exhaled gas (F2) flows into septum (or filter) 300 through an exposed area A5 and out through an exposed area A6 to the ventilator. As it flows through septum (or filter) 300, the exhaled gas obviously releases heat and moisture to the walls of a pleated sheet of the type illustrated in the previous embodiments.
A casing 100b of HME 100, as stated, comprises four connectors 101, 102, 103, 104—two for inhaled gas (101, 102) and two for exhaled gas (103, 104)—so that the two gas flows indicated by arrows F1, F2 in
In actual use, the inhaled gas from the ventilator flows into septum (or filter) 300 through connector 101, and, by virtue of the potting compound on the central walls 301a, 301b, 301c, 301d, is forced to flow through area A3. Each end of septum (or filter) 300 is fitted with a respective binder 302a, 302b. After sweeping the inside of the passages between the pleats in the sheet, and gathering heat and moisture released to septum (or filter) 300 by the preceding exhale cycle, the inhaled gas flows out through area A4 and through connector 102 to the patient (not shown).
The gas exhaled by the patient flows through connector 103, through area A5 into the passages between the exhale pleats, releases heat and moisture for the next inhale cycle, and flows through area A6 into connector 104, and from there to the ventilator.
In this third embodiment, an important part is played by a first partition ED1, defined on one side by a wall 101a (of connector 101) and a wall 104a (of connector 104); and by a second partition ED2, defined on the other side by a wall 102a (of connector 102) and a wall 103a (of connector 103). Partitions ED1, ED2 rest against end walls 301e, 301f respectively, and provide for separating the inhaled gas (F1) from the exhaled gas (F2).
In this embodiment, the gas flows are separated using a number of capillary tubes with given heat and moisture retaining and release properties for a first gas flow; directing a second gas flow outside the capillary tubes; and accordingly locating the connectors to direct the gas flows. Number 400 in
In this fourth embodiment, the inhaled gas (arrow F1) from the ventilator flows through a connector 404 into end portion 401b, along central portion 401a into end portion 401c, and out to the patient through a connector 405. Each connector 404, 405 has a respective axis (b), (c) substantially perpendicular to axis (a). As it flows through, the inhaled gas (F1) flows inside the intercapillary space and sweeps capillary tubes 403, from which it absorbs heat and moisture released by the exhaled gas in the previous cycle (see below).
The gas (F2) exhaled by the patient, in turn, flows through a connector 406 and along the inside of capillary tubes 403, releases heat and moisture to the walls of capillary tubes 403 for the inhaled gas at the next inhale cycle, and ultimately flows out through a connector 407 to the ventilator (not shown).
In the
This provision aids in achieving laminar flow of the inhaled gas and, therefore, uniform heat and moisture exchange between the inhaled gas and the gas exhaled in the previous cycle.
Once stamped and pleated, sheet 502 (
As regards the inhaled gas (F1), openings 503 are offset with respect to openings 504; and similarly, as regards the exhaled gas (F2), openings 505 are offset with respect to openings 506, to make the best use of the available heat and moisture exchange surfaces.
With reference to two adjacent, substantially rectangular units 502a, 502b of equal area, a respective rectangular sealing frame 507 is stamped on each unit 502a, 502b; and, as shown in detail in
Similarly, a short side 507b of rectangular unit 502a comprises, from right to left, a third half-opening AS3 facing first face 502a*; a half-notch IT2* (for reasons explained in detail below); and a fourth half-opening AS4 (shown by a dash line in
Short side 507b of frame 507 of rectangular unit 502b comprises (from left to right) a seventh half-opening AS7; a half-notch IT2**; and an eighth half-opening AS8 (shown by a dash line in
Moreover, half-openings AS1, AS2, AS3, AS4, AS5, AS6, AS7, AS8 are advantageously offset with respect to the relative side of frame 507 to correctly divert the gas flows (inhaled and exhaled). When unit 502b is folded over unit 502a, half-opening AS1 mates with half-opening AS5 to form one of openings 506, and half-opening AS3 mates with half-opening AS7 to form one of openings 505, so that openings 505 are offset with respect to openings 506; and half-notch IT1* mates with half-notch IT1** to form a complete notch IT1, as shown in
As shown in
With reference, for example, to unit 502a, second face 502a** is also stamped, but specularly with respect to first face 502a*, so that the result is the same as in
Inside, main body 509 comprises a tapered partition 510, the free end of which, in use, fits inside notch IT1. Partition 510 divides the space inside main body 509 into two identical portions 509a and 509b. A tubular connector 511 is integral with portion 509a, and a tubular connector 513 is integral with portion 509b (
To sum up, the inhaled gas (F1) from the ventilator flows through connector 513 to HME 500, and into corresponding openings 503.
As they flow through the system, both gas flows (inhaled and exhaled) are diverted by ribs 508 to effectively sweep both face 502a* and face 502a**, through which heat and moisture exchange takes place. The same obviously also applies to unit 502b and all the other units forming part of septum (or filter) 501. The incoming inhaled gas (F1) from connector 513 is directed to connector 514 located close to the corner opposite the inflow corner. Flow inside septum (or filter) 501 takes place with no gas leakage, by virtue of sealing frames 507.
Similarly, the exhaled gas (F2) flows through connector 512 into exhale openings 505, and, as it flows through the system and is diverted by ribs 508, releases heat and moisture as it flows to connector 511 located close to the corner opposite the inflow corner, again with no leakage by virtue of sealing frames 507.
A sealing frame 602 is stamped on each unit 601a, 601b, 601c, 601d, and, inside frame 602, sealing rings 603 are formed (stamped) about four through holes 604, 605, 606, 607 formed at the four corners of each unit 601a, 601b, 601c, 601d. Of the four sealing rings 603, two rings 603a, located at opposite corners, are characterized by a number of radial openings 603c (FIG. 20—enlarged detail A), so that gas flows through a corresponding through hole 604, 605, 606, 607, as well as through openings 603c, which direct flow on the paper/film to sweep the inner surface of units 601a, 601b, 601c, 601d.
The other two sealing rings 603b, on the other hand, are solid, so that gas only flows through the corresponding through hole 604, 605, 606, 607, and not into the corresponding gaps INT between units 601a, 601b, 601c, 601d.
As before, respective “herringbone” ribs 612 may be provided, which, besides diverting flow to sweep a larger surface area, also act as spacers between adjacent units 601a, 601b, 601c, 601d folded, in use, one on top of the other.
As opposed to being specular, ribs 612 are advantageously, though not necessarily, equioriented, so that, in use, when sheet 601 is pleated, ribs 612 are superimposed and arranged crosswise to one another to improve gas circulation and make full use of the available heat and moisture exchange surface.
Further ribs 613 may be provided on, and extending the whole length of, the long sides 602a of frame 602. When the sheet is pleated, each rib 613 engages a corresponding seat 614 on the next unit 601a, 601b, 601c, 601d to position units 601a, 601b, 601c, 601d correctly when assembling septum (or filter) 600.
Septum (or filter) 600 is also fitted with a cover CP (
To sum up, the inhaled gas (F1) from the ventilator flows through connector 616 into septum (or filter) 600, along channel 608, through gaps INT1, INT3, INT5, INT7, INT9, and out through channel 609 and corresponding connector 617.
Inside gaps INT1, INT3, INT5, INT7, INT9, the inhaled gas (F1) is enriched with heat and moisture accumulated in the previous exhale cycle and made available by virtue of the characteristics of septum (or filter) 600.
Similarly, the exhaled gas (F2) flows through connector 618 into septum (or filter) 600, along channel 610 into gaps INT2, INT2, INT6, INT8, releases heat and moisture to sheet 601 as it flows through, and flows back to the ventilator through channel 611 and corresponding connector 619.
The main advantage of the present invention lies in reducing the dead space inside the ventilation circuit, by reducing the dead space of the HME. Dead space is clinically undesirable, by causing stagnation and mixing of the gases inhaled and exhaled by the patient; so much so that this volume is taken into account and compensated for in the ventilation setting. The advantage afforded by the invention also increases proportionally in the case of a newborn patient, in which the ventilation gas flow rate and volumes involved make the presence of a stagnant volume of ventilation gas a serious issue.
Number | Date | Country | Kind |
---|---|---|---|
07425304.8 | May 2007 | EP | regional |