Medical image processing

Information

  • Patent Application
  • 20070147672
  • Publication Number
    20070147672
  • Date Filed
    December 28, 2005
    18 years ago
  • Date Published
    June 28, 2007
    17 years ago
Abstract
In one aspect, the invention is a method of medical image processing. The method includes receiving data representing a medical image. The method also includes generating the medical image based on a model. The model characterizes the medical image as a composition of at least two components having processing constraints.
Description
TECHNICAL FIELD

This invention relates generally to image processing and more specifically to medical images.


BACKGROUND

There are a number of systems used for generating medical images. For example, a computed tomography (CT) system generates three-dimensional (3-D) images by generating a series of two-dimensional (2-D) X-ray images about an axis of rotation. In another example, a positron emission tomography (PET) system measures positron emissions from human tissue as a result of absorption of a radioactive molecule injected in to a human body. Other medical imaging systems include a magnetic resonance imaging system (MRI) which generates images by applying magnetic fields and radio frequency (RF) energy to the human body and recording the resultant effects on the nuclei in the human tissue.


SUMMARY

In one aspect, the invention is a method of medical image processing. The method includes receiving data representing a medical image and generating the medical image based on a model. The model characterizes the medical image as a composition of at least two components having processing constraints.


In another aspect, the invention is an apparatus. The apparatus includes a memory that stores executable instructions for medical image processing. The apparatus also includes a processor that executes the instructions to receive data representing a medical image and to generate the medical image based on a model, the model characterizing the medical image as a composition of at least two components having processing constraints.


In a further aspect, the invention is an article. The article includes a machine-readable medium that stores executable instructions for medical image processing. The instructions cause a machine to receive data representing a medical image and to generate the medical image based on a model, the model characterizing the medical image as a composition of at least two components having processing constraints.




DESCRIPTION OF THE DRAWINGS


FIG. 1 is a diagrammatic view of a computed tomography (CT) system.



FIG. 2A is a diagrammatic view of an artery having calcification.



FIG. 2B is a CT image of the artery.



FIG. 3 is a flowchart for a process of processing an image.



FIG. 4 is a flowchart for a process of minimizing total energy functional across all image components.



FIG. 5 is a diagrammatic view of a computer system on which the processes of FIG. 3 and FIG. 4 may be implemented.




DETAILED DESCRIPTION

A key problem in medical imaging is the removal of artifacts which degrade the quality of the image for diagnostic purposes. To address this problem, described herein is a model-based approach to image processing wherein the structures or areas of interest in the image are explicitly partitioned according to their behavior and different constraints are imposed separately on each structure or area. This approach can be employed as either a post-processing (restoration) method or as an image formation (reconstruction) method. This approach differs considerably from conventional deblurring and filtered back projection reconstruction techniques. To partition the image structures significant features of the different structures are used. These are flexible, but could include characteristics such as smoothness, concentration of energy or brightness, intensity, etc. A single functional or energy is then defined which combines all these model elements. The minimum of this combined energy is then sought.


While the system and techniques described herein uses an embodiment that includes computed tomography (CT), the system and techniques are not limited to CT. For example the system and techniques may be used in any image processing or acquisition system such as a magnetic resonance imaging (MRI) system, a positron emission tomography (PET) system, ultrasound and so forth. While the system and techniques described herein are used for image processing to detect calcium in an artery, the system may be used in any image processing system such as to minimize blurring or blooming effects between any different materials. The method described herein uses two components to distinguish between materials, but the method may be used with any number of components.


Referring to FIG. 1, a computed tomography system 10 includes an x-ray source 12, a patient 14, a detector 16, a computer 18 and a display 20. The X-ray source 12 emits an x-ray beam 13 which impinges upon or illuminates a portion (sometimes referred to as a slice) of patient 14. Portions of the x-ray beam are absorbed by structures within the patient (both physiological and non-physiological structures) and a portion of the beam 15 reached a detector 16. Detector 16 measures the absorption along numerous paths with both radial and tangential components. The computer 18 uses the measured absorption information collected by the detector 16 to form a cross-sectional image, which may be viewed on display 20.


Referring to FIGS. 2A and 2B, an artery 22 includes a wall 24 having an inner wall portion 24a and an outer wall portion 24b. Inner wall portion 24a defines, a lumen 26. A portion of wall 24 may include a calcified region 28. Referring briefly to FIG. 2B, a CT image 30 of an artery similar to artery 22 (FIG. 2A) is shown. CT image 30 is provided using known image processing techniques. Despite the well-localized nature of the calcium region 28, the resulting image 30 shows nearly total obscuration of the luminal region 26, rendering the image 30 non-evaluable. A calcium artifact in coronary CT arises when the intensity of small dense calcium regions in the vessel wall spills into adjacent pixels due to the blurring induced by the resolution-limited image formation process. The CT system 10 together with the reconstruction process spreads the intensity of such calcified regions over the image, resulting in an over-representation of the size of the calcification (“calcium blooming”) and often an under-representation of the size of the lumen 26. In this sense, the “blooming” effect is intrinsic to any imaging modality in which the point-spread function is of a scale comparable to the size of the objects that are of interest, and the field of view may contain bright objects which, due to the point-spread function, obscures nearby lower-intensity objects of interest.


Turning now, to FIG. 3, an image processing technique (e.g., a process 50) which may be performed, for example, by computer 18. The image processing described in FIG. 3 may be performed at post-processing, for example, after filtered back projection processing or with no image pre-processing.


Process 50 assumes an underlying desired ideal image f exists and that f is composed of multiple components as determined by the user or operator. Process 50 determines the number of components (52). The number of such components depends on factors including the complexity of the anatomy or object to be imaged, the degree to which a priori models exist for each component, and the resulting computational complexity. In the case of imaging an artery having a calcified portion, for example, one simple scenario is to model the ideal image f as the sum of two components: a calcium components fc, and a non-calcified structured components fs, so that

f=fc+fs.


Process 50 determines functions for each of the components identified in processing block 56. For example,fs, is assumed to have a behavior having a lower amplitude and greater spatial extent than fc.


Corresponding to the ideal image f is a set of observed data g. The observed data g may be an image formed using standard techniques (e.g., back filter projection), which exhibit calcium blooming or the data could be raw data, which corresponds to a set of tomographic projections obtained prior to image formation.


H denotes an image blurring operator that maps the ideal image f to a set of observed data g. Thus, in an example using an image formed using standard techniques, H represents convolutional blurring with the point spread function corresponding to the imaging process. In some embodiments, a filtered back projection generated image may be approximated as being shift invariant and convolutional. In another example, using raw data, H represents the tomographic projection process. The operator H may be linear, though this is not essential. An enhanced estimate of the ideal image by minimization of an energy function may be represented as:
f^=argminfEd(g,f)+αsEs(fs)+αcEc(fc)

where E denotes the “component energy”, d denotes the data term, and αs, and αc are positive weights balancing the contributions of the different terms. The three terms capture the imaging process and the behavior of the underlying image. The term Ed(f, g), represents the data generation process H and ensures fidelity to the observations. A common choice in the image processing literature is to set this term to the negative log likelihood of data. If the observations are assumed conditionally Gaussian, then:

Es(f, g)=||g−Hf||22

In other examples, a Poisson observation model may be used.


The term Ed(f,g) represents the behavior of the non-calcified tissue image. Since it is assumed that the non-calcium image is somewhat smooth, then:

Es(fs)=||Dfs||22

where D is a discrete approximation to a derivative operator. Since the non-calcium component is assumed to have a lower amplitude, then fs≦Ts, for a positive threshold Ts. In one embodiment, Ts is about 0.05 times the density of water.


Finally, the term Ec(fc) represents the behavior of calcified regions in cardiac CT. With the assumption that calcium should be spatially localized, then the calcium distribution may be represented as:

Ec(fc)=||Dfc||pp

where D is a discrete approximation to a derivative operator and 0<p≦2. Penalty, p, has localization and super-resolution ability when p≈1. In addition, under the assumption that the calcium component will generally be denser than non-calcific tissue, then Tc≦fc for a positive threshold Tc. In one embodiment, Tc is about 1.2 times the density of water.


In summary, a formulation for enhanced cardiac CT imaging is:
f^=f^s+f^c=argminfsTs,fcTcg-H(fs+fc)22+αsDfs22+αcDfc11


The formulation explicitly represents a single unified approach to calcium deblurring. The formulation may be readily extended to capture other effects, including Poisson observation models, additional field constraints, components for additional biological structures, etc.


Referring to FIGS. 3 and 4, process 50 minimizes the functions for the components using, for example, a process 60. In particular, the energy function are minimized with respect to the values of the components fs and fc across an image to obtain a reconstructed image with enhanced behavior (i.e., better image) than a standard filtered back projection image. Minimization for the optimal enhanced image may be conducted through a series of iterative steps, for example, using a block coordinate descent approach and defining an outer iteration, which alternatively minimizes with respect to the tissue components fs and fc while the other component is held fixed.


Referring now to FIG. 4, process 60 begins with an initialization as shown in processing block 64. For example, initializing fs(k) where k=0. Process 60 minimizes the first component (68). For example, minimizing the calcium component:
f^c(k+1)=argminfcTcg-H(fs(k)+fc)22+αcDfc11


Process 60 minimizes the second component (72). For example, minimizing the non-calcified component:
f^s(k+1)=argminfsTsg-H(fc(k+1)+fs)22+αsDfs22

Each subminimization is solved using an algebraic reconstruction technique (ART)-like iteration. Such ART-like techniques are well-known to persons of ordinary skill in the art. Process 60 determines if there are additional components (78). If so, process 60 minimized the additional components (82). Process 60 determines if there is convergence (86).


In some embodiments, process 60 may be initialized with, for example, a filtered back projection based reconstruction to provide an initial estimate of {circumflex over (f)}s(0).



FIG. 5 shows a computer 18 using process 50 including process 60. Computer 100 includes an image processor 102, a volatile memory 104, and a non-volatile memory 106 (e.g., hard disk). Non-volatile memory 106 stores operating system 110; image data 112; and computer instructions 114, which are executed by the image processor 102 out of volatile memory 104 to perform all or part of process 50 and process 60.


Processes 50 and 60 are not limited to use with the hardware and software of FIG. 5; it may find applicability in any computing or processing environment and with any type of machine that is capable of running a computer program. Processes 50 and 60 may be implemented in hardware, software, or a combination of the two. Processes 50 and 60 may be implemented in computer programs executed on programmable computers/machines that each includes a processor, a storage medium or other article of manufacture that is readable by the processor (including volatile and non-volatile memory and/or storage elements), at least one input device, and one or more output devices. Program code may be applied to data entered using an input device to perform processes 50 and 60 and to generate output information.


The system can be implemented, at least in part, via a computer program product (i.e., a computer program tangibly embodied in an information carrier (e.g., in a machine-readable storage device or in a propagated signal) for execution by, or to control the operation of, data processing apparatus (e.g., a programmable processor, a computer, or multiple computers)). Each such program may be implemented in a high level procedural or object-oriented programming language to communicate with a computer system. However, the programs can be implemented in assembly or machine language. The language may be a compiled or an interpreted language and it can be deployed in any form, including as a stand-alone program or as a module, component, subroutine, or other unit suitable for use in a computing environment. A computer program can be deployed to be executed on one computer or on multiple computers at one site or distributed across multiple sites and interconnected by a communication network. A computer program may be stored on a storage medium or device (e.g., CD-ROM, hard disk, or magnetic diskette) that is readable by a general or special purpose programmable computer for configuring and operating the computer when the storage medium or device is read by the computer to perform process 80. Process 80 may also be implemented as a machine-readable storage medium, configured with a computer program, where upon execution, instructions in the computer program cause the computer to operate in accordance with process 50.


The processes described herein are not limited to the specific embodiments described herein. For example, the processes are not limited to the specific processing order of FIGS. 3 and 4. Rather, any of the blocks of FIGS. 3 and 4 may be re-ordered, combined, repeated or removed, as necessary, to achieve the results set forth above.


The system described herein is not limited to use with the hardware and software described above. The system can be implemented in digital electronic circuitry, or in computer hardware, firmware, software, or in combinations thereof.


Method steps associated with implementing the system can be performed by one or more programmable processors executing one or more computer programs to perform the functions of the system. All or part of the system can be implemented as, special purpose logic circuitry (e.g., an FPGA (field programmable gate array) and/or an ASIC (application-specific integrated circuit)).


Processors suitable for the execution of a computer program include, by way of example, both general and special purpose microprocessors, and any one or more processors of any kind of digital computer. Generally, a processor will receive instructions and data from a read-only memory or a random access memory or both. Elements of a computer include a processor for executing instructions and one or more memory devices for storing instructions and data.


Elements of different embodiments described herein may be combined to form other embodiments not specifically set forth above. Other embodiments not specifically described herein are also within the scope of the following claims.

Claims
  • 1. A method of medical image processing, comprising: receiving data representing a medical image; and generating the medical image based on a model, the model characterizing the medical image as a composition of at least two components having processing constraints.
  • 2. The method of claim 1 wherein receiving the data comprises receiving data from a computed tomography (CT) system without preprocessing of the data.
  • 3. The method of claim 1 wherein receiving the data comprises receiving data from a magnetic resonance imaging system (MRI) without preprocessing of the data.
  • 4. The method of claim 1 wherein receiving the data comprises receiving data from a positron emission tomography (PET) system without preprocessing of the data.
  • 5. The method of claim 1, further comprising processing the data using filtered back projection techniques to form an intermediate image and wherein receiving the data comprises receiving the data representing the intermediate image.
  • 6. The method of claim of claim 1, wherein receiving the data comprises receiving unprocessed image data.
  • 7. The method of claim 1 wherein the model includes characterizing an ideal image as a composition of a first component and a second component, the first component is characterized by a first function and the second component is characterized by a second function.
  • 8. The method of claim 7, wherein generating the medical image based on the model comprises: minimizing the first function and the second function; and generating the medical image based on the minimizing.
  • 9. The method of claim 7 wherein the first function includes a first amplitude and the second function includes a second amplitude and the first amplitude is higher than the second amplitude.
  • 10. The method of claim 7 wherein the first function represents a first spatial extent and the second function represents a second spatial extent and the first spatial extent is smaller than the second spatial extent.
  • 11. A method of reducing the blooming effects of bright objects in medical images, comprising: characterizing an ideal image as a composition of a first component and a second component, the first component being characterized by a first function and the second component being characterized by a second function; minimizing the first function and the second function; and generating an image based on the minimizing.
  • 12. The method of claim 11 wherein the first function includes a first amplitude and the second function includes a second amplitude and the first amplitude is higher than the second amplitude.
  • 13. The method of claim 11 wherein the first function represents a first spatial extent and the second function represents a second spatial extent and the first spatial extent is smaller than the second spatial extent.
  • 14. A method of reducing calcium blurring effects in medical image processing in a computer tomography (CT) system; comprising: characterizing an ideal CT image as a composition of a calcium component and a non-calcified component, the calcium component being characterized by a first function and the non-calcified component being characterized by a second function; minimizing the first function and the second function; and generating an image based on the minimizing.
  • 15. The method of claim 14 wherein the first function includes a first amplitude and the second function includes a second amplitude and the first amplitude is higher than the second amplitude.
  • 16. The method of claim 14 wherein the first function represents a first spatial extent and the second function represents a second spatial extent and the first spatial extent is smaller than the second spatial extent.
  • 17. The method of claim 14 wherein a threshold of the calcium component is about 1.2 times the density of water, the calcium component being greater than or equal to the threshold of the calcium component.
  • 18. The method of claim 14 wherein a threshold of the non-calcified component is about 0.5 times the density of water, the non-calcified component being less than or equal to the threshold of the non-calcified component.
  • 19. An apparatus comprising: a memory that stores executable instructions for medical image processing; and a processor that executes the instructions to: receive data representing a medical image; and generate the medical image based on a model, the model characterizing the medical image as a composition of at least two components having processing constraints.
  • 20. The apparatus of claim 19, further comprising instructions to process the data using filtered back projection techniques to form an intermediate image and wherein receiving the data comprises receiving the data representing the intermediate image.
  • 21. The apparatus of claim of claim 19, wherein the instructions to receive the data comprises instruction to receive unprocessed image data.
  • 22. The apparatus of claim 19 wherein the model includes characterizing an ideal image as a composition of a first component and a second component, the first component is characterized by a first function and the second component is characterized by a second function.
  • 23. The apparatus of claim 22 wherein the instructions to generate the medical image based on the model comprises instructions to: minimize the first function and the second function; and generating the medical image based on the instructions to minimize.
  • 24. The apparatus of claim 19 wherein the instructions to receive data comprises instructions to receive data without preprocessing the data from an image system from a group consisting of a computed tomography (CT) system, a magnetic resonance imaging system (MRI) and a positron emission tomography (PET) system.
  • 25. An article comprising a machine-readable medium that stores executable instructions for medical image processing, the instructions causing a machine to: receive data representing a medical image; and generate the medical image based on a model, the model characterizing the medical image as a composition of at least two components having processing constraints.
  • 26. The article of claim 25, further comprising instructions causing a machine to process the data using filtered back projection techniques to form an intermediate image and wherein receiving the data comprises receiving the data representing the intermediate image.
  • 27. The article of claim of claim 25 wherein the instructions causing a machine to receive the data comprises instructions causing a machine to receive unprocessed image data.
  • 28. The article of claim 25 wherein the model includes characterizing an ideal image as a composition of a first component and a second component, the first component is characterized by a first function and the second component is characterized by a second function.
  • 29. The article of claim 28 wherein the instructions causing a machine to generate the medical image based on the model comprises instructions causing a machine to: minimize the first function and the second function; and generate the medical image based on the instructions to minimize.
  • 30. The article of claim 25 wherein the instructions causing a machine to receive data comprises instructions causing a machine to receive data without preprocessing the data from an image system from a group consisting of a computed tomography (CT) system, a magnetic resonance imaging system (MRI) and a positron emission tomography (PET) system.