The present disclosure pertains generally, but not by way of limitation, to medical devices, and methods for using medical devices. More particularly, the present disclosure pertains to devices for introducing and positioning implants within patients, and methods for using such devices.
With its complexity, range of motion and extensive use, a common soft tissue injury is damage to the rotator cuff or rotator cuff tendons. Damage to the rotator cuff is a potentially serious medical condition that may occur during hyperextension, from an acute traumatic tear or from overuse of the joint. Adequate procedures do not exist for repairing a partial thickness tear of less than 50% in the supraspinatus tendon. Current procedures attempt to alleviate impingement or make room for movement of the tendon to prevent further damage and relieve discomfort but do not repair or strengthen the tendon. Use of the still damaged tendon can lead to further damage or injury. There is an ongoing need to deliver and adequately position medical implants during an arthroscopic procedure in order to treat injuries to the rotator cuff, rotator cuff tendons, or other soft tissue or tendon injuries throughout a body.
The disclosure describes various medical devices and methods for using medical devices to assist in delivering, positioning, and securing implants within a body. In a first example, a fastener delivery tool configured to deliver a fastener into tissue of a patient may comprise a shaft, a handle assembly connected to a proximal end of the shaft, one or more prongs connected to a distal end of the shaft, and a fastener push rod received at least partially within the shaft, wherein the fastener push rod is connected to the handle assembly, wherein the fastener push rod is moveable relative to the shaft, and wherein the fastener push rod includes one or more detents configured to be received within a passageway of a fastener and secure the fastener to the fastener push rod with friction.
Alternatively or additionally, in another example, the fastener push rod may further comprise a plurality of arms connected to a distal end of the fastener push rod, and wherein the one or more detents are disposed on the plurality of arms.
Alternatively or additionally, in another example, the one or more prongs are formed from the shaft.
Alternatively or additionally, in another example, the one or more prongs comprise a concave surface.
Alternatively or additionally, in another example, the one or more prongs taper toward a tip of each prong.
Alternatively or additionally, in another example, the one or more prongs have a length that is between 50% and 120% the length of the fastener the fastener delivery system is configured to deliver into tissue of the patient.
Alternatively or additionally, in another example, a force applied to the handle assembly causes the fastener push rod to move relative to the shaft.
Alternatively or additionally, in another example, the handle assembly may comprise a housing, a trigger, and a bias member, wherein the bias member is connected to the housing and the trigger, wherein the bias member biases the trigger to a rest position, and wherein the force applied to the handle assembly comprises a force applied to the handle assembly to overcome a biasing force of the bias member.
In another example, a fastener delivery system may comprise a fastener delivery tool comprising a pilot member having a distal end and at least a pair of prongs extending from the distal end of the pilot member so that the prongs form pilot holes when the distal end of the pilot member is pressed against target tissue, and a fastener push rod disposed within at least a portion of the pilot member and moveable relative thereto. The fastener delivery system may further comprise a fastener carried by the fastener push rod, the fastener comprising a first arm having a proximal end and a distal end, and a second arm having a proximal end and distal end with a bridge extending from the proximal end of the first arm to the proximal end of the second arm, a first fluke of the fastener having a proximal end abutting the distal end of the first arm, and a second fluke of the fastener having a proximal end abutting the distal end of the second arm, and wherein each of the at least a pair of prongs comprise a curved inner surface.
Alternatively or additionally, in another example, each of the first fluke and the second fluke define a passageway extending at least partially through each fluke, with each passageway defining at least one surface.
Alternatively or additionally, in another example, the fastener push rod comprises at least a pair of arms, and wherein each of the at least a pair of arms is configured to be received within a passageway of the first fluke or the second fluke.
Alternatively or additionally, in another example, each arm further comprises a detent, and wherein when each arm is received within a passageway, each detent presses against the at least one surface of the passageway and retains the fastener on the fastener push rod by friction.
Alternatively or additionally, in another example, each of the first fluke and the second fluke have defined heights, and wherein each of the at least a pair of prongs tapers toward a distal end of the prong such that a width of at least a portion of each prong is less than the defined height of the first fluke or the second fluke.
Alternatively or additionally, in another example, a first width of at least a portion of each prong is between 85% and 95% of the defined height of the first fluke or the second fluke.
Alternatively or additionally, in another example, a second width of at least a portion of each prong is between 60% and 75% of the defined height of the first fluke or the second fluke.
Alternatively or additionally, in another example, each of the at least a pair of prongs have a length that is between 50% and 120% the length of the fastener.
Alternatively or additionally, in another example, the one or more prongs are formed from the pilot member.
In still another example, a method for deploying a fastener into target tissue may comprise positioning a fixation tool shaft proximate the target tissue, the fixation tool shaft having one or more prongs disposed proximate a distal end of the fixation tool shaft, wherein a fastener push rod is disposed at least partially within the fixation tool shaft, the fastener push rod comprising one or more arms, each arm having a detent disposed thereon, the fastener push rod further carrying a fastener, wherein the fastener is retained on the one or more arms by friction between the detents and the fastener, and wherein the fixation tool shaft is coupled to a handle assembly, the handle assembly comprising a trigger; applying force to the fixation tool shaft in the direction of the target tissue, causing the prongs to pierce the target tissue creating a pilot holes; applying force to the trigger thereby causing the fastener push rod to move distally relative to the fixation tool shaft and causing the one or more arms and the fastener to move into the pilot holes; and removing the one or more arms and the prongs from the pilot holes.
Alternatively or additionally, in another example, the one or more prongs comprise a concave surface.
Alternatively or additionally, in another example, the one or more prongs taper toward a tip of each prong.
The above summary of some examples is not intended to describe each disclosed example device, component, or method or every implementation of the present disclosure. The Brief Description of the Drawings, and Detailed Description, which follow, more particularly exemplify these examples, but are also intended as exemplary and not limiting.
The following description should be read with reference to the drawings, which are not necessarily to scale, wherein like reference numerals indicate like elements throughout the several views. The detailed description and drawings are intended to illustrate but not limit the claimed invention. Those skilled in the art will recognize that the various elements described and/or shown may be arranged in various combinations and configurations without departing from the scope of the disclosure. The detailed description and drawings illustrate examples of the claimed invention.
Definitions of certain terms are provided below and shall be applied, unless a different definition is given in the claims or elsewhere in this specification.
All numeric values are herein assumed to be modified by the term “about,” whether or not explicitly indicated. The term “about” generally refers to a range of numbers that one of skill in the art would consider equivalent to the recited value (i.e., having the same or substantially the same function or result). In many instances, the terms “about” may include numbers that are rounded to the nearest significant Figure. Other uses of the term “about” (i.e., in a context other than numeric values) may be assumed to have their ordinary and customary definition(s), as understood from and consistent with the context of the specification, unless otherwise specified.
The recitation of numerical ranges by endpoints includes all numbers within that range (e.g., 1 to 5 includes 1, 1.5, 2, 2.75, 3, 3.80, 4, and 5).
As used in this specification and the appended claims, the singular forms “a,” “an,” and “the” include or otherwise refer to singular as well as plural referents, unless the content clearly dictates otherwise. As used in this specification and the appended claims, the term “or” is generally employed to include “and/or,” unless the content clearly dictates otherwise.
It is noted that references in the specification to “an embodiment”, “some embodiments”, “other embodiments”, “an example”, “some examples”, “other examples”, etc., indicate that the embodiment(s) and/or example(s) described may include a particular feature, structure, or characteristic, but every embodiment may not necessarily include the particular feature, structure, or characteristic. Moreover, such phrases are not necessarily referring to the same embodiment and/or example. Further, when a particular feature, structure, or characteristic is described in connection with an embodiment and/or example, it would be within the knowledge of one skilled in the art to affect such feature, structure, or characteristic in connection with other embodiments and/or examples, whether or not explicitly described, unless clearly stated to the contrary. That is, the various individual features described below, even if not explicitly shown in a particular combination, are nevertheless contemplated as being combinable or able to be arranged with each other to form other additional embodiments and/or examples or to complement and/or enrich the described embodiment(s) and/or example(s), as would be understood by one of ordinary skill in the art.
The rotator cuff muscles 10 are critical elements for maintaining shoulder muscle balance in order to effectuate movement of the shoulder joint. With its complexity, range of motion and extensive use, a fairly common soft tissue injury is damage to the rotator cuff or rotator cuff tendons. Damage to the rotator cuff is a potentially serious medical condition that may occur during hyper-extension, from an acute traumatic tear or from overuse of the joint. A tear in the supraspinitus tendon 19 is schematically depicted in
Current accepted treatment for a full thickness tear or a partial thickness tear greater than 50% includes reconnecting the torn tendon via sutures. The procedure generally includes completing the tear to a full thickness tear by cutting the tendon prior to reconnection. In contrast to the treatment of a full thickness tear or a partial thickness tear of greater than 50%, the treatment for a partial thickness tear less than 50% usually involves physical cessation from use of the tendon, i.e., rest. Specific exercises can also be prescribed to strengthen and loosen the shoulder area. However, in many instances, whether after treatment for a partial thickness tear greater than 50% or less than 50%, the shoulder does not heal fully and the patient can be left with a source of chronic pain and stiffness, along with preventing the patient from recovering full range of motion.
As described above, current treatments do not currently exist for repairing partial thickness tears of the supraspinatus tendon. The present disclosure details techniques and devices for treating partial thickness tears which help prevent future tendon damage by strengthening or repairing the native tendon having the partial thickness tear.
With reference to
The exemplary methods and apparatus described herein may be used to fix tendon repair implants to various target tissues. For example, a tendon repair implant may be fixed to one or more tendons associated with an articulating joint, such as the glenohumeral joint. The tendons to be treated may be torn, partially torn, have internal micro-tears, be un-torn, and/or be thinned due to age, injury or overuse. The disclosed methods and apparatus and related devices may provide beneficial therapeutic effect on a patient experiencing joint pain believed to be caused by partial thickness tears and/or internal micro-tears. By applying a tendon repair implant early before a full tear or other injury develops, the implant may cause the tendon to thicken and/or at least partially repair itself, thereby avoiding more extensive joint damage, pain, and the need for more extensive joint repair surgery.
In the embodiment of
With reference to
In the embodiment of
Shoulder 22 of
Camera 56 may be used to visually inspect the tendons of shoulder 22 for damage. A tendon repair implant in accordance with this disclosure may be fixed to a bursal surface of the tendon regardless of whether there are visible signs of tendon damage.
A delivery system 60 can be seen extending from shoulder 22 in
A tendon repair implant is at least partially disposed in the lumen defined by the sheath of delivery system 60. Delivery system 60 can be used to place the tendon repair implant inside shoulder 22. Delivery system 60 can also be used to hold the tendon repair implant against the tendon. In some embodiments, the tendon repair implant is folded into a compact configuration when inside the lumen of the sheath of delivery system 60. When this is the case, delivery system 60 may be used to unfold the tendon repair implant into an expanded shape.
The tendon repair implant may be fixed to the tendon while it is held against the tendon by delivery system 60. Various attachment elements may be used to fix the tendon repair implant to the tendon. Examples of attachment elements that may be suitable in some applications include sutures, tissue anchors, bone anchors, and staples. In the example of
Various attachment elements may be used to fix tendon repair implant 50 to distal tendon 28 without deviating from the spirit and scope of this detailed description. Examples of attachment elements that may be suitable in some applications include sutures, tissue anchors, bone anchors, and staples. In the example of
Distal tendon 28 meets humerus 14 at an insertion point 30. With reference to
Staple 100 comprises a first arm 102A, a second arm 102B, and a bridge 104 extending from the proximal end of first arm 102A to the proximal end of second arm 102B. The distal end of first arm 102A abuts the proximal end of a first fluke 106A. Similarly, the distal end of second arm 102B abuts the proximal end of a second fluke 106B. In
With reference to
With reference to
Additionally, each of first passageway 124A and second passageway 124B also have a defined cross-sectional width and/or diameter. For example, as illustrated in
With reference to
Arms 134 include a first arm 134A and a second arm 134B. First arm 134A and second arm 134B form a fork 136. In the example of
Once disposed in passageways 124A, 124B, detents 137A, 137B may press against the surfaces of passageways 137A, 137B and hold onto staple 100 due to the friction between detents 137A, 137B and passageways 124A, 124B. An example range of diameters of detents 137A, 137B includes diameters between 0.019 inches (0.483 millimeters) and 0.029 inches (0.737 millimeters). Although depicted in
Of course, in other examples, detents 137A, 137B may generally comprise other shapes. For instance, instead of having a generally circular shape, detents 137A, 137B may have an ovular, triangular, pyramidal, trapezoidal, or other shape. The specific shape of detents 137A, 137B, and more specifically, the shape of the portion of detents 137A, 137B that contact passageways 124A, 124B may be chosen so that a specific area of detents 137A, 137B contacts passageways 124A, 124B, where a relatively greater area imparts relatively greater friction force between detents 137A, 137B and passageways 124A, 124B, and a relatively lesser area imparts relatively lesser friction force between detents 137A, 137B and passageways 124A, 124B.
In the example of
In the example of
In
Staple push rod 130 includes a shaft 132, bridge 145, and a pair of arms 134 extending distally beyond a distal end of shaft 132. The distal direction is indicated with an arrow D in
As described previously, in some examples, as in the example of
As seen in
As seen in
In some examples, prongs 154, 156 may taper distally toward tips 179. For instance, as depicted in
In other examples, prongs 154, 156 may not be formed integrally from fixation tool shaft 146. In such examples, prongs 154, 156 may be attached to the distal end of fixation tool shaft 146 after being formed. Additionally, in such examples, prongs 154, 156 may not have curved inner faces 155A, 155B. Rather, prongs 154, 156 may take other shapes, such as spikes, rods, or even thin sheets. In such examples, the tips and edges of such shapes may still be sharp enough such that the tips and/or edges may cut through tissue.
In some examples, prongs 154, 156 may have dimensions that are related to the dimensions of staple 100. For instance, in some examples length 177 may correspond to a total length of staple 100, as measured from the tips of flukes 106A, 106B and bridge 104. In other examples, length 177 may correspond to between 50% and 120% of the length of staple 100, and in some examples length 177 may correspond to 90% the length of staple 100. In still other examples, length 177 may be chosen such that, when staple 100 is deployed into patient tissue, prongs 154, 156 extend into the tissue at least as much as, or a little more than, barbs 122A, 122B extend into the tissue. In such examples, having length 177 be selected such that prongs 154, 156 extend into patient tissue at least as far as barbs 122A, 122B may allow for easier deployment of staple 100 into tissue by pre-cutting the tissue to allow for insertion of the staple into the tissue.
Widths 171, 173, and 175 may also have values that are related to dimensions of staple 100. For instance, flukes 106A, 106B of staple 100 may be modeled generally as cylinders, such as how fluke 106B is depicted in
Arc-length=π·r (1)
In the foregoing example, variable r would be half of width 183. In these examples, near proximal base 187 of prong 156, the arc-length of prong 156 would equal half of the circumference of fluke 106B.
Continuing the above example, as widths 171, 173, and 175 get progressively smaller towards tip 179, the arc-length defined by curved inner face 155B at those widths will be smaller than half the circumference of fluke 106B. As some examples, width 171 may be a value such that the arc-length defined by curved inner face 155B at width 171 is between 90% and 98% of half the circumference of fluke 106B. Width 173 may be a value such that the arc-length defined by curved inner face 155B at width 173 is between 70% and 85% of half the circumference of fluke 106B. Additionally, width 175 may be a value such that the arc-length defined by curved inner face 155B at width 175 is between 60% and 70% of half the circumference of fluke 106B.
In other examples, widths 183, 171, 173, and 175 may have proportions relative to height 107 of fluke 106B. For instance, width 183 of prong 156 may be between 90% and 110% of height 107 of fluke 106. Width 171 may be between 85% and 95% of height 107. Width 173 may be between 70% and 85% of height 107, and width 175 may be between 60% and 75% of height 107.
Although the above example assumed that curved inner surface 155B of prong 156 defined a half circle and that fluke 106B had a circular cross-section, in other examples prong 156 and fluke 106B may differ. For instance, in some examples, curved inner surface 155B of prong 156 may be ovular in shape and fluke 106B may have ovular cross-section. In still other examples, curved inner surface 155B of prong 156 may be ovular in shape while fluke 106B generally has a circular cross-section. In these and other examples, the relative dimensions of arc-lengths of prong 156 at widths 171, 173, and 175 of prong 156 to half of the circumference of fluke 106B may differ.
Having widths 171, 173, and 175 with values such that curved inner face 155B has arc-lengths at those widths smaller than half the circumference of fluke 106B may help to retain staple 100 once deployed in tissue. For instance, when fluke 106B is deployed into the tissue cut by prong 156, the cut tissue will need to stretch around fluke 106B, as the cut material would not be wide enough to accommodate the width of fluke 106B. When prong 156 is subsequently removed, the stretched tissue may attempt collapse back together which may bring tissue in behind barb 122B of fluke 106B. By stretching the tissue and having the tissue collapse back around fluke 106B, the tissue may be more likely to catch on barb 122B, thereby securing staple 100 in the tissue. Although the above examples were described respect to prong 156, prong 154 may be formed in a similar fashion and/or have similar dimensions.
In the examples of
The staples may be applied adjacent to the perimeter, and/or be applied to a central region of the sheet-like implant. In some examples, the staples may be used to attach the implant to soft tissue and/or to bone. In
In some examples, each arm is positioned relative to a prong along an inner surface of fixation tool shaft 146 so that the arms advance into the pilot holes when the arms are moved in a distal direction. Staple push rod 130 is moveably disposed within lumen 152 defined by fixation tool shaft 146. Fixation tool 144 includes a mechanism that is capable of creating relative axial motion between staple push rod 130 and fixation tool shaft 146 so that staple push rod 130 moves along fixation tool shaft 146.
At
At
By comparing
With reference to
In some examples, a staple or fastener, such as staple 100, may be preloaded for use on arms 134 inside fixation tool shaft 146. However, in some instances, a user may deploy multiple fasteners to fix tendon repair implant 50 to the tendon or bone. In such examples, a device such as staple loader 500, as illustrated in
Region 520 of
When fixation tool shaft 146 is inserted into loading channel 507 in
Although depicted in
Accordingly, it should be generally understood that even though numerous characteristics of various embodiments have been set forth in the foregoing description, together with details of the structure and function of various embodiments, this detailed description is illustrative only, and changes may be made in detail, especially in matters of structure and arrangements of parts illustrated by the various embodiments to the full extent indicated by the broad general meaning of the terms in which the appended claims are expressed.
This application is a continuation of U.S. application Ser. No. 14/931,567, filed on Nov. 3, 2015, which claims the benefit of U.S. Provisional Patent Application Ser. No. 62/075,026 filed on Nov. 4, 2014, the disclosures of which are incorporated herein by reference. This application is also related to U.S. Provisional Patent Application Ser. No. 62/074,982 filed on Nov. 4, 2014, the disclosure of which is incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
511238 | Hieatzman et al. | Dec 1893 | A |
765793 | Ruckel | Jul 1904 | A |
1728316 | Von Wachenfeldt | Sep 1929 | A |
1855546 | File | Apr 1932 | A |
1868100 | Goodstein | Jul 1932 | A |
1910688 | Goodstein | May 1933 | A |
1940351 | Howard | Dec 1933 | A |
2034785 | Wappler | Mar 1936 | A |
2075508 | Davidson | Mar 1937 | A |
2131321 | Hart | Sep 1938 | A |
2154688 | Matthews et al. | Apr 1939 | A |
2158242 | Maynard | May 1939 | A |
2199025 | Conn | Apr 1940 | A |
2201610 | Dawson, Jr. | May 1940 | A |
2254620 | Miller | Sep 1941 | A |
2277931 | Moe | Mar 1942 | A |
2283814 | La Place | May 1942 | A |
2316297 | Southerland et al. | Apr 1943 | A |
2390508 | Carleton | Dec 1945 | A |
2397240 | Butler | Mar 1946 | A |
2421193 | Gardner | May 1947 | A |
2571813 | Austin | Oct 1951 | A |
2630316 | Foster | Mar 1953 | A |
2684070 | Kelsey | Jul 1954 | A |
2744251 | Vollmer | May 1956 | A |
2790341 | Keep et al. | Apr 1957 | A |
2817339 | Sullivan | Dec 1957 | A |
2825162 | Flood | Mar 1958 | A |
2881762 | Lowrie | Apr 1959 | A |
2910067 | White | Oct 1959 | A |
3068870 | Levin | Dec 1962 | A |
3077812 | Dietrich | Feb 1963 | A |
3103666 | Bone | Sep 1963 | A |
3120377 | Lipschultz et al. | Feb 1964 | A |
3123077 | Alcamo | Mar 1964 | A |
3209754 | Brown | Oct 1965 | A |
3221746 | Noble | Dec 1965 | A |
3470834 | Bone | Oct 1969 | A |
3527223 | Shein | Sep 1970 | A |
3570497 | Lemole | Mar 1971 | A |
3577837 | Bader, Jr. | May 1971 | A |
3579831 | Stevens et al. | May 1971 | A |
3643851 | Green et al. | Feb 1972 | A |
3687138 | Jarvik | Aug 1972 | A |
3716058 | Tanner, Jr. | Feb 1973 | A |
3717294 | Green | Feb 1973 | A |
3740994 | DeCarlo, Jr. | Jun 1973 | A |
3757629 | Schneider | Sep 1973 | A |
3777538 | Weatherly et al. | Dec 1973 | A |
3837555 | Green | Sep 1974 | A |
3845772 | Smith | Nov 1974 | A |
3875648 | Bone | Apr 1975 | A |
3960147 | Murray | Jun 1976 | A |
3976079 | Samuels et al. | Aug 1976 | A |
4014492 | Rothfuss | Mar 1977 | A |
4127227 | Green | Nov 1978 | A |
4259959 | Walker | Apr 1981 | A |
4263903 | Griggs | Apr 1981 | A |
4265226 | Cassimally | May 1981 | A |
4317451 | Cerwin et al. | Mar 1982 | A |
4400833 | Kurland | Aug 1983 | A |
4422567 | Haynes | Dec 1983 | A |
4454875 | Pratt et al. | Jun 1984 | A |
4480641 | Failla et al. | Nov 1984 | A |
4485816 | Krumme | Dec 1984 | A |
4526174 | Froehlich | Jul 1985 | A |
4549545 | Levy | Oct 1985 | A |
4570623 | Ellison et al. | Feb 1986 | A |
4586197 | Hubbard | May 1986 | A |
4595007 | Mericle | Jun 1986 | A |
4610251 | Kumar | Sep 1986 | A |
4624254 | McGarry et al. | Nov 1986 | A |
4627437 | Bedi et al. | Dec 1986 | A |
4632100 | Somers et al. | Dec 1986 | A |
4635634 | Santos | Jan 1987 | A |
4635637 | Schreiber | Jan 1987 | A |
4669473 | Richards et al. | Jun 1987 | A |
4696300 | Anderson | Sep 1987 | A |
4719917 | Barrows et al. | Jan 1988 | A |
4738255 | Goble et al. | Apr 1988 | A |
4741330 | Hayhurst | May 1988 | A |
4762260 | Richards et al. | Aug 1988 | A |
4799495 | Hawkins et al. | Jan 1989 | A |
4809695 | Gwathmey et al. | Mar 1989 | A |
4851005 | Hunt et al. | Jul 1989 | A |
4858608 | McQuilkin | Aug 1989 | A |
4884572 | Bays et al. | Dec 1989 | A |
4887601 | Richards | Dec 1989 | A |
4924866 | Yoon | May 1990 | A |
4930674 | Barak | Jun 1990 | A |
4968315 | Gattuma | Nov 1990 | A |
4976715 | Bays et al. | Dec 1990 | A |
4994073 | Green | Feb 1991 | A |
4997436 | Oberlander | Mar 1991 | A |
5002563 | Pyka et al. | Mar 1991 | A |
5013316 | Goble et al. | May 1991 | A |
5015249 | Nakao et al. | May 1991 | A |
5037422 | Hayhurst et al. | Aug 1991 | A |
5041129 | Hayhurst et al. | Aug 1991 | A |
5046513 | Gattuma et al. | Sep 1991 | A |
5053047 | Yoon | Oct 1991 | A |
5059206 | Winters | Oct 1991 | A |
5062563 | Green et al. | Nov 1991 | A |
5100417 | Cerier et al. | Mar 1992 | A |
5102421 | Anspach, Jr. | Apr 1992 | A |
5116357 | Eberbach | May 1992 | A |
5122155 | Eberbach | Jun 1992 | A |
5123913 | Wilk et al. | Jun 1992 | A |
RE34021 | Mueller et al. | Aug 1992 | E |
5141515 | Eberbach | Aug 1992 | A |
5141520 | Goble et al. | Aug 1992 | A |
5156609 | Nakao et al. | Oct 1992 | A |
5156616 | Meadows et al. | Oct 1992 | A |
5167665 | McKinney | Dec 1992 | A |
5171259 | Inoue | Dec 1992 | A |
5174295 | Christian et al. | Dec 1992 | A |
5174487 | Rothfuss et al. | Dec 1992 | A |
5176682 | Chow | Jan 1993 | A |
5176692 | Wilk et al. | Jan 1993 | A |
5203787 | Noblitt et al. | Apr 1993 | A |
5217472 | Green et al. | Jun 1993 | A |
5224946 | Hayhurst et al. | Jul 1993 | A |
5242457 | Akopov et al. | Sep 1993 | A |
5246441 | Ross et al. | Sep 1993 | A |
5251642 | Handlos | Oct 1993 | A |
5261914 | Warren | Nov 1993 | A |
5269753 | Wilk | Dec 1993 | A |
5269783 | Sander | Dec 1993 | A |
5282829 | Hermes | Feb 1994 | A |
5289963 | McGarry et al. | Mar 1994 | A |
5290217 | Campos | Mar 1994 | A |
5304187 | Green et al. | Apr 1994 | A |
5333624 | Tovey | Aug 1994 | A |
5342396 | Cook | Aug 1994 | A |
5350400 | Esposito et al. | Sep 1994 | A |
5352229 | Goble et al. | Oct 1994 | A |
5354292 | Braeuer et al. | Oct 1994 | A |
5364408 | Gordon | Nov 1994 | A |
5366460 | Eberbach | Nov 1994 | A |
5370650 | Tovey et al. | Dec 1994 | A |
5372604 | Trott | Dec 1994 | A |
5380334 | Torrie et al. | Jan 1995 | A |
5383477 | DeMatteis | Jan 1995 | A |
5397332 | Kammerer et al. | Mar 1995 | A |
5403326 | Harrison et al. | Apr 1995 | A |
5405360 | Tovey | Apr 1995 | A |
5411522 | Trott | May 1995 | A |
5411523 | Goble | May 1995 | A |
5417691 | Hayhurst | May 1995 | A |
5417712 | Whittaker et al. | May 1995 | A |
5425490 | Goble et al. | Jun 1995 | A |
5439468 | Schulze et al. | Aug 1995 | A |
5441502 | Bartlett | Aug 1995 | A |
5441508 | Gazielly et al. | Aug 1995 | A |
5447513 | Davison et al. | Sep 1995 | A |
5456720 | Schultz et al. | Oct 1995 | A |
5458579 | Chodorow et al. | Oct 1995 | A |
5464403 | Kieturakis et al. | Nov 1995 | A |
5478354 | Tovey et al. | Dec 1995 | A |
5486197 | Le et al. | Jan 1996 | A |
5497933 | DeFonzo et al. | Mar 1996 | A |
5500000 | Feagin et al. | Mar 1996 | A |
5501695 | Anspach, Jr. et al. | Mar 1996 | A |
5503623 | Tilton, Jr. | Apr 1996 | A |
5505735 | Li | Apr 1996 | A |
5507754 | Green et al. | Apr 1996 | A |
5520185 | Soni et al. | May 1996 | A |
5520700 | Beyar et al. | May 1996 | A |
5522817 | Sander et al. | Jun 1996 | A |
5538297 | McNaughton et al. | Jul 1996 | A |
5545180 | Le et al. | Aug 1996 | A |
5548893 | Koelfgen et al. | Aug 1996 | A |
5560532 | DeFonzo et al. | Oct 1996 | A |
5562689 | Green et al. | Oct 1996 | A |
5569306 | Thal | Oct 1996 | A |
5582616 | Bolduc et al. | Dec 1996 | A |
5584835 | Greenfield | Dec 1996 | A |
5593421 | Bauer | Jan 1997 | A |
5601573 | Fogelberg et al. | Feb 1997 | A |
5618314 | Harwin et al. | Apr 1997 | A |
5622257 | Deschenes et al. | Apr 1997 | A |
5628751 | Sander et al. | May 1997 | A |
5643319 | Green et al. | Jul 1997 | A |
5643321 | McDevitt | Jul 1997 | A |
5647874 | Hayhurst | Jul 1997 | A |
5649963 | McDevitt | Jul 1997 | A |
5662683 | Kay | Sep 1997 | A |
5667513 | Torrie et al. | Sep 1997 | A |
5674245 | Ilgen | Oct 1997 | A |
5681342 | Benchetrit | Oct 1997 | A |
5702215 | Li | Dec 1997 | A |
5713903 | Sander et al. | Feb 1998 | A |
5720753 | Sander et al. | Feb 1998 | A |
5725541 | Anspach, III et al. | Mar 1998 | A |
5741282 | Anspach, III et al. | Apr 1998 | A |
5766246 | Mulhauser et al. | Jun 1998 | A |
5782864 | Lizardi | Jul 1998 | A |
5797909 | Michelson | Aug 1998 | A |
5797931 | Bito et al. | Aug 1998 | A |
5797963 | McDevitt | Aug 1998 | A |
5807403 | Beyar et al. | Sep 1998 | A |
5830221 | Stein et al. | Nov 1998 | A |
5833700 | Fogelberg et al. | Nov 1998 | A |
5836961 | Kieturakis et al. | Nov 1998 | A |
5868762 | Cragg et al. | Feb 1999 | A |
5873891 | Sohn | Feb 1999 | A |
5885258 | Sachdeva et al. | Mar 1999 | A |
5885294 | Pedlick et al. | Mar 1999 | A |
5893856 | Jacob et al. | Apr 1999 | A |
5904696 | Rosenman | May 1999 | A |
5919184 | Tilton, Jr. | Jul 1999 | A |
5922026 | Chin | Jul 1999 | A |
5928244 | Tovey et al. | Jul 1999 | A |
5948000 | Larsen et al. | Sep 1999 | A |
5957939 | Heaven et al. | Sep 1999 | A |
5957953 | Dipoto et al. | Sep 1999 | A |
5968044 | Nicholson et al. | Oct 1999 | A |
5980557 | Iserin et al. | Nov 1999 | A |
5989265 | Bouquet De La Joliniere et al. | Nov 1999 | A |
5997552 | Person et al. | Dec 1999 | A |
6063088 | Winslow | May 2000 | A |
6156045 | Ulbrich et al. | Dec 2000 | A |
6179840 | Bowman | Jan 2001 | B1 |
6193731 | Oppelt et al. | Feb 2001 | B1 |
6193733 | Adams | Feb 2001 | B1 |
6245072 | Zdeblick et al. | Jun 2001 | B1 |
6302885 | Essiger | Oct 2001 | B1 |
6312442 | Kieturakis et al. | Nov 2001 | B1 |
6315789 | Cragg | Nov 2001 | B1 |
6318616 | Pasqualucci et al. | Nov 2001 | B1 |
6322563 | Cummings et al. | Nov 2001 | B1 |
6325805 | Ogilvie et al. | Dec 2001 | B1 |
6342057 | Brace et al. | Jan 2002 | B1 |
6387113 | Hawkins et al. | May 2002 | B1 |
6391333 | Li et al. | May 2002 | B1 |
6413274 | Pedros | Jul 2002 | B1 |
6425900 | Knodel et al. | Jul 2002 | B1 |
6436110 | Bowman et al. | Aug 2002 | B2 |
6447522 | Gambale et al. | Sep 2002 | B2 |
6447524 | Knodel et al. | Sep 2002 | B1 |
6478803 | Kapec et al. | Nov 2002 | B1 |
6482178 | Andrews et al. | Nov 2002 | B1 |
6482210 | Skiba et al. | Nov 2002 | B1 |
6506190 | Walshe | Jan 2003 | B1 |
6511499 | Schmieding et al. | Jan 2003 | B2 |
6517564 | Grafton et al. | Feb 2003 | B1 |
6524316 | Nicholson et al. | Feb 2003 | B1 |
6527795 | Lizardi | Mar 2003 | B1 |
6530933 | Yeung et al. | Mar 2003 | B1 |
6540769 | Miller, III | Apr 2003 | B1 |
6551333 | Kuhns et al. | Apr 2003 | B2 |
6554852 | Oberlander | Apr 2003 | B1 |
6569186 | Winters et al. | May 2003 | B1 |
6575976 | Grafton | Jun 2003 | B2 |
6599286 | Campin et al. | Jul 2003 | B2 |
6599289 | Bojarski et al. | Jul 2003 | B1 |
6620185 | Harvie et al. | Sep 2003 | B1 |
6626930 | Allen et al. | Sep 2003 | B1 |
6629988 | Weadock | Oct 2003 | B2 |
6638297 | Huitema | Oct 2003 | B1 |
6648893 | Dudasik | Nov 2003 | B2 |
6666872 | Barreiro et al. | Dec 2003 | B2 |
6673094 | McDevitt et al. | Jan 2004 | B1 |
6685728 | Sinnott et al. | Feb 2004 | B2 |
6692506 | Ory et al. | Feb 2004 | B1 |
6723099 | Goshert | Apr 2004 | B1 |
6726704 | Loshakove et al. | Apr 2004 | B1 |
6726705 | Peterson et al. | Apr 2004 | B2 |
6740100 | Demopulos et al. | May 2004 | B2 |
6746472 | Frazier et al. | Jun 2004 | B2 |
6764500 | Muijs Van De Moer et al. | Jul 2004 | B1 |
6770073 | McDevitt et al. | Aug 2004 | B2 |
6779701 | Bailly et al. | Aug 2004 | B2 |
6800081 | Parodi | Oct 2004 | B2 |
6835206 | Jackson | Dec 2004 | B2 |
6849078 | Durgin et al. | Feb 2005 | B2 |
6887259 | Lizardi | May 2005 | B2 |
6926723 | Mulhauser et al. | Aug 2005 | B1 |
6932834 | Lizardi et al. | Aug 2005 | B2 |
6939365 | Fogarty et al. | Sep 2005 | B1 |
6946003 | Wolowacz et al. | Sep 2005 | B1 |
6949117 | Gambale et al. | Sep 2005 | B2 |
6964685 | Murray et al. | Nov 2005 | B2 |
6966916 | Kumar | Nov 2005 | B2 |
6972027 | Fallin et al. | Dec 2005 | B2 |
6984241 | Lubbers et al. | Jan 2006 | B2 |
6991597 | Gellman et al. | Jan 2006 | B2 |
7008435 | Cummins | Mar 2006 | B2 |
7021316 | Leiboff | Apr 2006 | B2 |
7025772 | Gellman et al. | Apr 2006 | B2 |
7033379 | Peterson | Apr 2006 | B2 |
7037324 | Martinek | May 2006 | B2 |
7048171 | Thornton et al. | May 2006 | B2 |
7063711 | Loshakove et al. | Jun 2006 | B1 |
7083638 | Foerster | Aug 2006 | B2 |
7087064 | Hyde | Aug 2006 | B1 |
7112214 | Peterson et al. | Sep 2006 | B2 |
7118581 | Fridén | Oct 2006 | B2 |
7144413 | Wilford et al. | Dec 2006 | B2 |
7144414 | Harvie et al. | Dec 2006 | B2 |
7150750 | Damarati | Dec 2006 | B2 |
7153314 | Laufer et al. | Dec 2006 | B2 |
7160314 | Sgro et al. | Jan 2007 | B2 |
7160326 | Ball | Jan 2007 | B2 |
7163551 | Anthony et al. | Jan 2007 | B2 |
7163563 | Schwartz et al. | Jan 2007 | B2 |
7169157 | Kayan | Jan 2007 | B2 |
7189251 | Kay | Mar 2007 | B2 |
7201754 | Stewart et al. | Apr 2007 | B2 |
7214232 | Bowman et al. | May 2007 | B2 |
7226469 | Benavitz et al. | Jun 2007 | B2 |
7229452 | Kayan | Jun 2007 | B2 |
7247164 | Ritchart et al. | Jul 2007 | B1 |
7303577 | Dean | Dec 2007 | B1 |
7309337 | Colleran et al. | Dec 2007 | B2 |
7320692 | Bender et al. | Jan 2008 | B1 |
7320701 | Haut et al. | Jan 2008 | B2 |
7322935 | Palmer et al. | Jan 2008 | B2 |
7326231 | Phillips et al. | Feb 2008 | B2 |
7343920 | Toby et al. | Mar 2008 | B2 |
7368124 | Chun et al. | May 2008 | B2 |
7377934 | Lin et al. | May 2008 | B2 |
7381213 | Lizardi | Jun 2008 | B2 |
7390329 | Westra et al. | Jun 2008 | B2 |
7399304 | Gambale et al. | Jul 2008 | B2 |
7404824 | Webler et al. | Jul 2008 | B1 |
7416554 | Lam et al. | Aug 2008 | B2 |
7452368 | Liberatore et al. | Nov 2008 | B2 |
7460913 | Kuzma et al. | Dec 2008 | B2 |
7463933 | Wahlstrom et al. | Dec 2008 | B2 |
7465308 | Sikora et al. | Dec 2008 | B2 |
7481832 | Meridew et al. | Jan 2009 | B1 |
7485124 | Kuhns et al. | Feb 2009 | B2 |
7497854 | Gill et al. | Mar 2009 | B2 |
7500972 | Voegele et al. | Mar 2009 | B2 |
7500980 | Gill et al. | Mar 2009 | B2 |
7500983 | Kaiser et al. | Mar 2009 | B1 |
7503474 | Hillstead et al. | Mar 2009 | B2 |
7506791 | Omaits et al. | Mar 2009 | B2 |
7559941 | Zannis et al. | Jul 2009 | B2 |
7572276 | Lim et al. | Aug 2009 | B2 |
7585311 | Green et al. | Sep 2009 | B2 |
7766208 | Epperly et al. | Aug 2010 | B2 |
7771440 | Ortiz et al. | Aug 2010 | B2 |
7776057 | Laufer et al. | Aug 2010 | B2 |
7780685 | Hunt et al. | Aug 2010 | B2 |
7785255 | Malkani | Aug 2010 | B2 |
7807192 | Li et al. | Oct 2010 | B2 |
7819880 | Zannis et al. | Oct 2010 | B2 |
7819888 | Johanson et al. | Oct 2010 | B2 |
7918879 | Yeung et al. | Apr 2011 | B2 |
7931660 | Aranyi et al. | Apr 2011 | B2 |
8034076 | Criscuolo et al. | Oct 2011 | B2 |
8114101 | Criscuolo et al. | Feb 2012 | B2 |
8197837 | Jamiolkowski et al. | Jun 2012 | B2 |
8668718 | Euteneuer et al. | Mar 2014 | B2 |
8763878 | Euteneuer et al. | Jul 2014 | B2 |
8821536 | Euteneuer et al. | Sep 2014 | B2 |
8821537 | Euteneuer et al. | Sep 2014 | B2 |
8864780 | Euteneuer et al. | Oct 2014 | B2 |
8894669 | Nering et al. | Nov 2014 | B2 |
9033201 | Euteneuer | May 2015 | B2 |
9095337 | Euteneuer et al. | Aug 2015 | B2 |
9101460 | Euteneuer et al. | Aug 2015 | B2 |
9107661 | Euteneuer et al. | Aug 2015 | B2 |
9113977 | Euteneuer et al. | Aug 2015 | B2 |
9125650 | Euteneuer et al. | Sep 2015 | B2 |
9179961 | Euteneuer et al. | Nov 2015 | B2 |
9192013 | van de Ven et al. | Nov 2015 | B1 |
9198751 | Euteneuer et al. | Dec 2015 | B2 |
9204940 | Euteneuer et al. | Dec 2015 | B2 |
9247978 | Euteneuer et al. | Feb 2016 | B2 |
9271726 | Euteneuer | Mar 2016 | B2 |
9314314 | Euteneuer et al. | Apr 2016 | B2 |
9314331 | Euteneuer et al. | Apr 2016 | B2 |
9370356 | Euteneuer et al. | Jun 2016 | B2 |
9393103 | Van Kampen et al. | Jul 2016 | B2 |
10123796 | Westling et al. | Nov 2018 | B2 |
20020077687 | Ahn | Jun 2002 | A1 |
20020090725 | Simpson et al. | Jul 2002 | A1 |
20020123767 | Prestel | Sep 2002 | A1 |
20020165559 | Grant et al. | Nov 2002 | A1 |
20020169465 | Bowman et al. | Nov 2002 | A1 |
20030073979 | Naimark et al. | Apr 2003 | A1 |
20030125748 | Li et al. | Jul 2003 | A1 |
20030135224 | Blake, III | Jul 2003 | A1 |
20030212456 | Lipchitz et al. | Nov 2003 | A1 |
20040059416 | Murray et al. | Mar 2004 | A1 |
20040092937 | Criscuolo et al. | May 2004 | A1 |
20040138705 | Heino et al. | Jul 2004 | A1 |
20040167519 | Weiner et al. | Aug 2004 | A1 |
20040220574 | Pelo et al. | Nov 2004 | A1 |
20050015021 | Shiber | Jan 2005 | A1 |
20050049618 | Masuda et al. | Mar 2005 | A1 |
20050051597 | Toledano | Mar 2005 | A1 |
20050059996 | Bauman et al. | Mar 2005 | A1 |
20050060033 | Vacanti et al. | Mar 2005 | A1 |
20050107807 | Nakao | May 2005 | A1 |
20050113736 | Orr et al. | May 2005 | A1 |
20050171569 | Girard et al. | Aug 2005 | A1 |
20050187576 | Whitman et al. | Aug 2005 | A1 |
20050240222 | Shipp | Oct 2005 | A1 |
20050274768 | Cummins et al. | Dec 2005 | A1 |
20060074423 | Alleyne et al. | Apr 2006 | A1 |
20060178743 | Carter | Aug 2006 | A1 |
20060235442 | Huitema | Oct 2006 | A1 |
20060293760 | DeDeyne | Dec 2006 | A1 |
20070078477 | Heneveld, Sr. et al. | Apr 2007 | A1 |
20070083236 | Sikora et al. | Apr 2007 | A1 |
20070112361 | Schonholz et al. | May 2007 | A1 |
20070179531 | Thornes | Aug 2007 | A1 |
20070185506 | Jackson | Aug 2007 | A1 |
20070190108 | Datta et al. | Aug 2007 | A1 |
20070219558 | Deutsch | Sep 2007 | A1 |
20070270804 | Chudik | Nov 2007 | A1 |
20070288023 | Pellegrino et al. | Dec 2007 | A1 |
20080027470 | Hart et al. | Jan 2008 | A1 |
20080051888 | Ratcliffe et al. | Feb 2008 | A1 |
20080065153 | Allard et al. | Mar 2008 | A1 |
20080090936 | Fujimura et al. | Apr 2008 | A1 |
20080125869 | Paz et al. | May 2008 | A1 |
20080135600 | Hiranuma et al. | Jun 2008 | A1 |
20080139473 | Ladner et al. | Jun 2008 | A1 |
20080173691 | Mas et al. | Jul 2008 | A1 |
20080188874 | Henderson | Aug 2008 | A1 |
20080188936 | Ball et al. | Aug 2008 | A1 |
20080195119 | Ferree | Aug 2008 | A1 |
20080200949 | Hiles et al. | Aug 2008 | A1 |
20080241213 | Chun et al. | Oct 2008 | A1 |
20080272173 | Coleman et al. | Nov 2008 | A1 |
20080306408 | Lo | Dec 2008 | A1 |
20080312688 | Nawrocki et al. | Dec 2008 | A1 |
20090001122 | Prommersberger et al. | Jan 2009 | A1 |
20090012521 | Axelson, Jr. et al. | Jan 2009 | A1 |
20090030434 | Paz et al. | Jan 2009 | A1 |
20090069806 | De La Mora Levy et al. | Mar 2009 | A1 |
20090076541 | Chin et al. | Mar 2009 | A1 |
20090105535 | Green et al. | Apr 2009 | A1 |
20090112085 | Eby | Apr 2009 | A1 |
20090134198 | Knodel et al. | May 2009 | A1 |
20090156986 | Trenhaile | Jun 2009 | A1 |
20090156997 | Trenhaile | Jun 2009 | A1 |
20090182245 | Zambelli | Jul 2009 | A1 |
20090242609 | Kanner | Oct 2009 | A1 |
20100145367 | Ratcliffe | Jun 2010 | A1 |
20100147922 | Olson | Jun 2010 | A1 |
20100163598 | Belzer | Jul 2010 | A1 |
20100191332 | Euteneuer et al. | Jul 2010 | A1 |
20100211097 | Hadba et al. | Aug 2010 | A1 |
20100241227 | Euteneuer et al. | Sep 2010 | A1 |
20100249801 | Sengun et al. | Sep 2010 | A1 |
20100256675 | Romans | Oct 2010 | A1 |
20100274278 | Fleenor et al. | Oct 2010 | A1 |
20100292715 | Nering et al. | Nov 2010 | A1 |
20100292791 | Lu et al. | Nov 2010 | A1 |
20100312250 | Euteneuer | Dec 2010 | A1 |
20100312275 | Euteneuer et al. | Dec 2010 | A1 |
20100327042 | Amid et al. | Dec 2010 | A1 |
20110000950 | Euteneuer et al. | Jan 2011 | A1 |
20110004221 | Euteneuer et al. | Jan 2011 | A1 |
20110011917 | Loulmet | Jan 2011 | A1 |
20110034942 | Levin et al. | Feb 2011 | A1 |
20110040310 | Levin et al. | Feb 2011 | A1 |
20110040311 | Levin et al. | Feb 2011 | A1 |
20110066166 | Levin et al. | Mar 2011 | A1 |
20110079627 | Cardinale et al. | Apr 2011 | A1 |
20110106154 | DiMatteo et al. | May 2011 | A1 |
20110114700 | Baxter, III et al. | May 2011 | A1 |
20110224702 | Van Kampen et al. | Sep 2011 | A1 |
20110264149 | Pappalardo et al. | Oct 2011 | A1 |
20120100200 | Belcheva et al. | Apr 2012 | A1 |
20120160893 | Harris et al. | Jun 2012 | A1 |
20120193391 | Michler et al. | Aug 2012 | A1 |
20120209401 | Euteneuer et al. | Aug 2012 | A1 |
20120211543 | Euteneuer | Aug 2012 | A1 |
20120248171 | Bailly et al. | Oct 2012 | A1 |
20120316608 | Foley | Dec 2012 | A1 |
20130153627 | Euteneuer et al. | Jun 2013 | A1 |
20130153628 | Euteneuer | Jun 2013 | A1 |
20130158554 | Euteneuer et al. | Jun 2013 | A1 |
20130158587 | Euteneuer et al. | Jun 2013 | A1 |
20130158661 | Euteneuer et al. | Jun 2013 | A1 |
20130172920 | Euteneuer et al. | Jul 2013 | A1 |
20130172997 | Euteneuer et al. | Jul 2013 | A1 |
20130184716 | Euteneuer et al. | Jul 2013 | A1 |
20130240598 | Euteneuer et al. | Sep 2013 | A1 |
20130245627 | Euteneuer et al. | Sep 2013 | A1 |
20130245682 | Euteneuer et al. | Sep 2013 | A1 |
20130245683 | Euteneuer et al. | Sep 2013 | A1 |
20130245693 | Blain | Sep 2013 | A1 |
20130245706 | Euteneuer et al. | Sep 2013 | A1 |
20130245707 | Euteneuer et al. | Sep 2013 | A1 |
20130245762 | Van Kampen et al. | Sep 2013 | A1 |
20130245774 | Euteneuer et al. | Sep 2013 | A1 |
20130304115 | Miyamoto | Nov 2013 | A1 |
20140358163 | Farin et al. | Dec 2014 | A1 |
20160073491 | Chen et al. | Mar 2016 | A1 |
20160120542 | Westling et al. | May 2016 | A1 |
Number | Date | Country |
---|---|---|
2010256474 | Dec 2010 | AU |
2390508 | May 2001 | CA |
0142225 | May 1985 | EP |
0298400 | Jan 1989 | EP |
0390613 | Oct 1990 | EP |
0543499 | May 1993 | EP |
0548998 | Jun 1993 | EP |
0557963 | Sep 1993 | EP |
0589306 | Mar 1994 | EP |
0908152 | Apr 1999 | EP |
0589306 | Aug 1999 | EP |
1491157 | Dec 2004 | EP |
1559379 | Aug 2005 | EP |
1491157 | Nov 2008 | EP |
2030576 | Mar 2009 | EP |
2154688 | Sep 1985 | GB |
2397240 | Jul 2004 | GB |
58188442 | Nov 1983 | JP |
2005586122 | Mar 2005 | JP |
2006515774 | Jun 2006 | JP |
2012514191 | Jun 2012 | JP |
2012528699 | Nov 2012 | JP |
8505025 | Nov 1985 | WO |
0176456 | Oct 2001 | WO |
0234140 | May 2002 | WO |
03032815 | Apr 2003 | WO |
2003105670 | Dec 2003 | WO |
2004000138 | Dec 2003 | WO |
2004062508 | Jul 2004 | WO |
2004093690 | Nov 2004 | WO |
2005016389 | Feb 2005 | WO |
2006086679 | Aug 2006 | WO |
2007014910 | Feb 2007 | WO |
2007030676 | Mar 2007 | WO |
2007078978 | Jul 2007 | WO |
2007082088 | Jul 2007 | WO |
2008065153 | Jun 2008 | WO |
2008111073 | Sep 2008 | WO |
2008111078 | Sep 2008 | WO |
2008139473 | Nov 2008 | WO |
2009079211 | Jun 2009 | WO |
2009143331 | Nov 2009 | WO |
2010141872 | Dec 2010 | WO |
2010141907 | Dec 2010 | WO |
2011095890 | Aug 2011 | WO |
2011128903 | Oct 2011 | WO |
2013007764 | Jan 2013 | WO |
2013119321 | Aug 2013 | WO |
Entry |
---|
“Rotator Cuff Tear,” Wikipedia, the free encyclopedia, 14 pages, Downloaded on Dec. 6, 2012. |
Alexander et al., “Ligament and tendon repair with an absorbable polymer-coated carbon fiber stent,” Bulletin of the Hospital for Joint Diseases Orthopaedic Institute, 46(2):155-173, 1986. |
Bahler et al., “Trabecular bypass stents decrease intraocular pressure in cultured himan anterior segments,” Am. J. Opthamology, 138(6):988-994, Dec. 2004. |
Chamay et al., “Digital contracture deformity after implantation of a silicone prosthesis: Light and electron microscopic study,” The Journal of Hand Surgery, 3(3):266-270, May 1978. |
D'Ermo et al., “Our results of the operation of ab externo,” Opthalmologica, 168: 347-355, 1971. |
France et al., “Biomechanical evaluation of rotator cuff fixation methods,” The American Journal of Sports Medicine, 17(2), 1989. |
Goodship et al., “An assessment of filamentous carbon fibre for the treatment of tendon injury in the horse,” Veterinary Record, 106: 217-221, Mar. 8, 1980. |
Hunter et al., “Flexor-tendon reconstruction in severely damaged hands,” The Journal of Bone and Joint Surgery (American Volume), 53-A(5): 329-358, Jul. 1971. |
Johnstone et al., “Microsurgery of Schlemm's canal and the human aqueous outflow system,” Am. J. Opthamology, 76(6): 906-917, Dec. 1973. |
Kowalsky et al., “Evaluation of suture abrasion against rotator cuff tendon and proximal humerus bone,” Arthroscopy: The Journal of Arthroscopic and Related Surgery, 24(3):329-334, Mar. 2008. |
Lee et al., “Aqueous-venous and intraocular pressure. Preliminary report of animal studies,” Investigative Opthalmology, 5(1): 59-64, Feb. 1966. |
Maepea et al., “The pressures in the episcleral veins, Schlemm's canal and the trabecular meshwork in monkeys: Effects of changes in intraocular pressure,” Exp. Eye Res., 49:645-663, 1989. |
Nicolle et al., “A silastic tendon prosthesis as an adjunct to flexor tendon grafting: An experimental and clinical evaluation,” British Journal of Plastic Surgery, 22(3-4):224-236, 1969. |
Rubin et al., “The use of acellular biologic tissue patches in foot and ankle surgery,” Clinics in Podiatric Medicine and Surgery, 22:533-552, 2005. |
Schultz, “Canaloplasty procedure shows promise for open-angle glaucoma in European study,” Ocular Surgery News, 34-35, Mar. 1, 2007. |
Spiegel et al., “Schlemm's canal implant: a new method to lower intraocular pressure in patients with POAG,” Opthalmic Surgery and Lasers, 30(6):492-494, Jun. 1999. |
Stenson et al., “Arthroscopic treatment of partial rotator cuff tears,” Operative Techniques in Sports Medicine, 12(2):135-148, Apr. 2004. |
Valdez et al., “Repair of digital flexor tendon lacerations in the horse, using carbon fiber implants,” JAYMA, 177(5): 427-435, Sep. 1, 1980. |
Notification of Transmittal of the International Search Report and the Written Opinion of the International Searching Authority, or the Declaration, Mar. 7, 2016, 14 pages. |
Number | Date | Country | |
---|---|---|---|
20190059883 A1 | Feb 2019 | US |
Number | Date | Country | |
---|---|---|---|
62075026 | Nov 2014 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 14931567 | Nov 2015 | US |
Child | 16170603 | US |