The invention relates to a medical implant with a wall, which comprises a mesh structure that can be transferred from a compressed state to an expanded state and that is formed by first struts, wherein the mesh structure has closed cells, each with a retaining element that is adapted to anchor the expanded mesh structure in a vessel. An implant of this kind is known from U.S. Pat. No. 5,397,355, for example.
In the field of interventional neuroradiology, two basic stent designs have proven useful for treating aneurysms and vascular stenoses, specifically closed-cell designs and open-cell designs. In recent times, closed-cell designs have increasingly been used, which have the advantage that a stent system that has already been partially deployed in the target area can be drawn back into the catheter. However, the commercially available stent systems, which are used in combination with coils for the treatment of aneurysms, can have weaknesses in terms of safety of use. After the stent system has been deployed, a coil catheter is guided through the cells of the stent into the aneurysm in order to bring the coil into the aneurysm. In doing this, the coil catheter can become caught in the tips of the cells, with the result that the stent can slip out of place if inadequately anchored in the blood vessel. Inadequate anchoring of the stent in the blood vessel can be caused, for example, by the outwardly directed radial force being too low or by the nature of the cell geometry. In addition, in known stent systems, weaknesses can often be observed in terms of the adaptation to the anatomical conditions existing in the neurocerebral vascular system.
The stent according to U.S. Pat. No. 5,397,355 has a mesh structure that is formed by struts and that can be transferred from a compressed state to an expanded state. The mesh structure is composed of closed cells (closed-cell design). In order to anchor the expanded mesh structure in a vessel, the cells each have a retaining element which, in the expanded state, is moved radially outward and protrudes beyond the wall of the stent. The retaining element is designed as a spike with a sharp tip which, in the implanted state, drills into the vessel wall. This can cause injuries.
Another possibility for anchoring a stent in the vessel is disclosed in U.S. Pat. No. 5,330,500 which, like the known stent described above, has hook-shaped tips in the cells, which tips drill into the vessel wall in the implanted state. U.S. Pat. No. 5,800,526 describes a stent with an anchoring system in which the mesh structure is designed such that parts thereof protrude beyond the wall of the stent in the implanted state and fix the stent against dislocation. However, the stent is not of a closed-cell design but of an open-cell design, which has the disadvantage that, after it has been deployed, it can be drawn back into the catheter only with difficulty. The same applies to the stent according to US 2006/0100695 A1, which has a mesh structure formed partially of closed cells and partially of open cells. The stent is a drug-eluting stent and for this purpose has an especially large surface area. To this end, various possibilities are disclosed, among which the possibility of connecting the struts of an open-cell stent portion via intermediate struts. These intermediate struts do not have the function of a retaining element and are instead intended solely to increase the effective surface area of the stent.
The object of the invention is to make available a medical implant that has a mesh structure with closed cells and that is safer to use.
According to the invention, this object is achieved by a medical implant with the features of claim 1.
The invention is based on the concept of making available a medical implant with a wall, which comprises a mesh structure that can be transferred from a compressed state to an expanded state and that is formed by first struts, wherein the mesh structure has closed cells, each with a retaining element. The retaining element is adapted to anchor the expanded mesh structure in a vessel. The retaining element has at least two second struts which, at one end, are connected to each other and form a tip, which projects into the cell. At the other end, the second struts of the retaining element are connected to the first struts of the cell.
The invention has several advantages. The configuration of the retaining element with at least two struts affords the possibility of an atraumatic design of the retaining element in contrast to the retaining element according to U.S. Pat. No. 5,397,355. In addition, the strut-shaped configuration of the retaining element has the effect that the number of struts on the circumference of the implant is increased, and therefore the radial force acting on the vessel wall is increased. This has the advantage that the safety of use is improved, particularly in respect of avoiding dislocation of the stent, without in so doing compromising the main advantage of closed-cell stent systems, namely the possibility of drawing the stent system back into the catheter after partial deployment in the target area.
In a preferred embodiment of the invention, the second struts of the retaining element form, with the first struts of a cell of the mesh structure, a further cell, which is arranged in the cell of the mesh structure. In addition to the increased radial force that can be achieved in this way, the arrangement of the cell within the cell has the effect that, when the implant curves as a result of a vessel shape, the tip of the retaining element is moved out beyond the wall into the vessel wall and securely anchors the implant.
The shape of the further cell can correspond to the shape of the cell of the mesh structure. This means that the smaller cell inscribed within the larger cell of the mesh structure and performing the retaining function repeats the shape of the larger cell. On the one hand, this has advantages from the point of view of production technology and, on the other hand, the deformation behavior of the further cell can be more easily predicted.
The first struts of the mesh structure can be connected to the second struts of the retaining element in each case between two connectors axially delimiting the struts. In particular, the first struts of the mesh structure can be connected centrally to the second struts of the retaining element. This permits a good transmission of force from the first struts of the cell to the second struts of the retaining element.
Alternatively, the second struts of the retaining element can be connected in each case to an axial end of the first struts of the mesh structure, wherein the retaining element replaces a connector axially delimiting the first struts. In this alternative, stress-optimized embodiment, the first struts, in particular the axial ends of the first struts, are therefore connected indirectly by the retaining element, which extends substantially into the cell of the mesh structure. The retaining element can also be lengthened into an area outside the cell of the mesh structure, such that the retaining element forms a further tip outside the cell, which further tip is coupled to an axially adjoining cell by a connector. In this embodiment, the retaining element is preferably symmetrical, with the corresponding axis of symmetry on the circumference of the mesh structure running through the axial ends of the first struts. In this way, the stress-optimized design of the structure is improved.
The longitudinal axis L′ of the further cell can be flush with a longitudinal axis L″ of the associated cell of the mesh structure, as a result of which the deflection of the tip of the retaining element leads to a good anchoring of the implant.
The tip of the retaining element can be arranged at least at the height of lateral connectors, which connect cells of the mesh structure that are arranged next to one another in the circumferential direction. This affords the possibility of the tip being deflected relatively far beyond the wall and thus being anchored correspondingly firmly to the vessel wall. The tip can point in the distal direction of the implant, which improves the possibility that the implant partially deployed in the vessel can be drawn back into the catheter. In a particularly preferred embodiment, at least one edge area, in particular two edge areas, and at least one intermediate area of the mesh structure are arranged in the longitudinal direction of the wall, wherein the retaining elements are formed in the edge area. This implant is particularly well suited for the treatment of aneurysms, since the anchoring function can be limited to the edge areas, and the intermediate area can assume the supporting and closing function, in order to close off the aneurysm, and coils located therein, with respect to the vessel lumen. The invention is not limited to this use. The division of the implant into edge areas and intermediate area permits a separation of functions that is also advantageous for other uses. The edge areas assume, or at least one edge area assumes, the retaining function on account of the retaining elements, and the intermediate area assumes another function that corresponds to the respective therapeutic purpose. It is also possible to provide the retaining elements in the intermediate area and to configure the edge areas for other functions.
In another preferred embodiment of the invention, the closed cells of the mesh structure form a plurality of ring segments arranged one after another in the axial direction of the wall, wherein the cells of a ring segment have at least one retaining element, in particular all the cells of the ring segment each have a retaining element. This affords the possibility of limiting the retaining function of the implant to a specific area, namely to one or more ring segments, and of adapting other areas of the implant to other functions.
The number of the distally arranged ring segments with retaining elements can be greater than the number of the proximally arranged ring segments with retaining elements. In this way, on the one hand, the implant is fixed securely in the vessel after being deployed, such that an exact positioning of the implant is possible. On the other hand, this improves the possibility of drawing the implant back into the catheter, since in the proximal area a smaller number of ring segments are provided with retaining elements.
It has proven particularly advantageous if the cell of the mesh structure comprises a diamond-shaped cell. The further cell, which is arranged in the cell of the mesh structure, can likewise comprise a diamond-shaped cell.
In a preferred embodiment of the implant, provision is made that the retaining element is adapted in such a way that, when the mesh structure curves along a longitudinal axis of the mesh structure, the tip of the retaining element automatically orients itself radially outward. In other words, provision is made that the retaining element protrudes radially outward in a curved or axially bent state of the mesh structure and can thus improve the anchoring in a vessel of the body.
A plurality of retaining elements are preferably provided which are distributed across the circumference of the mesh structure. When the mesh structure curves along a longitudinal axis of the mesh structure, the tips of the retaining elements can orient themselves radially outward, in particular only the tips of the retaining elements arranged on a side of the mesh structure directed away from the center of curvature. In the event of an axial curvature of the mesh structure, for example when the implant is arranged in a curve of a vessel, the retaining elements can orient themselves on one side, with the tips of the retaining elements being directed radially outward. The retaining elements preferably orient themselves on the side of the mesh structure directed away from the center of curvature. In particular, the retaining elements orient themselves radially outward on that side of the mesh structure which, in a curved or axially bent arrangement of the mesh structure, experiences a comparatively greater stretch. By contrast, the retaining elements arranged on an opposite side of the mesh structure, i.e. closer to the center of curvature, extend substantially in the wall plane and are not deflected radially outward. Generally, provision is made that the radially outwardly directed deflection of the retaining elements or of the tips of the retaining elements is caused by a curving of the mesh structure along a longitudinal axis or by an axial bending of the mesh structure.
In a preferred embodiment of the implant according to the invention, a plurality of retaining elements are provided, wherein the tips of all the retaining elements point in the same direction, in particular in the distal direction relative to a delivery system. Arranging the retaining elements to point in the same direction ensures that the implant can be drawn back into a delivery system without the tips of the retaining elements catching on the delivery system or on the vessel wall. Therefore, provision is particularly preferably made that the tips of all the retaining elements point in the distal direction, that is to say away from the person using the delivery system.
The invention is explained in more detail below on the basis of illustrative embodiments and with reference to the attached schematic drawings, in which:
a, 6b and 6c show views of the stent from
a, 7b and 7c show views of the stent from
a, 8b and 8c show views of the stent from
a, 9b and 9c show views of a stent in the distal or proximal edge area in the implanted state according to a further illustrative embodiment of the invention;
a, 12b and 12c each show a detail of the stent from
a and 13b each show a longitudinal cross section through a hollow organ of the body with an implanted stent from
a and 14b each show two views of two cells of a stent, wherein the anchoring of the struts or retaining elements of the stent in the vessel wall of a hollow organ of the body is depicted;
a shows two views of one cell of a stent with a retaining element, wherein the cell is arranged in a rectilinear hollow organ of the body;
b shows two views of one cell of a stent with a retaining means, wherein the cell is arranged in a curving hollow organ of the body; and
The stent shown in the figures is suitable, for example, for use in interventional neuroradiology, particularly for the treatment of aneurysms and vascular stenoses. The invention is not limited to stents and instead generally covers medical implants that are introduced into a hollow vessel of the body. The invention is also applicable, for example, to filters, flow separators or other medical implants. The implant, in particular the stent, can be self-expandable and can be produced, for example, from suitable materials such as nitinol or other shape-memory substances. The stent can also be designed to be expandable by balloon.
The implant or the stent comprises a wall 10 which, in the implanted state, comes into contact with the vessel wall and applies an outwardly acting radial force to the latter. The wall 10 comprises a mesh structure 12, which can be transferred from a compressed state to an expanded state. For this purpose, the mesh structure can be crimped in a manner known per se and, in the compressed state, can be loaded into a catheter. During implantation, the mesh structure 12 deploys and can be transferred into an expanded state.
The mesh structure is formed by first struts 11, which are produced, for example, by laser cutting, etching or other production techniques. The struts 11 of the mesh structure 12 form closed cells 13. In contrast to open cells, closed cells are fixedly connected to the adjoining neighboring cells by connectors 19.
As will be clearly seen from
Thus, in contrast to an open cell, a closed cell forms a cell opening surrounded by struts 11, wherein the struts 11, at all the connection points to adjoining cells, are fixedly connected to these. Seen in the longitudinal direction of the stent, the connectors 19 form connection points that connect axially contiguous cells to one another. Seen in the circumferential direction, the connectors 19 likewise form connection points, which connect circumferentially contiguous cells fixedly to one another.
It is also possible that the mesh structure has closed and open cells.
Some of the closed cells 13 are designed with a retaining element 14, which is adapted to anchor the expanded mesh structure 12 in a vessel. It is also possible that a single cell 13 has a plurality of retaining elements 14. The retaining elements 14 are each formed from at least two second struts 15, 16 which, at one end, are connected to each other and have a tip 17. The tip 17 projects into the cell 13 of the mesh structure, as can be seen from
As is shown in
It is also possible to connect the second struts 15, 16 of the retaining element 14 to the first struts 11 of the cell 13 at another, eccentric location, for example closer to the tip of the cell 13 of the mesh structure 12 or closer to the connectors 19. This means that the second struts 15, 16 of the retaining element 14 each engage at a position of the associated first struts 11 of the mesh structure 12 that is located between two connectors 19 axially delimiting the respective first strut 11. In this context, the term “axially” relates to the longitudinal extent of the individual strut. The retaining element 14 is therefore a separate element, which is provided additionally to the connectors 19. The tip 17 of the retaining element 14 is arranged at least at the height of the lateral connectors 19. In the illustrative embodiment according to
The stent design according to
The tips of the individual retaining elements 14 each point in the distal direction, thus making reinsertion of the stent into the catheter easier.
As is shown in
The two edge areas 20, 21 are each connected to markers, in particular to X-ray markers 24.
The closed cells 13 of the mesh structure 12 have a diamond-shaped geometry, wherein the individual branches of the diamond geometry are formed by the struts 11 of the mesh structure. The shaping angle of the individual cell 13, i.e. the angle between the longitudinal axis of the cell and the connecting line between a lateral connector 19 and a connector 19 forming the tip of the cell, is preferably 50°. The shaping angle can be ≧25°, ≧30°, ≧35°, ≧40°. The upper limit of the shaping angle can be ≦60°, ≦55°, ≦50°, ≦45°. The above values of the shaping angle relate to the rest state.
The function of the invention is explained below with reference to
As is shown in
It is also possible to design the retaining element 14 in such a way that the tip 17 does not protrude beyond the wall 10 in the expanded state but instead remains in the plane between the struts 11, as is shown in
In the case where the retaining element 14 is not deflected radially outward and the tip 17 remains in the wall plane, the retaining element 14 has a retaining function. The retaining function of the retaining element 14 arises in this case from the fact that the struts 11 and the retaining element 14 press into the intima of the vessel wall, as a result of which a corresponding resistance effect is produced.
The anchoring of the stent by means of the retaining elements 14 is particularly marked when the stent curves, as is shown in
Another illustrative embodiment of the stent according to the invention is shown in the plan view according to
In contrast to the closed cells 13 free of retaining elements in the intermediate area 22, closed cells 13 equipped with retaining elements 14 are arranged in the edge area 20. The retaining elements 14 are spanned between two first struts 11 of the mesh structure 12. In particular, the retaining elements 14 or the second struts 15, 16 of the retaining elements 14 are each coupled to axial ends 24 of the first struts 11. The axial end 24 of a first strut 11 thus forms the boundary of the strut 11 in the axial direction relative to the longitudinal extent of the individual strut 11 and merges directly into the connector 19. Analogously to the illustrative embodiments described above, the retaining element 14, in particular the second struts 15, 16 with the tip 17, forms a V-shaped profile that extends into the closed cell 13.
In the illustrative embodiment according to
As will also be seen from
Therefore, compared to the illustrative embodiments described above, in particular according to
In an alternative interpretation of the illustrative embodiment according to
Independently of the interpretation used to describe the illustrative embodiment according to
As will also be seen from
The illustrative embodiments depicted in the figures are all based on a substantially diamond-shaped cell geometry, in which specially configured, in particular strut-shaped retaining elements 14 are arranged in the edge areas of the stent in such a way that the anchoring of the stent is improved and slipping of the stent during the intervention is avoided. The arrangement of the retaining elements 14 in the edge areas of the stent also has the result that in the middle area of the stent, i.e. in the area between the edge areas, the pore size is maintained, such that the patency of the cells in this area is not impaired. The arrangement of the tips 17 of the retaining elements in the distal direction leads to a barb effect being achieved, while at the same time it is possible for the retaining elements 14 of the stent, deployed to the extent of 80%, to be drawn back into a catheter. This is not possible in stents produced on the basis of an open-cell design.
The stent according to
As will also be seen from
The closed cells 13 of the edge areas 20, 21, of the ring segments 23 and of the intermediate area 22 are preferably designed in such a way that the stent has a constant, in particular uniform, radial force along the entire length. Specifically, the shape and/or the size of the individual closed cells 13 in the respective segments or areas of the mesh structure 12 are designed in such a way that the standardized radial force, that is to say the radial force per stent length, or the radial pressure remains substantially constant along the entire length and circumference of the stent. For example, the closed cells 13 that comprise retaining elements 14 are larger than closed cells 13 that have no retaining elements 14, in order to compensate for the radial force increased by the retaining elements 14.
The closed cells 13 with retaining elements 14 in the edge areas 20, 21 of the mesh structure 12 can have a different radial force than the closed cells 13 of a central area, in particular of the ring segments 23 of the mesh structure 12 that have no retaining elements 14. The radial force can be influenced by the geometry of the cell 13. For example, the length of the cell 13, seen along the longitudinal axis of the mesh structure, or the angle of the first struts 11 of a cell 13 can be varied, in order to adjust the radial force in different portions of the mesh structure 12. The radial force in the edge area 20, 21 can be less than or greater than the radial force in a central area of the mesh structure 12. It is also possible that the cells in the edge areas 20, 21 are geometrically dimensioned in such a way that they have the same radial force as the cells 13 of a central area of the mesh structure 12. In particular, the radial force can be constant along the mesh structure 12. The adjustment of the radial forces along the mesh structure 12 is dependent on the use of the medical device and is chosen accordingly by the person skilled in the art. In doing so, account can be taken of the fact that a radial force in the edge areas 20, 21 of the mesh structure 12, where the cells 12 in the edge areas 20, 21 have retaining elements 14, reduces the risk of side effects, for example the danger of stenosis, in the edge area 20, 21 of the implanted medical device.
Generally, the deformation force of the respectively associated cell 13 is increased by the retaining elements 14. In the event of a radial compression of the stent or of the mesh structure 12 in relation to the rest state, not only the first struts 11 of the cell deform, but also the second struts 15, 16 of the retaining element. Compared to a cell that is designed free of retaining elements, i.e. has no retaining element 14, the radial force is increased by the presence of a retaining element 14 even if the cell 13 has the same geometric dimensions.
It is possible that the cells 13 in an edge area 20, 21 of the mesh structure 12 comprise anchoring cells 13a, i.e. cells 13 with retaining elements 14, which have the same profile and the same dimension ratios (strut width, strut length, cell angle, cell width, etc.) as the cells 13 free of retaining elements, i.e. the free cells 13b, in a central area (without retaining element). In this case, the radial force in the edge area 20, 21 is greater than in the middle area because of the additional retaining elements 14.
It may be advantageous if the radial force in the edge area 20, 21 of the mesh structure 12 is reduced or matched to the radial force in the central area of the mesh structure 12. In this way, a gentle transition, with respect to the mechanical properties of the cells 13, is achieved between the central area (free cells 13b) and the edge areas (anchoring cells 13a). In particular, the mechanical properties, particularly the radial force, of the edge areas 20, 21 and of the middle area can be identical. An abrupt transition characterized by very different forces can lead to considerable local strain on the vessel in the transition area, since the pulsatility wave or deformation wave of the vessel, which is caused by the pulsating blood flow, can change considerably on both sides of the transition area.
In a preferred embodiment, the cells 13 in the edge area 20, 21 have a different geometrical shape than the cells 13 in the central area. This has the effect that a cell 13 arranged in the edge area 20, 21 has per se, that is to say ignoring the retaining element, a lower radial force than a cell 13 in the central area of the mesh structure 12. This is achieved by, among other things, a smaller tilt angle, i.e. the angle between two first struts in the area of a connector, and/or by a smaller strut width, and/or by longer struts, and/or by a smaller number of cells 13 in a circumferential row, and/or by different strut geometries, in particular different radii of curvature of the first struts. The angle of the first struts 11 of the cells 13 in a central area of the mesh structure 12 can be smaller, preferably by at most 15°, in particular at most 10°, in particular at most 5°, than the angle of the first struts 11 of the cells 13 in an edge area 20, 21 of the mesh structure 12. This counteracts the effect of the increase in radial force by the retaining elements 14.
Overall, the following different possibilities are provided:
It is possible that the radial force in an edge area 20, 21 of the mesh structure 12 (cells 13 with retaining elements) is greater than in a central area of the mesh structure 12. A changing geometry of the cells 13 along the mesh structure 12 or the stent, particularly in the edge area, causes the radial force to increase in steps and/or gradually. An abrupt transition in the intermediate area 22 is thereby avoided.
It is also possible that the radial force in an edge area 20, 21 (cells 13 with retaining elements) is matched by the change of geometry to the mechanical properties, in particular the radial force, in a central area or is set to the same value. For example, only one or more first circumferential rows or one or more first circumferential segments of the mesh structure 12, which comprise anchoring cells 13a and are connected to free cells 13b of a central area, can have the same radial force as the circumferential rows or circumferential segments of a central area of the mesh structure 12. In further edge segments or edge areas, which are separate or spaced apart from the anchoring cells 13a of the central area, the radial force can increase gradually.
There is also the possibility that circumferential rows or circumferential segments which are arranged in an edge area 20, 21 and have cells 13 with retaining elements (anchoring cells 13a), or at least some of these circumferential segments with anchoring cells 13a, have a lower radial force than circumferential segments in a central area of the mesh structure 12, which have no retaining elements 14 or are formed by free cells 13b. In this way, the radial force in the edge area 20, 21 of the mesh structure 12 or of the stent is reduced. In particular, the radial force in the edge area 20, 21 of the mesh structure 12 can be lowered in steps and/or gradually in the direction of the axial end of the mesh structure 12, in order to protect the vessel walls in the implanted state, at least in those sections in which the edge area 20, 21 of the mesh structure 12 is arranged.
A combination of cells 13 and circumferential segments or circumferential rows of the edge areas 20, 21 with a lower radial force, the same radial force or a higher radial force compared to the cells 13 of a central area of the mesh structure 12 is possible.
The reduction of the radial force in the circumferential segments which comprise cells 13 with retaining elements is possible in view of the adherence of the stent or of the mesh structure 12 to a vessel wall, since the retaining elements 14 permit a “geometric” locking or adherence. This means that the locking action is provided at least in the main by the geometric shape of the retaining elements 14. The shape of the retaining elements 14 permits good adherence, even with a comparatively low radial force of the associated cells.
The radial force can be measured using conventional radial force measurement systems comprising a plurality of blades that close inward like a shutter. It is also possible to test separate cells 13. The separate cells 13 can be stretched or pressed on a tensioning machine. From the value of the deformation force, it is possible to deduce the value of the radial force of the stent.
Overall, the mesh structure 12 has rows SHE of closed cells 13 with retaining elements 14 and rows S of closed cells 13 without retaining elements 14.
Preferably, two, three, four, five, six, seven, eight or nine rows SHE of closed cells 13 with retaining elements 14 are provided in each of the axial end portions of the stent or of the mesh structure 12. Overall, the ratio between rows SHE of closed cells 13 with retaining elements 14 to rows S of closed cells 13 without retaining elements 14 (SHE/S) can cover a range of 2/4 to 2/10, in particular 3/3 to 3/12, in particular 4/4 to 4/10, in particular 5/5 to 5/15, in particular 6/4 to 6/16, in particular 7/5 to 7/24, in particular 8/4 to 8/20, in particular 9/5 to 9/27, in particular 10/4 to 10/30, in particular 12/4 to 12/32.
The closed cells 13 that have a retaining element 14 are referred to below as anchoring cells 13a. Closed cells 13 that have no retaining element 14 are called free cells 13b. Moreover, there are also transition cells 13c, which are each arranged between a row of anchoring cells 13a and a row of free cells 13b and provide the transition between the different dimensions of the anchoring cells 13a and the free cells 13b. The transition cells 13c can have retaining elements 14.
Different lengths and distances within the mesh structure 12 are shown in
As is shown in
According to
Moreover, according to
The distance between the tip 17 of the retaining element 14 and a connector 19, which is assigned to the further cell 18 formed by the retaining element 14, corresponds to the retaining element length L8, as is shown in
In this connection, it will be noted that the aforementioned lengths and spacings L4-L9, with the exception of anchoring-cell length L1, free-cell length L2 and transition-cell length L3, can relate in principle to the dimensions of all the closed cells 13. The lengths and spacings indicated are therefore not limited to a particular shape of the cell, i.e. not limited to an anchoring cell 13, a free cell 13b or a transition cell 13c. The spacings L4-L7 are in principle based on a rectilinear connection, shown in the figures as a dot-and-dash line. It will also be noted that all the lengths and spacings indicated relate to the fully expanded state of the mesh structure 12, i.e. the production state.
The following length and spacing ratios are preferred:
The ratio between the anchoring-cell length L1 and the free-cell length L2 (L1/L2) is preferably at least 0.7, in particular at least 0.8, in particular at least 0.9, in particular at least 1. Preferably, the ratio between anchoring-cell length L1 and free-cell length L2 (L1/L2) is at most 2.5, in particular at most 2.4, in particular at most 2.3, in particular at most 2.2, in particular at most 2.1, in particular at most 2.
The ratio between the transition-cell length L3 and the free-cell length L2 (L3/L2) is preferably at least 0.6, in particular at least 0.7, in particular at least 0.8, in particular at least 0.9. The upper limit for the ratio between the transition-cell length L3 and the free-cell length L2 (L3/L2) is preferably a value of at most 2.5, in particular at most 2.3, in particular at most 2.1, in particular at most 2, in particular at most 1.8, in particular at most 1.6, in particular at most 1.5.
For the ratio between the anchoring-cell length L1 and the connector spacing L4 (L1/L4), a value of at least 1, in particular at least 1.2, in particular at least 1.4, in particular at least 1.5 is preferably provided. Preferably, the ratio between anchoring-cell length L1 and connector spacing L4 (L1/L4) is at most 3, in particular at most 2.8, in particular at most 2.6, in particular at most 2.4.
The transition-cell length L3 can have a ratio to the connector spacing L4 (L3/L4) of at least 0.9, in particular at least 1, in particular at least 1.1, in particular at least 1.2. Preferably, the ratio between the transition-cell length L3 and the connector spacing L4 (L3/L4) is at most 2.5, in particular at most 2.4, in particular at most 2.3, in particular at most 2.2, in particular at most 2.1, in particular at most 2.0.
A lower limit for the ratio between the connector spacing L4 and the tip spacing L5 (L4/L5) is preferably at least 0.8, in particular at least 0.9, in particular at least 1, in particular at least 1.0. The maximum value for the ratio between the connector spacing L4 and the tip spacing L5 (L4/L5) is preferably at most 2.5, in particular at most 2.4, in particular at most 2.3, in particular at most 2.2, in particular at most 2.1, in particular at most 2.
The ratio between the start spacing L6 and the residual strut spacing L7 (L6/L7) is preferably at least 0.2, in particular at least 0.3, in particular at least 0.4, in particular at least 0.5. For the ratio between start spacing L6 and residual strut spacing L7 (L6/L7), a maximum value of at most 2, in particular at most 1.8, in particular at most 1.6, in particular at most 1.4, in particular at most 1.2, in particular at most 1, in particular at most 0.8, in particular at most 0.6 is preferably provided.
The ratio of the retaining element length L8 to the anchoring-cell length L1 (L8/L1) is preferably at least 0.2. The ratio between retaining element length L8 and anchoring-cell length L1 (L8/L1) is preferably at most 1.0, in particular at most 0.75, in particular at most 0.7, in particular at most 0.65, in particular at most 0.6. The aforementioned maximum values preferably also apply to the ratio between the opening length L9 and the anchoring-cell length L1. Specifically, the ratio between the opening length L9 and the anchoring-cell length L1 (L9/L1) is preferably at most 1.0, in particular at most 0.75, in particular at most 0.7, in particular at most 0.65, in particular at most 0.6. The lower limit for the ratio between the opening length L9 and the anchoring-cell length L1 (L9/L1) is preferably at least 0.2.
The ratio of the retaining element length L8 to the opening length L9 (L8/L9) is preferably at least 0.6, in particular at least 0.7, in particular at least 0.8, in particular at least 0.9, in particular at least 1. The upper limit for the ratio between retaining element length L8 and opening length L9 (L8/L9) is preferably at most 2.5, in particular at most 2.2, in particular at most 2.0, in particular at most 1.8, in particular at most 1.6, in particular at most 1.5.
The connector spacing L4, the tip spacing L5, the start spacing L6, the residual strut spacing L7, the retaining element length L8 and the opening length L9 can in each case relate to different configurations of the closed cells 13, in particular both to the anchoring cell 13a and also to the free cell 13b and also the transition cell 13c.
a shows the stent from
The anchoring of the medical device or of the mesh structure 12 in a hollow organ 40 of the body, particularly in a blood vessel, takes place mainly through the geometric relationships in the cells 13 that have retaining elements 14. The improved anchoring in the blood vessel or generally in the body cavity 40 is achieved by suitable configuration of the first and second struts 11, 15, of the length of the cells 13, and of the wall thickness and strut widths. In particular, the degree of the radial deflection of the retaining elements 14 can be influenced by the geometrical configuration. The retaining elements 14 can be constructed in such a way that a deflection is effected only through a curving of the mesh structure 12 along a longitudinal axis.
Moreover, the fact that the retaining elements 14, in particular all the retaining elements 14, are oriented in the distal direction permits an improved anchoring of the mesh structure 12 or the implant in the body cavity 40. This advantage is of particular help when using the stent or the mesh structure 12 as a coil stent.
Coil stents are used to cover an aneurysm 50, as is shown in
Generally, the radial force of the mesh structure 12 has the effect that the struts 11 of the mesh structure 12 press at least partially into the vessel wall of the hollow organ 40. Through the radial force issuing from the mesh structure 12 and acting on the hollow organ 40, a kind of undercut is obtained, as is shown in
The aforementioned effect is further intensified when the mesh structure 12 is arranged in curved vessel portions.
Preferably, the first struts 11 of the closed cell 13 and the second struts 15, 16 of the retaining element 14 have different strut widths. In particular, a ratio of the strut width S1 of the first struts 11 to the strut width S2 of the second struts 15, 16 (S1/S2) is preferably provided which is at least 0.5 and at most 2. Here, the strut width S1 of the first struts 11 and/or the strut width S2 of the second struts 15, 16 preferably covers a value of at least 0.010 mm, in particular at least 0.015 mm, in particular at least 0.020 mm, in particular at least 0.025 mm. The strut width S1 of the first struts 11 and/or the strut width S2 of the second struts 15, 16 can be at most 0.06 mm, in particular at most 0.08 mm, in particular at most 0.07 mm, in particular at most 0.06 mm.
The wall 10 of the implant preferably has a wall thickness W of at least 0.03 mm, in particular at least 0.04 mm, in particular at least 0.05 mm, and/or at most 0.09 mm, in particular at most 0.08 mm, in particular at most 0.07 mm, in particular at most 0.06 mm, in particular at most 0.055 mm. Advantageously, a ratio of the wall thickness W to the strut width S1 of the first struts 11 or to the strut width S2 of the second struts 15, 16 (W/S1 or W/S2) is provided which is at least 0.8, in particular at least 0.9, in particular at least 1, in particular at least 1.1, in particular at least 1.2, in particular at least 1.3, and/or at most 2.0, in particular at most 1.8, in particular at most 1.6, in particular at most 1.4.
In the expanded state or production state, the cross-sectional diameter of the implant or of the mesh structure 12 is preferably at least 1.5 mm, in particular at least 1.75 mm, in particular at least 2.0 mm, in particular at least 2.25 mm, in particular at least 2.5 mm. The upper limit provided for the expanded diameter D of the implant or of the mesh structure 12 is a value of at most 6.5 mm, in particular at most 5.5 mm, in particular at most 5.0 mm, in particular at most 4.5 mm, in particular at most 4.0 mm, in particular at most 3.5 mm, in particular at most 3.0 mm.
A preferred use diameter is also specified, which corresponds to the preferred diameter in the implanted state and is preferably at least 1.0 mm, in particular at least 1.5 mm, in particular at least 2.0 mm. The preferred use diameter can be at most 6.0 mm, in particular at most 5.5 mm, in particular at most 4.5 mm, in particular at most 4.0 mm, in particular at most 3.5 mm, in particular at most 2.5 mm. The stent length is preferably at least 10 mm, in particular at least 12 mm, in particular at least 14 mm, in particular at least 15 mm. A maximum length of the stent or a maximum stent length is preferably at most 150 mm, in particular at most 140 mm, in particular at most 130 mm, in particular at most 120 mm, in particular at most 100 mm, in particular at most 80 mm, in particular at most 60 mm, in particular at most 40 mm, in particular at most 20 mm.
E1 depth of penetration of first struts 11
Number | Date | Country | Kind |
---|---|---|---|
10 2009 041 025.2 | Sep 2009 | DE | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/EP2010/005625 | 9/14/2010 | WO | 00 | 4/6/2012 |