The invention relates to a medical implant being constructed of a fiber reinforced plastic. The medical implant is preferably an intervertebral cage for use in spinal repair work. Intervertebral cages are utilized to control and fix the spacing between vertebrae and are hollow so as to receive bone fragments which will grow and ultimately join the adjacent vertebrae together as though they were a single unit.
Intervertebral cages have been utilized for this purpose for many years. It is essential that they are hollow but strong enough so that they will never collapse. At the same time, the hollow interiors must have side top and hollow openings. The more bone fragments available and the greater the openings, the quicker vertebrae will be joined together.
The materials used for these cages are coated or uncoated titanium alloys or polymers with or without carbon reinforcement. The carbon composite polymer has two advantages over titanium and other materials used. On the one hand, its radiolucency allows the repair being monitored by standard radiographic methods. On the other, its modulus of elasticity and structure makes it possible to build an implant with stiffness very close to a specific bone. These mechanical characteristics protect the bone graft from degeneration and prevent stress under load.
It is important that an implant meets the following criteria: effectiveness, safety and quality. Effectiveness means that the implant is suitable for the use and the required biolomechanical function. Safety means that there is a minimal health risk for the patient. Quality means that the desired properties are predictable.
It is an object of this invention to provide an improved medical implant which provides a greater stability during a long term implantation and which meets nevertheless the biocompatibility criteria.
The invention permits the manufacture of a sturdy implant and particularly an intervertebral cage of increased strength. By judiciously selecting the orientation of the fibers within the various structural elements, an implant of increased strength can be obtained. The increased strength permits the manufacture of an implant and particularly a cage which has relatively thin but strong walls that will not collapse. A weight bearing structure is subjected to many multi-direction forces. These forces must be opposed with the appropriate strength and stiffness according to specific anatomical structure. The implant according to the present invention has fibers aligned in layers, wherein the fibers of at least two different layers having different orientation. The fibers are oriented in relationship to the requirements noted above and especially to oppose- the multi-direction forces. The fibers are long fibers as a long fiber is stronger than a short one. The fibers may be generally as long as a dimension of the implant. The fibers are not random oriented and are not chopped fibers. It has been demonstrated that bone can regenerate itself according to the physiological loads to which it is subjected. Therefore an implant which can minimise the load of a specific structure will help the regeneration of bone.
Another advantage of the invention described is that, unlike metal cages, there is little or no interference with diagnostic x-rays. Thus, the attending physician can observe postoperative progress much more accurately than with metal cages. It is an important advantage of the invention described, that the implant can be manufactured to meet the biomechanical properties and to resist the specific forces which act on the implant during a long term implantation. These biomechanical forces are rotation, three point bending, shear compression and traction. There may be also combined forces. By varying the orientation and length of the fibers the amount of flexibility and resistance desired can be controlled. In elderly people, the physician will normally select a cage of little flexibility and for younger patients, the physician might select a fiber orientation that permits a flexibility that is more closely associated with the flexibility of the bones of the patient involved.
Other advantages and features of the present invention will be apparent to those skilled in the art after reading the following specification with reference to the accompanying drawings.
The cage 10 shown in
A pair of interior struts 24 and 26 extend between the sides 12 and 14 and engage the solid part of walls between the side openings. Side 12 has openings 28, 30 and 32, and side 14 has openings 34, 36 and 38. Rear wall 18 has a threaded opening 39 to receive a positioning tool of a type well known to those skilled in the art. Partitions or struts 24 and 26 divide the cage 10 into three compartments or cavities 40, 42, and 44 as shown in
The cage 10 is constructed of a fiber composite. The composite is manufactured by embedding long and aligned fibers 50a and 50b into a matrix. The fibers are preferably carbon fibers and the matrix 51 is preferably PEEK (polyetheretherketone) or PEKEKK (polyetherketoneetherketonelcetone). PEKEKK is sometimes referred in the literature under the name Ultra-Pek. The fibers 50a and 50b are aligned in layers A and B. As
Number | Date | Country | Kind |
---|---|---|---|
01810202 | Feb 2001 | EP | regional |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/CH02/00111 | 2/26/2002 | WO | 00 | 3/23/2004 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO02/067822 | 9/6/2002 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
3875595 | Froning | Apr 1975 | A |
4309777 | Patil | Jan 1982 | A |
4401112 | Rezaian | Aug 1983 | A |
4501269 | Bagby | Feb 1985 | A |
4554914 | Kapp et al. | Nov 1985 | A |
4627853 | Campbell et al. | Dec 1986 | A |
4636217 | Ogilvie et al. | Jan 1987 | A |
4678470 | Nashef et al. | Jul 1987 | A |
4714469 | Kenna | Dec 1987 | A |
4743256 | Brantigan | May 1988 | A |
4759769 | Hedman et al. | Jul 1988 | A |
4834757 | Brantigan | May 1989 | A |
4863476 | Shepperd | Sep 1989 | A |
4878915 | Brantigan | Nov 1989 | A |
4932975 | Main et al. | Jun 1990 | A |
5015247 | Michelson | May 1991 | A |
5026373 | Ray et al. | Jun 1991 | A |
5055104 | Ray | Oct 1991 | A |
5059193 | Kuslich | Oct 1991 | A |
5062850 | MacMillan et al. | Nov 1991 | A |
5147402 | Bohler et al. | Sep 1992 | A |
5181930 | Dumbleton et al. | Jan 1993 | A |
5192327 | Brantigan | Mar 1993 | A |
5236460 | Barber | Aug 1993 | A |
5263953 | Bagby | Nov 1993 | A |
5429863 | McMillin | Jul 1995 | A |
5607424 | Tropiano | Mar 1997 | A |
6800092 | Williams et al. | Oct 2004 | B1 |
20020123750 | Eisermann et al. | Sep 2002 | A1 |
20040049270 | Gewirtz | Mar 2004 | A1 |
Number | Date | Country |
---|---|---|
2 727 003 | May 1996 | FR |
1 363 305 | Aug 1974 | GB |
Number | Date | Country | |
---|---|---|---|
20040158324 A1 | Aug 2004 | US |