Medical implant

Information

  • Patent Grant
  • 9050095
  • Patent Number
    9,050,095
  • Date Filed
    Monday, February 11, 2013
    11 years ago
  • Date Issued
    Tuesday, June 9, 2015
    9 years ago
Abstract
The invention relates to a medical implant in the form of an elongated helix wherein at least one part of the helix is preformed in such a manner that it has a secondary structure of identically sized loops which it assumes during implantation at the placement site, with said structure in turn forming at the placement site during implantation a polyhedral tertiary structure, and the polyhedron being provided with at least one additional loop.
Description
BACKGROUND

1. Field of the Invention


The invention relates to a medical implant in the form of an elongated helix wherein at least one part of the helix is preformed in such a manner that it has a secondary structure which it assumes during implantation at the placement site, with said structure in turn forming at the placement site during implantation a polyhedral tertiary structure, with each face of the polyhedron being built up by a loop.


The invention, furthermore, relates to a device for the implantation of such implants in body cavities and vessels.


2. Description of the Related Art


Known in the art is the use endovascular techniques for the occlusion of body cavities or vessels such as arteries, veins, fallopian tubes or vascular deformities such as, for example, vascular aneurysms. In this case, the closure element (also termed occlusion means) is usually introduced by means of an insertion aid through a catheter into the cavity to be occluded and deposited therein by means of one of various known techniques. The occlusion of the cavity finally is brought about by an embolus that forms as a result of the flow of blood slowing down in the cavity thus reduced in size or filled by the occlusion means.


It is furthermore known in the art to introduce a plurality of filamentous occlusion means, for the most part helixes or spirals of stainless steel or platinum alloys, into vascular aneurysms, with said means then assuming a random configuration and in this way occlude the aneurysm. The drawback of such a method is that the occlusion means often fill and stabilize the cavity only inadequately and it is quite difficult to foresee the behavior of said means when assuming their superimposed structures so that in the end the safety of the operation may be at risk as a ‘stiletto effect’ cannot be ruled out and may even entail wall ruptures.


SUMMARY OF THE INVENTION

In order to circumvent such disadvantages it is furthermore known to make use of occlusion means made of shape memory materials, said means assuming a defined secondary and/or tertiary structure when inserted into the cavity to be occluded.


With a view to most effectively filling vascular aneurysms and at the same time stabilizing the aneurysm wall it is thus known in this context from WO 01/93937 to use an occlusion means made of a material having shape memory properties, said means when inserted having the primary form of an elongated filament that upon being inserted into the aneurysm to be occluded develops into a secondary structure forming six loops of identical size which together build up a three-dimensional tertiary structure having the form of a cage or cube. Each of the loops thus forms a face of the spatial structure and in this way determines the size of the structure.


This principle is also known from WO 03/017852 which provides for implants that as soon as external constraints are removed assume a regular, meander-like secondary structure which in turn develops into a spatial tertiary structure taking for example the form of a geometric cage, cube, tetrahedron or prism.


Occlusion means of this kind are meant to stabilize the aneurysm wall so that further filamentous occlusion means can be inserted subsequently without running the risk of causing wall ruptures. Although such occlusion means may be viewed as an improvement compared to non-preformed occlusion means in that they provide increased safety of operation, imminent rupturing danger still exists however in areas of the aneurysm wall, in particular those adjacent to faces and vertices as well as edges of the polyhedrons, especially as a result of the occlusion helixes subsequently inserted into the aneurysm. Moreover, because of the largely openly configured tertiary structure of such occlusion means the subsequently inserted occlusion means or portions of such occlusion means can only be prevented from exiting through the neck of the aneurysm primarily in the case of small-neck aneurysms.


In view of the disadvantages associated with the state of the art it is thus the object of the invention to provide an implant that further reduces risks for patients when body cavities and vessels have to be occluded. Desirable characteristics in this context are an extensive and dense coverage of the wall of the aneurysm, close contact with the aneurysm wall, a reliable occlusion of the aneurysm neck and/or prevention of the ‘stiletto effect’.


According to the invention this objective is reached by providing a medical implant of the kind first mentioned above which is characterized in that the polyhedron is provided with at least one additional loop.


The invention is based on findings proving that when a higher packing density of the polyhedron is achieved through the provision or arrangement of additional loops the wall rupturing risk diminishes without the maneuverability of the implant during placement being impaired significantly. Preferably, the additional loops have a slightly smaller diameter than the loops building up the faces of the polyhedron.


In this case, the implant is preformed in such a manner that it assumes the desired secondary and tertiary structure after it has been released from the constraints of the catheter. For this purpose, an elastic biasing force is imprinted on the helix, but at least on the portion that forms the polyhedron, in a manner known through prior art techniques. Therefore, not before an external (thermal or mechanical) constraint is omitted does the implant abandon its elongated structure and forms into its predetermined three-dimensional tertiary structure. Such a mechanical constraint, for example, may be exerted by the catheter or a retaining element embracing or being situated within the helix. The thermal constraint may, for instance, be imposed by temperature conditions prevailing in the catheter that differ from those encountered in the blood stream. Means and interrelations of this kind are sufficiently known to competent persons skilled in the art.


With aid of inventive implants preformed in the described manner it is possible to achieve a dense and gentle filling of the cavity to be occluded without the wall of the cavity having to serve as an abutment when the desired three-dimensional structure is formed, which is the case with non-preformed implants. The risk of causing wall ruptures can thus be minimized.


Especially suited for the creation of such an elastic biasing force are materials having shape memory characteristics or materials having superelastic properties which are capable of undergoing a temperature- or stress-induced martensitic transformation or a combination of both. Other materials lacking shape memory properties such as, for example, platinum alloys, especially platinum-iridium and platinum-tungsten alloys, also lend themselves to the formation of the inventive implants.


In this context the additional loop or further loops may be arranged in the polyhedron on one or several faces of the polyhedron. For example, one or also several smaller sized loop(s) may thus be arranged within a face of the polyhedron formed by a larger loop. This leads to a denser packing of the polyhedron faces and minimizes the risk of the adjacent vessel or aneurysm walls becoming ruptured through additionally inserted filamentous occlusion means. Furthermore, the neck of the aneurysm can be better occluded in this way so that there is lower risk that additionally inserted filamentous occlusion means may exit.


The additional loop or further loops may also be arranged on the edges of the polyhedron to enable the polyhedron edges to become more densely packed which yields the advantages referred to above with respect to adjacent aneurysm areas.


Moreover, the additional loop or further loops may be arranged in areas of the vertices of the polyhedron to enable these vertex locations to become more densely packed which also yields advantages as described hereinbefore with respect to adjacent aneurysm areas.


The three above elucidated possibilities of arranging further loops are not necessarily facultatively with embodiments featuring more than one additional loop but may also be adopted in a cumulative manner to create packings of the polyhedron that are optimally adapted to the cavity to be occluded. The objective in this way is to obliterate the neck of the aneurysm to prevent the spirals from being flushed out.


As per an expedient embodiment of the inventive implant the polyhedron is a regular or a semi-regular polyhedron. In the event of a semi-regular polyhedron the faces themselves are also built up by differently sized loops. Furthermore, loops of even smaller size may be arranged within the smaller polyhedron faces formed by smaller loops so that the relevant faces can be provided with a denser packing. The above described steps aimed at achieving a denser packing in the areas of vertices and/or edges may expediently be adopted in this case as well.


It is seen as particularly expedient here if the polyhedron is a tetrahedron, a hexahedron (preferably a cube), an octahedron, a dodecahedron or an icosahedron. In the framework of the present invention a tetrahedron is especially preferred.


The loops may be provided in the form of closed or open loops. In a closed loop the proximal and distal ends of the filament portion forming the closed loop intersect whereas such intersection or crossing does not take place in open loops. Because of the increased stability of the tertiary structure formed by the loops it is considered advantageous if at least one and preferably all of the loops are closed loops.


According to another preferred embodiment the size relation between small and large loops ranges between 1:1.1 and 1:5, preferably 1:1.1 and 1:4 and especially preferred 1:1.1 and 1:2. The sizing depends, inter alia, on the arrangement of the loops at the faces/edges or vertices. The implant in this case may consist of loops of two or more different sizes. If two loops are arranged on one face the size relation as a rule ranges between 1:1.1 and 1:2 with the diameter serving as reference dimension.


As per another preferred embodiment the implant comprises more than one smaller loop. Particularly preferred in the interest of increasing the safety of operations by providing a higher packing density is a numerical relation between smaller and larger loops of at least 1:1.


With a numerical relation between smaller and larger loops of 1:1 it is preferred if the small and large loops are alternately arranged along the linear extension of the filament. This arrangement results in the safety of the treatment being further enhanced because it greatly improves the maneuverability and, surprisingly, enables the implanted filament to be partially retracted from the cavity and into the catheter for repositioning purposes during placement without canting, knots or failure of the filament occurring.


In accordance with an especially preferred embodiment a smaller closed loop is arranged in the polyhedron in each of the polyhedron faces formed by the large loops.


It is, furthermore, particularly beneficial if in the polyhedron between each of two adjacent loops forming the faces at least one smaller loop each (or may be even more loops) is arranged. The loops arranged between each of two adjacent loops forming the faces of the polyhedron are situated on the edges of the polyhedron in this case.


Moreover, it is especially advantageous if in all areas of the polyhedron where in each case at least three the faces forming loops adjoin at least one small loop each is arranged (or may be even more loops). The loops arranged between each of at least three adjacent loops forming the faces of the polyhedron are situated on the vertices of the polyhedron in this case.


It is, moreover, particularly expedient if the polyhedron is a tetrahedron, the faces of which being formed by one of the large loops each, with one smaller loop being located in each larger loop in this case as well.


As per another preferred embodiment the polyhedron is a tetrahedron, the faces of which being formed by one of the large loops each, with one smaller loop being located between each of two large loops at one edge of the tetrahedron each.


A preferred further embodiment relates to an inventive medical implant wherein the polyhedron is a tetrahedron, the faces of which being formed by one of the large loops each, with one smaller loop being located between each of three large loops at one vertex of the tetrahedron.


For the purpose of occluding aneurysms it is seen particularly expedient to use implants according to the invention, the polyhedrons of which have a diameter ranging between 0.5 and 30, preferably 1 and 25 and especially preferred between 2 and 20 and in particular between 3 and 18 mm.


It is furthermore advantageous if the polyhedron is of larger size than the volume of the body cavity (the so-called “therapeutic space”) for the filling of which it is meant. This so-called ‘oversizing’ serves to stabilize the implant in the cavity to be occluded and in this way prevents it from being displaced within or expelled in part or completely from the cavity. However, to prevent the thin-walled aneurysms from being ruptured it is nevertheless deemed expedient not to provide for too great a size of the polyhedron in relation to the relevant therapeutic space. It is therefore considered beneficial if the diameter of the polyhedron is not sized greater than 2.5, preferably 1.1 to 2 and especially preferred 1.2 to 1.5 times the diameter of the body cavity it shall fill.


The implant according to the invention is thus particularly suited for the occlusion of aneurysms having a therapeutic measure (that is a diameter) ranging between 0.4 and 40, preferably between 1.5 and 20 and in particular between 2 and 18 mm.


According to an expedient embodiment the filament (if only a portion of the filament is used to form the polyhedron than particularly this portion) in its extended state has a length of between 50 and 600 and preferably between 75 and 500 mm.


The inventive implant may comprise, for example, of a helix or spiral formed by means of at least a single wire or with the aid of a cable-like structure formed by means of at least two wires. Configurations in the form of a helix or spring or cable-like structure thus offer advantages in that an enlarged surface is provided for thrombozation purposes. To achieve the same purpose further configurations of the helix can be put to use that are conducive to a surface enlargement, for example providing said helix with fibers promoting the formation of thrombi.


The single or plurality of wires in this case expediently have a diameter ranging between 20 and 200, preferably between 30 and 100, especially preferred 50 and 70 and in particular between 55 and 65 .mu.m.


In accordance with an expedient embodiment the helix or spiral has an internal lumen that is closed off at least at the distal end. At the proximal end the lumen may be open or closed. A lumen open towards the proximal end is, for instance, expedient if a removable retaining element is arranged in the inner lumen of the filament, said element preventing the previously imprinted secondary and tertiary structure to be assumed as long as it is located inside the implant. Such a retaining element has been disclosed via publication WO 03/041615, with express reference being made here to its disclosure content.


It is, furthermore, expedient if the helix has an outer diameter of between 0.1 and 0.5, preferably between 0.2 and 0.35 and especially preferred between 0.24 and 0.28 mm. The helix in this case is preferably designed as micro-helix or micro-spring comprising one or several wires or as a cable-like structure consisting of more than one wire braided or twisted together.


As per a further expedient embodiment at least one of the wires forming the helix or the wire forming the helix is made of a platinum alloy, preferably a platinum-iridium or a platinum-tungsten alloy or a metal alloy having shape memory properties.


It may be expedient if a filamentous shaping element made of a metal alloy having shape memory properties passes through the helix along its longitudinal axis. The shaping element serves to bring about the secondary and tertiary structure of the implant having left the catheter. In this embodiment the filament having been released from the catheter adapts to the predetermined shape of the shaping element which enables the envisaged three-dimensional tertiary structure to be formed. Such a shaping element, for example, has been disclosed in publication WO 03/017852, with explicit reference being made here to its disclosure content.


This embodiment provides for the helix to be expediently designed as cable comprising several wires, one of which being the shaping element, and, especially preferred, as spiral or helix through which inner lumen the shaping element, preferably a wire, extends. It is, furthermore, considered expedient with this embodiment if the spiral or helix or, in case the design provides for a cable, those parts of the cable which do not form the shaping element, are made of a material that does not have shape memory properties. Particularly expedient in this case is a platinum-iridium alloy.


The alloy having shape memory properties in this case is preferably a titanium- and nickel-containing alloy (also known under the name of nitinol), an iron-based or copper-based alloy.


According to another preferred embodiment the filamentous shaping element extending along the longitudinal axis of the helix has a tapered portion situated in its distal end area. In this area said shaping element thus has a diameter smaller than the element diameter in proximal direction. Such a distal tapered portion causes the shaping element to be softer and less stiff so that traumatizing risks are less imminent in the event the distal end of the shaping element comes into contact with the wall of the aneurysm. Said distally arranged tapered section is provided because it was found that the total stiffness of a helix through which a filamentous shaping element extends is for the main part due to the shaping element and only to a lesser extent to the helix itself. The taper may, for example, extend from the distal tip over a length of approx. 20 mm and may have an incremental slope, but preferably a continuous slope. All in all, the diameter of the shaping element up to its distal tip preferably reduces to approx. 25 to 50% of the diameter existing in the remaining area.


Another expedient embodiment relates to an inventive medical implant wherein a filamentous retaining element made of a polymer material (in particular a polyester or polyamide) or a metal wire without shape memory properties (in particular a medical stainless steel wire) passes through the helix along its longitudinal axis. The retaining element in this case serves to maintain the elongated configuration (in this case the retaining element expediently is made and consists of a metal wire, especially in combination with a helix made of a shape memory material) or secure the helix preventing it from being torn off during placement, in particular when repositioning is required. In the latter case, provision of the retaining element made of a polymer material and of the helix made of a shape memory material or a platinum-tungsten alloy is deemed particularly expedient. Because of its good supporting qualities instrumental in improving the slidability of the implant using a platinum-tungsten alloy material for the helix is especially preferred.


The present invention, furthermore, relates to a device for the placement of implants into body vessels and cavities with an implant in accordance with the invention and an insertion aid which is detachably connected to the proximal end of the implant.


The insertion aid in this case is preferably designed as a guide wire which expediently and at least in part has the form of a helix or spring. The dimensioning and selection of suitable materials is sufficiently known to competent persons skilled in the art. For this purpose and by way of example explicit reference is made to the disclosure content of publications WO 03/017852 and WO 03/041615.


If the inventive implant is provided with a removable retaining element it has, expediently, the form of an open tube through which the retaining element can be introduced in and removed from the implant.


For the purpose of placing the implant into the cavity to be occluded implant and insertion aid are expediently connected with each other by means of a severance module. For electrolytic placement of the implant the severance module is expediently provided with an electrolytically corrodible spot made of a suitable material, for example a corrodible steel alloy.


Moreover, in the implant according to the invention one or more additional severance modules may be provided and arranged in the helix proximal to the portion forming the polyhedron. This enables the inner hollow space of the polyhedron to be filled immediately after it has been placed into the body cavity to be occluded. The filament segment arranged between polyhedron and severance module may be elastically preformed itself so that it is capable of assuming or taking up a defined form or position within the polyhedron. Arranging several severance modules of this kind inside the helix enables helix segments that can be variably sized to be introduced into the polyhedron lumen. For electrolytic placement of the implant the severance module is expediently provided with an electrolytically corrodible spot or location.


It is also viewed expedient if the device in accordance with the invention also comprises a catheter, a voltage source and a cathode, with the implant serving as anode and being longitudinally movable in the catheter, and with the connection between implant and insertion aid (preferably the severance module) having an electrolytically corrodible location so that the implant can be detached by electrolytic processes when in contact with a body fluid.


In the interest of high resistance against fracture or breaking and at the same time aiding the detachment process the severance module has a diameter ranging between 30 and 150, preferably between 40 and 120 and especially preferred between 50 and 100 .mu.m. The electrolytically corrodible location in this case may have a smaller diameter than the adjacent proximal and distal areas of the severance module (the severance module in this case tapers off towards the electrolytically corrodible spot).


The severance module is expediently provided with a proximal and a distal helix as well as a segment arranged in between, with the helixes consisting of a material whose susceptibility to electrolytic corrosion is lower than that of the interposed segment. Suitable and expedient material combinations are noble metals or noble metal alloys, preferably platinum or platinum alloys for the proximal helix or distal helix and stainless steel (e.g. grades AISI 301, 303 or 316 as well as subgroups thereof or N-alloyed austenitic steel of stainless quality grade, preferably from the group of pressure-nitrided steels) for the interposed segment. Material combinations of this type are also known from WO 03/017852 to which reference is made here.


In accordance with an advantageous embodiment of the inventive device the severance module is non-detachably connected to the implant and the insertion aid by welding, soldering, bonding or mechanical joining processes, particularly by force- or form-closing methods in a manner known to persons skilled in the art.


As per another advantageous configuration of the inventive device the insertion aid is surrounded, at least in part, by an electrically insulating shrunk-on sleeve or an electrically insulating coating.


Moreover, the purpose of the invention can be most beneficially accomplished with the aid of a helix, the loops of which forming the faces of a dodecahedron, in particular a regular pentagonal dodecahedron. Due to the plurality of faces—twelve altogether—a very dense coverage of the wall is achieved so that, as the case may be, even without additional loops the aneurysm wall can be widely covered and an extensive obliteration of the neck of the aneurysm be brought about.


The helix designed and preformed so as to yield the shape of a pentagonal dodecahedron thus forms a flexible skeleton covering and protecting the wall, with said skeleton being capable of accommodating and retaining further helixes serving occlusion purposes. In this case further loops often need no longer be arranged additionally on faces, edges or vertices. In this respect, measures promoting the sliding behavior aimed at counteracting patient traumatizing risks can largely be dispensed with.


Arranging the proximal end of the helix forming the pentagonal dodecahedron on a vertex or corner point was found to be particularly beneficial. Since the neck of the aneurysm is usually located within a face of the polyhedron this makes it difficult for the last-inserted portion of the helix to slip out of the neck and helps to prevent the helix from being flushed out which anyway is improbable due to the plurality of the faces, the close contact with the wall of the aneurysm and the strain that as a rule prevails inside the aneurysm. The distal end of the helix is preferably arranged in a face and is the point where the first loop starts; advantageously here is a mainly atraumatic supporting location on a side facing away from the neck of the aneurysm.





BRIEF DESCRIPTION OF THE DRAWINGS

The invention is now described by way of examples as follows with reference being made to the figures showing the respective embodiments.



FIG. 1 shows the enlarged representation of a cube-shaped implant 1 of the state of the art;



FIGS. 2
a and 2b are the enlarged representations of an inventive implant 1′ with smaller closed-loops 8 arranged in the tetrahedron faces 2′;



FIG. 3 is the enlarged representation of an inventive implant 1′ with smaller closed-loops 8 arranged in the tetrahedron faces 2′, shown as development of a ball;



FIGS. 4
a and 4b are the enlarged representations of an inventive implant 1′ with smaller closed-loops 8 arranged at the vertices 4′ of a tetrahedron 6;



FIG. 5 is the enlarged schematic representation of an inventive implant 1′ with smaller closed-loops 8 arranged at the vertices 4′ of a tetrahedron 6, shown as development of a ball;



FIG. 6 is the enlarged vertical section of the inventive implant 1′ positioned in an aciniform aneurysm 13;



FIG. 7 is the schematic representation of a development of an inventive implant in the form of a pentagonal dodecahedron; and



FIG. 8 shows the taper provided in the distal end area of a filamentous shaping element.





DETAILED DESCRIPTION


FIG. 1 represents a cube-shaped implant 1 of enlarged size reflecting the state of the art. The open configuration, especially of the faces 2 and vertex areas 4, but also of edges 3, is to be seen as a weak point of such implants 1 because the aneurysm wall in contact with them is particularly prone to rupture. In addition, the insufficient packing density of the implant 1 in the vicinity of said areas 2, 3 and 4 only prevents to a minor extent implants subsequently placed for the purpose of filling the inner hollow space 5 from being expelled again.



FIG. 2 shows two views 2a and 2b of a tetrahedron-shaped implant 1′ according to the invention, said implant having assumed its three-dimensional tetrahedral tertiary structure. The faces 2′ of tetrahedron 6 are built up by two uniformly sized large loops 7, two of which in each case being adjacently positioned, with the projections of the large loops 7 extending into the space constituted by the sectional areas of two neighboring large loops 7 each forming the imaginary edges 3′ of tetrahedron 6.


In each of faces 2′ a loop 8 of smaller size is arranged. By this arrangement the packing density of the tetrahedron 6 in the area of faces 2′ is increased, which significantly improves the safety against rupturing dangers to which the adjoining aneurysm wall is exposed when implant segments or further implants are subsequently inserted or placed. The high packing density thus achieved in faces 2′ moreover prevents in particular subsequently inserted implant segments or subsequently inserted additional implants meant to fill the inner hollow space 5′ from being forced out again through the neck of the aneurysm. For that reason the implant 1′ according to the invention is particularly suited as well to the therapeutic occlusion of wide-neck aneurysms the treatment of which, as is known, is especially difficult as a rule.


Besides, the arrangement of the smaller loops 8 slightly raised above the projection plane of the tetrahedron faces 2′ formed by the large loops 7 enables the implant 1′ to be particularly well secured in the aneurysm, with special reference in this context being made to FIG. 2a.


Filament 9 forming the tetrahedron 6 is a micro-helix having a diameter of 0.26 mm and consisting of a platinum-iridium wire which has a diameter of 60 .mu.m. A nitinol wire extends through the inner hollow space of the micro-helix, said wire being non-detachably connected at the proximal and distal end to filament 9 and due to its elastic biasing force imprinting on the helix 9 the tetrahedral tertiary structure after said helix has been released from the catheter.



FIG. 3 represents the secondary structure of the tetrahedron shown in FIG. 2 in the form of a development of a ball making use of 4 radial sections 10 to 10″′. The loops 7/8 themselves are of roughly circular shape and having assumed their predetermined spatial configuration form a regular tetrahedron. Along the longitudinal axis of helix 9 the large 7 and the small loops 8 are arranged alternately, with the small loops 8 being placed inside the large loops 7 in the secondary structure. The proximal and the distal ends of filament 9 are identified by reference number 11 and, respectively, 12.



FIG. 4 shows two views 4a and 4b of a tetrahedron-shaped implant 1′ according to the invention, said implant having assumed its three-dimensional tertiary structure. The faces 2′ of tetrahedron 6 are built up by uniformly sized large loops 7 of which two each are positioned adjacent to each other and thus form by way of their projections the imaginary edges 3′ of tetrahedron 6. At the location where the projection of three adjoining large loops 7 each intersects there are the vertices 4′ of the tetrahedron, with one smaller sized loop 8 each being arranged at said vertices. Since the smaller loops 8 are arranged below the imaginary points of intersection the tetrahedron 6 in this case has a more rounded shape deviating from an ideal geometric tetrahedron shape. By this arrangement the packing density of the tetrahedron 6 in the area of vertices 4′ is increased, which significantly improves the safety against rupturing dangers to which the adjacent aneurysm wall is exposed when implant segments or further implants are subsequently inserted or placed. Aside from this, the rounded tetrahedral shape thus formed will more favorably adapt to the organic structure of aneurysm lumens to be filled than could be accomplished with an ideal geometric tetrahedron. The high packing density thus achieved at vertices 4′ moreover prevents in particular implant segments or additional implants subsequently inserted or placed for the purpose of filling the inner hollow space 5′ from being forced out again through the neck of the aneurysm.


The helix 9 forming the tetrahedron 6 is a micro-helix having a diameter of 0.26 mm and consisting of a platinum-iridium wire which has a diameter of 60 .mu.m. A polymer thread or a thread made of a nickel-titanium alloy extends through the inner hollow space of the micro-helix, with said thread being fixed at the proximal and distal end of the helix 9 and prevents the helix 9 from being torn off during the placement or repositioning. On the platinum-iridium wire an elastic biasing force has been imprinted which forces it into its preformed tetrahedral configuration as soon as the mechanical constraint caused by the catheter has been omitted. Although the platinum-iridium alloy used has no shape-memory properties it greatly improves the slidability of the helix during placement on account of its excellent supporting characteristics.



FIG. 5 by way of 4 radial sections 10 to 10′″ represents the secondary structure of the tetrahedron shown in FIG. 4 in the form of the development of a ball. The loops 7/8 themselves are of roughly circular shape and having assumed their predetermined spatial configuration form a regular tetrahedron. Along the longitudinal axis of helix 9 the large 7 and the small loops 8 are arranged alternately, with the small loops 8 being placed between the large loops 7. The proximal and the distal ends of helix 9 are identified by reference number 11 and, respectively, 12.


In FIG. 6 an implant 1′ according to the invention is illustrated that is placed into an aciniform aneurysm 13, said implant forming into a tetrahedron 6 as tertiary structure. By arranging the smaller loops 8 in the area of the faces 2′ of the tetrahedron 6 built up by the large loops 7 a higher packing density of the tetrahedron faces 2′ is achieved. This not only reduces the danger of a wall rupture but also and in particular prevents additionally inserted implants (not shown here) from exiting through the neck of the aneurysm 14. This configuration even enables aneurysms exhibiting medium-sized necks 14 as illustrated here to be occluded without having to employ stents. It is particularly expedient here if the implant 1′ as shown is positioned in such a way that one of the tightly packed face areas 2′ of the tetrahedron 6 is situated at or above the aneurysm neck 14.


The tetrahedral tertiary structure is excellently suited for the occlusion of large aneurysms, for example of an aneurysm 13 as shown here having a therapeutic dimension of 10 min in diameter. Since the tetrahedron 6 has a diameter of 12 mm it secures itself firmly inside the aneurysm 13 during placement when forming into its tertiary structure such that the tension thus built up prevents it from slipping out of the aneurysm 13. Such an “oversizing” offers advantages particularly for the treatment of wide-neck aneurysms because customary implants are not sufficiently secured inside of them to make sure they cannot exit or be expelled.


With the help of a micro-catheter the implant 1′ with the distal portion 12 of the helix 9 in front was moved through the blood vessel 15 into the aneurysm 13 where, when discharged from the catheter, it assumed the illustrated three-dimensional tertiary structure on account of a mixed stress- and temperature-induced martensitic transformation of the nitinol wire accommodated in the micro-helix 9 consisting of a platinum-iridium alloy. After checking the correct positioning under radiographic control by employing customary state-of-the-art methods the implant was detached electrolytically from the insertion aid designed in the form of a guide wire. For this purpose and with the aid of a source of electrical power a voltage was applied for a period of 0.1 to 20 minutes to the cathode positioned on the body surface and to the implant 1′ acting as anode and being placed in the aneurysm 13 to be occluded. Applying this voltage resulted in the implant 1′ becoming electrolytically detached due to electrolytic corrosion taking place at the electrolytically corrodible location in the severance module arranged between the guide wire and the filament 9. Said severance module is of particularly robust design and has a relatively large diameter of 100 .mu.m to yield a high margin of safety preventing kinking or buckling when the implant 1 is positioned. Finally, the guide wire was retracted into the catheter and then removed from the system together with the catheter.



FIG. 7 is a schematic view of the development of a pentagonal dodecahedron and the extension of a micro-helix 9 designed to form into a pentagonal dodecahedron. The individual faces F1 to F12 of the polyhedron are defined by the loops of the micro-helix. In this case the distal end of the micro-helix 9 is located on a face F12 whereas the proximal end enters the body at a vertex or corner point between F1/F2/F3.



FIG. 8 eventually shows as schematic representation the tapered portion of the distal end 17 of a filamentous shaping element 16 reducing to approx. 50% of the diameter.

Claims
  • 1. A method of manufacturing a three-dimensional medical implant comprising: attaching an elongated helix on a ball forming structure, the ball forming structure comprising at least four radial sections configured for forming loops;forming at least one part of the helix to define a secondary structure comprising a first face loop, a second face loop, a third lace loop and a fourth face loop, the first, second, third and fourth face loops of substantially identical size,biasing said secondary structure to form a polyhedral tertiary structure, the polyhedral tertiary structure comprising a polyhedron, wherein the faces of the polyhedron are built up by the first face loop, the second lace loop, the third face loop and the fourth face loop; andforming at least one additional loop disposed on one of the groups consisting of (a) a polyhedron face and coplanar to the plane of at least one face loop, (b) polyhedron edge, and (c) a polyhedron vertex, the at least one additional loop configured for reducing the risk of tissue damage at the placement site,wherein the at least one additional loop is smaller than the first face loop.
  • 2. The method according to claim 1, wherein the polyhedron is selected from the group consisting of a tetrahedron, a hexahedron, an octahedron, a dodecahedron, a pentagonal dodecahedron, and an icosahedron.
  • 3. The method according to claim 1, wherein the at least one additional loop is a closed loop.
  • 4. The method according to claim 1, further comprising forming multiple additional loops coplanar to the plane of at least one of the first, second and third loops of the polyhedron, wherein each additional loop is smaller than its corresponding larger face loop forming the polyhedron face.
  • 5. The method according to claim 1, wherein the face loops are closed loops alternately arranged in a linear extension of the elongated helix.
  • 6. The method according to claim 1, wherein the elongated helix has an outside diameter ranging between 0.1 and 0.5 mm.
  • 7. The method according to claim 1, wherein at least one of the wires forming the elongated helix comprises one of a platinum-iridium and platinum-tungsten alloy having shape memory properties.
  • 8. The method according to claim 1, further comprising temporarily attaching said elongated helix to at least one severance module provided with an electrolytically corrodible location which is arranged in the elongated helix proximally to a portion thereof forming the polyhedron.
  • 9. The method according to claim 1, further comprising: inserting said elongated helix in a catheter; andattaching said elongated helix to an insertion aid which is detachably connected to a proximal end of the implant.
  • 10. A method of manufacturing a three-dimensional medical implant comprising: attaching an elongated helix on a ball forming structure, the ball forming structure comprising at least four radial sections configured for forming loops;forming at least one part of the helix to define a secondary structure comprising at least four face loops of substantially identical size,biasing said secondary structure to form a polyhedral tertiary structure, the polyhedral tertiary structure comprising a polyhedron, wherein the at least four loops establish faces of the polyhedron; andforming at least one additional loop disposed on one of the groups consisting of (a) a polyhedron face and coplanar with the polyhedron face, (b) polyhedron edge, and (c) a polyhedron vertex, the at least one additional loop configured for reducing the risk of tissue damage at the placement site,wherein the at least one additional loop is smaller than the at least four face loops.
  • 11. The method according to claim 10, wherein the polyhedron is selected from the group consisting of a tetrahedron, a hexahedron, an octahedron, a dodecahedron, a pentagonal dodecahedron, and an icosahedron.
  • 12. The method according to claim 10, wherein the at least one additional loop is a closed loop.
  • 13. The method according to claim 10, further comprising forming multiple additional loops coplanar to the plane of at least one of the face loops of the polyhedron, wherein each additional loop is smaller than its corresponding larger face loop forming the polyhedron face.
  • 14. The method according to claim 10, wherein the face loops are closed loops alternately arranged in a linear extension of the elongated helix.
  • 15. The method according to claim 10, wherein the elongated helix has an outside diameter ranging between 0.1 and 0.5 mm.
  • 16. The method according to claim 10, wherein at least one of the wires forming the elongated helix comprises one of a platinum-iridium and platinum-tungsten alloy having shape memory properties.
  • 17. The method according to claim 10, further comprising temporarily attaching said elongated helix to at least one severance module provided with an electrolytically corrodible location which is arranged in the elongated helix proximally to a portion thereof forming the polyhedron.
  • 18. The method according to claim 10, wherein face loops and smaller additional loops are formed in a numerical proportion of approximately 1:1.
  • 19. The method according to claim 10, wherein at least one additional loop is formed in the polyhedron between two adjacent large loops.
  • 20. The method according to claim 10, wherein at least one additional loop is formed in the polyhedron between three adjacent large loops.
CROSS-REFERENCE TO RELATED APPLICATIONS

This application is a divisional of U.S. application Ser. No. 12/981,286, filed Dec. 29, 2010, which is incorporated in its entirety by reference, herein, and which is a continuation of U.S. application Ser. No. 11/575,798, filed May 1, 2008, which is incorporated in its entirety by reference, herein, and which is a national phase application of International Application No. PCT/EP2004/010610, filed on Sep. 22, 2004 and published in German on Mar. 30, 2006 as WO 2006/032289 A1, which is incorporated in its entirety by reference, herein.

US Referenced Citations (545)
Number Name Date Kind
3334629 Colm Aug 1967 A
3834394 Hunter et al. Sep 1974 A
4085757 Pevsner Apr 1978 A
4282875 Serbinenko et al. Aug 1981 A
4311146 Wonder Jan 1982 A
4327734 White, Jr. May 1982 A
4341218 U Jul 1982 A
4346712 Handa et al. Aug 1982 A
4364392 Strother et al. Dec 1982 A
4402319 Handa et al. Sep 1983 A
4441495 Hicswa Apr 1984 A
4494531 Gianturco Jan 1985 A
4517979 Pecenka May 1985 A
4545367 Tucci Oct 1985 A
4638803 Rand Jan 1987 A
4719924 Crittenden et al. Jan 1988 A
4735201 O'Reilly Apr 1988 A
4745919 Bundy et al. May 1988 A
4781177 Lebigot Nov 1988 A
4787899 Lazarus Nov 1988 A
4819637 Dormandy, Jr. et al. Apr 1989 A
4832055 Palestrant May 1989 A
4932419 de Toledo Jun 1990 A
4944746 Iwata et al. Jul 1990 A
4957501 Lahille et al. Sep 1990 A
4990155 Wilkoff Feb 1991 A
4994069 Ritchart et al. Feb 1991 A
5002556 Ishida et al. Mar 1991 A
5026377 Burton et al. Jun 1991 A
5035706 Giantureo et al. Jul 1991 A
5037427 Harada et al. Aug 1991 A
5062829 Pryor et al. Nov 1991 A
5104399 Lazarus Apr 1992 A
5108407 Geremia et al. Apr 1992 A
5109867 Twyford, Jr. May 1992 A
5122136 Guglielmi et al. Jun 1992 A
5133731 Butler et al. Jul 1992 A
5133732 Wiktor Jul 1992 A
5147370 McNamara et al. Sep 1992 A
5167624 Butler et al. Dec 1992 A
5181921 Makita et al. Jan 1993 A
5192301 Kamiya et al. Mar 1993 A
5211658 Clouse May 1993 A
5217484 Marks Jun 1993 A
5222970 Reeves Jun 1993 A
5224953 Morgentaler Jul 1993 A
5226911 Chee et al. Jul 1993 A
5234437 Sepetka Aug 1993 A
5250071 Palermo Oct 1993 A
5256146 Ensminger et al. Oct 1993 A
5261916 Engelson Nov 1993 A
5263964 Purdy Nov 1993 A
5304194 Chee et al. Apr 1994 A
5304195 Twyford, Jr. et al. Apr 1994 A
5312415 Palermo May 1994 A
5314472 Fontaine May 1994 A
5334210 Gianturco Aug 1994 A
5350397 Palermo et al. Sep 1994 A
5354295 Guglielmi et al. Oct 1994 A
5368592 Stern et al. Nov 1994 A
5382259 Phelps et al. Jan 1995 A
5382260 Dormandy, Jr. et al. Jan 1995 A
5382261 Palmaz Jan 1995 A
5397345 Lazarus Mar 1995 A
5417708 Hall et al. May 1995 A
5423829 Pham et al. Jun 1995 A
5423849 Engelson et al. Jun 1995 A
5443454 Tanabe et al. Aug 1995 A
5443478 Purdy Aug 1995 A
5456693 Conston et al. Oct 1995 A
5476472 Dormandy, Jr. et al. Dec 1995 A
5480382 Hammerslag et al. Jan 1996 A
5498227 Mawad Mar 1996 A
5507769 Marin et al. Apr 1996 A
5522822 Phelps et al. Jun 1996 A
5522836 Palermo Jun 1996 A
5527338 Purdy Jun 1996 A
5536274 Neuss Jul 1996 A
5540680 Guglielmi et al. Jul 1996 A
5549624 Mirigian et al. Aug 1996 A
5556426 Popadiuk et al. Sep 1996 A
5562698 Parker Oct 1996 A
5569245 Guglielmi et al. Oct 1996 A
5573520 Schwartz et al. Nov 1996 A
5578074 Mirigian Nov 1996 A
5582619 Ken Dec 1996 A
5601600 Ton Feb 1997 A
5624449 Pham et al. Apr 1997 A
5624461 Mariant Apr 1997 A
5626599 Bourne et al. May 1997 A
5634928 Fischell et al. Jun 1997 A
5639277 Mariant et al. Jun 1997 A
5643254 Scheldrup et al. Jul 1997 A
5645558 Horton Jul 1997 A
5645564 Northrup et al. Jul 1997 A
5649949 Wallace et al. Jul 1997 A
5658308 Snyder Aug 1997 A
5662700 Lazarus Sep 1997 A
5669905 Scheldrup et al. Sep 1997 A
5669931 Kupiecki et al. Sep 1997 A
5690666 Berenstein et al. Nov 1997 A
5690667 Gia Nov 1997 A
5690671 McGurk et al. Nov 1997 A
5693067 Purdy Dec 1997 A
5695517 Marin et al. Dec 1997 A
5700258 Mirigian et al. Dec 1997 A
5702361 Evans et al. Dec 1997 A
5718711 Berenstein et al. Feb 1998 A
5725534 Rasmussen Mar 1998 A
5725546 Samson Mar 1998 A
5725552 Kotula et al. Mar 1998 A
5733329 Wallace et al. Mar 1998 A
5743905 Eder et al. Apr 1998 A
5746734 Dormandy, Jr. et al. May 1998 A
5746769 Ton et al. May 1998 A
5749891 Ken et al. May 1998 A
5749894 Engelson May 1998 A
5749918 Hogendijk et al. May 1998 A
5759161 Ogawa et al. Jun 1998 A
5766219 Horton Jun 1998 A
5797953 Tekulve Aug 1998 A
5800426 Taki et al. Sep 1998 A
5800453 Gia Sep 1998 A
5800454 Jacobsen et al. Sep 1998 A
5800455 Palermo et al. Sep 1998 A
5814062 Sepetka et al. Sep 1998 A
5830230 Berryman et al. Nov 1998 A
5833705 Ken et al. Nov 1998 A
5843118 Sepetka et al. Dec 1998 A
5846210 Ogawa et al. Dec 1998 A
5851206 Guglielmi et al. Dec 1998 A
5853418 Ken et al. Dec 1998 A
5855578 Guglielmi et al. Jan 1999 A
5891058 Taki et al. Apr 1999 A
5891128 Gia et al. Apr 1999 A
5891130 Palermo et al. Apr 1999 A
5891155 Irie Apr 1999 A
5891192 Murayama et al. Apr 1999 A
5895385 Guglielmi et al. Apr 1999 A
5895391 Farnholtz Apr 1999 A
5895410 Forber et al. Apr 1999 A
5895411 Irie Apr 1999 A
5911731 Pham et al. Jun 1999 A
5911737 Lee et al. Jun 1999 A
5916235 Guglielmi Jun 1999 A
5919187 Guglielmi et al. Jul 1999 A
5925037 Guglielmi et al. Jul 1999 A
5925059 Palermo et al. Jul 1999 A
5925060 Forber Jul 1999 A
5925062 Purdy Jul 1999 A
5928226 Guglielmi et al. Jul 1999 A
5935145 Villar et al. Aug 1999 A
5935148 Villar et al. Aug 1999 A
5941249 Maynard Aug 1999 A
5941888 Wallace et al. Aug 1999 A
5944714 Guglielmi et al. Aug 1999 A
5944733 Engelson Aug 1999 A
5947962 Guglielmi et al. Sep 1999 A
5947963 Guglielmi Sep 1999 A
5957948 Mariant Sep 1999 A
5964797 Ho Oct 1999 A
5972019 Engelson et al. Oct 1999 A
5976126 Guglielmi Nov 1999 A
5976131 Guglielmi et al. Nov 1999 A
5976152 Regan et al. Nov 1999 A
5976162 Doan et al. Nov 1999 A
5980514 Kupiecki et al. Nov 1999 A
5980550 Eder et al. Nov 1999 A
5980554 Lenker et al. Nov 1999 A
5984929 Bashiri et al. Nov 1999 A
5984944 Forber Nov 1999 A
5989242 Saadat et al. Nov 1999 A
6001092 Mirigian et al. Dec 1999 A
6004338 Ken et al. Dec 1999 A
6010498 Guglielmi Jan 2000 A
6013084 Ken et al. Jan 2000 A
6015424 Rosenbluth et al. Jan 2000 A
6017364 Lazarus Jan 2000 A
6017977 Evans et al. Jan 2000 A
6019757 Scheldrup Feb 2000 A
6019779 Thorud et al. Feb 2000 A
6022369 Jacobsen et al. Feb 2000 A
6024754 Engelson Feb 2000 A
6024765 Wallace et al. Feb 2000 A
6030413 Lazarus Feb 2000 A
6033423 Ken et al. Mar 2000 A
6039749 Marin et al. Mar 2000 A
6056770 Epstein et al. May 2000 A
6059779 Mills May 2000 A
6059815 Lee et al. May 2000 A
6063070 Eder May 2000 A
6063100 Diaz et al. May 2000 A
6063104 Villar et al. May 2000 A
6066133 Guglielmi et al. May 2000 A
6066149 Samson et al. May 2000 A
6068644 Lulo et al. May 2000 A
6074407 Levine et al. Jun 2000 A
6077260 Wheelock et al. Jun 2000 A
D427680 Mariant et al. Jul 2000 S
6083220 Guglielmi et al. Jul 2000 A
6086577 Ken et al. Jul 2000 A
6090125 Horton Jul 2000 A
6093199 Brown et al. Jul 2000 A
6096034 Kupiecki et al. Aug 2000 A
6096546 Raskin Aug 2000 A
6102917 Maitland et al. Aug 2000 A
6102932 Kurz Aug 2000 A
6102933 Lee et al. Aug 2000 A
6113622 Hieshima Sep 2000 A
6117142 Goodson et al. Sep 2000 A
6117157 Tekulve Sep 2000 A
6123714 Gia et al. Sep 2000 A
6126672 Berryman et al. Oct 2000 A
6136015 Kurz et al. Oct 2000 A
6143007 Mariant et al. Nov 2000 A
6146373 Cragg et al. Nov 2000 A
6149664 Kurz Nov 2000 A
6149681 Houser et al. Nov 2000 A
6156061 Wallace et al. Dec 2000 A
6159165 Ferrera et al. Dec 2000 A
6159206 Ogawa Dec 2000 A
6165178 Bashiri et al. Dec 2000 A
6165193 Greene, Jr. et al. Dec 2000 A
6165198 McGurk et al. Dec 2000 A
6168570 Ferrera Jan 2001 B1
6168592 Kupiecki et al. Jan 2001 B1
6168610 Marin et al. Jan 2001 B1
6168615 Ken et al. Jan 2001 B1
6168622 Mazzocchi Jan 2001 B1
6171326 Ferrera et al. Jan 2001 B1
6183491 Lulo Feb 2001 B1
6183495 Lenker et al. Feb 2001 B1
6187024 Boock et al. Feb 2001 B1
6187027 Mariant et al. Feb 2001 B1
6190373 Palermo et al. Feb 2001 B1
6193708 Ken et al. Feb 2001 B1
6193728 Ken et al. Feb 2001 B1
RE37117 Palermo Mar 2001 E
6202261 Moore et al. Mar 2001 B1
6203547 Nguyen et al. Mar 2001 B1
6221066 Ferrera et al. Apr 2001 B1
6221086 Forber Apr 2001 B1
6224610 Ferrera May 2001 B1
6231573 Amor et al. May 2001 B1
6231586 Mariant May 2001 B1
6231590 Slaikeu et al. May 2001 B1
6231597 Deem et al. May 2001 B1
6238403 Greene, Jr. et al. May 2001 B1
6238415 Sepetka et al. May 2001 B1
6241691 Ferrera et al. Jun 2001 B1
6254592 Samson et al. Jul 2001 B1
6270495 Palermo Aug 2001 B1
6277125 Barry et al. Aug 2001 B1
6277126 Barry et al. Aug 2001 B1
6280457 Wallace et al. Aug 2001 B1
6281263 Evans et al. Aug 2001 B1
6287315 Wijeratne et al. Sep 2001 B1
6287318 Villar et al. Sep 2001 B1
6293960 Ken Sep 2001 B1
6296622 Kurz et al. Oct 2001 B1
6299619 Greene, Jr. et al. Oct 2001 B1
6299627 Eder et al. Oct 2001 B1
6306153 Kurz et al. Oct 2001 B1
6312405 Meyer et al. Nov 2001 B1
6312421 Boock Nov 2001 B1
6315709 Garibaldi et al. Nov 2001 B1
6319267 Kurz Nov 2001 B1
6322576 Wallace et al. Nov 2001 B1
6328750 Berry et al. Dec 2001 B1
6331184 Abrams Dec 2001 B1
6335384 Evans et al. Jan 2002 B1
6338736 Boosfeld et al. Jan 2002 B1
6344041 Kupiecki et al. Feb 2002 B1
6344048 Chin et al. Feb 2002 B1
6346091 Jacobsen et al. Feb 2002 B1
6346117 Greenhalgh Feb 2002 B1
6348041 Klint Feb 2002 B1
6361547 Hieshima Mar 2002 B1
6364823 Garibaldi et al. Apr 2002 B1
6368338 Konya et al. Apr 2002 B1
6371972 Wallace et al. Apr 2002 B1
6375606 Garibaldi et al. Apr 2002 B1
6375628 Zadno-Azizi et al. Apr 2002 B1
6375668 Gifford et al. Apr 2002 B1
6375669 Rosenbluth et al. Apr 2002 B1
6379329 Naglreiter et al. Apr 2002 B1
6379374 Hieshima et al. Apr 2002 B1
6383146 Klint May 2002 B1
6383174 Eder May 2002 B1
6383204 Ferrera et al. May 2002 B1
6383205 Samson et al. May 2002 B1
6409721 Wheelock et al. Jun 2002 B1
6416535 Lazarus Jul 2002 B1
6416541 Denardo Jul 2002 B2
6423085 Murayama et al. Jul 2002 B1
6425893 Guglielmi Jul 2002 B1
6425914 Wallace et al. Jul 2002 B1
6428557 Hilaire Aug 2002 B1
6428558 Jones et al. Aug 2002 B1
6454780 Wallace Sep 2002 B1
6458119 Berenstein et al. Oct 2002 B1
6458127 Truckai et al. Oct 2002 B1
6458137 Klint Oct 2002 B1
6464699 Swanson Oct 2002 B1
6468266 Bashiri et al. Oct 2002 B1
6475169 Ferrera Nov 2002 B2
6475227 Burke et al. Nov 2002 B2
6478773 Gandhi et al. Nov 2002 B1
6485524 Strecker Nov 2002 B2
6494884 Gifford, III et al. Dec 2002 B2
6500149 Gandhi et al. Dec 2002 B2
6500190 Greene, Jr. et al. Dec 2002 B2
6506204 Mazzocchi Jan 2003 B2
6511468 Cragg et al. Jan 2003 B1
6514264 Naglreiter Feb 2003 B1
6530934 Jacobsen et al. Mar 2003 B1
6533801 Wallace et al. Mar 2003 B2
6537293 Berryman et al. Mar 2003 B1
6540657 Cross, III et al. Apr 2003 B2
6544163 Wallace et al. Apr 2003 B2
6544225 Lulo et al. Apr 2003 B1
6544268 Lazarus Apr 2003 B1
6544275 Teoh Apr 2003 B1
6547804 Porter et al. Apr 2003 B2
6551305 Ferrera et al. Apr 2003 B2
6551340 Konya et al. Apr 2003 B1
6554849 Jones et al. Apr 2003 B1
6558367 Cragg et al. May 2003 B1
6569179 Teoh et al. May 2003 B2
6572628 Dominguez et al. Jun 2003 B2
6575994 Marin et al. Jun 2003 B1
6585748 Jeffree Jul 2003 B1
6585754 Wallace et al. Jul 2003 B2
6589227 Klint Jul 2003 B2
6589230 Gia et al. Jul 2003 B2
6589236 Wheelock et al. Jul 2003 B2
6589265 Palmer et al. Jul 2003 B1
6592605 Lenker et al. Jul 2003 B2
6602261 Greene, Jr. et al. Aug 2003 B2
6602269 Wallace et al. Aug 2003 B2
6603994 Wallace et al. Aug 2003 B2
6605101 Schaefer et al. Aug 2003 B1
6607538 Ferrera et al. Aug 2003 B1
6607539 Hayashi et al. Aug 2003 B1
6610085 Lazarus Aug 2003 B1
6613074 Mitelberg et al. Sep 2003 B1
6616617 Ferrera et al. Sep 2003 B1
6620152 Guglielmi Sep 2003 B2
6623493 Wallace et al. Sep 2003 B2
6632241 Hancock et al. Oct 2003 B1
6635068 Dubrul et al. Oct 2003 B1
6635069 Teoh et al. Oct 2003 B1
6638291 Ferrera et al. Oct 2003 B1
6638293 Makower et al. Oct 2003 B1
6656173 Palermo Dec 2003 B1
6656201 Ferrera et al. Dec 2003 B2
6656218 Denardo et al. Dec 2003 B1
6656351 Boyle Dec 2003 B2
6660020 Wallace et al. Dec 2003 B2
6663607 Slaikeu et al. Dec 2003 B2
6679903 Kurz Jan 2004 B2
6685653 Ehr et al. Feb 2004 B2
6685696 Fleischhacker et al. Feb 2004 B2
6689141 Ferrera et al. Feb 2004 B2
6692510 West Feb 2004 B2
6702844 Lazarus Mar 2004 B1
6716238 Elliott Apr 2004 B2
6723112 Ho et al. Apr 2004 B2
6743236 Barry et al. Jun 2004 B2
6743251 Eder Jun 2004 B1
6767358 Leonhardt et al. Jul 2004 B2
6811561 Diaz et al. Nov 2004 B2
6814748 Baker et al. Nov 2004 B1
6835185 Ramzipoor et al. Dec 2004 B2
6849081 Sepetka et al. Feb 2005 B2
6852116 Leonhardt et al. Feb 2005 B2
6853418 Suzuki et al. Feb 2005 B2
6855153 Saadat Feb 2005 B2
6855155 Denardo et al. Feb 2005 B2
6860893 Wallace et al. Mar 2005 B2
6860901 Baker et al. Mar 2005 B1
6872218 Ferrera et al. Mar 2005 B2
6878163 Denardo et al. Apr 2005 B2
6905503 Gifford, III et al. Jun 2005 B2
6913618 Denardo et al. Jul 2005 B2
6929654 Teoh et al. Aug 2005 B2
6945956 Waldhauser et al. Sep 2005 B2
6958061 Truckai et al. Oct 2005 B2
6958068 Hieshima Oct 2005 B2
6964657 Cragg et al. Nov 2005 B2
6966892 Gandhi et al. Nov 2005 B2
6984240 Ken et al. Jan 2006 B1
6994711 Hieshima et al. Feb 2006 B2
7014645 Greene, Jr. et al. Mar 2006 B2
7029486 Schaefer et al. Apr 2006 B2
7029487 Greene, Jr. et al. Apr 2006 B2
7033374 Schaefer et al. Apr 2006 B2
7058456 Pierce Jun 2006 B2
7060083 Gerberding Jun 2006 B2
7070607 Murayama et al. Jul 2006 B2
7147618 Kurz Dec 2006 B2
7169161 Bonnette et al. Jan 2007 B2
7182774 Barry et al. Feb 2007 B2
7198613 Gandhi et al. Apr 2007 B2
7238194 Monstadt et al. Jul 2007 B2
7300458 Henkes et al. Nov 2007 B2
7316701 Ferrera et al. Jan 2008 B2
7323000 Monstdt et al. Jan 2008 B2
7331973 Gesswein et al. Feb 2008 B2
7344558 Lorenzo et al. Mar 2008 B2
7410482 Murphy et al. Aug 2008 B2
7473266 Glaser Jan 2009 B2
7485122 Teoh Feb 2009 B2
7485317 Murayama et al. Feb 2009 B1
7524322 Monstdt et al. Apr 2009 B2
7575582 Gandhi et al. Aug 2009 B2
7578826 Gandhi et al. Aug 2009 B2
RE41029 Guglielmi et al. Dec 2009 E
7691124 Balgobin Apr 2010 B2
7708755 Davis, III et al. May 2010 B2
7722636 Farnan May 2010 B2
7722637 Barry et al. May 2010 B2
7766933 Davis, III et al. Aug 2010 B2
7811305 Balgobin et al. Oct 2010 B2
7841994 Skujins et al. Nov 2010 B2
7879064 Monstadt et al. Feb 2011 B2
7883526 Jones et al. Feb 2011 B2
7896899 Patterson et al. Mar 2011 B2
7901444 Slazas Mar 2011 B2
7901704 Richard Mar 2011 B2
7918872 Mitelberg et al. Apr 2011 B2
7938845 Aganon et al. May 2011 B2
7955272 Rooney et al. Jun 2011 B2
8002789 Ramzipoor et al. Aug 2011 B2
8007509 Buiser et al. Aug 2011 B2
8372110 Monstadt et al. Feb 2013 B2
20020010481 Jayaraman Jan 2002 A1
20020019647 Wallace et al. Feb 2002 A1
20020052613 Ferrera et al. May 2002 A1
20020065529 Laurent et al. May 2002 A1
20020072712 Nool et al. Jun 2002 A1
20020072791 Eder et al. Jun 2002 A1
20020082620 Lee Jun 2002 A1
20020087184 Eder et al. Jul 2002 A1
20020120297 Shadduck Aug 2002 A1
20020128671 Wallace et al. Sep 2002 A1
20020138095 Mazzocchi et al. Sep 2002 A1
20020143349 Gifford et al. Oct 2002 A1
20020169473 Sepetka et al. Nov 2002 A1
20030014073 Bashiri et al. Jan 2003 A1
20030040733 Cragg et al. Feb 2003 A1
20030045901 Opolski Mar 2003 A1
20030083676 Wallace May 2003 A1
20030130689 Wallace et al. Jul 2003 A1
20030169473 Cotter et al. Sep 2003 A1
20030176857 Lee Sep 2003 A1
20030181927 Wallace Sep 2003 A1
20030216772 Konya et al. Nov 2003 A1
20030225365 Greff et al. Dec 2003 A1
20040002731 Aganon et al. Jan 2004 A1
20040002732 Teoh et al. Jan 2004 A1
20040002733 Teoh Jan 2004 A1
20040006354 Schaefer et al. Jan 2004 A1
20040006362 Schaefer et al. Jan 2004 A1
20040006363 Schaefer Jan 2004 A1
20040024394 Wallace et al. Feb 2004 A1
20040034363 Wilson et al. Feb 2004 A1
20040034378 Monstadt et al. Feb 2004 A1
20040045554 Schaefer et al. Mar 2004 A1
20040078050 Monstadt et al. Apr 2004 A1
20040082879 Klint Apr 2004 A1
20040106946 Ferrera et al. Jun 2004 A1
20040181256 Glaser Sep 2004 A1
20040193178 Nikolchev Sep 2004 A1
20040193206 Gerberding et al. Sep 2004 A1
20040220563 Eder Nov 2004 A1
20040220585 Nikolchev Nov 2004 A1
20040225279 Raymond Nov 2004 A1
20040236344 Monstadt et al. Nov 2004 A1
20040260384 Allen Dec 2004 A1
20050021023 Guglielmi et al. Jan 2005 A1
20050021074 Elliott Jan 2005 A1
20050079196 Henkes et al. Apr 2005 A1
20050171572 Martinez Aug 2005 A1
20050177185 Becker et al. Aug 2005 A1
20050187564 Jayaraman Aug 2005 A1
20060025801 Lulo et al. Feb 2006 A1
20060025802 Sowers Feb 2006 A1
20060036281 Patterson et al. Feb 2006 A1
20060079926 Desai et al. Apr 2006 A1
20060106417 Tessmer et al. May 2006 A1
20060116711 Elliott et al. Jun 2006 A1
20060116714 Sepetka et al. Jun 2006 A1
20060200190 Lorenzo et al. Sep 2006 A1
20060271097 Ramzipoor et al. Nov 2006 A1
20060276824 Mitelberg et al. Dec 2006 A1
20070055302 Henry et al. Mar 2007 A1
20070083226 Buiser et al. Apr 2007 A1
20070142893 Buiser et al. Jun 2007 A1
20070150045 Ferrera Jun 2007 A1
20070173757 Levine et al. Jul 2007 A1
20070185524 Diaz et al. Aug 2007 A1
20070225738 Pal Sep 2007 A1
20070239193 Simon et al. Oct 2007 A1
20070239199 Jayaraman Oct 2007 A1
20070282425 Kleine et al. Dec 2007 A1
20070299461 Elliott Dec 2007 A1
20080045922 Cragg et al. Feb 2008 A1
20080046092 Davis et al. Feb 2008 A1
20080046093 Davis et al. Feb 2008 A1
20080051803 Monjtadt et al. Feb 2008 A1
20080097462 Mitelberg et al. Apr 2008 A1
20080103585 Monstadt et al. May 2008 A1
20080125855 Henkes et al. May 2008 A1
20080228215 Strauss et al. Sep 2008 A1
20080228216 Strauss et al. Sep 2008 A1
20080300616 Que et al. Dec 2008 A1
20080306504 Win et al. Dec 2008 A1
20080319532 Monstadt et al. Dec 2008 A1
20090048631 Bhatnagar et al. Feb 2009 A1
20090069836 Labdag et al. Mar 2009 A1
20090149864 Porter Jun 2009 A1
20090182268 Thielen et al. Jul 2009 A1
20090254111 Monstadt et al. Oct 2009 A1
20090254169 Spenser et al. Oct 2009 A1
20090270877 Johnson et al. Oct 2009 A1
20090312748 Johnson et al. Dec 2009 A1
20100004673 Denison et al. Jan 2010 A1
20100004675 Wilson et al. Jan 2010 A1
20100023105 Levy et al. Jan 2010 A1
20100030200 Strauss et al. Feb 2010 A1
20100030319 Weber Feb 2010 A1
20100049165 Sutherland et al. Feb 2010 A1
20100076479 Monstadt Mar 2010 A1
20100174269 Tompkins et al. Jul 2010 A1
20110022003 Tekulve Jan 2011 A1
20110098814 Monstadt et al. Apr 2011 A1
20110118777 Patterson et al. May 2011 A1
20110172700 Bose et al. Jul 2011 A1
20110184454 Barry et al. Jul 2011 A1
20110213406 Aganon et al. Sep 2011 A1
20110245861 Chen et al. Oct 2011 A1
20110313447 Strauss et al. Dec 2011 A1
20130190801 Divino et al. Jul 2013 A1
20130253572 Molaei et al. Sep 2013 A1
Foreign Referenced Citations (157)
Number Date Country
2144725 May 1994 CA
2265062 Sep 1999 CA
1668250 Sep 2005 CN
4445715 Jun 1996 DE
69627243 Jan 1997 DE
19547617 Sep 1997 DE
19607451 Sep 1997 DE
19610333 Sep 1997 DE
19647280 May 2001 DE
19952387 May 2001 DE
10010840 Sep 2001 DE
10118017 Oct 2002 DE
10155191 May 2003 DE
707830 Apr 1996 EP
711 532 May 1996 EP
717969 Jun 1996 EP
720838 Jul 1996 EP
765636 Apr 1997 EP
792623 Sep 1997 EP
820726 Jan 1998 EP
829236 Mar 1998 EP
830873 Mar 1998 EP
853955 Jul 1998 EP
865773 Sep 1998 EP
882428 Sep 1998 EP
904737 Mar 1999 EP
914807 May 1999 EP
941700 Sep 1999 EP
941701 Sep 1999 EP
992220 Apr 2000 EP
1005837 Jun 2000 EP
1120088 Aug 2001 EP
1125553 Aug 2001 EP
1129666 Sep 2001 EP
1142535 Oct 2001 EP
1169969 Jan 2002 EP
1188413 Mar 2002 EP
1188414 Mar 2002 EP
1295563 Mar 2003 EP
1312312 May 2003 EP
1316293 Jun 2003 EP
1358850 Nov 2003 EP
1374801 Jan 2004 EP
1669032 Jun 2006 EP
1738698 Jan 2007 EP
832607 Apr 2008 EP
2260800 Dec 2010 EP
2292147 Mar 2011 EP
6-246004 Sep 1994 JP
7-155331 Jun 1995 JP
7-265431 Oct 1995 JP
7-284534 Oct 1995 JP
9-168541 Jun 1997 JP
10-201766 Aug 1998 JP
11-47138 Feb 1999 JP
11-76249 Mar 1999 JP
2001-513389 Sep 2001 JP
2002-523172 Jul 2002 JP
2004-500929 Jan 2004 JP
2006-051349 Feb 2006 JP
2008-525113 Jul 2008 JP
10-2010-107255 Oct 2010 KR
10-1014547 Feb 2011 KR
WO-8803817 Jun 1988 WO
WO-8906984 Aug 1989 WO
WO-9012616 Nov 1990 WO
WO-9113592 Sep 1991 WO
WO-9214408 Sep 1992 WO
WO-9221400 Dec 1992 WO
WO-9311719 Jun 1993 WO
WO-9316650 Sep 1993 WO
WO-9406502 Mar 1994 WO
WO-9406503 Mar 1994 WO
WO-9410936 May 1994 WO
WO-9411051 May 1994 WO
WO-9426175 Nov 1994 WO
WO-9512367 May 1995 WO
WO-9618343 Jun 1996 WO
WO-9632153 Oct 1996 WO
WO-9639950 Dec 1996 WO
WO-9727888 Aug 1997 WO
WO-9742881 Nov 1997 WO
WO-9809570 Mar 1998 WO
WO-9817183 Apr 1998 WO
WO-9833452 Aug 1998 WO
WO-9834546 Aug 1998 WO
WO-9839048 Sep 1998 WO
WO-9858590 Dec 1998 WO
WO-9902094 Jan 1999 WO
WO-9905977 Feb 1999 WO
WO-9907292 Feb 1999 WO
WO-9909893 Mar 1999 WO
WO-9932037 Jul 1999 WO
WO-9942038 Aug 1999 WO
WO-9944538 Sep 1999 WO
WO-9949812 Oct 1999 WO
WO-9956636 Nov 1999 WO
WO-0012016 Mar 2000 WO
WO-0013593 Mar 2000 WO
WO-0025680 May 2000 WO
WO-0044306 Aug 2000 WO
WO-0072781 Dec 2000 WO
WO-0132085 May 2001 WO
WO-0145571 Jun 2001 WO
WO-0156500 Aug 2001 WO
WO-0158365 Aug 2001 WO
WO-0158382 Aug 2001 WO
WO-0187184 Nov 2001 WO
WO-0193937 Dec 2001 WO
WO-0202018 Jan 2002 WO
WO-0213705 Feb 2002 WO
WO-0213706 Feb 2002 WO
WO-0232496 Apr 2002 WO
WO-0239911 May 2002 WO
WO-0241753 May 2002 WO
WO-0245596 Jun 2002 WO
WO-02054943 Jul 2002 WO
WO-02054980 Jul 2002 WO
WO-02072168 Sep 2002 WO
WO-02087449 Nov 2002 WO
WO-02087651 Nov 2002 WO
WO-02089676 Nov 2002 WO
WO-02096273 Dec 2002 WO
WO-02096301 Dec 2002 WO
WO-03001970 Jan 2003 WO
WO-03007823 Jan 2003 WO
WO-03017852 Mar 2003 WO
WO-03034927 May 2003 WO
WO-03039624 May 2003 WO
WO-03041615 May 2003 WO
WO-03053257 Jul 2003 WO
WO-03053281 Jul 2003 WO
WO-03073914 Sep 2003 WO
WO-03077776 Sep 2003 WO
WO-03077984 Sep 2003 WO
WO-03082128 Oct 2003 WO
WO-03086240 Oct 2003 WO
WO-03092547 Nov 2003 WO
WO-03099370 Dec 2003 WO
WO-2004008974 Jan 2004 WO
WO-2004010878 Feb 2004 WO
WO-2004014239 Feb 2004 WO
WO-2004069059 Aug 2004 WO
WO-2004073529 Sep 2004 WO
WO-2005065556 Jul 2005 WO
WO-2006058042 Jun 2006 WO
WO-2006069123 Jun 2006 WO
WO-2007121405 Oct 2007 WO
WO-2008112435 Sep 2008 WO
WO-2008112436 Sep 2008 WO
WO-2008127328 Oct 2008 WO
WO-2010092174 Aug 2010 WO
WO-2010117883 Oct 2010 WO
WO-2010123821 Oct 2010 WO
WO-2010134914 Nov 2010 WO
WO-2011030820 Mar 2011 WO
WO-2012161953 Nov 2012 WO
Related Publications (1)
Number Date Country
20140047694 A1 Feb 2014 US
Divisions (1)
Number Date Country
Parent 12981286 Dec 2010 US
Child 13764028 US
Continuations (1)
Number Date Country
Parent 11575798 US
Child 12981286 US