This application is a continuation of international application number PCT/EP02/07614 filed on Jul. 9, 2002 .
This application claims the benefit of German Patent Application No. 101 38 393.2 filed Aug. 4, 2001.
The present disclosure relates to the subject matter disclosed in German application No. 101 38 393.2 of Aug. 4, 2001 and international application PCT/EP02/07614 of Jul. 9, 2002, which are incorporated herein by reference in their entirety and for all purposes.
The invention relates to a medical instrument incorporating a first part and a second part which are connected together by a connecting device.
For example, a clamp can be produced by connecting a first arm to a second arm.
In accordance with the invention, a medical instrument is provided for which the two parts can be connected together in a simple manner.
In accordance with the invention, the first part comprises a retaining chamber for the second part and the second part is held on the first part by means of least one spigot (shaft end) and spigot-seating connecting arrangement in the retaining chamber.
Such a connecting device can be fabricated in a simple manner. In particular, parts consisting of synthetic materials can then be connected together in a simple manner. Hereby, a retaining chamber can be formed during the process of shaping appropriate synthetic parts or it can be milled out subsequently. Likewise, corresponding spigot seatings can be formed simultaneously during the production process or they could be produced thereafter. Spigots can also be produced or attached subsequently in a corresponding manner. In particular, a rotary bearing can be formed by means of a spigot and spigot-seating connecting arrangement so that the second part can be arranged to be rotatable relative to the first part.
However, it is also possible for a spigot seating to be in the form of, for example, a guide slot for the spigot so that the second part is linearly displaceable relative to the first part.
The two parts can be connected together in a secure and, to a large extent, play-free manner, if the second part is connected to the first part by means of spigot and spigot-seating connecting arrangements on opposite sides of the retaining chamber. In particular, a high level of lateral stability is achieved thereby.
In order to enable the two parts to rotate relative to one another, it is expedient for the spigot and spigot-seating connecting arrangements to be aligned with one another at opposite sides of the retaining chamber and preferably also, for them to be formed in a rotationally symmetrical manner.
In order to form a clamp incorporating mutually pivotal arms for example, it is preferably for the second part to be connected to the first part in a pivotal manner by means of the connecting device.
It is especially very expedient, if a spigot and spigot-seating connecting arrangement is in the form of a swivel joint. Then, and especially in the case of a medical instrument made from a synthetic material, the facility for two arms to rotate relative to one another can be provided in a simple manner, whereby an appropriate instrument is producible in a simple and economical manner; such an instrument can then be employed as a disposable instrument for example.
It is advantageous thereby if the thickness of the second part is matched to the height of the retaining chamber. The freedom of movement of a rotary connection can be set for example by virtue of the corresponding relationship between the thickness of the part and the height of the retaining chamber: If the second part rests against the retaining chamber, then the ability of the second part to rotate relative to the first part is more difficult compared with the case where the contact area is provided by the spigot and spigot-seating connecting arrangements alone.
In the case of a first embodiment, a spigot seating is arranged on the first part and a corresponding spigot is arranged on the second part. In the case of an alternative embodiment or one that may be combined therewith, a spigot seating is arranged on the second part and a corresponding spigot is arranged on the first part.
The assembly of the medical instrument, i.e. the production of the connection, can be effected in a simple manner if there is associated with the spigot seating an insertion recess from which a spigot is adapted to be pushed into the spigot seating. Accordingly, if such an insertion recess is tapered with a decreasing size of aperture in the direction of the spigot seating, then, by virtue of the normal force that is produced thereby, the spigot can be introduced into a spigot seating in the manner of a snap-action closure. Moreover, such an insertion recess relieves the load on the material particularly during the assembly process since peak stresses are reduced.
It is expedient if a spigot is tapered in the direction of insertion into a spigot seating. The amount of force required to move a spigot into a spigot seating via a tapered insertion recess is then substantially smaller than that required to extract the spigot from the spigot seating. A secure connection can thereby be produced.
The connecting device in accordance with the invention can be employed in an advantageous manner if the first part is made of synthetic material and/or if the second part is likewise made from a synthetic material. As has already been mentioned above, the corresponding spigots and spigot seatings can be produced in a simple manner during the formation of the retaining chamber and the second part.
Provision may be made for a spigot seating (a closed spigot seating) to be closed with respect to the exterior by not forming the spigot seating as a break-through, but rather, through the provision of an additional partition which is located between the spigot seating and the exterior. For example, a rotary bearing can be protected from dirt and damage in this way.
As an alternative thereto, provision may be made for a spigot seating (an open spigot seating) to be open with respect to the exterior. A spigot seating of this type can be produced in a simple manner. In particular, it could also be produced by means of a subsequent material processing step such as a milling process or by drilling. Moreover, oppositely located, mutually aligned spigot seatings can be produced in a simple manner as open spigot seatings.
The following description of preferred embodiments serves, in conjunction with the drawing, for a more detailed explanation of the invention.
A clamp 10 is shown in
Herein, as is shown in
The retaining chamber 18 is formed by a recess and in particular by means of a break-through in the first part 12. It is bounded by a first base 20 and an oppositely located second base 22. A first wall 24 and an oppositely located second wall 26 bound the retaining chamber 18 in a direction transverse to the first base 20 and the second base 22. Hereby, provision may be made for the first wall 24 and/or the second wall 26 to be rounded off.
The oppositely located bases 20 and 22 are substantially parallel to one another and are flat as are also the walls 24 and 26.
A spigot seating 28, which is rotationally symmetrical about an axis 30, is formed in the first base 20 by means of an appropriate recess. Here, there is shown a closed spigot seating which is provided with a boundary wall to the exterior. However, it could also be open to the exterior.
A spigot seating 32 is formed in the second base 22 and it is likewise rotationally symmetrical about the axis 30.
The lower surface 34 of the second part 14, which faces the base 20, is provided with a spigot 36 which projects into the spigot seating 28. Furthermore, the upper face 38 of the second part 14, which faces the second base 22, is provided with a spigot 40 which is in alignment with the spigot 36 and projects into the spigot seating 32. Hereby, the distance along the axis 30 between a boundary wall of the spigot seating 28 and a boundary wall of the spigot seating 32 is greater than the distance between the bases 20 and 22.
It is in this manner that the second part is held on the first part 12 in pivotal manner by means of the spigot and spigot-seating connecting arrangement 28, 36 and by means of the spigot and spigot-seating connecting arrangement 32, 40. The connecting device itself thereby forms a swivel joint, i.e. the spigots 36 and 40 function as rotary shafts.
However, provision may also be made for the second part 14 to be arranged on the first part 12 in displaceable manner if, in correspondence therewith, the associated spigot seatings are in the form of guide slots for the spigots so that the spigots are moveable along these guide slots and consequently the second part 14 is displaceable longitudinally relative to the first part 12.
However, provision may also be made for the two parts 14 and 12 to be connected to one another in immovable manner if, for example, the spigots and the spigot seatings located at opposite sides are not in alignment with one another.
In the case of a second embodiment which is shown in
A spigot seating in the form of a recess 58 is formed in the second part 54 on the side thereof facing the first base 46. Furthermore, a spigot seating 60 for the spigot 52 is formed in the second part 54 on the opposite side thereof facing the second base 50.
When the first part 42 and the second part 54 are connected together, the spigot 52 projects into the spigot seating 60 and the spigot 48 projects into the spigot seating 56. It is in this manner that the second part 54 is seated on the first part 42 and the second part 54 is rotatable relative to the first part 42.
For the purposes of facilitating the production of the connection between the two parts 12 and 14, an insertion recess 62 is associated with each of the spigot seatings in the first part 12 (
Furthermore, the respective spigots 36 and 40 are tapered with respect to the direction of assembly 64. The insertion recess 62 for the associated spigot, for example 40, then serves as an assembly aid: The spigot 40 is pushed into the insertion recess 62 via its bevelled edge when pushing the second part 14 into the retaining chamber 18. The resistance of a flank part 66 between, for example, the spigot 28 and the insertion opening 62 can be overcome by the application of further force if appropriate materials have been used, whereby the bevelled edge of the spigot 32 exerts a normal force on this flank part 6 in order to press it upwardly away from the second part 14 whilst the force is being exerted. If the spigot 40 then projects into the spigot seating 32, then it is held there in the manner of a snap-action closure since force must be applied in order to pull it out again. A steep flank 67 and in particular a substantially perpendicularly projecting flank is formed at the side remote from the direction of assembly 64 by virtue of the bevelling of the spigot 40. If this steep flank 68 lies in the spigot seating 32 (
Advantageously, the first part 12 together with its retaining chamber 18, its spigot seatings 32 and 28 and its insertion recesses 62 can be made of a synthetic material, for example, by means of an injection moulding process. The insertion openings 62, 68 (
Likewise, for the purposes of forming the spigot seatings 28 and 32, there are provided appropriate sliders which are withdrawn from the corresponding spigot seatings 28, 32 after the completion of, for example, the injection moulding process. This is indicated in
In the case of the exemplary embodiments shown in
In an exemplary embodiment which is shown in
Two oppositely located open spigot recesses could also be provided. An open spigot recess can also be produced by means of a milling process or a drilling process from an external face of a part.
Otherwise the connecting device depicted in
In a further exemplary embodiment of a medical instrument, in particular an endoscopic instrument which is shown in
Number | Date | Country | Kind |
---|---|---|---|
101 38 393 | Aug 2001 | DE | national |
Number | Name | Date | Kind |
---|---|---|---|
1973569 | Kurtz | Sep 1934 | A |
2305156 | Grubel | Dec 1942 | A |
3459187 | Pallotta | Aug 1969 | A |
3735763 | Shannon et al. | May 1973 | A |
3763726 | Hildebrand | Oct 1973 | A |
4099315 | Pudenz | Jul 1978 | A |
4218821 | Schneider | Aug 1980 | A |
5649958 | Grimm et al. | Jul 1997 | A |
Number | Date | Country |
---|---|---|
20 61 539 | Aug 1972 | DE |
27 04 579 | Aug 1978 | DE |
28 26 421 | Jan 1979 | DE |
93 18 816 | Mar 1994 | DE |
43 39 992 | Mar 1995 | DE |
694 00 320 | Jul 1996 | DE |
201 00 589 | Jun 2001 | DE |
0 611 553 | Jul 1996 | EP |
Number | Date | Country | |
---|---|---|---|
20040204739 A1 | Oct 2004 | US |
Number | Date | Country | |
---|---|---|---|
Parent | PCT/EP02/07614 | Jul 2002 | US |
Child | 10767694 | US |