Field of the Invention
This disclosure relates to systems, devices, and methods with applications in, for example, hospitals and other patient care facilities. For example, the systems, devices, and methods described herein can be used for acquiring physiological information from patients, analyzing the physiological information, and communicating the physiological information to clinicians and other systems or devices.
Description of the Related Art
Hospitals, nursing homes, and other patient care facilities typically include patient monitoring devices at one or more bedsides in the facility. Patient monitoring devices generally include sensors, processing equipment, and displays for obtaining and analyzing a medical patient's physiological parameters. Physiological parameters include, for example, respiratory rate, SpO2 level, pulse, and blood pressure, among others. Clinicians, including doctors, nurses, and certain other medical personnel use the physiological parameters obtained from the medical patient to diagnose illnesses and to prescribe treatments. Clinicians also use the physiological parameters to monitor a patient during various clinical situations to determine whether to increase the level of medical care given to the patient.
Patient monitors capable of measuring pulse oximetry parameters, such as SpO2 and pulse rate in addition to advanced parameters, such as HbCO, HbMet and total hemoglobin (Hbt) and corresponding multiple wavelength optical sensors are described in at least U.S. patent application Ser. No. 11/367,013, filed Mar. 1, 2006 and entitled Multiple Wavelength Sensor Emitters and U.S. patent application Ser. No. 11/366,208, filed Mar. 1, 2006 and entitled Noninvasive Multi-Parameter Patient Monitor, both assigned to Masimo Laboratories, Irvine, Calif. (Masimo Labs) and both incorporated by reference herein. Further, noninvasive blood parameter monitors and corresponding multiple wavelength optical sensors, such as Rainbow™ adhesive and reusable sensors and RAD-57™ and Radical-7™ monitors for measuring SpO2, pulse rate, perfusion index, signal quality, HbCO and HbMet among other parameters are also available from Masimo Corporation, Irvine, Calif. (Masimo).
Advanced physiological monitoring systems may incorporate pulse oximetry in addition to advanced features for the calculation and display of other blood parameters, such as carboxyhemoglobin (HbCO), methemoglobin (HbMet) and total hemoglobin (Hbt), as a few examples. Advanced physiological monitors and corresponding multiple wavelength optical sensors capable of measuring parameters in addition to SpO2, such as HbCO, HbMet and Hbt are described in at least U.S. patent application Ser. No. 11/367,013, filed Mar. 1, 2006, titled Multiple Wavelength Sensor Emitters and U.S. patent application Ser. No. 11/366,208, filed Mar. 1, 2006, titled Noninvasive Multi-Parameter Patient Monitor, assigned to Masimo Labs and incorporated by reference herein. Further, noninvasive blood parameter monitors and corresponding multiple wavelength optical sensors, such as Rainbow™ adhesive and reusable sensors and RAD-57™ and Radical-7™ monitors for measuring SpO2, pulse rate, perfusion index (PI), signal quality (SiQ), pulse variability index (PVI), HbCO and HbMet among other parameters are also available from Masimo.
Various medical monitoring devices, systems, and methods are described herein. In some embodiments, a medical monitoring device or system is capable of detecting the presence of a clinician and, for example, taking some action in response to detection of the clinician's presence. In some embodiments, a medical monitoring system is capable of detecting the location of a number of medical devices, clinicians, and/or patients in a hospital or other patient care facility. The detected locations can then be used to take some location-based action, such as, for example, changing the configuration of a medical device.
In some embodiments, a medical patient monitoring device for monitoring physiological information comprises: an interface configured to receive physiological information associated with at least one patient; and a detector for detecting the physical presence of a clinician token within first and second detection areas in the vicinity of the medical patient monitoring device, the clinician token being indicative of the identity of a clinician, wherein the medical patient monitoring device further comprises a processor that is configured to take a first predetermined action in response to detection of the clinician token in the first detection area, and to take a second predetermined action in response to detection of the clinician token in the second detection area, the first and second predetermined actions being associated with the identity of the clinician.
In some embodiments, a medical patient monitoring device for monitoring physiological information comprises: an interface configured to receive physiological information associated with at least one patient; and a detector for detecting the physical presence of a clinician token within a detection area in the vicinity of the medical patient monitoring device, the clinician token being indicative of the identity of a clinician, wherein the medical patient monitoring device further comprises a processor that is configured to take a predetermined action in response to detection of the clinician token in the detection area, the predetermined action being associated with the identity of the clinician, and wherein the processor is further configured to determine whether the clinician token is present within the detection area based on the strength of a signal from the clinician token, and based on a signal strength adjustment value associated with the clinician token.
In some embodiments, a medical patient monitoring device for monitoring physiological information comprises: an interface configured to receive physiological information associated with at least one patient; and a detector for detecting the physical presence of a clinician token within a detection area in the vicinity of the medical patient, monitoring device, the clinician token being indicative of the identity of a clinician, wherein the medical patient monitoring device further comprises a processor that is configured to take a predetermined action in response to detection of the clinician token in the detection area, the predetermined action being associated with the identity of the clinician, and wherein the predetermined action is determined from a database that is remotely communicatively coupled to the medical patient monitoring device via a communication network.
Various embodiments will be described hereinafter with reference to the accompanying drawings. These embodiments are illustrated and described by example only, and are not intended to limit the scope of the disclosure.
In various embodiments, physiological monitoring systems are systems that monitor physiological signals generated by a medical patient and process the signals to determine any of a variety of physiological parameters of the patient. For example, in some cases, a physiological monitoring system can determine any of a variety of physiological parameters of a patient, including respiratory rate, inspiratory time, expiratory time, i:e ratio (e.g., inspiration-to-expiration ratio), inspiratory flow, expiratory flow, tidal volume, minute volume, apnea duration, breath sounds, rales, rhonchi, stridor, and changes in breath sounds such as decreased volume or change in airflow. In addition, in some cases the physiological monitoring system monitors other physiological sounds, such as heart rate to help with probe-off detection, heart sounds (e.g., S1, S2, S3, S4, and murmurs), and changes in heart sounds such as normal to murmur or split heart sounds indicating fluid overload. Moreover, the physiological monitoring system may use a second probe over the chest for better heart sound detection, keep the user inputs to a minimum (for example, only input height), and use a Health Level 7 (HL7) interface to automatically input demography.
A physiological monitoring system of certain embodiments includes one or more patient monitoring devices connected to a shared network using open architecture communications standards. The patient monitoring devices of certain embodiments include a physiological monitor coupled with a network interface module. The physiological monitor includes one or more sensors and a sensor processing module for processing signals from the sensors. The network interface module receives physiological information from the sensor processing module and transmits this information over the shared network. The network interface module may connect to a variety of physiological monitors. In addition, the network interface module of various implementations is a portable bedside device assigned exclusively to one medical patient.
In certain embodiments, the network interface module facilitates establishing a network connection directly with end users over the shared network. These end users, including doctors, nurses, and other hospital staff, may receive physiological information, alarms, and alerts from the network interface module on an electronic device, such as a pager, PDA, laptop, computer, computer on wheels (COW), or the like.
Referring to
The physiological monitoring system 100 includes a plurality of bedside devices, e.g., patient monitoring devices 110. The patient monitoring devices 110 of various embodiments include sensors 102, one or more sensor processing modules 104, and a communications module, e.g., network interface module 106. In the depicted embodiment, two patient monitoring devices 110 are shown. One patient monitoring device includes one set of sensors 102, one sensor processing module 104, and one network interface module 106. The other patient monitoring device 110 includes two sets of sensors 102, two sensor processing modules 104, and one network interface module 106.
In certain embodiments, each patient monitoring device 110 is used by one medical patient. The patient monitoring devices 110 form a network of patient monitoring devices 110, each of which can communicate with clinicians and other end users over a shared network, including a hospital network 126 and network interfaces to the Internet 150.
One or more sensors 102 of the patient monitoring device 110 are attached to a medical patient. These sensors 102 may include ECG sensors, acoustic sensors, pulse oximeters, and other types of sensors. The sensors 102 obtain physiological information from a medical patient and transmit this information to the sensor processing module 104 through cables 103 or through a wireless connection (not shown). In certain embodiments, the physiological information includes one or more physiological parameters or values and waveforms corresponding to the physiological parameters.
The sensor processing module 104 receives physiological information from the sensors 102. The sensor processing module 104 of certain embodiments includes a circuit having a processor, input ports for receiving the physiological information, software for processing the physiological information in the processor, an optional display, and optionally an input device (e.g., a keyboard). In addition, the sensor processing module 104 contains one or more output ports, such as serial ports. For example, an RS232, RS423, or autobaud RS232 (serial interface standard) port or a universal serial bus (USB) port may be included in the sensor processing module 104.
In certain embodiments, the sensor processing module 104 generates waveforms from signals received from the sensors 102. The sensor processing module 104 may also analyze single or multiparameter trends to provide early warning alerts to clinicians prior to an alarm event. In addition, the sensor processing module 104 in certain embodiments generates alarms in response to physiological parameters exceeding certain safe thresholds.
Example alerts include no communication with pulse oximeter, alarm silenced on pulse oximeter, instrument low battery (pulse oximeter), and transmitter low battery. Example alarms include SpO2 levels and alarms, high and low SpO2, high and low PR, HbCO level and alarms, HbMET level and alarms, pulse rate and alarms, no sensor, sensor off patient, sensor error, low perfusion index, low signal quality, HbCO, HbMET, PI trend alarm, and desat index alarm.
The network interface module 106 in the depicted embodiment is connected to one or more sensor processing modules 104 through one or more connectors 108, which may be serial connectors corresponding to the serial ports in the sensor processing modules 104. Dashed lines on the connector 108 indicate that the network interface module 106 of certain embodiments is not permanently attached to the sensor processing modules 104. In alternative embodiments (not shown), however, the network interface module 106 is contained within a sensor processing module 104.
The network interface module 106 in various implementations includes a processor, an input port (such as a standard RS232 serial port), a network output port such as an Ethernet port, and software which enables the network interface module 106 to act as a network-communications enabled device. In addition, the network interface module 106 includes a storage device 114, which may be included within the network interface module 106 or attached separately to the network interface module 106.
The network interface module 106 manages the connectivity overhead for initiating and maintain connectivity with end user devices over the shared network. In certain embodiments, the network interface module 106 manages connectivity by acting as a microserver or web server. In such instances, the network interface module 106 is a network connection enabled device. As a web server, the network interface module 106 establishes direct connections to the Internet 150, such that an end user may access web pages stored on the storage device 114 of the network interface module 106. In one embodiment, the network interface module 106 therefore does not require a separate server for connecting to the Internet 150. In one embodiment, the network interface module 106 connects to the Internet 150 directly through a modem, such that the connection 122 includes a modem. In managing connectivity over the shared network, the network interface module 106 may also perform security management functions, such as user authentication.
In certain embodiments, the network interface module 106 sends data over the shared network through an access point 124 or other wireless or wired transmitter. Alternatively, the network interface module 106 may communicate physiological information directly to end users over the Internet 150. End users such as clinicians carrying notifier devices, e.g., end user devices 128, 152 connected to the hospital WLAN 126 may receive real-time viewing of physiological patient parameters and waveforms on demand or in the event of an alarm or alert. Real-time or slightly delayed transmission of physiological information in certain embodiments comports with standards for alarm latency in compliance with Joint Commission on Accreditation of Healthcare Organizations (JCAHO) standards for effective alarm response. The network interface module 106 of certain embodiments therefore adds functionality equivalent to a central nurses' station.
In certain embodiments, the network interface module 106 performs context management. In one embodiment, context management includes associating context information with physiological information to form a contextual data package. Context information may include several categories of information, including the categories of context information related to the network interface module 106, context information related to the medical patient, context information related to usage of the network interface module 106, and context information related to a network connection. Within one or more of these context categories, context information might include a patient name, a patients' unique hospital identification number, patient location, an identification number for a network interface module 106, time stamps for events occurring in the physiological monitoring system 100, environmental conditions such as changes to the state of the network and usage statistics of the network interface module 106, and identification information corresponding to the network link (e.g., whether the network connection is WiFi or Ethernet). In one embodiment, the context information in the contextual data package may include all of or any subset of context information from one or more of the context categories.
The network interface module 106 receives context information, for example, by a nurse entering the information in the network interface module 106 or from a server 136. In one embodiment, by receiving this information (including, e.g., patient identification number and location), the network interface module 106 becomes exclusively assigned to the medical patient. The network interface module 106 transmits or communicates the contextual data package to clinicians during an alarm or alert, upon clinician request, or on a scheduled basis. In addition, the network interface module 106 may transmit a continuous stream of physiological information to clinicians.
By optionally connecting to multiple sensor processing modules 104 in certain embodiments, the network interface module 106 is able to associate patient context information and other context information with multiple sensor processing modules 104. Consequently, context can be created for one or more sensor processing modules 104 in addition to context being created for the network interface module 106.
In addition to transmitting the contextual data package, the network interface module 106 in one embodiment stores the contextual data package in the storage device 114. The storage device 114 may be a flash memory, a hard disk drive, or other form of non-volatile or volatile memory. In certain embodiments the storage device 114 acts as a flow control buffer. The network interface module 106 uses the storage device 114 acting as a flow control buffer to perform flow control during communications, as explained more fully below in connection with
In some implementations, a server 136 may optionally be included in the physiological monitoring system 100. The server 136 in these implementations is generally a computing device such as a blade server or the like. In certain embodiments, the server 136 is an appliance server housed in a data closet. In other embodiments, the server 136 is a server located at a central nurses' station, such as a workstation server.
The server 136 receives contextual data packages from a plurality of network interface modules 106 and stores the contextual data package in a storage device 138. In certain embodiments, this storage device 138 therefore archives long-term patient data. This patient data may be maintained even after the patient is discharged. In storing patient data, the server 136 may act as an interface between the shared network and an external electronic medical record (EMR) system.
The server 136 may also store data concerning user interactions with the system and system performance metrics. Integrated into the server 136 of certain embodiments is a journal database that stores every alert and alarm or a subset of the alerts and alarms as well as human interaction in much the same way as an aviation “black box” records cockpit activity. The journal is not normally accessible to the clinical end user and, without technical authorization, cannot be tampered with. In addition, the server 136 may perform internal journaling of system performance metrics such as overall system uptime.
In one embodiment, the journaling function of the server 136 constitutes a transaction-based architecture. Certain transactions of the physiological monitoring system 100 are journaled such that a timeline of recorded events may later be re-constructed to evaluate the quality of healthcare given. These transactions include state changes relating to physiological information from the patient monitoring devices 100, to the patient monitoring devices 110, to the hospital WLAN 126 connection, to user operation, and to system behavior. Journaling related to the physiological information received from a physiological monitor in one embodiment includes recording the physiological information itself, recording changes in the physiological information, or both.
The server 136 in certain embodiments provides logic and management tools to maintain connectivity between network interface modules 106, clinician notification devices such as PDAs and pagers, and external systems such as EMRs. The server 136 of certain embodiments also provides a web based interface to allow installation (provisioning) of software rated to the physiological monitoring system 100, adding new devices to the system, assigning notifiers (e.g., PDAs, pagers, and the like) to individual clinicians for alarm notification at beginning and end of shift, escalation algorithms in cases where a primary caregiver does not respond to an alarm, interfaces to provide management reporting on the alarm occurrence and response time, location management, and internal journaling of system performance metrics such as overall system uptime (see, e.g.,
The server 136 in certain embodiments also provides a platform for advanced rules engines and signal processing algorithms that provide early alerts in anticipation of a clinical alarm. The operating system on the server 136 in one embodiment is Linux-based for cost reasons, though a Microsoft-based or other operating system may also be used. Moreover, the server 136 is expandable to include data storage devices and system redundancy capabilities such as RAID (random array of independent disks) and High Availability options.
In another embodiment (not shown), end user devices 128, 152 include one way POCSAG Pagers having a 2 line display with audible and vibrate mode, of suitable size and durability for severe mechanical environments typical of hospital general floor settings. In yet another embodiment, the end user devices 128, 152 include two way paging systems, such as Motorola Flex and WLAN pagers. One advantage of two-way paging is the ability to confirm message receipt and the ability to remotely silence alarms. Wireless PDAs may also be used by end users based on ruggedness and acceptable form factors as determined by an end user. An example of such a device is the Symbol Technology MC50 PDA/Barcode Scanner.
The hospital network 220 transmits physiological information and context information to clinician notifier devices, including pagers 240, PDAs 230, and the like. In certain embodiments, the hospital network 220 utilizes a server 250 to transmit contextual data packages to a page transmitter 242, which further transmits the data to one-way wireless pagers 240. An external interface 280 may be coupled with the server 250. The external interface 280 could include one or more of the following: enterprise paging, nurse call systems, wide area paging systems, enterprise clinical and patient information systems, and third party monitoring and surveillance systems.
Certain other devices 260, such as some patient monitoring equipment, are not network communications enabled devices. That is, these other devices 260 are unable to connect to a network unaided. In the depicted physiological monitoring system 200, example devices 260 that are not network communications enabled are connected to a network interface module 270. The network interface module 270 is connected to the non-network communication enabled other devices 260 through RS232 cables 264. Such a connection is a standardized serial connection found on many devices. Because the network interface module 270 has an RS232 port, the network interface module 270 can allow non-network communication enabled patient monitoring devices to connect directly to the hospital network 220 and also to the Internet.
Moreover, by connecting to one or more other devices 260 in some embodiments, the network interface module 270 is able to associate patient context information and other context information with one or more other devices 260. Consequently, context can be created for one or more other devices 260 in addition to context being created for the network interface module 270.
The network interface module 300 also communicates with a storage device 350. While in the depicted embodiment the storage device 350 is shown as separate from the network interface module 300, in some implementations the storage device 350 is part of the network interface module 300. In addition, though not shown, the network interface module 300 may include a processor for implementing communications program code. Similarly, though not shown, the network interface module 300 may include an input device for a nurse to input context information and a display for receiving output from the network interface module 300.
The network interface module 300 can be integrated into handheld, portable or stationary patient monitoring platforms or instruments or contained in an accessory package with an RS 232 input for general interface to such devices. In another embodiment, (not shown) active RFID tag capabilities are included with the network interface module 106, with the clinician devices (e.g., notifier devices), or with both so that either a patient or a clinician can be located when an event occurs or on request. When operating on a shared network, the network interface module 106 is also compliant with to the open architecture communications standards of IEEE 802.1X (security and authorization), IEEE 802.3 (Ethernet), and WiFi (IEEE 802.11 a, b, g, e, i wireless protocols).
A context management module 310 in the network interface module 300 manages context data. In one embodiment, the context management module 310 receives context information, such as the context information described in connection with
The context management module 310 associates the context information with physiological information received from a sensor processing module. In certain embodiments, the context management module 310 performs this association when an alarm condition occurs. In such instances, the context management module 310 may create a contextual data package including a snapshot of historical physiological information together with the context information. In other embodiments, the context management module 310 performs an association continuously, and the network interface module 300 sends continuous or scheduled contextual data packages to end users. In addition, the context management module 310 or other modules in the network interface module 300 store the contextual data package in the storage device 350.
The communications module 320 uses the network interface 304 to communicate with a network. In certain embodiments, the communications module 320 possesses the functionality of a web server. As a web server, the communications module 320 enables the network interface module 300 to communicate with a hospital network and the Internet directly, without using a server. Consequently, other devices such as physiological monitoring devices that are not network connection enabled may connect with the network interface module and thereby become network enabled. The network interface module 300 manages the connectivity overhead for initiating and maintaining connectivity, manages context information (e.g., any of the context information described above in connection with
In certain embodiments, the communications module 320 uses standard communications protocols to communicate with a network. Some examples of standard communications protocols include Ethernet, WiFi (WLAN), Bluetooth, and the like. By using standard communications protocols, the communications module 320 is able to send and receive data over a shared network or open network architecture. However, the communications module 320 may also be used on a proprietary network using proprietary protocols.
In embodiments where the network interface module 300 communicates over a shared network rather than a proprietary network, the network interface module 300 shares network resources with other devices on the network. In some cases, high-volume network traffic affects the reliability of network communications. Consequently, certain implementations of the network interface module 300 include a flow control module 330. The flow control module 330 verifies that transmitted data was received by an end user. In the event that the end user did not receive the data, the flow control module 330 resends the data stored in the storage device 350. In certain embodiments, the storage device 350 therefore acts as a flow control buffer.
A security module 340 manages user access to the network interface device 300 and to data stored in the storage device 350. In certain embodiments, the security module 340 determines whether a user attempting to connect to the network interface module 300 is authorized to do so. In one implementation, the security module 340 uses the standard IEEE.802.1X network access control protocol to manage authentication. The network interface module 106 in certain embodiments provides security and encryption to meet the Health Insurance Portability and Accountability Act (HIPAA) requirements.
In certain embodiments, the network interface module 300 incorporates all or a portion of the functionality specified by the IEEE 1073 standard and the most recent update to the IEEE 1073 standard, namely the IEEE 11703 standard, both of which are hereby incorporated by reference. In certain embodiments, the context management module 310, the communications module 320, the flow control module 330, and the security module 340 also incorporate functionality specified in the IEEE 1073 and 11703 standards. By using standard protocols, the network interface module 300 may be used to enable network communication for a wide variety of physiological monitoring devices.
The process 400 begins by receiving context information at 402. In one embodiment, a device such as a network interface module receives the context information once, such as in an initialization step. The process 400 then receives physiological information at 404. In certain embodiments, the process 400 continues to receive physiological information throughout the remaining steps of the process 400. Alternatively, the process 400 may receive physiological information 400 for a portion of the process 400.
At 405, the process 400 determines whether an alarm condition or alert has occurred. If an alarm condition or alert has occurred, the process 400 proceeds to 406. However, if an alarm condition or alert has not occurred, the process 400 loops back to 404. In one embodiment, the looping back of the process 400 to 404 represents that a network interface module continually receives physiological information until an alarm condition or alert occurs. In certain embodiments (not shown), the process 400 may continue to receive physiological information even when an alarm condition or alert occurs.
At 406 the process 400 prepares a contextual data package. The contextual data package may include context information and a snapshot of physiological information. In one embodiment, the snapshot of physiological information includes the physiological information that gave rise to an alarm or alert. In one embodiment, the snapshot of physiological information includes information both before and after the occurrence of an alarm or alert. The contextual data package is stored in a flow control buffer at 408.
At 410, the process 400 establishes a network connection. In one embodiment, establishing a network connection at 410 includes connecting a network interface module to an end user device, such as a notifier device assigned to a nurse during his or her work shift. The process 400 then determines at 412 whether the user of the device (e.g., the nurse) has been authenticated. If the user has not been authenticated, the process 400 proceeds to 420. On the other hand, if the user has been authenticated, the process 400 proceeds to 414.
The process 400 at 414 communicates the contextual data package to the user. At 416, the process 400 determines whether the contextual data package was received. If the contextual data package was received, the process 400 proceeds to 420. Otherwise, the process 400 proceeds to 418, where the process 400 accesses data stored in the flow control buffer. In one embodiment, the data accessed by the process 400 is equivalent to or substantially equivalent to the contextual data package communicated to the user at 414.
The process 400 then loops back to 414, where the process 400 communicates (e.g., resends) the contextual data package to the user, and then at 416 re-verifies that the package was received. The process 400 in some implementations continues to loop between steps 414, 416, and 418 until the contextual data package was received. Thus, steps 414, 416, and 418 in certain embodiments constitute flow control performed by the process 400. These flow control steps allow the process 400 to overcome network transmission errors which may occur in shared networks.
If the contextual data package was received, the process 400 evaluates whether to continue the monitoring of physiological information at 420. If the process 400 determines to continue monitoring, the process loops back to 404, where the process 400 continues to receive physiological information. If, however, the process 400 determines not to continue monitoring, the process 400 ends.
In various embodiments of the process 400, the contextual data package or the physiological information alone is transmitted to the user even in the absence of an alarm condition. In still other embodiments, fewer than all of the steps are performed, or the steps are performed in different order. For instance, the process 400 may only perform the steps of receiving physiological information at 404, preparing a contextual data package at 406, establishing a network connection at 410, and communicating the contextual data package to the user at 414.
The clinical assignment module 512 has an assignment function. A nursing supervisor assigns individual nurses to specific patients at the start of each shift and upon admission of new patients. Shift assignments take place at change of shift during a “report” transition exercise where individual nurses and nursing supervisor from previous shift “hand off” patients to the next shift. The report can be either formal where all nurses attend or informal dependent on hospital nursing service policies and procedures. The clinical assignment module 512 provides an intuitive interface that allows a listing of available nurses to be assigned individual patients. The major user of this module is the unit clerk as assigned by the nursing supervisor. A nurse can be assigned one or more patients or all patients. An alternative work flow is self assignment where individual nurses assign patients themselves in which case they perform functions of the unit clerk. In the self assignment model, a default is implemented where any unassigned patient is either assigned to all nurses or the nursing supervisor.
The bedside device initialization module 514 has bedside devices, such as the network interface modules described above, that are sometimes set up by an aide to the nurse. In the case where the nurse performs this task, she or he performs the functions of the nursing aide. Work flow includes delivering a device to bedside, applying sensors, initializing the device, and setting patient context, such as name, ID and location.
The notification and viewing module 516 assigns a wireless notification device, such as a one-way pager, PDA, IP telephone, COW, or Tablet to individual nurses. The device becomes associated with her or him. Alarms are routed to the notification device based on the clinical assignment module 512. Non-dedicated notifier solutions such as hospital owned paging systems issued to nurses have unknown latency characteristics. A general purpose interface is available at the server with a latency of less than 1 second upon receipt from the bedside device and is time stamped upon presentation to the server external interface and stored in a journaling system within the server. An additional interface for mobile computing platforms such as PDA, COWS, and Tablets allows viewing of current and trend data for an individual patient.
The escalation rules module 518 has a rules engine that actuates an escalation policy defined by the hospital. The escalation rules module 518 provides alternative routing of alarms to alternative and additional clinical users in the event an alarm is not responded to or persists for a predefined (e.g., by a policy) period of time. The escalation rules module 518 in certain embodiments routes alarms to an emergency response team.
The clinical report module 520 provides predefined formatted reports on the clinical data from which to determine physiologic condition and/or progress. More than one report may be dependent on end user needs. Reports are not time critical views of individual patients and may be remotely viewed by clinicians who have alarm notification system 500 privileges and have been authenticated by the alarm notification system 500. These reports are web browser views that allow clinicians to set viewing parameters such as time and parameter scales and alarm review.
The clinical data stores module 522 provides data storage and database resources to store information as known to those skilled in the art.
Further shown in
The provisioning module 532 provides provisioning, which is the initial installation of the system and first customer use. The primary user of the provisioning module 532 is the field installer. The provisioning module 532 contains all the start up scripts and system configurations to bring the system from shipping boxes to full alarm notification system 500 functionality. Provisioning includes steps to configure individual devices, notifiers such as pagers, PDA, COW, Tables and IP telephone at the customer site, preferably by wireless means (e.g., Bluetooth).
The administrative module 534 provides a system interface for the application administrator to set up users, set policies for various actor privileges such as a nurses aide being able to set or change alarms, set up allowed device connection identifications, and other general systems administrative duties typical of IT systems.
The service module 536 provides interfaces for various technical support actors including remote service, IT Service, and Biomed Service. Each of these actors may perform each others' functions. Interfaces allow the service actors to access system performance data to access performance, for example, data traffic, device assets connected, software version management, CPU loading, network loading, etc. and execute remote technical service procedures, for example, resetting a printer queue, repartition of disk, uploading software patches, etc. The service module 536 includes a full journaling function that stores every user interaction or a portion of user actions that can be captured by the system, especially changes in default values or alarm settings.
The risk report module 538 provides summary reports on alarm occurrences, duration of alarm, clinical response time to alarms and other statistical data to determine overall effectiveness of clinical response to alarms in compliance with JCAHO, other regulatory bodies, and internal quality assurance committees.
The technical data stores module 540 has the same characteristics as the clinical data stores module 522 except that the technical data stores module 540 is used for technical data. The technical data stores module 540 may or may not share the same physical and logical entity as the clinical data stores module 522.
Additionally shown in
The HL7 interface 552 provides a bi-directional interface to electronic medical records (EMR) and supports both push and pull models. The push model is when a bedside nurse initiates data transfer. The pull model is when an EMR system polls the alarm notification system 500 server. The pager interface 554 provides output to external paging system. Message latency is identified to an end user for any user-owned paging solution. This same output can be used for middleware alarm notification systems such as Emergin. The XML/Web interface 556 provides bi-directional interface with mobile computing platforms such as wireless PDA, COWs, Tables, and Web-enabled IP phones. Mobile computing platforms support Web Browser XML applications. The device interface 558 provides a bi-directional interface to bedside devices as well as to other devices enabled by the communications module or accessory. Application Programmer Interface (API) capability is an option for interfacing to other bedside devices.
The major end users of the alarm notification system 500 system (not shown or described for simplicity) include hospital electronic medical records, admit discharge transfer, pharmacy, clinical information, patient flow tracking and others. Actors, e.g., users of the alarm notification system 500, including clinical actors and technical support actors. The clinical actors include nursing supervisors, unit clerks, nursing aides, nurses, rapid response teams and respiratory therapists.
A nursing supervisor assigns individual nurses to specific patients at the beginning of each shift. Shift can vary according to hospital staffing policies. A unit clerk takes direction from the nursing supervisor, typically inputs assignments into system and monitors overall system. A unit clerk may not be available for all shifts. A nursing aide takes assignments from nurse or nursing supervisor, typically applies bedside device sensor, initializes the bedside device and sets alarms to default values. A nurse has primary responsibility for individual patient care and primary response to alarms. The nurse is assigned by nursing supervisor to more than one patient dependent on her/his skills and patient needs and is not always assigned the same patient. Nursing aides are not found in all hospitals.
A rapid response team responds to clinical emergencies initiated by either a bedside nurse or a nursing supervisor. The team supports more than one care unit and has one or more members depending on shift. Rapid Response Teams may not be implemented in all hospitals. A respiratory therapist has responsibilities for management of respiratory care for more than one patient and usually more than one care unit. Respiratory therapists are not found in some international settings.
Clinical actor performance substitution allows a high capability actor to assume the roles of other actors. Alarm notification system 500 allows mechanisms for such performance. For example, a nursing supervisor may perform functions of a unit clerk nursing aide, a nurse and a rapid response team. A nurse may perform functions of a unit clerk, a nursing aide and a rapid response team. In some international markets a nurse may perform the functions of a respiratory therapist.
The technical support actors include field installers, application administrators, remote services, IT engineers, biomedical engineers and risk managers. A field installer provisions the system for initial installation, installs components, and validates that the installation and configuration meet a purchasing contract. An application administrator sets up and maintains user accounts and systems defaults. A remote service provides remote diagnostics and system maintenance over a remote link, such as dial up and VPN. An IT engineer provides network support services if the system is integrated with the hospital IT network. A biomedical engineer provides bedside and system primary service. A risk manager reviews reports for quality and risk mitigation purposes. Technical support actors may also fill in for other actors. For example, an IT engineer, a biomedical engineer, or a remote service can perform the functions of an application administrator. An IT engineer or a biomedical engineer can perform each other's functions.
In certain embodiments, systems and methods are provided for rapidly storing and acquiring physiological trend data. For instance, physiological information obtained from a medical patient can be stored in a round-robin database. The round-robin database can store the physiological information in a series of records equally spaced in time. Parameter descriptors may be used to identify parameter values in the records. The parameter values can be dynamically updated by changing the parameter descriptors to provide for a flexible database. In addition, the size of files used in the database can be dynamically adjusted to account for patient condition.
Additionally, in certain embodiments, medical data obtained from a clinical network of physiological monitors can be stored or journaled in a journal database. The medical data can include device events that occurred in response to clinician interactions with one or more medical devices. The medical event data may also include device-initiated events, such as alarms and the like. The medical data stored in the journal database can be analyzed to derive statistics or metrics, which may be used to improve clinician and/or hospital performance.
As used herein the terms “round-robin database” and “RRDB,” in addition to having their ordinary meaning, can also describe improved database structures having unique characteristics and features disclosed herein. Sometimes these structures are referred to herein as dynamic RRDBs or adaptive RRDBs.
The network 610 of the clinical network environment 600 can be a LAN or WAN, wireless LAN (“WLAN”), or other type of network used in any hospital, nursing home, patient care center, or other clinical location. For ease of illustration, the remainder of this specification will describe clinical environments in the context of hospitals; however, it should be understood that the features described herein may also be employed in other clinical locations or settings. In some implementations, the network 610 can interconnect devices from multiple hospitals or clinical locations, which may be remote from one another, through the Internet, a leased line, or the like. Likewise, the various devices 620, 630, 640, and 650 of the clinical network environment 100 may be geographically distributed (e.g., among multiple hospitals) or co-located (e.g., in a single hospital).
The patient monitors 640 may be point-of-care (POC) instruments or the like that monitor physiological signals detected by sensors coupled with medical patients. The patient monitors 640 may process the signals to determine any of a variety of physiological parameters. One example of a physiological parameter is blood oxygen saturation (SpO2). Other examples of physiological parameters are described below with respect to
The patient monitors 640 can provide the physiological information to the MMS 620. The patient monitors 640 can also provide information on medical events, such as alarms, to the MMS 620. Alarms can be triggered, for example, in response to a physiological parameter falling outside of a normal range. Alarms can also include alerts regarding equipment failures, such as a probe-off condition where a sensor has fallen off of a patient. Other examples of medical events are described below with respect to
In various embodiments, the patient monitors 640 provide the physiological information and medical events to the MMS 620. The MMS 620 is described in greater detail below. In some implementations, the patient monitors 640 may provide at least some of this information directly to the nurses' station systems 630 and clinician devices 650.
The nurses' station systems 630 can be desktop computers, laptops, work stations, or the like that are located at a nurses' station. One or more nurses' station computers 630 can be located at a single nurses' station. The nurses' station computers 630 can receive and display physiological information and alarm data received from the MMS 620 (or monitors 640). In certain embodiments, the nurses' station computers 630 use a graphical user interface (GUI) that provides a streamlined, at-a-glance view of physiological and medical information. An example of this GUI is described below with respect to
The clinician devices 650 can include any of a variety of devices used by clinicians, such as pagers, cell phones, smart phones, personal digital assistants (PDA), laptops, tablet PCs, personal computers, and the like. The clinician devices 650 are able to receive, in some embodiments, physiological information and alarms from the MMS 620 (or monitors 640). Physiological and alarm data can be provided to a particular clinician device 650, for example, in response to an alarm. The clinician devices 650 can, in some instances, receive values and waveforms of physiological parameters.
The MMS 620 in certain embodiments includes one or more physical computing devices, such as servers, having hardware and/or software for managing network traffic in the network 610. This hardware and/or software may be logically and/or physically divided into different servers 620 for different functions, such as communications servers, web servers, database servers, application servers, file servers, proxy servers, and the like.
The MMS 620 can use standardized protocols (such as TCP/IP) or proprietary protocols to communicate with the patient monitors 640, the nurses' station computers 630, and the clinician devices 650. In one embodiment, when a patient monitor 640 wishes to connect to the MMS 620, the MMS 620 can authenticate the patient monitor 640 and provide the monitor 640 with context information of a patient coupled to the monitor 640. Context information can include patient demography, patient alarm settings, and clinician assignments to the patient, among other things. Examples of context information are described herein. The MMS 620 may obtain this context information from the nurses' station systems 630 or other hospital computer systems, where patient admitting information is provided.
Upon connecting to a patient monitor 640, the MMS 620 may receive physiological information and medical events from the patient monitors 640. The MMS 620 may provide at least a portion of the physiological information and events to the nurses' station systems 630 and/or clinician devices 650. For example, the MMS 620 may provide physiological data and alarms for a plurality of patient monitors 640 to a nurses' station system 630, where nurses can evaluate the data and/or alarms to determine how to treat patients. Similarly, the MMS 620 may send wireless pages, emails, instant messages, or the like to clinician devices 650 to provide clinicians with physiological data and alarms.
Advantageously, in certain embodiments, the MMS 620 can store physiological information obtained from the patient monitors 640 in a round-robin database (RRDB) 624. The RRDB 622 of various embodiments includes a streamlined database structure that facilitates rapidly storing and retrieving patient data. The RRDB 622 can therefore be used in certain embodiments to rapidly provide physiological trend data to the nurses' stations 630 and to the clinician devices 650. Thus, for example, if a clinician desires to see a patient's physiological trends over a certain time period, such as the past hour, the clinician can use a nurses' station computer 630 or clinical device 650 to query the MMS 620. The MMS 620 may then obtain physiological information corresponding to the desired time period from the RRDB 622. Advantageously, the RRDB 622 can enable faster acquisition of trend data then is possible with relational databases currently used by hospital monitoring systems. Additional uses and optimizations of the RRDB 622 are described below.
In certain embodiments, the MMS 620 also archives or stores information about medical events in a journal database 624. The medical events can include events recorded by devices such as the patient monitors 640, nurses' station systems 630, and clinician devices 650. In particular, the medical events can include device events that occur in response to a clinician's interaction with a device, such as a clinician-initiated deactivation of an alarm. The medical events can also include device events that occur without a clinician's interaction with the device, such as the alarm itself. Additional examples of medical events are described below with respect to
The MMS 620 may analyze the medical event information stored in the journal database 624 to derive statistics about the medical events. For example, the MMS 620 can analyze alarm events and alarm deactivation events to determine clinician response times to alarms. Using these statistics, the MMS 620 may generate reports about clinician and/or hospital performance. Advantageously, in certain embodiments, these statistics and reports may be used to improve the performance of clinicians and hospitals.
For instance, in certain situations, the reports might help hospitals discover the cause of issues with patient monitors 640. The following example scenario can illustrate potential benefits of such a report. SpO2 alarm levels tend to be different for adults and neonates. However, some clinicians may not know this and may modify neonate SpO2 monitors to include adult alarm levels. These changes can result in many false alarms, which may cause clinicians to become frustrated and avoid using the patient monitors 640. By journaling medical events such as clinician alarm changes, it can be determined by an analysis of the journaled data that clinicians were inappropriately adjusting alarm settings on neonate monitors. A hospital could then use this information to take corrective action, such as by fixing the alarm limits and training the clinicians.
Although not shown, administrative devices may be provided in the clinical network environment 600. The administrative devices can include computing devices operated by hospital administrators, IT staff, or the like. Using the administrative devices, IT staff may, for example, promulgate changes to a plurality of patient monitors 640, nurses' station systems 630, and the MMS 620. The administrative devices may also allow IT staff to interface third-party systems with the MMS 620, such as electronic medical record (EMR) systems. The third party systems may be used, for instance, to change alarm settings on a plurality of monitors from an administrative device. Actions performed by administrators, IT staff, and administrative devices in general may also be journaled in the journal database 624.
The depicted embodiment of the patient monitor 740 includes a monitoring module 742, an RRDB module 744, and a journal module 746. Each of these modules may include hardware and/or software. Other components, such as a communications module, are not shown but may be included in the patient monitor 740 in various implementations.
The monitoring module 742 can monitor physiological signals generated by one or more sensors coupled with a patient. The monitoring module 742 may process the signals to determine any of a variety of physiological parameters. For example, the monitoring module 742 can determine physiological parameters such as pulse rate, plethysmograph waveform data, perfusion index, and values of blood constituents in body tissue, including for example, arterial carbon monoxide saturation (“HbCO”), methemoglobin saturation (“HbMet”), total hemoglobin (“HbT” or “SpHb”), arterial oxygen saturation (“SpO2”), fractional arterial oxygen saturation (“SpaO2”), oxygen content (“CaO2”), or the like.
In addition, the monitoring module 742 may obtain physiological information from acoustic sensors in order to determine respiratory rate, inspiratory time, expiratory time, inspiration-to-expiration ratio, inspiratory flow, expiratory flow, tidal volume, minute volume, apnea duration, breath sounds, rales, rhonchi, stridor, and changes in breath sounds such as decreased volume or change in airflow. In addition, in some cases the monitoring module 742 monitors other physiological sounds, such as heart rate (e.g., to help with probe-off detection), heart sounds (e.g., S1, S2, S3, S4, and murmurs), and changes in heart sounds such as normal to murmur or split heart sounds indicating fluid overload. Moreover, the monitoring module 742 may monitor a patient's electrical heart activity via electrocardiography (ECG) and numerous other physiological parameters.
In some implementations, the patient monitors 740 may also determine various measures of data confidence, such as the data confidence indicators described in U.S. Pat. No. 7,024,233 entitled “Pulse oximetry data confidence indicator,” the disclosure of which is hereby incorporated by reference in its entirety. The patient monitors 740 may also determine a perfusion index, such as the perfusion index described in U.S. Pat. No. 7,292,883 entitled “Physiological assessment system,” the disclosure of, which is hereby incorporated by reference in its entirety. Moreover, the patient monitors 740 may determine a plethysmograph variability index (PVI), such as the PVI described in U.S. Publication No. 2008/0188760 entitled “Plethysmograph variability processor,” the disclosure of which is hereby incorporated by reference in its entirety. The parameters described herein are merely examples, and many other parameters may be used in certain embodiments.
In certain embodiments, the RRDB module 744 receives physiological information from the monitoring module 742 and transmits the physiological information over the network 710 to the MMS 720. In response, the MMS 220 may store the physiological information in the RRDB 722. Advantageously, in certain embodiments, the RRDB module 744 associates the physiological information with parameter descriptors prior to transmittal to the MMS 720. The parameter descriptors may be identifiers that the RRDB module 744 associates with each measured physiological parameter value. The MMS 720 may use these parameter descriptors to identify the types of measured parameters received from the RRDB module 744.
The parameter descriptors may be descriptors generated according to a markup language specification, such as an extensible markup language (XML) specification. As such, the parameter descriptors may include tags that enclose measured physiological values. These tags may be machine readable or human readable. For instance, the tags may include numerical identifiers (e.g., “0017”) or descriptive identifiers, such as “SPO2” or “SPHB.” A simplified example stream of physiological information from an SpO2 sensor and an SpHb sensor associated with parameter descriptors might be as follows: <SPO2>96</SPO2> <SPHB>14.1</SPHB> <SPO2>97</SPO2> <SPHB>14.0</SPHB>, and so on.
In one embodiment, the RRDB module 744 may have stored (e.g., in a data file) a set of predefined parameter descriptors available for the patient monitor 740. These parameter descriptors may correspond to possible parameters that may be measured by the patient monitor 740. The parameter descriptors transmitted by the RRDB module 744 may depend on the particular subset of parameters measured by the patient monitor 740.
If an additional (or different) parameter is subsequently measured by the patient monitor 740, the RRDB module 740 may dynamically update the parameter descriptors that are sent to the MMS 720. Likewise, if the patient monitor 740 ceases to measure one of the parameters, the RRDB module 744 may cease to transmit the corresponding parameter descriptor to the MMS 720.
The patient monitor 740 also includes a journal module 746 in the depicted embodiment. The journal module 740 may record medical events related to the patient monitor 740. These medical events can include clinician-initiated events, such as changes to alarm settings (e.g., maximum and minimum permitted parameter values), types of parameters monitored/sensors connected to the patient monitor 740, and the like. The journal module 746 may record these events by, for example, acting as a key logger or the like to record button presses of a clinician. The journal module 746 may also include current-sense circuitry to detect when sensors or cables are connected to the monitor 740, and so forth. The medical events may also include non-clinician initiated events, such as alarms and alerts. The medical events can also include events from administrative devices (not shown), such as EMR updates to alarm settings across the network 710.
The journal module 746 may log these events locally at the patient monitor 740. In addition, or instead of logging the events locally, the journal module 746 may transmit information about the events to the MMS 720. In turn, the MMS 720 can store the event information in the journal database 724.
The nurses' station system 730 is shown in the depicted embodiment having a patient monitoring client 732. The patient monitoring client 732 can enable the nurses' station system 730 to receive and display physiological information and alarm information. The patient monitoring client 732 includes a user interface module 734. The user interface module 734 may include, for example, software for displaying physiological information, patient information, and medical event information for a plurality of patient monitors 740. The user interface module 734 may also allow clinicians to admit and discharge patients, remotely modify device alarm limits, and the like. An example user interface that may be generated by the user interface module 734 is described below with respect to
The patient monitoring client 732 further includes a journal module 736. The journal module 736 may include software for recording medical events related to the patient monitoring client 732. For example, the journal module 736 may record which clinicians login to and logoff of the patient monitoring client 732 and when these events occur; admit and discharge events; and other clinician keystrokes, mouse clicks, and interactions with the patient monitoring client 732. The journal module 736 may log this event information locally at the nurse's station system 730 and/or transmit the event information to the MMS 720.
As shown, the MMS 720 may include a network management module 721, an RRDB management module 723, and a journal management module 725, each of which may include one or more software components. In one embodiment, the network management module 721 receives messages containing physiological information and medical event data from the patient monitor 740. The network management module 721 can provide at least a portion of this data to the nurses' station system 730 and clinician devices 650 of
In certain embodiments, the RRDB management module 723 stores the physiological information received from the patient monitor 740 in the RRDB 722. When the patient monitor 740 initially connects to the MMS 720, or at another time, the RRDB management module 723 can create one or more RRDB files in the RRDB 722 corresponding to the patient monitor 740. The contents of this file or files may depend on the type of patient monitor 740, which may be defined by the patient monitor's 740 serial number, model number, vendor identifier, combinations of the same, or the like. Specific examples of the structure and contents of RRDB files are described in US Patent Publication 2009/0119330, the entire contents of which are hereby incorporated by reference herein.
The RRDB management module 723 can also provide physiological trend data stored in the RRDB to the network management module 721 for transmittal to monitors 740, nurses' station systems 730, and/or clinician devices. The RRDB management module 723 may also provide physiological data from the RRDB 722 to the journal management module 725 for purposes described below with respect to
The journal management module 725, in certain implementations, receives medical event data from the monitor 740 and the nurses' station system 730 and stores this data in the journal database 724. In an embodiment, the journal database 724 is a relational database; however, other structures may be used. Each entry of event data may have a corresponding time stamp that indicates when an event occurred. This time stamp may be provided by the journal modules 746 or 736 or by the journal management module 725. The journal management module 725 may also store event counters in the journal database 724 that reflect a number of times medical events occurred. For example, counters could be stored that count how many alarms occurred within a period of time or how many times a clinician logged on or logged off of a network device.
Advantageously, the journal management module 725 may, in certain embodiments, analyze the medical data in the journal database 724 to determine statistics or metrics of clinician and/or hospital performance. The journal management module 725 may provide an interface to users of the nurses' station system 730 or another computing device to access these statistics. In one example embodiment, journal management module 725 can analyze alarm events and alarm deactivation events to determine clinician response times to alarms. The journal management module 725 may further determine the clinician response times in nurses' day and night shifts. The journal management module 725 may generate reports of these statistics so that hospital administrators, for example, may determine which shifts perform better than others.
More generally, the journal management module 725 may generate reports about clinician and/or hospital performance by analyzing various statistics derived from data in the journal database 724. One example of a report is a monitoring report card, which grades a given hospital against other hospitals (or nurses' station against nurses' station, and the like) based at least partly on the derived statistics. Advantageously, hospital administrators, clinicians, and the like may use these statistics and reports to improve the clinician and hospital performance.
Some or all of the features of the clinical network environment 700 may be adapted in certain embodiments. For instance, either or both of the journal modules 746 or 736 may perform some or all of the functions of the journal management module 725. Likewise, one or more journal databases 724 may be stored at the patient monitor 740 and/or nurses' work station 730. Similarly, the RRDB module 724 may perform some or all of the functions of the RRDB management module 723, and an RRDB 722 may be stored at the patient monitor 740. In addition, in some implementations, the clinician devices 650 of
At block 802, medical events are journaled in a journal database. In response to requests for report from a user (e.g., a clinician), at block 804 statistics about the medical events are obtained from the journal database. The statistics may include the type, frequency, and duration of medical events, the identity of clinicians or patients associated with the events, alarm response times, combinations of the same, and the like.
A report is generated at block 806 regarding the medical event statistics. At block 808, the report is used to identify potential areas of improvement in hospital operations. For example, the report can be a “monitoring report card” that assigns scores to the hospital or clinicians of the hospital based on their performance.
At block 812, the request is received from a user to review journaled and physiological data corresponding to a period of time. The user may be a clinician, hospital administrator, or the like, who wishes to determine the cause of a problem in the healthcare of a patient. For instance, the user may wish to determine why clinicians failed to respond when a patient's SpO2 dropped below safe levels.
At block 814, journaled data is retrieved for the specified period of time from a journal database. This block may be performed by the journal management module 725. At block 816, physiological data for the specified period of time is retrieved from an RRDB. This block may be performed by the RRDB management module 723. The journal data is correlated with the physiological data with respect to time at block 818. This correlation may include reconstructing a timeline of medical events, with values of physiological parameters (optionally including waveforms) provided in the correct time sequence on the timeline. In some embodiments, to facilitate this coordination between the RRDB management module 723 and the journal management module 725, timestamps in each database 722, 724 may be synchronized when the data is stored.
The correlated data is output for presentation to the user at block 820. The output may include, for example, a graphical view of medical events superimposed on physiological information (e.g., a waveform), or the like. Many display formats may be used for the correlated data.
The GUI 900 includes several display areas. In the depicted embodiment, the GUI 900 includes a patient status display area 910. The patient status display area 910 shows the status of multiple patients in a hospital or other clinical location. In an embodiment, patient status display area 910 depicts patient status for patients in a hospital department. Advantageously, in certain embodiments, the patient status display area 910 provides an “at-a-glance” view of multiple patients' health status.
The patient status display area 910 includes a plurality of patient status modules 912. Each patient status module 912 can correspond to a patient monitor that can be coupled to a medical patient. Each patient status module 912 can display a graphical status indicator 914. An example graphical status indicator 914 is shown in the screens 900 as a miniature patient monitor icon. The graphical status indicator 914 can selectively indicate one of several states of a patient monitor. In one embodiment, four possible patient monitor states can be depicted by the graphical status indicator 914. These include an alarm condition, a no alarm condition, patient context information status, and connection status.
In various implementations, the graphical status indicator 914 changes color, shape, or the like to indicate one of the different patient monitor states. For example, if an alarm condition is present, the graphical status indicator 914 could turn red to signify the alarm. If there is no context information available for the patient (see
Advantageously, the graphical status indicator 914 shows at a glance the status of a patient monitor. Thus, in the patient status display area 910, several graphical status indicators 914 corresponding to several patients show an at-a-glance view for the patient monitors corresponding to these patients. A clinician can therefore readily see the needs that a patient might have with regards to alarms, connection status, and context information.
Currently available graphical user interfaces for nurses' station computers tend to show a plurality of wave forms or changing physiological parameter numbers for each patient. This method of displaying patient information can be cluttered, confusing, and even hypnotic in some situations. Nurses working on a night shift, for instance, may find it difficult to concentrate on an alarm when several other patients' indicators on the display have changing numbers, changing waveforms, or the like. In contrast, in the graphical interface herein described, when the graphical status indicator 914 indicates an alarm condition, this alarm condition can stand out and be immediately recognized by the clinician.
Moreover, the graphical status indicator 914 simplifies the first level of analysis that nurses tend to perform. In currently available devices, nurses often have to analyze waveforms at the nurses' station to determine the health status of a patient. However, using the screens 900, a nurse need not interpret any waveforms or changing parameters of the patient, but instead can rely on the graphical status indicator 914 that indicates the presence of an alarm.
In certain embodiments, the patient status modules 912 can be selected by a single mouse click or the like. Selecting a patient status module 912 in one embodiment can bring up a patient monitor view area 920. The patient monitor view area 920 shows a view of a patient monitor corresponding to a selected patient status module 912. In certain implementations, the patient monitor view area 920 can show a view of the screen from the actual patient monitor device at the bedside of the patient. Thus, a clinician can readily recognize the physiological parameters of the patient in a format that the clinician is likely familiar with. The patient monitor view area 920 is currently receiving physiological information from a patient.
A history view area 930 in certain implementations can show medical event data corresponding to a selected patient monitor status module 912. This medical event data can be obtained from a journal database for inclusion in the GUI 900. The historical view 930 can show, for example, when a sensor was connected or disconnected from a patient, when alarms were active, and when a patient was admitted to the hospital or department. Although not shown, the history view area 930 can also be configured to show trend data obtained from an RRDB instead of, or in addition to, the journaled data.
Other features are described in U.S. patent application Ser. No. 12/904,925, entitled “SYSTEMS AND METHODS FOR STORING, ANALYZING AND RETRIEVING MEDICAL DATA,” filed Oct. 14, 2010, the entire contents of which are hereby incorporated by reference herein.
Transmission of Patient Information to Remote Devices
In some embodiments, the patient monitoring devices described herein are capable of transmitting patient information to one or more remote devices for review by a clinician. For example, such remote devices can include remote computers, smart phones, PDAs, etc. This is useful because it enhances the ability of a clinician to monitor a patient's condition remotely. For example, the clinician need not be at the patient's bedside or even at a hospital or other patient care facility in order to effectively monitor the patient's condition.
In some embodiments, any of the information collected by a patient monitoring device (e.g., the patient monitoring devices described herein) can be transmitted to a remote device. Such information can include, for example, values, trend data, etc. for a medical parameter (e.g., blood oxygen saturation, pulse rate, respiration rate, etc.). It can also include video of the patient and/or audio from the patient and/or the patient's room. For example, video cameras and/or microphones can be provided in the patient's room. In some embodiments, a video camera and/or microphone is incorporated with, for example, a medical monitoring device, such as those described herein. The video camera can image the patient using visible light when the ambient light in the patient's room is of sufficient intensity. The video camera can also be capable of detecting, for example, infrared light when the patient's room is too dark to provide video of acceptable quality using visible light. The video camera can also include an infrared illumination source to illuminate the patient and/or his or her surroundings. In some embodiments, the video camera includes an ambient light sensor that can be used to automatically switch the video camera into infrared mode when the ambient light falls below some threshold. The light sensor can also be used for switching on an infrared illumination source if one is included.
The transmission of patient information (e.g., medical parameter data, video/audio of the patient, etc.) can be made using, for example, one or more communication networks (e.g., computer networks such as LANs, WLANs, the Internet, etc., telephone networks, etc.). In some embodiments, one or more communication networks that are entirely or partially physically located in a hospital or other patient care center can be used. In some embodiments, external communication networks can be used to reach remote devices throughout the world. Thus, clinicians can remotely obtain a vast amount of information regarding the condition of their patients regardless of the clinician's location. In some embodiments, the clinician may also have the capability to directly communicate with the patient. For example, a patient monitoring device could include a speaker for broadcasting audio from the clinician's remote device to the patient. Similarly, a patient monitoring device could include a display for showing video from the clinician's remote device (e.g., video teleconferencing). In this way, the exchange of information can be bidirectional to allow the clinician to directly interact with the patient.
Hospital Systems with Location Awareness of Devices and Clinicians
Advanced monitoring systems are capable of displaying many different physiological parameters in many different formats. One possible drawback to this substantial performance capability and display flexibility is that excessive information may be presented to the caregivers that use these systems. These caregivers may include physicians, respiratory therapists, registered nurses, and other clinicians whose uses of the monitoring systems may vary from the taking of routine vital signs to the diagnosis and treatment of complex physiological conditions to clinical research and data collection.
Patient monitoring devices, such as those described herein, may include a keyboard, touchscreen, or other input device to allow a clinician to interact with the device. Such user interface devices can be used to allow a clinician to input login information, such as, for example a username and password. In some cases, a monitoring device may require a clinician to login to the device, for example, before permitting access to one or more of the functions offered by the device, and/or before permitting access to certain information available at the device. The nurses' station, or central monitoring station, as described herein, is an example of one such monitoring device that may require a clinician to login in order to use it. Bedside patient monitors may require a clinician to login before initializing monitoring of a new patient. Even where a clinician is not required to login to a patient monitoring device before using it, the device may still require some type of interaction with an input device in order to cause it to take a particular action from amongst a set of available actions offered by the patient monitoring device.
For example, user input may be required in order to configure a patient monitoring device in a desired manner. In some embodiments, a clinician may use an input device to change the content offered on the display of the patient monitor device, or the formatting of the content, to suit his or her preferences. In some instances, a nurse may use the input device to manually configure the central monitoring station to display only monitoring information for those patients that are assigned to that particular nurse rather than displaying, for example, all the patients on the entire floor. A clinician may also use an input device to alter patient monitoring settings such as, for example, options for calculating physiological parameter values from raw data, alarm types, physiological parameter alarm limits (e.g., alarm thresholds), etc.
Given the time demands placed on clinicians in busy hospitals, this process of manually interacting with a patient monitoring device by, for example, physically manipulating an input device can be burdensome, especially when it may need to be repeated over and over throughout the day. In some cases, the time required to manually interact with a patient monitor device in order to access a particular function or configure the device can even jeopardize a patient's well-being in particularly urgent circumstances. For at least the foregoing reasons, it would be advantageous for hospital equipment, such as bedside patient monitors, central monitoring stations, and other devices, to have the capability to automatically detect the presence of a clinician, and to, for example, take some predetermined action based on the identity of the clinician whose presence is detected.
In some embodiments, a proximity display monitor advantageously adapts an advanced monitoring system to various user needs and preferences by adapting the display to the current observer according to, for example, preference, priority, or user acknowledgement. Accordingly, displayed parameters and formats may be chosen by default according to a predefined user class or customized for particular individuals or groups of individuals. One method of identifying persons in the vicinity of a proximity display is by an ID tag or other token. The ID tag may communicate the user to the proximity display monitor via radio-frequency identification (RFID) or wireless radio transmission as examples. If multiple users are in range of a proximity display monitor, a priority scheme or a user acknowledgment may be used to determine which users are accommodated.
In some embodiments, a proximity display monitor has a monitor and an interconnected sensor, the sensor transmits optical radiation into a tissue site and generates a sensor signal responsive to the optical radiation after attenuation by pulsatile blood flow within the tissue site. The monitor may compute physiological parameters responsive to the sensor signal and utilize a proximity display to show the physiological parameters on screen according to a display preference associated with a user in proximity to the monitor. A display can be incorporated with the monitor so as to present the physiological parameters for viewing by a caregiver. A transceiver can be incorporated with the monitor and may be responsive to an identification signal. The identification signal can correspond to a caregiver. A transmitter carried by the caregiver can send the identification signal over a range, for example, approximating the distance from the monitor that a person can reasonably view the display. A preferred screen can present the physiological parameters on the display according to the display preference associated with the caregiver as indicated by the identification signal.
In some embodiments, a proximity display monitor comprises a monitor having a display and a wireless transceiver. The wireless transceiver can be responsive to identification signals which indicate the proximity to the monitor of any users, who have corresponding display preferences. Preferred screens may present the physiological parameters on the display according to the display preferences.
In some embodiments, a proximity display monitor has an optical sensor attached to a fleshy tissue site. A sensor signal may be responsive to optical radiation transmitted by the sensor and detected by the sensor after absorption by pulsatile blood flow within the tissue site. The sensor signal can be communicated to a monitor, which processes the sensor signal so as to derive physiological parameters responsive to constituents of the pulsatile blood flow. The identity of a user in proximity to the monitor can be wirelessly signaled to the monitor. A screen preference, for example, can be determined from the user identity and used to display the physiological parameters on a monitor display.
In some embodiments, a proximity display monitor comprises a processor and a display. The processor can be responsive to a sensor signal generated from optical radiation transmitted into a fleshy tissue site and detected after attenuation by pulsatile blood flow within the tissue site. The processor can be configured to calculate a plurality of physiological parameters indicative of constituents of the pulsatile blood flow. The display may provide a visual representation of the physiological parameters values for viewing by proximate users. A wireless communications means can determine the identities of proximate users. Screen preference means may present the physiological parameters on the display. A lookup table means can relate the user identities to the screen preferences.
As described with respect to
As shown in
In some embodiments, a proximity display monitor responds to the departure of all proximate users by automatically dimming the display to a reduced brightness setting. This feature advantageously avoids disturbance of a patient who is sleeping or attempting to sleep. In some embodiments, a proximity display monitor responds in a similar manner by automatically silencing pulse “beeps” and other non-critical sounds when there are no proximate users.
Also shown in
Further shown in
The patient monitoring device 1400 includes a detector such as, for example, a communication module 1402. The patient monitoring device 1400 also includes a display 1404, and a processor 1406. The processor 1406 can be used, for example, for carrying out clinically-useful tasks on the basis of physiological information collected from one or more patients (e.g., calculating physiological parameter values, determining alarm conditions, outputting physiological information via a clinician user interface, notifying a clinician of an alarm condition, etc.) The patient monitoring device 1400 can also include other modules to assist in the monitoring of patients, as described herein (e.g., an interface for receiving physiological information from a medical sensor or computer network, a user interface for facilitating interaction with a clinician, etc.). In some embodiments, the communication module 1402 is a transmitter, a receiver, or a transceiver. Other types of communication modules can also be used. In some embodiments, the communication module 1402 is a short-range transceiver. The short range transceiver can be, for example, a Bluetooth-enabled transceiver. Bluetooth is a wireless protocol for exchanging data between devices over relatively short distances. The communication module 1402 can also be an infrared transceiver, an RFID tag, or any other means of communication (e.g., short-range communication).
The communication module 1402 is capable, in some embodiments, of detecting signals from a remote device within a detection area 1420. The size of the detection area of 1420 can be determined by, for example, the power levels of communication signals from the communication module 1402. The size of the detection area 1420 may also be affected by the surroundings of the patient monitoring device 1400. In some embodiments, the detection area 1420 is configured to have a radius of 30 feet or less. In some embodiments, the radius of the detection area 1420 is 20 feet or less. In some embodiments, the radius is 10 feet or less, while in some embodiments, the radius is 5 feet or less, or 3 feet or less. In some embodiments, the patient monitoring device 1400 has multiple detection areas. Such detection areas could be, for example, different distance ranges from the patient monitoring device 1400. The patient monitoring device 1400 can be configured to perform different actions in response to detection of a clinician token in each of the different detection areas.
The clinician token 1410 can likewise include a communication module 1412, which can be, for example, a transmitter, a receiver, or a transceiver, though other types of communication modules may also be used. As is the case with the patient monitoring device 1400, the communication module 1412 included with the clinician token 1410 may be a short range transceiver, such as, for example, a Bluetooth transceiver. The patient monitoring device 1400 is capable of detecting the presence of a clinician based on, for example, recognition of one or more communication signals from a clinician token 1410. A communication signal from the clinician token 1410 may come, for example, in response to a communication initiated by the patient monitoring device 1400, or the communication signal from the clinician token 1410 may be initiated by the clinician token itself. Many different methods can be used for initiating, for example, wireless communication between remote devices.
The clinician token 1410 may also carry information, for example, in a memory. The memory may be, for example, volatile or nonvolatile memory. The information may be hardwired into the clinician token 1410 or programmable. In some embodiments, the clinician token 1410 includes a clinician ID 1414 that is unique to the clinician to whom the clinician token 1410 is assigned. The clinician token 1410 may also include other information such as, for example, a clinician's login information (e.g., user name and password), a code or other indicator for initiating a predetermined action to be performed by the patient monitoring device 1400 upon recognition of the clinician's presence (logging in the clinician, setting configuration preferences of the patient monitoring device 1400, enabling a function, etc.).
The clinician token 1410 may also include an input module 1416 that allows the clinician to cause the communication module 1412 to remotely communicate with, for example, the patient monitoring device 1400, or some other device that forms a part of the hospital's patient monitoring network. For example, the input module 1416 may include one or more buttons, or other input devices, that allow the clinician to initiate a communication with the patient monitoring device 1400 for the purpose of having that device recognize the clinician's presence. In addition, the clinician may use the input module 1416 to, for example, call in an emergency response team if the clinician discovers that a particular patient is in need of emergency attention, or to silence a monitoring alarm. The input module 1416 can also be used for other purposes, depending upon the application.
In some embodiments, the clinician token 1410 is a cell phone, notebook computer, PDA device, headset, etc., any one of which may be, for example, Bluetooth-enabled. In some embodiments, the clinician token 1410 is the pager, or other notification device, used to notify clinicians of physiological parameter alarm conditions, as described herein. In some embodiments, the clinician token 1410 is an active or passive RFID tag. An active RFID tag may be WiFi-enabled, for example. In some embodiments, the clinician token 1410 is a barcode (e.g., two-dimensional or three-dimensional). In some embodiments, the clinician token 1410 is a part of the clinician's body. For example, the clinician token 1410 may be a fingerprint, a retina, the clinician's face, etc. In such embodiments, the clinician ID 1414 is actually a unique biometric signature of the clinician. The communication module 1402 may be selected based upon the type of clinician token 1410 with which it is to communicate. For example, the communication module 1402 in the patient monitoring device 1400 may be an RFID interrogator, a barcode scanner, a fingerprint scanner, a retina scanner, a facial recognition device, etc.
In some embodiments, the clinician token 1410 is advantageously a consumer device that can be registered with the patient monitoring device 1400 but that has no prior connection or relationship with, for example, the patient monitoring device 1400, a patient monitoring system, the hospital, etc. For example, the clinician token 1410 can be a consumer device that is not designed specifically for the purpose of communicating with the patient monitoring device 1400, or any other device configured to be able to detect the presence of the clinician token. Many clinicians will already own, for example, a cell phone which is carried on the clinician's person throughout the day for the clinician's personal use. In some embodiments, the clinician's personal electronic device can function as the clinician token 1414, for example, after a registration process that will be described herein. This can be advantageous because it does not require investment on the part of the hospital or other caregiver facility to provide each clinician with a special-purpose clinician token 1410. Nevertheless, in some embodiments, the clinician token 1410 is a special-purpose device provided to the clinician for the primary purpose of operating with, for example, patient monitoring devices (e.g., 1400) having presence detection functionality.
In some embodiments, the clinician token 1410 is capable of responding to, for example, interrogation from a patient monitoring device only with a fixed response signal (e.g., a clinician ID 1414). In some embodiments, however, the clinician token 1410 is capable of transmitting multiple, and/or variable, signals and information to the patient monitoring device 1400. The clinician token 1410 may include a processor capable of executing, for example, software applications that allow the clinician token 1410 the capability of a variety of intelligent communications with the patient monitoring device 1400.
In some embodiments, a registration process is completed before the clinician token 1410 is used with the patient monitoring device 1400 to implement presence detection functionality. For example, during a registration process, the clinician token 1410 may be endowed with a unique clinician ID 1414 assigned to a particular clinician. This clinician ID may be stored in a database that is, for example, accessible by the patient monitoring device 1400 such that the patient monitoring device 1400 can determine the identity of the clinician based upon the clinician ID 1414 stored in the clinician token 1410. The clinician ID 1414 can also be associated in the database with, for example, the clinician's assigned login information for accessing the patient monitoring device 1400.
The database can also store an indication of the action, or actions, that the clinician desires a particular patient monitoring device to take upon detection of the clinician's presence. The database can store the clinician's configuration preferences for the patient monitoring device. For example, the particular physiological parameters and other monitoring information that are shown on the display 1404 of the patient monitoring device 1400 may be configurable. In the case of bedside patient monitors, for example, the display 1404 may be capable of showing numerical indicators of a particular physiological parameter, graphical indicators of the physiological parameter, visual alarms, multiple physiological parameters simultaneously, signal quality of physiological parameter signals from a patient sensor, etc. The clinician's configuration preferences can indicate to the monitoring device 1400 what type of information to display and how to format the displayed information. The clinician's configuration preferences for the patient monitoring device 1400 can also include patient monitoring settings such as, for example, physiological parameter alarm limits.
In the case of, for example, a central monitoring station, such as the type described herein, the clinician's configuration preferences may likewise include the type and display format of a physiological parameter, or other monitoring information, that is shown for each of the patients being monitored at the central monitoring station. In addition, the clinician's configuration preferences can include a fixed or dynamic list of patient rooms, or patient names, to be displayed at the central monitoring station. These rooms, or patients, can be those currently assigned to that particular clinician, for example. In general, however, the clinician's configuration preferences that are associated with the clinician ID 1414 can include any configurable feature, aspect, or function of the patient monitoring device 1400.
In some embodiments, the database can be configured to receive a variety of input information to define, for example, different action to be performed by a monitoring device 1400 upon detection of the clinician's token. Inputs to the database can include the clinician ID, the strength of the signal from the clinician's token, the estimated distance of the detected clinician token from the monitoring device, the length of time of detected presence of the token, a clinician priority level, the time of day, the room or hospital ward associated with the monitoring device that has detected the clinician's presence, etc. Based upon this input, the database can output a set of actions to be performed by the patient monitoring device upon detection of the clinician. Alternatively, or in addition, such actions and preferences can be determined using logical rules applied to the input information.
The database can be stored locally by the patient monitoring device 1400. Alternatively, or in addition, the database can be stored remotely by a device that is communicatively coupled to the patient monitoring device 1400. For example, in some embodiments, a bedside patient monitor is communicatively coupled to a central monitoring station, as described herein. In some embodiments, this communication link is via a wireless network. In such embodiments, when the bedside patient monitor detects the presence of a clinician, it can receive a clinician ID and/or other information from a clinician token. The bedside patient monitor can then communicate this information to the remote database maintained by the central monitoring station. The bedside patient monitor can also transmit to the central monitoring station other input information, as identified above (e.g., the estimated distance of the clinician token from the bedside patient monitor, the length of time the clinician token has been present in the detection area, and/or other information collected from, or using, the clinician token).
The central monitoring station can then query the database using this information to determine any actions associated with the detection of the clinician's token under the circumstances indicated by the input information. Once an associated action has been determined from the database, the central monitoring station can then command of the bedside patient monitor as to the action it should take in response to detection of the clinician's presence.
In some embodiments, the database is remotely accessible such that actions or preferences can be conveniently stored, updated, and accessed by users. For example, the database can be remotely accessible via a web server. In some embodiments, the database is stored locally by a patient monitoring device (e.g., a bedside patient monitor) instead of remotely. In such embodiments, however, the locally-stored database may nevertheless be periodically remotely updated by, for example, the central monitoring station.
The database can associate with the clinician ID 1414 a particular action that the clinician may wish to initiate upon entering the detection area 1420 of the patient monitoring device 1400. Examples of such actions that can be initiated automatically upon detection of the clinician's presence are described herein. In addition, in some embodiments, the database can also associate with the clinician ID 1414 a priority level. The priority level can indicate which clinician should be given priority access to a medical monitoring device 1400, for example, when multiple clinicians are detected in the detection area 1420 simultaneously.
In some embodiments, the clinician's assigned login information, monitoring device configuration preferences, list of actions to automatically initiate upon recognition of the clinician's presence, priority level, and/or other information can be stored by the clinician token 1410 itself. In such embodiments, this information may be transmitted directly to the patient monitoring device 1400 by the clinician token 1410 as opposed to the patient monitoring device 1400 obtaining the information from a database using the clinician ID 1414 stored on the token 1410. Other methods can also be used in order to associate, for example, a clinician ID 1414 with a predetermined action (e.g., logging in, configuration change, etc.) that the clinician wishes the patient monitoring device 1400 to take or assume when the clinician is in the detection area 1420 of the device 1400.
In some embodiments, once a registration process is complete, the patient monitoring device 1400 is capable of detecting the presence of a particular clinician based upon the clinician's token 1410, and of taking, for example, a clinician-specific action based upon recognition of the clinician's presence. In some embodiments, the processor 1406 of the patient monitoring device 1400 is configured to execute detection logic 1408 for determining when a clinician token 1410 is or is not present in the detection area 1420 of the monitoring device 1400. In some embodiments, the detection logic 1408 is a set of rules or other criteria that must be satisfied before a clinician token 1410 is determined to be present in the detection region 1420, or before some clinician-specific action is performed.
At decision block 1504, the processor 1406 executes the detection logic 1408 to determine whether a signal is detected from a clinician token 1410. For example, in some embodiments, the communication module 1402 of the patient monitoring device 1400 may, for example, continuously, or periodically, transmit a clinician token discovery signal. At decision block 1504, the processor 1406 can determine whether a response has been received from a clinician token 1410 to the patient monitoring device's discovery signal. Alternatively, or additionally, the clinician token 1410 can be configured to, for example, continuously, or periodically, transmit a discovery signal which the patient monitoring device 1400 can detect. Response signals from the clinician token 1410 can include, for example, the clinician ID 1414 or other information. If no signal is detected from a clinician token 1410, then the detection method 1500 returns to the waiting state 1502. If, however, a signal from a clinician token 1410 is detected, then the detection method 1500 can proceed to the next decision block 1506.
At decision block 1506, the processor 1406 executes the detection logic 1408 to determine whether the detected signal from the clinician token 1410 exceeds a signal strength threshold value. This test can be useful, for example, as an estimate of the physical distance between the clinician token 1410 and the patient monitoring device 1400. For example, the patient monitoring device 1400 may be configured such that whether or not a detection event occurs, and/or the particular predetermined action it takes upon detection of a clinician, is dependent upon the estimate of the physical distance between the clinician and the patient monitoring device 1400. This may be useful, for example, in the case of a central monitoring station that is near a high traffic area where many clinicians regularly pass by. In such situations it may be advantageous to set the signal strength threshold used in decision block 1506 at a relatively high level so as to limit the clinician detection events to situations where a clinician is a relatively small distance away from the central monitoring station. Thus, the signal strength threshold can be configurable based, for example, upon a desired physical distance from a clinician token 1410 before recognizing a clinician presence detection event. If the signal strength of the signal detected from a clinician token 1410 is below the signal strength threshold used by the decision block 1506, then the detection method 1500 returns to the waiting state 1502. If, however, the signal strength exceeds the threshold, then the detection method 1500 can proceed to the next decision block 1508.
As discussed above, signal strength from a clinician token 1410 can be used to determine when to recognize a detection event. For example, the signal strength from the clinician token can be used to determine an estimate of the distance between the clinician token 1410 and the patient monitoring device 1400. However, some variation may exist in the signal strength detected from two different clinician tokens 1410 even if the two clinician tokens are located at substantially the same distance from the patient monitoring device. Such signal strength variations can result from, for example, the two clinician tokens being different makes or models, from the two tokens being worn differently (e.g., one of the tokens being worn inside a clinician's clothing while the other is worn outside a clinician's clothing), etc. In some embodiments, a signal strength correction value may be associated with each clinician token. This can be done, for example, by associating a signal strength correction value with the clinician ID from the token in the database which stores actions and preferences associated with the clinician token.
The signal strength correction value can be used to adjust, for example, the estimated distance between a given clinician token and the patient monitoring device. For example, a clinician token that is known to transmit a relatively strong signal at a given distance (e.g., compared to other clinician tokens at the given distance) can be associated with a signal strength correction value that increases the distance estimate for that clinician token. Similarly, a clinician token that is known to transmit a relatively weak signal at a given distance (e.g., compared to other clinician tokens at the given distance) can be associated with a signal strength correction value that decreases the distance estimate for that clinician token. In some embodiments, the signal strength correction value for a clinician token can be determined based upon factors that may include, but are not limited to, the make and model of the clinician token, the user's preference in wearing the token, the operating environment of the token, etc.
At decision block 1508, the processor 1406 executes the detection logic 1408 to determine whether the signal strength of the signal from the clinician token 1410 has exceeded the signal strength threshold for a proximity time that is greater than a time threshold. This test can be useful to avoid recognizing a clinician presence detection event in cases where a clinician passes nearby the patient monitoring device 1400 but does so only transiently, not remaining within the detection region 1420 for a long enough period of time to merit a clinician presence detection event. This test can likewise help eliminate false clinician presence detection events in high-traffic areas around a patient monitoring device 1400 where many different clinicians routinely and regularly pass by. The proximity time threshold used by the decision block 1508 can be configurable. In some embodiments, the proximity time threshold may be set at, for example, 1 second, 2 seconds, or 5 seconds. Other proximity times can also be used, however. If the proximity time for a detected clinician token 1410 does not exceed the proximity time threshold used by decision block 1508, then the detection method 1500 returns to, for example, the waiting state 1502. If, however, the proximity time of the clinician token 1410 exceeds the proximity time threshold, then the detection method 1500 can proceed to block 1510.
At block 1510, a clinician presence detection event is recognized. At such time, the patient monitoring device 1400 can enable or initiate, for example, some predetermined action based upon the clinician identity associated with the recognized clinician token 1410. For example, the patient monitoring device 1400 can login the clinician, change a configuration setting, authorize some action or feature that is typically restricted absent the presence of a clinician, etc. In the detection method 1500 illustrated in
In some embodiments, other factors can be included in the detection logic 1408, whether alone or in combination with signal strength from the clinician token 1410 and proximity time. For example, the recognition of a clinician presence detection event can be based, at least in part, on the identity of the clinician (some patient monitoring devices 1400 may only be accessible to certain clinicians). In addition, the recognition of a clinician presence detection event can be based upon the assigned priority of the clinician. For example, a nurse supervisor could be assigned a higher priority than other nurses on the shift such that the presence of the nurse supervisor will be recognized by a patient monitoring device 1400 even when the presence of another nurse has already been recognized by the device. The converse situation, however, may not result in a new clinician presence detection event; the detection of a lower priority clinician may not result in a detection event if the presence of a higher priority clinician has already been recognized by the patient monitoring device 1400. The priority level is one example of a tiebreaker criteria that can be used by the detection logic 1408 in the event that multiple clinician tokens meet the other requirements to initiate a clinician detection event at the same time. Other criteria can also be used in this tiebreaker role.
It should be appreciated that a wide variety of factors can be included in the detection logic 1408 depending upon the hospital, the type of medical equipment involved (e.g., patient monitoring equipment or some other type of medical device). In addition, such factors can be accounted for in the detection logic 1408 in a variety of ways. For example, the detection logic 1408 can determine when thresholds are exceeded, when a Boolean expression is true or false, when a fuzzy logic expression is true or false, when a mathematical equation is satisfied or not, when a compound rule is satisfied or not, etc.
In some embodiments, a detection event can be recognized when the clinician token 1410 enters each of a plurality of detection areas. The detection areas can be overlapping or non-overlapping. For example, in some embodiments, the patient monitoring device 1400 may be configured to recognize the presence of clinician tokens 1410 within each of several distance ranges. Different actions and preferences can be associated with a detection event for each distance range.
As an example, the patient monitoring device 1400 can be configured to detect the presence of a clinician within a first distance range of 0-5 feet, within a second distance range of 5-15 feet, and within a third distance range of 15-30 feet. It should be appreciated, however, that different distance ranges can be used, whether overlapping or not, and any number of distance ranges can be used. As discussed herein, when the patient monitoring device 1400 detects the clinician token 1410 within one of these detection areas, a detection event is recognized. The patient monitoring device 1400 can be configured to perform a particular set of actions upon the occurrence of such a detection event. As discussed herein, the set of actions can be registered to the clinician token in a database that is communicatively coupled to the patient monitoring device 1400. The set of actions that corresponds to each detection area may each be unique, or may share one or more common actions.
In the foregoing example, the patient monitoring device 1400 can be configured to display a clinician's preferred set of measurements in text or graphical indicators with a large size when the clinician is detected to have entered the third distance range so as to enable satisfactory viewing of the display from a distance. When the clinician enters the second distance range, the size of the text or graphical indicators can be reduced to a medium size. Similarly, once the clinician enters the first distance range, the text or graphical indicators can be reduced to a still smaller size. As another example, the audible volume of an alarm can be adjusted as the clinician moves from one distance range to another. For example, the audible volume of an alarm can be louder when the clinician is in the third distance range, while it can be made softer or turned off when the clinician is in the first distance range. It should be appreciated, however, that any action or preference of that patient monitoring device 1400 can be configurably associated with any detection area. It should also be appreciated that the distance ranges can be made arbitrarily small so as to provide, for example, relatively continuous changes in the size of display features, the volume of an alarm, etc.
Similarly, different detection events can be generated depending upon the length of time that a clinician token has been recognized within a given detection area. For example, multiple detection events can be generated while a clinician token is within a particular detection area in accordance with multiple time ranges. As an example, a first detection event may be generated when the clinician token is present within a given detection area for 0-3 seconds. A second detection event may be generated when the clinician token is present within the detection area for 3-10 seconds. It should be understood, however, that different time ranges can be used, and any number of time ranges can be used. In addition, a set of patient monitoring device actions and preferences can be associated with detection events resulting from each time range.
When a clinician detection event has been realized according to, for example, the detection method 1500, the patient monitoring device 1400 can respond in a number of different ways. For example, the patient monitoring device 1400 can initiate a predetermined action based upon the identity of the clinician whose token has been detected in proximity to the monitoring device. In some embodiments, the predetermined action is that the patient monitoring device 1400 automatically logs the clinician in without requiring the clinician to, for example, physically interact with an input device. This process saves the clinician time and, in some cases, can also save patient lives. As described herein, the clinician's login information can be transmitted to the patient monitoring device 1400 from the clinician token 1410, or it can be retrieved from a database using the clinician ID 1414 from the token 1410.
In some embodiments, the patient monitoring device enables or disables a particular feature based upon detection of the clinician token 1410. For example, the patient monitoring device may enable/disable menus and buttons (e.g., alarm limit menu, alarm silence, all mute, etc.) based upon the credentials of the detected clinician. In some embodiments, the patient monitoring device 1400 begins transmission of patient monitoring information to a remote device upon detecting the presence of a clinician. For example, a bedside patient monitor capable of capturing breathing sounds from a patient could automatically begin transmission of those breathing sounds to the clinician's Bluetooth headset, which, incidentally, can serve as the clinician token 1410 as well. In other embodiments, the patient monitoring device 1400 could begin transmission of any type of monitoring information to a remote device via, for example, the Internet upon detecting the presence of a particular clinician. For example, the patient monitoring device 1400 can transmit the patient's oxygen saturation trend data to the clinician's computer for later analysis and diagnosis. The patient monitoring device 1400 can also transmit any other type of patient information (e.g., medical parameter values and/or trend data, video and/or audio from the patient's room, etc.) to, for example, the clinician's computer, or some other device, in response to detection of the presence of some particular clinician in proximity to the patient monitoring device 1400.
In some embodiments, the patient monitoring device automatically updates its configuration based upon configuration preferences of a detected clinician. For example, the patient monitoring device 1400 could alter the content of the information it displays or the format of the information that it displays. These configuration changes can be made based upon settings that the clinician indicates during the registration process for the clinician token 1410. An example of such an embodiment is illustrated in
The patient monitoring device 1400 can also update other configuration settings based upon registered preferences of the clinician. These can include physiological parameter alarm limits, alarm silence, all mute, averaging time, algorithm mode, etc., for example. In addition, the patient monitoring device 1400 could automatically create some type of report, such as a report of all alarm conditions that have been registered by that monitor over a predetermined period of time.
In addition, alarm annunciation and behavior can be altered in response to a clinician proximity detection event. For example, if the clinician is approaching a bedside patient monitoring device 1400 that is currently registering an alarm condition, the alarm can automatically be silenced in recognition that the clinician has entered within a certain radius of the monitoring device 1400. In some embodiments, the way that the patient monitoring device 1400 notifies of an alarm condition can be dependent upon the physical location of a clinician. For example, if the patient monitoring device 1400 detects an alarm condition while the clinician is already in proximity to the monitoring device, then it may emit no audible alarm or a lower-volume audible alarm. Alarm volume can also be adjusted in other ways based upon detected clinician presence. Similarly, in such a scenario, the patient monitoring device 1400 may be configured not to transmit an alarm to the central monitoring station. In some embodiments, a medical monitoring device does not notify or page other clinicians in case of an alarm if a clinician is already present. Alarm notification behavior of the medical monitoring device can be altered in a variety of ways based upon detected presence of a clinician. A medical monitoring device with clinician proximity awareness can allow a detected clinician to acknowledge his or her presence. As long as clinician presence is detected, the length of expiry of alarms can be changed (e.g., made longer).
In some embodiments, the patient monitoring device 1400 is communicatively coupled to a patient's electronic medical record (EMR), as described herein. The detection of clinician presence can be used to determine what data is transmitted to the EMR, and/or when that data is transmitted to the EMR. For example, the patient monitoring device 1400 may measure and store data regarding a physiological parameter. When a clinician is detected in proximity to the patient monitoring device, the clinician can be automatically prompted whether to transmit certain physiological parameter measurements, or other data, to the patient's EMR. The clinician can review, for example, current or past measurements, and determine whether such measurements should be recorded in the EMR.
While in some embodiments, a clinician is prompted whether to log physiological parameter measurement values in the EMR, or elsewhere, when the clinician's presence is detected, in other embodiments such data could automatically be logged based upon detection of the clinician's presence. In either case, the patient monitoring device 1400 may be capable of determining the quality of the physiological signals upon which a particular measurement value is based using signal processing algorithms or other methods. If the patient monitoring device 1400 determines that signal quality, and the corresponding degree of confidence in the measurement values derived therefrom, is low, then the patient monitoring device may reduce the frequency with which measurement values are transmitted to the EMR. The patient monitoring device may also reduce the amount of data that is transmitted to the EMR at a time. This variation in the frequency and/or the amount of physiological parameter data that is stored to the EMR based on the quality of the physiological parameter signals being measured can be practiced with or without detecting the presence of a clinician nearby.
In some embodiments, the patient monitoring device 1400 responds to detection of a clinician's presence by changing the language in which textual information is displayed by the monitoring device in accordance with language preferences of the clinician. In some embodiments, the patient monitoring device identifies and executes on-device confirmations that may be required for risk management based upon the detected clinician(s) in proximity to the monitoring device. In some embodiments, the patient monitoring device logs the number of clinician visits to a patient's bedside, the time of presence of each visit, the length of each clinician visit, the response time of clinicians to alarms, etc. A clinician may be permitted to chart parameters measured by the monitoring device to, for example, an electronic medical record with credentials based upon detection of clinician identity. Many other types of actions and/or configuration changes, or combinations of those described herein, can also be caused to automatically be initiated based upon the fact that a clinician has been detected in proximity to the patient monitoring device 1400.
As illustrated in
At decision block 1704, the processor 1406 executes the detection logic 1408 to determine whether the strength of a signal from the clinician token 1410 has fallen below a signal threshold. This threshold can be the same threshold as used by the decision block 1506 in
At decision block 1706, the processor 1406 executes the detection logic 1408 to determine whether the strength of the signal from the clinician token 1410 has fallen below the signal threshold for an absence time that is greater than a time threshold. Thus, the combination of decision blocks 1704 and 1706 determine whether the clinician token has been outside of a particular range for a particular amount of time. In some embodiments, this time threshold can be variable depending upon, for example, the content of information displayed by the medical monitoring device 1400. For example, if the monitoring device 1400 is displaying sensitive personal information, then the time threshold can be relatively short in order to protect the patient's confidentiality.
If the absence time does not exceed the time threshold used by the decision block 1706, then the method 1700 returns to block 1702 where the clinician-specific action remains enabled. If, however, the absence time exceeds the time threshold, then the method 1700 proceeds to block 1710. At block 1710, the clinician is recognized as no longer being in proximity to the patient monitoring device 1400. Therefore, the previously-enabled clinician-specific action is disabled. At such time, the patient monitoring device 1400 can return to a state similar to the waiting state 1502 described with respect to
With reference now to the decision block 1708, the processor 1406 executes the detection logic 1408 to determine whether the presence of a higher priority clinician has been detected. The detection of such a clinician can proceed, for example according to the detection method 1500 described with respect to
The communication module 1802 of the patient monitoring device 1800 can be, for example, a WiFi-enabled radio for communicating with the WiFi access points 1830-1832. In some embodiments, the clinician token 1810 is a WiFi-enabled RFID tag. By communicating with the WiFi access points 1830-1832, the patient monitoring device 1800 can triangulate its position relative to that WiFi access points. Likewise, the position of the clinician token 1810 can be triangulated. Thus, the distributed WiFi access points 1830-1832 can be used by, for example, the patient monitoring device 1800 in order to determine the approximate position of the clinician token 1810 with respect to the monitoring device 1800. In some embodiments, the patient monitoring device 1800 may also communicating directly with the clinician token 1810 in order to, for example, enhance the position approximation determined using the distributed WiFi access points 1830-1832.
The patient monitoring device network 1900 also includes a nurses' station 1932 for remotely monitoring each of the patients 1906, 1916, 1926. The nurses' station, or central monitoring station, 1932 can be similar to those described herein. The patient monitoring device network 1900 may also include a registration database 1942. As described herein, the registration database 1942 can associate unique clinician IDs (e.g., 1414, 1814) carried by the clinician tokens 1904, 1914, 1924, 1934 with information for controlling the patient monitoring devices 1902, 1912, 1922, 1932 when the tokens are in the presence of those devices. For example, the registration database 1942 can associate each unique clinician ID with login information, configuration preferences, and predetermined actions for the monitoring devices to perform after recognizing the presence of a clinician.
In the illustrated patient monitoring device network 1900, each of the patient monitoring devices 1902, 1912, 1922, 1932 can communicate with one another via the network 1950. In some embodiments, the network 1950 uses open source communications standards in order to facilitate communication between various medical devices. Though not illustrated, the patient monitoring device network 1900 can also include WiFi access points, page transmitters, pagers, and other devices described herein.
The medical devices 2002, 2004 can be similar to others described herein. For example, in some embodiments, the medical devices 2002, 2004 are patient monitoring devices. In some embodiments, the medical devices 2002, 2004 are fitted with tracking tags or tokens 2006, 2008. The tracking tags 2006, 2008 can be similar to the clinician tokens described herein. In some embodiments, the tracking tags 2006, 2008 are WiFi-enabled RFID tags, though other types of tracking tags may also be suitable. Each tracking tag 2006, 2008 can include an equipment ID.
As already discussed herein, the clinicians 2014, 2016 may carry clinician tokens 2022, 2024. The clinician tokens 2022, 2024 can be similar to those described herein. For example, in some embodiments, the clinician tokens 2014, 2016 are WiFi-enabled RFID tags. In some embodiments, each patient 2010, 2012 may also be fitted with a patient token 2018, 2020. The patient tokens 2018, 2020 can be similar to the clinician tokens described herein. In some embodiments, the patient tokens 2018, 2020 are WiFi-enabled RFID tags. These may be worn as bracelets, or otherwise suitably affixed to the patients. Each patient token 2018, 2020 can include a patient ID.
The distributed network of WiFi access points 2030-2034 can be used to communicate with the medical device tracking tags 2006, 2008, the clinician tokens 2022, 2024, and the patient tokens 2018, 2020 for the purpose of estimating the physical position of each of these tags and tokens in the hospital 2000. For example, the WiFi access points 2030-2034 can be used to triangulate the position of each tag or token.
While
If the hospital floor 2000 contains a number of medical devices that are arranged densely enough, then the distributed medical devices 2002, 2004 can serve as a network for tracking the location of, for example, Bluetooth-enabled medical device tracking tags 2006, 2008, patient tokens 2018, 2020, and clinician tokens 2022, 2024. In such an embodiment, the physical location of each tracking tag or token may only be identifiable if it is located within the range of a Bluetooth-enabled medical device. In addition, in some embodiments, the physical location of each tracking tag or token may not be able to be precisely identified, as each Bluetooth-enabled medical device may only be able to determine that the tracking tag or token is located somewhere within the medical device's detection area. Nevertheless, this level of tracking resolution may be sufficient in many cases.
In the embodiment illustrated in
The system illustrated in
The location-based rules can be dependent upon, for example, the absolute or relative locations of the patient's 2010, 2012 and/or the clinicians 2014, 2016. For example, if the patient 2010 undergoes an alarm condition, that patient's previously assigned clinician can first be notified so long as he or she is present on the same floor of the hospital (or some other domain). In some embodiments, the clinician located the closest to the patient who is experiencing the alarm condition can be notified regardless of whether the clinician was previously assigned to the patient. In some embodiments, the closest clinician to the patient experiencing the alarm condition can be notified only after the regularly-assigned clinician fails to respond within a certain amount of time. In some embodiments, a nearby clinician is notified of the alarm condition if the alarm condition is particularly urgent and requires immediate attention. Many other location-based rules can also be implemented.
Location-based rules can also be used for controlling whether a clinician is permitted to deactivate an alarm. As disclosed herein, the clinician tokens 2022, 2024 may include an input module (e.g., 1416). One use for this input module is to remotely disable an alarm once the clinician has received notification of the alarm and is en route to the patient. However, in some embodiments, a location-based rule can be put into place that may prevent a clinician from remotely disabling an alarm if the clinician is, for example, more than some threshold distance away from the patient.
The location information provided by the system illustrated in
In some embodiments, location-based rules can also be provided for configuring the medical devices 2002, 2004 (e.g., to configure patient monitoring settings). For example, patient monitoring devices of the type described herein are sometimes configured with different physiological parameter alarm limits depending upon the patient ward that they are located in. For example, alarm limits for the pulse rates of neonates should generally be set differently than for the pulse rates of adults. Therefore, it may be desirable to provide a notification to a clinician if an attempt is made to monitor a patient located outside of the nursery using a monitoring device whose alarm limits have been set for neonates. This can be done since the location of the medical device can be detected by the system illustrated in
As shown in
Although some features are described herein with respect to a bedside monitor, a proximity display is applicable to any monitoring device, medical or non-medical and at any location, such as at bedside or at central monitoring, such as a nurse's station. Further, a proximity display is applicable during physiological data collection or other monitor uses, such as historical data review, setting and verification of alarm limits and installation of software updates by medical personnel or equipment maintenance staff, to name a few.
Translation of Medical Communication Protocols to Facilitate Communication between Devices and Systems
Healthcare costs have been increasing and the demand for reasonably-priced, high-quality patient care is also on the rise. Health care costs can be reduced by increasing the effectiveness of hospital information systems. One factor which may affect the efficacy of a health institution is the extent to which the various clinical computer systems employed at the health institution can interact with one another to exchange information.
Hospitals, patient care facilities, and healthcare provider organizations typically include a wide variety of different clinical computer systems for the management of electronic healthcare information. Each of the clinical computer systems of the overall IT or management infrastructure can help fulfill a particular category or aspect of the patient care process. For example, a hospital can include patient monitoring systems, medical documentation and/or imaging systems, patient administration systems, electronic medical record systems, electronic practice management systems, business and financial systems (such as pharmacy and billing), and/or communications systems, etc.
The quality of care in a hospital or other patient care facility could be improved if each of the different clinical computer systems across the IT infrastructure were able to effectively communicate with each other. This could allow for the exchange of patient data that is collected by one clinical computer system with another clinical computer system that could benefit from such patient data. For example, this may allow decisions relating to patient care to be made, and actions to be taken, based on a complete analysis of all the available information.
In current practice, individual clinical computer systems can be, and often are, provided by different vendors. As a result, individual clinical computer systems may be implemented using a proprietary network or communication infrastructure, proprietary communication protocols, etc.; the various clinical computer systems used in the hospital cannot always effectively communicate with each other.
Medical device and medical system vendors sometimes develop proprietary systems that cannot communicate effectively with medical devices and systems of other vendors in order to increase their market share and to upsell additional products, systems, and/or upgrades to the healthcare provider. Thus, healthcare providers are forced to make enterprise or system-wide purchase decisions, rather than selecting the best technology available for each type of individual clinical computer system in use.
One example where this occurs is in the area of life-saving technology available for patient monitoring. For example, many different bedside devices for monitoring various physiological parameters are available from different vendors or providers. One such provider may offer a best-in-class device for monitoring a particular physiological parameter, while another such provider may offer the best-in-class device for another physiological parameter. Accordingly, it may be desirable in some circumstances for a hospital to have the freedom to use monitoring devices from more than one manufacturer, but this may not be possible if devices from different manufacturers are incapable of interfacing and exchanging patient information. Accordingly, the ability to provide reasonably-priced, high-quality patient care can be compromised. In addition, since each hospital or patient care facility may also implement its own proprietary communication protocols for its clinical computer network environment, the exchange of information can be further hindered.
The Health Level Seven (“HL7”) protocol has been developed to provide a messaging framework for the communication of clinical messages between medical computer systems and devices. The HL7 communication protocol specifies a number of standards, guidelines, and methodologies which various HL7-compliant clinical computer systems can use to communicate with each other.
The HL7 communication protocol has been adopted by many medical device manufacturers. However, the HL7 standard is quite flexible, and merely provides a framework of guidelines (e.g., the high-level logical structure of the messages); consequently, each medical device or medical system manufacturer or vendor may implement the HL7 protocol somewhat differently while still remaining HL7-compliant. For example, the format of the HL7 messages can be different from implementation to implementation, as described more fully herein. In some cases, the HL7 messages of one implementation can also include information content that is not included in messages according to another HL7 implementation. Accordingly, medical devices or clinical computer systems that are all HL7-compliant still may be unable to communicate with each other.
Consequently, what is needed is a module that can improve the communication of medical messages between medical devices or systems that use different allowed implementations of an established communication protocol (e.g., HL7), thereby increasing the quality of patient care through the integration of multiple clinical computer systems.
The translation module 2415 receives input messages having the first protocol format from the first medical device 2405 and generates output messages to the second medical device 2410 having the second protocol format. The translation module 2415 also receives input messages having the second protocol format from the second medical device 2410 and generates output messages to the first medical device 2405 having the first protocol format. Thus, the translation module 2415 enables the first and second medical devices 2405, 2410 to effectively and seamlessly communicate with one another without necessarily requiring modification to the communication equipment or protocol implemented by each device.
In certain embodiments, the translation module 2415 determines the protocol format expected by an intended recipient of the input message based on, for example, the information in the input message or by referencing a database that stores the protocol format used by various devices, and then generates the output message based on the protocol format used by the intended recipient device or system. The output message can be generated based upon a comparison with, and application of, a set of translation rules 2420 that are accessible by the translation module 2415.
The translation rules 2420 can include rules that govern how to handle possible variations between formatting implementations within a common protocol. Examples of variations in formatting implementation of an electronic medical communication protocol include, for example, the delimiter or separator characters that are used to separate data fields, whether a particular field is required or optional, the repeatability of portions of the message (e.g., segments, fields, components, sub-components), the sequence of portions of the message (e.g., the order of fields or components), whether a particular portion of a message is included, the length of the message or portions of the message, and the data type used for the various portions of the message.
In certain embodiments, the translation rules 2420 define additions, deletions, swappings, and/or modifications that should be performed in order to “translate” an input message that adheres to a first HL7 implementation into an output message that adheres to a second HL7 implementation. The output message can have, for example, different formatting than the input message, while maintaining all, or a portion of, the substance or content of the input message.
In addition to translating between different implementations of a common electronic medical communication protocol (e.g., different formatting of HL7 messages), the translation module 2415 can also be configured to translate between input and output messages adhering to different communication protocols. In some embodiments, the translation module 2415 is capable of responding to and translating messages from, for example, one medical communication protocol to a separate medical communication protocol. For example, the translation module 2415 can facilitate communication between messages sent according to the HL7 protocol, the ISO 11073 protocol, other open protocols, and/or proprietary protocols. Accordingly, an input message sent according to the HL7 protocol can be translated to an output message according to a different protocol, or vice-versa.
The operation of the translation module 2415 and the translation rules 2420 will be described in more detail below. Various embodiments of system architectures including the translation module 2415 will now be described.
In certain embodiments, the first medical device 2405, the second medical device 2410, and the translation module 2415 are communicatively coupled via connection to a common communications network. In some embodiments, the translation module 2415 can be communicatively coupled between the first medical device 2405 and the second medical device 2410 (with or without a communications network) such that all messages between the first and second medical devices 2405, 2410 are routed through the translation module 2415. Other architectures are also possible.
The first and second medical devices 2405, 2410 and the translation module 2415 can be included in, for example, a portion of the physiological monitoring system 200 of
In certain embodiments, the translation module 2415 can facilitate communication across multiple networks within a hospital environment. In other embodiments, the translation module 2415 can facilitate communication of messages across one or more networks extending outside of the hospital or clinical network environment. For example, the translation module 2415 can provide a communications interface with banking institutions, insurance providers, government institutions, outside pharmacies, other hospitals, nursing homes, or patient care facilities, doctors' offices, and the like.
In some embodiments, the translation module 2415 of
In certain embodiments, the translation module 2415 can also facilitate communication between a first medical device that is part of the patient monitoring sub-system and a second medical device that is not part of, or is external to, the patient monitoring system 200. As such, the translation module 2415 can be capable of responding to externally-generated medical messages (such as patient information update messages, status query messages, and the like from an HIS or CIS) and generating external reporting messages (such as event reporting messages, alarm notification messages, and the like from patient monitors or nurses' monitoring stations).
In another embodiment, first and second medical devices 2405, 2410 communicate with each other over a communication bus 2421. Communication bus 2421 can include any one or more of the communication networks, systems, and methods described above, including the Internet, a hospital WLAN, a LAN, a personal area network, etc. For example, any of the networks describe above with respect to
In
Translation module 2415 monitors the communication bus 2421 for such messages. Translation module receives the message and determines that first medical device 2405 is attempting to communicate with second medical device 2410. Translation module 2415 determines that message translation would facilitate communication between first and second medical devices 2405, 2410. Translation module 2415 therefore utilizes an appropriate translation rule stored in a translation module 2420. Translation module 2420 can include a memory, EPROM, RAM, ROM, etc.
The translation module 2415 translates the message from the first medical device 2405 according to any of the methods described herein. Once translated, the translation module 2415 delivers the translated message to the communication bus 2421. The second medical device 2410 receives the translated message and responds appropriately. For example, the second medical device may perform a function and/or attempt to communication with the first medical device 2405. The translation module 2415 facilitates communication from the second medical device 2410 to the first medical device 2405 in a similar manner.
The first medical device 2405 and the second medical device 2410 can be, for example, any of the medical devices or systems communicatively coupled to the hospital network 222 illustrated in
In some embodiments, the first medical device 2405 is a patient monitor for communicatively coupling to a patient for tracking a physiological parameter (e.g., oxygen saturation, pulse rate, blood pressure, etc.), and the second medical device 2410 is a hospital information system (“HIS”) or clinical information system (“CIS”). In some embodiments, the patient monitor can communicate physiological parameter measurements, physiological parameter alarms, or other physiological parameter measurement information generated during the monitoring of a patient to the HIS or CIS for inclusion with the patient's electronic medical records maintained by the HIS or CIS.
In some embodiments, the first medical device 2405 is an HIS or CIS and the second medical device 2410 is a nurses' monitoring station, as described herein. However, the translation module 2415 can facilitate communication between a wide variety of medical devices and systems that are used in hospitals or other patient care facilities. For example, the translation module 2415 can facilitate communication between patient physiological parameter monitoring devices, between a monitoring device and a nurses' monitoring station, etc.
Using the translation module 2415, a patient monitoring sub-system, such as those described herein (e.g., physiological monitoring system 200), can push data to the HIS or pull data from the HIS even if the HIS uses a different implementation of the HL7 protocol, or some other electronic medical communication protocol.
In certain embodiments, the patient monitoring sub-system can be configured to push/pull data at predetermined intervals. For example, a patient monitor or clinician monitoring station can download patient data automatically from the HIS at periodic intervals so that the patient data is already available when a patient is connected to a patient monitor. The patient data sent from the HIS can include admit/discharge/transfer (“ADT”) information received upon registration of the patient. ADT messages can be initiated by a hospital information system to inform ancillary systems that, for example, a patient has been admitted, discharged, transferred or registered, that patient information has been updated or merged, or that a transfer or discharge has been canceled.
In other embodiments, the patient monitoring sub-system can be configured to push/pull data to/from the HIS only when the HIS is solicited by a query. For example, a clinician may make a request for information stored in a patient's electronic medical records on the HIS.
In still other embodiments, the patient monitoring sub-system can be configured to push/pull data to/from the HIS in response to an unsolicited event. For example, a physiological parameter of a patient being monitored can enter an alarm condition, which can automatically be transmitted to the HIS for storing in the patient's electronic medical records. In yet other embodiments, any combination of the above methods or alternative methods for determining when to communicate messages to and from the HIS can be employed.
Example system architectures and example triggers for the communication of messages involving the translation module 2415 have been described. Turning now to the operation of the translation module,
In some embodiments, the message header (“MSH”) segment 2506 defines how the message is being sent, the field delimiters and encoding characters, the message type, the sender and receiver, etc. The first symbol or character after the MSH string can define the field delimiter or separator (in this message, a “caret” symbol). The next four symbols or characters can define the encoding characters. The first symbol defines the component delimiter (“˜”), the second symbol defines the repeatable delimiter (“|”), the third symbol defines the escape delimiter (“\”), and the fourth symbol defines the sub-component delimiter (“&”). All of these delimiters can vary between HL7 implementations.
In some embodiments, the example header segment 2506 further includes the sending application (“VAFC PIMS”), the receiving application (“NPTF-508”), the date/time of the message (“20091120104609-0600”), the message type (“ADT˜A01”), the message control ID (“58103”), the processing ID (“P”), and the country code (“USA”). As represented by the consecutive caret symbols, the header segment also contains multiple empty fields.
In certain embodiment, the parsed input message can be encoded.
The encoded message header segment shows some of the various data types that can be used in the message. For example, the sending application (“VAFC PIMS”) of the third parsed field and the receiving application (“NPTF-508”) of the fifth parsed field are represented using a hierarchic designator (“HD”) name data type. The date/time field (the seventh parsed field) is represented using the time stamp (“TS”) data type. The processing ID field (the eleventh parsed field) is represented using the processing type (“PT”) data type. The fields that do not include a data type identifier are represented using the string (“ST”) data type. Other possible data types include, for example, coded element, structured numeric, timing quantity, text data, date, entry identifier, coded value, numeric, and sequence identification. The data types used for the various fields or attributes of the segments can vary between formatting implementations.
Turning to the operation of the translation module, the translation module 2415 can, for example, create, generate, or produce an output message that is reflective of the input message based on an application of the set of translation rules 2420. In some embodiments, the translation module 2415 can, for example, translate, transform, convert, reformat, configure, change, rearrange, modify, adapt, alter, or adjust the input message based on a comparison with, and application of, the set of translation rules 2420 to form the output message. In some embodiments, the translation module 2415 can, for example, replace or substitute the input message with an output message that retains the content of the input message but has a new formatting implementation based upon a comparison with, and application of, the set of translation rules 2420.
At block 2604, the translation module 2415 determines the formatting implementation of the input message and the formatting implementation to be used for the output message. In certain embodiments, the input message can include one or more identifiers indicative of the formatting implementation. In some embodiments, the determination of the formatting implementation can be made, for example, by analyzing the message itself by identifying the delimiter or encoding characters used, the field order, the repeatability of segments, fields, or components, the data type of the fields, or other implementation variations. In certain embodiments, the translation module 2415 can separate or parse out the formatting from the content of the message (as shown in
In certain embodiments, the determination of the formatting implementation required by the output message can also be determined from the input message. For example, the input message can include a field that identifies the intended recipient application, facility, system, device, and/or destination. The input message can alternatively include a field that identifies the type of message being sent (e.g., ADT message) and the translation module 2415 can determine the appropriate recipient from the type of message being sent and/or the sending application, device, or system. The translation module 2415 can then determine the formatting implementation required by the intended recipient of the input message.
At decision block 2605, the translation module 2415 determines whether a rule set has been configured for the translation from the identified formatting implementation of the input message to the identified formatting implementation to be used for the output message. The rule set may have been manually configured prior to installation of the translation module software or may have been automatically configured prior to receipt of the input message. If a rule set has already been configured, then the translation process 2600 continues to block 2606. If a rule set has not been configured, then a rule set is configured at block 2607. The configuration of the rule set can be performed as described below in connection with
At block 2606, the translation module 2415 identifies the pre-configured rules from the set of translation rules 2420 that govern translation between the determined formatting implementation of the input message and the formatting implementation of the output message. In some embodiments, the identification of the pre-configured rules can be made manually.
At block 2608, the translation module 2415 generates an output message based on the configured rule set(s) of the translation rules 2420. In certain embodiments, the output message retains all, or at least a portion of, the content of the input message but has the format expected and supported by the intended recipient of the input message.
The translation rules 2420 can include, for example, unidirectional rules and/or bidirectional rules. A unidirectional rule is one, for example, that may be applied in the case of a message from a first medical device (e.g., 2405) to a second medical device (e.g., 2410) but is not applied in the case of a message from the second medical device to the first medical device. For example, a unidirectional rule could handle a difference in the delimiters used between fields for two different formatting implementations of, for example, the HL7 communication protocol. The translation module 2415 can apply a field delimiter rule to determine if the field delimiter is supported by the intended recipient of the input message. If the field delimiter of the input message is not supported by the intended recipient, the field delimiter rule can replace the field delimiter of the input message with a field delimiter supported by the intended recipient.
For example, an input message from an input medical device can include a formatting implementation that uses a “caret” symbol (“^”) as the field delimiter or separator. However, the formatting implementation recognized by the intended recipient medical device may use a “pipe” symbol (“|”) as the field delimiter. The translation module 2415 can identify the field delimiter symbol used in the formatting implementation recognized by the intended recipient medical device from the set of translation rules 2420 and generate an output message based on the input message that uses the pipe field delimiter symbol instead of the caret field delimiter symbol used in the input message. The rule to substitute a pipe symbol for a caret symbol would, in this case, only apply to messages that are sent to a recipient device that recognizes the pipe symbol as a field delimiter. This rule could be accompanied by a complementary rule that indicates that a caret symbol should be substituted for a pipe symbol in the case of a message that is intended for a recipient device that is known to recognize the caret symbol as the field delimiter.
Another unidirectional rule can handle the presence or absence of certain fields between different formatting implementations. For example, an input message from an input medical device can include fields that would not be recognized by the intended recipient medical device. The translation module 2415 can generate an output message that does not include the unrecognized or unsupported fields. In situations where an input message does not include fields expected by the intended recipient medical device, the set of translation rules 2420 can include a rule to insert null entries or empty “ ” strings in the fields expected by the intended recipient medical device and/or to alert the recipient device of the absence of the expected field. The sender device may also be notified by the translation module 2415 that the recipient device does not support certain portions of the message.
Other unidirectional rules can facilitate, for example, the conversion of one data type to another (for example, string (“ST”) to text data (“TX”) or structured numeric (“SN”) to numeric (“NM”)), and the increase or decrease in the length of various portions of the message. Unidirectional rules can also be used to handle variations in repeatability of portions of the message. For example, the translation module 2415 can apply a field repeatability rule to repeated instances of a segment, field, component, or sub-component of the message to determine how many such repeated instances are supported by the recipient device, if any, and deleting or adding any repeated instances if necessary. For example, a phone number field of a patient identification segment can be a repeatable field to allow for entry of home, work, and cell phone numbers.
Bidirectional rules can also be used. Such rules may apply equally to messages between first and second medical devices (e.g., 2405, 2410) regardless of which device is the sender and which is the recipient. A bidirectional rule can be used to handle changes in sequence, for example. In certain implementations, an input message from an input medical device can include a patient name field, or fields, in which a first name component appears before a last name component. However, the intended recipient medical device may be expecting an implementation where the last name component appears before the first name component. Accordingly, the set of translation rules 2420 can include a bidirectional rule to swap the order of the first and last name components when communicating between the two medical devices, or between the two formatting implementations. In general, field order rules can be applied to determine whether the fields, components, or sub-components are in the correct order for the intended recipient and rearranging them if necessary. Other bidirectional rules can be included to handle, for example, other sequential variations between formatting implementations or other types of variations.
The translation rules 2420 can also include compound rules. For example, a compound rule can include an if-then sequence of rules, wherein a rule can depend on the outcome of another rule. Some translation rules 2420 may employ computations and logic (e.g., Boolean logic or fuzzy logic), etc.
As discussed above, the messages communicated over the hospital-based communication network can employ the HL7 protocol.
The translation process 2700A starts at block 2701, where the translation module 2415 receives an input message having a first HL7 format from the HIS. In certain embodiments, the input message includes information regarding, for example, the admission of a patient and/or patient identification and patient medical history information from an electronic medical records database.
At block 2703, the translation module 2415 determines the formatting implementation of the input message and the formatting implementation to be used for the output message. These determinations can be made in a similar manner to the determinations discussed above in connection with block 2604 of
At block 2705, the translation module 2415 identifies the rules that govern translation between the determined HL7 format of the input message and the HL7 format of the output message and generates an output message having the second HL7 format based on the identified rules. In certain embodiments, the output message retains the content of the input message sent by the HIS but has the format expected and supported by the intended recipient of the input message.
At block 2707, the translation module 2415 can output the output message to the intended recipient over the hospital-based communications network. In certain embodiments, the intended recipient can transmit an acknowledgement message back to the hospital information system acknowledging successful receipt or reporting that an error occurred.
The translation process 2700B starts at block 2702, where the translation module 2415 receives an input message having a first HL7 format from the medical device. In certain embodiments, the input message includes patient monitoring data or alarm data regarding one or more physiological parameters of the patient being monitored for storage in an electronic medical records database associated with the HIS.
At block 2704, the translation module 2415 determines the formatting implementation of the input message and the formatting implementation to be used for the output message. These determinations can be made in a similar manner to the determinations discussed above in connection with block 2604 of
At block 2706, the translation module 2415 identifies the rules that govern translation between the determined HL7 format of the input message and the HL7 format of the output message and generates an output message having the second HL7 format based on the identified rules. In certain embodiments, the output message retains the content of the input message sent by the medical device but has the format expected and supported by the HIS.
At block 2708, the translation module 2415 can output the output message to the hospital information system over the hospital-based communications network. In certain embodiments, the HIS can transmit an acknowledgement message back to the medical device acknowledging successful receipt or reporting that an error occurred.
The translation rules 2420 can be implemented as one or more stylesheets, hierarchical relationship data structures, tables, lists, other data structures, combinations of the same, and/or the like. In certain embodiments, the translation rules 2420 can be stored in local memory within the translation module 2415. In other embodiments, the translation rules 2420 can be stored in external memory or on a data storage device communicatively coupled to the translation module 2415.
The translation module 2415 can include a single rule set or multiple rule sets. For example, the translation module 2415 can include a separate rule set for each medical device/system and/or for each possible communication pair of medical devices/systems coupled to the network or capable of being coupled to the network. In some embodiments, the translation module 2415 can include a separate rule set for each possible pair of formatting implementations that are allowed under a medical communication protocol such as, for example, the HL7 protocol.
In certain embodiments, the translation rules 2420 can be manually inputted using, for example, the messaging implementation software tool 2800 illustrated in
In other embodiments, the translation rules 2420 can be automatically generated. For example, the automatic generation of a new set, or multiple sets, of rules can be triggered by the detection of a newly recognized “communicating” medical device or system on a network. In certain embodiments, the automatic generation of a new set or multiple sets of rules can occur at the time a first message is received from or sent to a new “communicating” medical device or system coupled to the network. In still other embodiments, the automatic generation of rule sets includes updating or dynamically modifying a pre-existing set of rules.
The automatic generation of translation rule sets can be carried out in a variety of ways. For example, in some embodiments, the translation module 2415 can automatically initiate usage of a pre-configured set of translation rules 2420 based upon, for example, the make and model of a new device that is recognized on the network. In certain embodiments, the translation module 2415 can request one or more messages from the new device or system and then analyze the messages to determine the type of formatting being implemented, as illustrated by the automatic rule configuration process 2900A of
At block 2903, the translation module 2415 determines the protocol of the one or more received messages by, for example, analyzing the message or by consulting a database that indicates what communication protocol/format is implemented by each medical device or system on the network. In certain embodiments, the translation module 2415 is configured to handle medical messages implemented using a single common protocol, such as HL7. Accordingly, if a determination is made that the received messages are implemented using a non-supported or non-recognized protocol, the translation module can ignore the messages received from the detected medical device or system, output an alert or warning, or allow the messages to be sent without being translated.
At block 2905, the translation module 2415 determines the formatting implementation of the received message(s). In certain embodiments, the received messages can include one or more identifiers indicative of the formatting implementation. In other embodiments, the determination of the formatting implementation can be made, for example, by analyzing the message itself by checking field order, the delimiter or encoding characters used, or other implementation variations. In certain embodiments, the translation module 2415 can separate or parse out the formatting from the content of the message to aid in the determination of the formatting implementation.
At block 2907, the translation module 2415 configures one or more rules or rule sets to handle messages received from and/or sent to the detected medical device or system. In certain embodiments, the configuration of the rules involves the creation or generation of new rules. In other embodiments, the configuration of the rules involves the alteration or updating of existing rules. The configured rules or rule sets can be included with the translation rules 2420. If a set of rules already exists for the formatting implementation used by the new device or system, then the configuration of new translation rules may not be required. Instead, existing translation rules can be associated with the new device or system for use in communication involving that device or system. In other embodiments, the translation module 2415 can create a new set of rules geared specifically for the new device or system or can modify an existing set of rules based on subtle formatting variations identified.
In other embodiments, the translation module 2415 can generate test message(s) that may be useful in identifying the communication protocol and implementation used by a device or system. For example, the translation module can generate test messages to cause the newly detected device or system to take a particular action (e.g., store information) and then query information regarding the action taken by the newly detected device to determine whether or how the test message was understood. This is illustrated by the automatic rule configuration process 2900B of
The automatic rule configuration process 2900B starts at block 2902, where the translation module 2415 transmits one or more test, or initialization, messages to a remote device or system detected on a network. The test messages can be configured, for example, to instruct the remote device or system to take a particular action (e.g., store patient information). In certain embodiments, the test messages can be configured to generate a response indicative of the type of formatting recognized or supported by the remote device or system. In other embodiments, the test messages can be configured such that only devices or systems supporting a particular formatting implementation will understand and properly act on the test messages.
At block 2904, the translation module 2415 queries the remote device or system to receive information regarding the action taken based on the test message sent to the remote device or system to determine whether the test message was understood. For example, if the test message instructed the remote device or system to store patient information in a particular location, the translation module 2415 can query the information from the location to determine whether the test message was understood. If the test message was not understood, the translation module 2415 can, for example, continue sending test messages of known formatting implementations until a determination is made that the test message has been understood.
At block 2906, the translation module 2415 determines the protocol and formatting implementation based on the information received. As an example, in certain embodiments, the test message can include an instruction to store patient name information. The test message can include a patient name field having a first name component followed by a surname component. The translation module 2415 can then query the remote device or system to return the patient surname. Depending on whether the patient surname or the first name is returned, this query can be useful in determining information about the order of fields in the formatting implementation being used by the remote device or system. As another example, the test messages can instruct the detected device or system to store repeated instances of a component. The translation module 2415 can then query the device or system to return the repeated instances to see which, if any, were stored. This repeatability information can also be useful in determining whether certain fields are allowed to be repeated in the formatting implementation being used by the remote device for system, and, if so, how many repeated instances are permitted.
At block 2908, the translation module 2415 configures one or more rules to handle messages received from and/or sent to the detected medical device or system. For example, the rules can convert messages from the message format used by a first medical device to that used by a second medical device, as described herein. In certain embodiments, the configuration of the rules involves the creation or generation of new rules. In other embodiments, the configuration of the rules involves the alteration or updating of existing rules. If a set of rules already exists for the formatting implementation used by the new device or system, then the configuration of new translation rules may not be required. Instead, existing translation rules can be associated with the new device or system for use in communication involving that device or system.
The automatic rule configuration process 2900C illustrated in
At block 2917, the translation module 2415 configures one or more rules to handle messages received from and/or sent to the HL7 medical device. In certain embodiments, the configuration of the rules involves the creation or generation of new rules for the detected formatting implementation. In other embodiments, the configuration of the rules involves the dynamic alteration or updating of existing rules. If a set of rules already exists for the formatting implementation used by the new HL7 medical device, then the configuration of new translation rules may not be required. Instead, existing translation rules can be associated with the new HL7 medical device for use in communication involving that device.
The automatic rule configuration process 2900D illustrated in
At block 2914, the translation module 2415 queries the HL7 medical device to receive information regarding an action taken or information stored in response to the test message. At block 2916, the translation module 2415 determines the formatting implementation of the HL7 device based on the information received. In certain embodiments, the translation module 2415 can analyze the information received to determine whether the test message or messages were properly understood. If none of the test messages were properly understood, the translation module 2415 can send additional test messages having other known HL7 formats and repeat blocks 2914 and 2916.
At block 2918, the translation module 2415 configures one or more translation rules to handle messages received from and/or sent to the detected HL7 medical device. In certain embodiments, the configuration of the translation rules involves the creation or generation of new translation rules. In other embodiments, the configuration of the rules involves the alteration or updating of existing rules. If a set of translation rules already exists for the formatting implementation used by the new HL7 medical device, then the configuration of new translation rules may not be required. Instead, existing translation rules can be associated with the new HL7 medical device for use in communication involving that HL7 medical device.
The automatic rule configuration processes described above can be triggered by the detection of a network device or system by the translation module 2415. The medical devices referred to in
In some embodiments, the automatic generation of translation rules can advantageously occur post-installation and post-compilation of the messaging sub-system software, which includes the translation module 2415. In certain embodiments, the automatic generation or dynamic modification of the translation rules 2420 can occur without having to recompile or rebuild the translation module software. This feature can be advantageous in terms of efficiently complying with U.S. Food and Drug Administration (“FDA”) requirements regarding validation of software used in healthcare environments.
Take, for example, a situation where a medical device manufacturer plans to use the translation module 2415 to facilitate communication between a particular medical device or system that is to be installed in a hospital (e.g., a patient monitoring system, as described herein), or other patient care facility, and other devices or systems that are already installed at the hospital (e.g., the HIS or CIS). Any software required for the operation of the new medical device to be installed may be at least partially validated for FDA compliance prior to installation at the hospital despite the fact that, for example, the HL7 implementations of other existing devices or systems at the hospital may still be unknown. For example, any aspects of the software for the new medical device that are dependent upon receiving messages from other hospital devices can be validated pre-installation as being capable of fully and correctly operating when the expected message format is received. Then, once the medical device is installed at the hospital, the validation of the software can be completed by showing that the translation module 2415 is able to provide messages of the expected format to the newly installed device. In this way, FDA validation tasks can be apportioned to a greater extent to the pre-installation timeframe where they can be more easily carried out in a controlled manner rather than in the field.
In addition, the translation module 2415 can further help streamline FDA validation, for example, when a medical device or system is expected to be installed at different hospitals whose existing devices use, for example, different implementations of the HL7 protocol. Normally, this type of situation could impose the requirement that the entire functionality of the software for the new medical device be completely validated at each hospital. However, if the translation module 2415 is used to interface between the new medical device and the hospital's existing devices, then much of the software functionality could possibly be validated a single time prior to installation, as just described. Then, once installed at each hospital, the software validation for the medical device can be completed by validating that correct message formats are received from the translation module (the translation rules for which are field-customizable). This may result in making on-site validation procedures significantly more efficient, which will advantageously enable more efficient FDA compliance in order to bring life-saving medical technology to patients more quickly by the use of field-customizable translation rules.
Patient Monitoring Reports
Devices and methods for monitoring physiological parameters such as blood oxygen saturation, pulse rate, blood pressure, and many others, are described herein. Such medical monitoring devices are often programmed with alarm limits to automatically detect when a physiological parameter has a value that is, for example, outside the range of values considered safe or healthy for that particular physiological parameter. In some embodiments, when such an alarm condition is detected, various actions can be taken. For example, the bedside medical monitor can emit an audible or visual alarm. In addition, in some cases, after the alarm condition has persisted for some set amount of time (e.g., 5 sec.), the alarm condition can be displayed at, for example, a central patient monitoring station, as described herein. Moreover, if the alarm condition continues to persist for some set amount of time (e.g., 10 sec.), the clinician assigned to care for the patient who is experiencing the alarm condition can be notified by, for example, a pager or other notification device.
The number of detected alarm conditions is, of course, dependent upon the settings for the alarm criteria that indicate an alarm condition. In some embodiments, such alarm criteria can include a threshold value, which may indicate the boundary between values for a physiological parameter that are considered safe or normal, and those that are considered to indicate a medical condition which may require attention from a clinician. The nearer such an alarm threshold is set to values that are common for that particular physiological parameter in healthy individuals under normal circumstances, the larger the number of alarm events that will be expected to be detected. Generally speaking, the closer the alarm criteria come to being satisfied by the normal expected range of values for a given physiological parameter, then the greater the odds of detecting any deviation from the normal range of values that may indicate that the patient is in need of some type of medical intervention (e.g., administration of drugs, CPR, ventilator, etc.). This can be desirable in the sense that it becomes less likely that a patient will experience medical duress without triggering an alarm, which can be referred to as a false negative.
Reduction of false negatives does not come without a cost, however. Namely, alarm criteria for physiological parameters that are successful in reducing false negatives may also increase the rate of false positives, where alarm conditions are detected even though the patient may not be experiencing any clinically significant medical duress. If false positives become too frequent, they can become burdensome to clinicians, who are responsible for investigating alarm conditions, resetting the monitoring devices from the alarm state, etc. In addition, frequent false positives can even put patients at risk by reducing the importance assigned to alarm events by clinicians, whether consciously or subconsciously. Thus, it is desirable to determine alarm criteria for medical monitoring applications that strike a satisfactory balance that limits false negatives to an acceptable rate without unduly increasing false positive alarm events. In some cases, false positives may be preferred to false negatives, especially in circumstances where the consequences of a false negative would be severe to the patient. Such a preference for maintaining the occurrence of false negatives at a relatively low rate can be reflected in the choice of alarm limit criteria. It is not necessarily the case, however, that false positives are always preferred to false negatives. Moreover, alarm criteria that may be satisfactory for one type of patient may be unsatisfactory for other types of patients. The appropriate balance between false positives and false negatives may vary for different medical monitoring applications.
For example, in the case of blood oxygen saturation monitoring, typical SpO2 values of healthy individuals may fall in the range of 95-100%. Therefore, if a patient monitoring device were configured with an SpO2 alarm threshold of 94%, the number of false positive alarm events may be relatively high. In contrast, if the SpO2 alarm threshold were set at 92%, then the number of false positives would likely be reduced, but the number of false negatives may increase beyond a satisfactory level in some medical monitoring applications. Therefore, devices and methods for providing data that would aid in the selection of an alarm threshold that would reduce false positives while still maintaining false negatives at or below a satisfactory level would be very useful. Such devices and methods could be used for establishing alarm criteria for a wide variety of physiological parameters.
The graph 3000 shows a set of linearly increasing alarm limit values on the x-axis. The corresponding number of detected alarm conditions for each alarm limit value is plotted on the y-axis. As illustrated, for this particular physiological parameter, the number of detected alarm conditions generally decreases as the alarm limit value is increased. Each bar in the graph 3000 may be representative of, for example, a combination of false positive alarm events and correctly detected alarm events (e.g., detection of an alarm event when the patient was actually in need of medical assistance).
The dashed vertical line 3002 represents one possible alarm limit threshold value. When the physiological parameter value is above the threshold indicated by the dashed vertical line 3002, for example, an alarm condition is detected, whereas when the physiological parameter value is below the threshold, no alarm condition is detected. The dashed vertical line 3004 represents another possible alarm limit value.
As shown on the graph 3000, the illustrated alarm limit values 3002, 3004 are only separated by two values on the x-axis. However, the number of alarms detected using each of the two illustrated alarm thresholds 3002, 3004 is approximately halved in going from the first alarm threshold 3002 to the second alarm threshold 3004. Thus, in this case, the number of alarm thresholds is non-linearly related to variation in the alarm limit values. This is illustrative of the realization that, in some cases, a hospital or other patient care facility could make relatively small changes to the alarm criteria used in monitoring a physiological parameter while disparately impacting the number of detected alarms and false positives. In some cases, the number of detected alarms could be significantly reduced, for example, by reducing the number of false positives without necessarily increasing the risk of false negatives in a clinically-significant way. Even if, however, no disproportionate change in the number of false positives can be achieved with a relatively small adjustment to alarm criteria (e.g., an alarm threshold value), the techniques described herein may still be useful in some circumstances for incrementally reducing the number of false positives in a safe manner. Of course, changes to the alarm criteria used for monitoring patients are not to be taken lightly; generally speaking, hospital administrators or other responsible personnel should authorize any changes to alarm criteria.
In some embodiments, a device and/or system is provided for collecting medical monitoring information from patients in a patient care domain. For example, the medical monitoring information can be collected from a clinically-significant number of patients over a clinically-significant period of time. In some embodiments, the patient care domain is a group of patients of a similar type, or a group of patients who exhibit similar medical characteristics, conditions, defects, etc., and, as such, can also be expected to undergo monitoring alarm conditions for similar reasons. For example, the patient care domain could consist of a group of cardiac patients on a hospital floor, etc.
In some embodiments, a number of bedside patient monitors are used to collect physiological signals from the patients. The raw physiological signals can be processed by the bedside patient monitors. For example, the bedside patient monitors may perform averaging of the raw signals, filtering, etc. The bedside patient monitors may also perform computations to calculate the value of a physiological parameter. The bedside patient monitors may then output an indication of a physiological parameter value (e.g., SpO2, pulse rate, blood pressure, etc.) and its trending over time. Physiological information such as the raw physiological signals, processed physiological signals, and/or calculated physiological parameter values, for example, for each of the patients can then be transmitted to, and stored by, for example, a central repository. In some embodiments, this information is stored by a networked database such as, for example, the round-robin database 722 described herein. In some embodiments, the central repository can store medical monitoring information for the patients in a particular domain (e.g., a hospital ward) over a period of time such as a week, or a month, for example.
At the initial time of monitoring, an algorithm, or algorithms, may be applied to the raw physiological signals, processed physiological signals, and/or computed physiological parameter values for detecting whether a first set of alarm criteria are satisfied. This can be done by, for example, each bedside patient monitor for each patient in the patient care domain. The first set of alarm criteria are, for example, those criteria implemented in the patient monitoring devices that perform real-time monitoring functions to detect alarm conditions. If the alarm criteria are satisfied, then an alarm can be generated, as described herein. The central repository can also be used to store the occurrences of alarm conditions for each patient.
In some embodiments, once a statistically-significant amount of patient monitoring data has been collected at the central repository, a reporting module can access the central repository and use these data to simulate the alarm events that would have been detected had the patient monitoring devices in the patient care domain used a different set of alarm criteria than those that were actually used at the time of monitoring.
In some embodiments, the reporting module is used in conjunction with the patient monitoring systems described herein (e.g., those shown in
In some embodiments, if the central repository includes, for example, physiological parameter trend data for each of the patients, then the reporting module can access the trend data and can re-analyze it using, for example, the same algorithm, or algorithms, previously used by the bedside patient monitoring devices for detecting whether alarm criteria are satisfied. However, in this case a second alarm criteria can be used that is different from the first alarm criteria that was used to detect alarm conditions, for example, in real time when the patient monitoring data was actually collected. In some embodiments, the reporting module re-analyzes the stored patient monitoring data using multiple different new alarm criteria. Thus, the reporting module can generate information showing how the number of alarms detected changes as a function of changing alarm criteria.
At block 3104, the physiological parameter data is analyzed to identify alarm conditions based upon a first set of alarm criteria. The alarm criteria can be configurable so as to modify the physiological conditions that will trigger an alarm. In some embodiments, the analysis of the physiological parameter data is performed in substantially real-time by, for example, the bedside patient monitoring devices in order to detect alarm conditions as they occur. The alarm criteria will generally depend upon the particular physiological parameter being monitored. In some embodiments, the alarm criteria is a single threshold value. In some embodiments, the alarm criteria includes multiple threshold values that define, for example, an enclosed range of safe or normal values for the physiological parameter. Other types of alarm criteria can also be used.
At block 3106, the physiological parameter data is stored at, for example, a central repository (e.g., the round-robin database 722). In some embodiments, the central repository stores all, or substantially all, of the physiological parameter data that was collected at block 3102. For example, the central repository can store a physiological information such as the raw physiological signals from each patient, or physiological signals that have already been processed or altered to some extent by, for example, the bedside patient monitoring devices. In addition, the central repository can store information about any alarm conditions that were detected for each patient at block 3104. For example, the central repository can store the timing and type of each alarm condition for each patient.
At block 3108, the physiological parameter data that was previously stored can be analyzed to identify alarm conditions based on a second alarm criteria that is different from the first criteria used at block 3104. This analysis can be performed by, for example, the reporting module described herein. If, for example, in the case of blood oxygen saturation monitoring, detected pulse oximetry signals were analyzed at the actual time of monitoring using an alarm threshold of 94% oxygen saturation, then later at block 3108, the pulse oximetry signals can be re-analyzed using an alarm threshold of 93% oxygen saturation, or 92% oxygen saturation, etc. This analysis of the previously-collected physiological parameter data can be used to simulate the effect of a new alarm threshold in a riskless manner, since patients can still be monitored at, for example, blocks 3102, 3104 using alarm criteria that are already accepted and validated. This ability to simulate the effect of changing alarm criteria on the alarm conditions that are identified from physiological data is advantageous to hospitals and other patient care facilities as a means of adjusting alarm criteria to be specifically adapted for that particular hospital or patient care facility. Specially adapted alarm criteria are advantageous because alarm criteria that work well at one hospital, or for one type of patient, are not necessarily guaranteed to work well at another hospital, or for another type of patient. This can be due to differences in the type of monitoring equipment that is used, differences in patient population, differences in the type of medical care offered, differences in medical procedures implemented by clinicians, etc.
In some embodiments, the algorithm, or algorithms, that are applied by the reporting module to the collected physiological parameter data at block 3108 are the same as, or substantially similar to, those which were applied at the time of monitoring in order to detect real-time alarm conditions, though this may not be required in all embodiments. In addition, in some embodiments, the physiological parameter data stored at the central repository is the same as, or substantially similar to, the physiological parameter data to which alarm detection algorithms were applied by, for example, bedside patient monitors at the time of collection of the data. In this way, different alarm criteria can be simulated as if they had actually been used at the time of collection of the physiological parameter data to detect real-time alarm conditions.
At block 3110, the reporting module can analyze the effect of the simulated alarm criteria on alarm conditions that are detected. For example, the reporting module can analyze the change, if any, in the number of detected alarm conditions using the new simulated alarm criteria. This information can be provided for each patient and/or for the combined group of patients, for example. In addition, the reporting module can analyze differences in the timing at which alarm conditions were detected. Generally speaking, the reporting module can analyze any change in the number, type, timing, duration, etc. of alarm conditions that are detected when using the second alarm criteria as compared to the alarm conditions detected using the first alarm criteria that were applied at the time of monitoring.
At block 3112, the reporting module can output a report that identifies, explains, summarizes, or otherwise bears upon the effect of the simulated alarm criteria. This report can be beneficial to, for example, hospital administrators in determining whether any changes to the alarm criteria used by, for example, the bedside patient monitors are warranted. For example, as described herein, in some circumstances the alarm criteria could be changed so as to reduce the number of false positives that are detected. The reporting module enhances the ability of hospital administrators to make such decisions because it can provide information about the effect that such changes would have had if they had been previously implemented. Generally speaking, hospital administrators will have the final responsibility for determining whether changes to the alarm criteria can be safely made in order to, for example, reduce false positives without unacceptably increasing false negatives.
The table 3200 also includes column entries for the change in the number of alarms that were detected using each of the simulated alarm criteria as compared to the number of alarms that were detected using the actual alarm criteria applied at the time of collection of the physiological parameter data. This change could be indicated as the difference in the number of alarms, the percent difference, etc.
Many other types of information and information formats exist for reporting the effect of the simulated alarm criteria.
The method 3300 can proceed through blocks 3302 and 3304 as described above with respect to the method 3100 and blocks 3102, 3104 illustrated in
In some embodiments, the medical intervention data that is collected at block 3306 is used to determine which, if any, of the alarm conditions detected at block 3304 were false positive alarms and/or which were alarms that represented true indications of medical duress. Later, this information can be used, for example, to determine whether various simulated alarm criteria would have eliminated any identified false positive alarms or whether the simulated alarm criteria would have resulted in non-detection of any alarms that actually did indicate a need for medical intervention (e.g., resulting in a false negative). In addition, the medical intervention data can be used to identify false negatives and to determine whether simulated alarm criteria would have resulted in detection of such false negatives. This information can be analyzed and presented in a report to further aid hospital administrators in making a determination of whether to change alarm criteria used by patient monitoring devices based upon simulated alarm criteria, as described herein.
The medical intervention data can be obtained in a variety of ways. For example, medical intervention data can be recorded by clinicians as medical interventions become necessary. These records can then be manually imported into the central repository that also stores the collected physiological parameter data. Medical intervention data can be automatically imported into the central repository from the patient's electronic medical record stored in, for example, a Hospital Information System or a Clinical Information System. In some embodiments, the bedside patient monitoring devices can be configured so as to prompt clinicians to enter medical intervention data, for example, after an alarm is disabled. Other techniques for obtaining records of medical interventions can also be used.
If a record of a medical intervention that has been performed on behalf of the patient is, for example, temporally associated with the timing of a detected alarm condition (e.g., they are separated by some length of time less than a pre-determined threshold), this can be taken as a sign of an accurately detected alarm condition. For example, if a detected alarm condition is followed by a medical intervention relatively shortly thereafter, then it can be presumed that the alarm condition required medical attention. If, however, a record of a medical intervention that has been performed is not temporally associated with the timing of any detected alarm condition for that patient, then this can be an indication of a false negative since the medical condition that necessitated the intervention did not trigger an alarm. Later in the method 3300, after various new alarm criteria have been simulated, it can be determined whether such simulated criteria would have detected the false negative, or whether the new simulated criteria would have still detected the alarm condition that was accurately detected by the alarm criteria in place at the time of monitoring.
In some embodiments, medical intervention data can include an automated estimation of whether or not a medical intervention for a given patient has taken place. An estimation of whether or not a medical intervention was required after an alarm detection event can be automatically made based upon, for example, the length of time that a clinician spent with the patient after responding to an alarm event, or whether a physician came to check on the patient within some time limit of a detected alarm event. This information can be collected using the clinician proximity detection devices and systems described herein. For example, in some embodiments, a patient monitoring device can start a timer after an alarm detection event has occurred. If the presence of a physician (e.g., as identified by a clinician token, as described herein) is detected within some predetermined amount of time, then an estimation can be made that the physician visit was in response to the alarm event. As such, the physician visit can be identified as a medical intervention. Similarly, a patient monitoring device can track the amount of time that a clinician (e.g., a nurse) spends in proximity to the patient after silencing an alarm. If the amount of time with the patient exceeds a certain threshold, then it can be inferred that some type of medical intervention was necessary in response to the alarm event.
In addition, an estimate of whether or not medical intervention was required, for example, after an alarm event can be determined by analyzing the physiological parameter data collected for that patient. For example, the reporting module can analyze the trend values for the physiological parameter and determine whether the physiological parameter continued to worsen after the alarm event was detected. In some embodiments, the reporting module can analyze the trend data to determine whether the patient's condition, as indicated by the trend values of the physiological parameter, was worse 1 min. after the alarm detection event, whether it was worse 5 min. later, and/or whether it was worse 10 min. later. Different time limits can of course also be used. If such an analysis indicates that the patient's condition deteriorated after the alarm event was detected, then this can be taken as an indication that the alarm did in fact indicate that the patient was experiencing medical duress and that the alarm was not a false positive.
As just described, the medical intervention data used in the method 3300 can come from actual records of medical interventions that occurred. Alternatively, or additionally, the medical intervention data used in the method 3300 can be estimated based upon factors such as, for example, the amount of time clinicians spent with the patient in the wake of a detected alarm event or the behavior of the physiological parameter within some relevant time after a detected alarm event. Other factors and methods for estimating the occurrence of a medical intervention can also be used. While medical intervention data that results from actual clinician records may be more accurate and reliable, some such occurrences of medical interventions may go unreported. Estimated medical intervention data can be useful since the reliance upon clinicians to maintain accurate records is reduced, though the estimates may be somewhat less reliable than actual clinician records.
At block 3308, the collected physiological parameter data and the medical intervention data can be stored in, for example, the central repository (e.g., the round-robin database 722) for later analysis by the reporting module. The reporting module can include logic used for correlating the collected medical intervention data with the detected alarm events. For example, the logic can include rules or criteria for determining whether or not a given medical intervention for a patient was related to an alarm condition experienced by that patient. For example, in the case of medical intervention data obtained from actual clinician records, a particular medical intervention for a patient can be correlated with a detected alarm event for that patient if the medical intervention and the alarm event occurred within a certain amount of time of one another. Other methods are also possible for matching medical intervention data with corresponding detected alarm events that were possibly related to the medical intervention. For example, such a correlation can be based upon the type of medical intervention that was performed and the type of physiological parameter for which monitoring data has been obtained. Some medical interventions may be viewed as being particularly likely to be related to a specific physiological parameter. In such cases, the reporting module logic may be configured to make it more likely that such a medical intervention will be marked as being correlated with alarm events triggered by that physiological parameter.
At block 3310, the reporting module analyzes the physiological parameter data using second alarm criteria, for example, as described with respect to
In addition, the reporting module can analyze the effect of the simulated alarm criteria on any false negatives that were identified based on medical intervention data. In some embodiments, the reporting module determines whether the simulated alarm criteria would have detected any false negatives that were not identified by the first alarm criteria actually used by the patient monitoring devices. This can be done, for example, by executing logic designed to determine whether any alarm conditions detected using the simulated alarm criteria are temporally correlated with a previously-identified false negative event. If, for example, an alarm condition identified by the simulated alarm criteria precedes the timing of the identified false negative by some period of time less than a given threshold, then this can be taken as an indication that the alarm condition would have been an indicator of the false negative. Other logical tests can also be applied to correlate alarm conditions detected using the simulated alarm criteria with false negatives that have been identified based on medical intervention data.
At block 3314, the reporting module outputs a report that identifies, explains, summarizes, or otherwise bears upon the effect of the simulated alarm criteria. In some embodiments, the report can provide an indication of the effect that the simulated alarm criteria would be expected to have on not only the number of detected alarm events but also the number, percentage, proportion, etc. of, for example, previously undetected false negatives that may have been detected using the simulated alarm criteria. The report can also include an indication of, for example, the number, percentage, proportion, etc. of actual alarm conditions that were correctly identified using the first alarm criteria but may not have been identified using the second alarm criteria. The report can also include other information as well.
In addition, the table 3400 includes column entries for the estimated number or percentage of false negatives that previously went undetected but would have been detected using a particular simulated alarm criteria. The table 3400 also includes column entries for the estimated number or percentage of true alarm conditions that were correctly identified using the first alarm criteria but would not have been identified using a particular simulated alarm criteria (i.e., new false negatives resulting from the simulated alarm criteria). These values can be determined or estimated by the reporting module, as described herein. The table 3400 could also include information regarding change in false positives, for example, the number of false positives that were detected by the first alarm criteria that would not have been detected by the simulated alarm criteria, or vice versa.
Again,
In addition to simulating alarm criteria, as described herein, the reporting module can also simulate the effect of other configuration changes in the bedside patient monitoring devices and/or a central patient monitoring station. For example, the reporting module can simulate the effect of different alarm notification delay times. As discussed herein, in some embodiments, when an alarm condition is detected, bedside patient monitors may be configured to wait until a predetermined alarm notification delay time has elapsed before transmitting notification of the alarm event to either a clinician or to a central monitoring station. In addition, the central monitoring station can likewise be configured to wait until a predetermined alarm notification delay time has elapsed before actually transmitting a notification of the detected alarm to a clinician by, for example, a page or other notification method.
These notification delay times can be useful in reducing the frequency of false positive alarm notification events when alarm conditions only transiently persist. Such transient alarm conditions may be triggered by, for example, sudden exertion or emotion. The reporting module can be useful in simulating the effect of differing notification delay times on alarm notification events. This can be useful because, for example, relatively slight modifications to the notification delay times could result in an important reduction in the number of false positives to which clinicians must respond.
The method 3500 proceeds to block 3504 where alarm notification events are identified based upon a first alarm notification delay time. For example, an alarm notification event may be a notification by a bedside patient monitor to a central monitoring station of an alarm condition. In this case, the first alarm notification delay time could be measured as the elapsed time between when an alarm condition was detected at the bedside monitor and when notification of the alarm was sent to the central monitoring station. In addition, an alarm notification event may be a notification from a patient monitoring device to a clinician of an alarm condition. In this case, the first alarm notification delay time can be measured as the elapsed time between when an alarm condition was detected and when the clinician was notified.
At the initial time of monitoring, an algorithm, or algorithms, may be applied to the raw physiological signals, processed physiological signals, and/or computed physiological parameter values for detecting whether an alarm condition has persisted for the duration of the first alarm notification delay time. This can be done by, for example, each bedside patient monitor for each patient in the patient care domain. If an alarm condition persists for the duration of the first alarm notification delay time, then an alarm notification event can be recognized.
At block 3506, physiological parameter data is collected and stored at, for example, a central repository (e.g., the round-robin database 722), as described herein. At block 3508, the physiological parameter data is re-analyzed by, for example, the reporting module using a second alarm notification delay time that is different from the first alarm notification delay time. If, for example, the first alarm notification delay time used by the patient monitoring device at block 3504 were 5 sec., the physiological parameter data could be re-analyzed using an alarm notification delay time of, for example, 6 sec., or 7 sec., etc. Shorter delay times could also be simulated.
In some cases, if the alarm condition is only transient in nature, a relatively small lengthening of the alarm notification delay time could result in the alarm condition ceasing before an alarm notification event is generated. In this way, adjustment of the alarm notification delay time can potentially safely reduce the number of alarm notification events to which clinicians must respond. This can in turn increase the effectiveness of patient care by allowing clinicians to focus their time on attending to alarm events that are non-transient. Of course, any change to alarm notification delay times should generally be approved by hospital administrators or other responsible personnel to ensure that, for example, increases in the alarm notification delay times do not unacceptably put patients at risk by increasing the amount of elapsed time between a detected alarm and the arrival of a clinician.
The analysis of the previously-collected physiological parameter data by the reporting module can be used to simulate the effect of a new alarm notification delay time in a riskless manner since patients can still be monitored at, for example, blocks 3502, 3504 using a delay time that has already been accepted and validated. This ability to simulate the effect that new alarm notification delay times would have, without necessarily actually implementing them, is advantageous to hospitals and other patient care facilities as a means of adjusting alarm notification delay times to be specifically adapted for that particular hospital or patient care facility. As described herein with respect to alarm criteria, a change in the alarm notification delay times may result in significantly fewer alarm notification events without necessarily increasing the risk to patients.
At block 3510, the reporting module can analyze differences between clinician notification events that are detected using the first alarm notification delay time as compared to those that are detected using the second alarm notification delay time. For example, the reporting module may determine whether the total number of alarm notification events decreases or increases, and by how much, in response to a change in the alarm notification delay time. This information can be presented to hospital administrators in the form of tables, charts, spreadsheets, etc. to assist them in determining whether a change in the alarm notification delay times implemented by the patient monitoring devices would be advantageous.
Clinician response time data can also be collected and stored for analysis by the reporting module. Clinician response time can be measured as, for example, the elapsed time between when a clinician is notified of an alarm condition and when the clinician arrives at the patient's room to shutoff the alarm and check the patient's status. This elapsed time can be measured by, for example, the bedside patient monitoring devices and transmitted to the central repository of data. Clinician response times can be stored for each clinician and/or for a group of clinicians as a whole. As a result, the reporting module can output information regarding, for example, the maximum, minimum, and average response times for each clinician, and/or for a group of clinicians as a whole. This data may be useful to hospital administrators as an indicator of the performance of an individual clinician, or a group of clinicians, in responding to monitoring alarms in a prompt manner.
Display Features
Information and signals described herein can be represented using any of a variety of different technologies and techniques. For example, data, instructions, commands, information, signals, bits, symbols, and chips that can be referenced throughout the above description can be represented by voltages, currents, electromagnetic waves, magnetic fields or particles, optical fields or particles, or any combination thereof.
The various illustrative logical blocks, modules, circuits, and algorithm steps described in connection with the embodiments disclosed herein may be implemented as electronic hardware, computer software, or combinations of both. To clearly illustrate this interchangeability of hardware and software, various illustrative components, blocks, modules, circuits, and steps have been described above generally in terms of their functionality. Whether such functionality is implemented as hardware or software depends upon the particular application and design constraints imposed on the overall system. Skilled artisans can implement the described functionality in varying ways for each particular application, but such implementation decisions should not be interpreted as causing a departure from the scope of the present invention.
Depending on the embodiment, certain acts, events, or functions of any of the methods described herein can be performed in a different sequence, may be added, merged, or left out all together (e.g., not all described acts or events are necessary for the practice of the method). Moreover, in certain embodiments, acts or events may be performed concurrently, e.g., through multi-threaded processing, interrupt processing, or multiple processors, rather than sequentially.
The various illustrative logical blocks, modules, and circuits described in connection with the embodiments disclosed herein can be implemented or performed with a general purpose processor, a digital signal processor (DSP), an application specific integrated circuit (ASIC), a field programmable gate array (FPGA) or other programmable logic device, discrete gate or transistor logic, discrete hardware components, or any combination thereof designed to perform the functions described herein. A general purpose processor can be a microprocessor, conventional processor, controller, microcontroller, state machine, etc. A processor can also be implemented as a combination of computing devices, e.g., a combination of a DSP and a microprocessor, a plurality of microprocessors, one or more microprocessors in conjunction with a DSP core, or any other such configuration. In addition, the term “processing” is a broad term meant to encompass several meanings including, for example, implementing program code, executing instructions, manipulating signals, filtering, performing arithmetic operations, and the like.
The steps of a method or algorithm described in connection with the embodiments disclosed herein can be embodied directly in hardware, in a software module executed by a processor, or in a combination of the two. A software module can reside in RAM memory, flash memory, ROM memory, EPROM memory, EEPROM memory, registers, hard disk, a removable disk, a CD-ROM, a DVD, or any other form of storage medium known in the art. A storage medium is coupled to the processor such that the processor can read information from, and write information to, the storage medium. In the alternative, the storage medium may be integral to the processor. The processor and the storage medium can reside in an ASIC. The ASIC can reside in a user terminal. In the alternative, the processor and the storage medium can reside as discrete components in a user terminal.
The modules can include, but are not limited to, any of the following: software or hardware components such as software object-oriented software components, class components and task components, processes, methods, functions, attributes, procedures, subroutines, segments of program code, drivers, firmware, microcode, circuitry, data, databases, data structures, tables, arrays, or variables.
In addition, although this invention has been disclosed in the context of certain preferred embodiments, it should be understood that certain advantages, features and aspects of the systems, devices, and methods may be realized in a variety of other embodiments. Additionally, it is contemplated that various aspects and features described herein can be practiced separately, combined together, or substituted for one another, and that a variety of combination and subcombinations of the features and aspects can be made and still fall within the scope of the invention. Furthermore, the systems and devices described above need not include all of the modules and functions described in the preferred embodiments.
This application is a continuation-in-part of U.S. application Ser. No. 12/717,081, filed Mar. 3, 2010, and entitled “MEDICAL MONITORING SYSTEM,” which claims a priority benefit to U.S. Provisional Application 61/209,147, filed Mar. 4, 2009, and entitled “PROXIMITY DISPLAY MONITOR,” and to U.S. Provisional Application 61/296,439, filed Jan. 19, 2010, and entitled “MEDICAL MONITORING SYSTEM,” the entire contents of each of which are hereby incorporated by reference herein.
Number | Name | Date | Kind |
---|---|---|---|
3646606 | Buxton et al. | Feb 1972 | A |
4051522 | Healy et al. | Sep 1977 | A |
4216462 | McGrath et al. | Aug 1980 | A |
4237344 | Moore | Dec 1980 | A |
4356475 | Nuemann et al. | Oct 1982 | A |
4674085 | Aranguren et al. | Jun 1987 | A |
4838275 | Lee | Jun 1989 | A |
4852570 | Levine | Aug 1989 | A |
4887260 | Carden et al. | Dec 1989 | A |
4916444 | King | Apr 1990 | A |
4920339 | Friend et al. | Apr 1990 | A |
4960128 | Gordon et al. | Oct 1990 | A |
4964408 | Hink et al. | Oct 1990 | A |
5038800 | Oba | Aug 1991 | A |
5041187 | Hink et al. | Aug 1991 | A |
5061916 | French et al. | Oct 1991 | A |
5069213 | Polczynski | Dec 1991 | A |
5163438 | Gordon et al. | Nov 1992 | A |
5278627 | Aoyagi | Jan 1994 | A |
5296688 | Hamilton et al. | Mar 1994 | A |
5319355 | Russek | Jun 1994 | A |
5319363 | Welch et al. | Jun 1994 | A |
D348463 | Scheid et al. | Jul 1994 | S |
5331549 | Crawford, Jr. | Jul 1994 | A |
5337744 | Branigan | Aug 1994 | A |
5341805 | Stavridi et al. | Aug 1994 | A |
5348008 | Bornn et al. | Sep 1994 | A |
D353195 | Savage et al. | Dec 1994 | S |
D353196 | Savage et al. | Dec 1994 | S |
5375604 | Kelly et al. | Dec 1994 | A |
5377676 | Vari et al. | Jan 1995 | A |
5416695 | Stutman et al. | May 1995 | A |
D359546 | Savage et al. | Jun 1995 | S |
5431170 | Mathews | Jul 1995 | A |
5434611 | Tamura | Jul 1995 | A |
D361840 | Savage et al. | Aug 1995 | S |
D362063 | Savage et al. | Sep 1995 | S |
5452717 | Branigan et al. | Sep 1995 | A |
D363120 | Savage et al. | Oct 1995 | S |
5456252 | Vari et al. | Oct 1995 | A |
5462051 | Oka et al. | Oct 1995 | A |
5479934 | Imran | Jan 1996 | A |
5482036 | Diab et al. | Jan 1996 | A |
5490505 | Diab et al. | Feb 1996 | A |
5494043 | O'Sullivan et al. | Feb 1996 | A |
5533511 | Kaspari et al. | Jul 1996 | A |
5534851 | Russek | Jul 1996 | A |
5544649 | David et al. | Aug 1996 | A |
5553609 | Chen et al. | Sep 1996 | A |
5558638 | Evers et al. | Sep 1996 | A |
5561275 | Savage et al. | Oct 1996 | A |
5562002 | Lalin | Oct 1996 | A |
D375792 | Hillman et al. | Nov 1996 | S |
5576952 | Stutman et al. | Nov 1996 | A |
5579001 | Dempsey et al. | Nov 1996 | A |
5579775 | Dempsey et al. | Dec 1996 | A |
5590649 | Caro et al. | Jan 1997 | A |
5602924 | Durand et al. | Feb 1997 | A |
5619991 | Sloane | Apr 1997 | A |
5632272 | Diab et al. | May 1997 | A |
5638816 | Kiani-Azarbayjany et al. | Jun 1997 | A |
5638818 | Diab et al. | Jun 1997 | A |
5645440 | Tobler et al. | Jul 1997 | A |
5682803 | Boianjiu | Nov 1997 | A |
5685299 | Diab et al. | Nov 1997 | A |
5687734 | Dempsey et al. | Nov 1997 | A |
5694940 | Unger et al. | Dec 1997 | A |
D390666 | Lagerlof | Feb 1998 | S |
D392639 | Tamura | Mar 1998 | S |
5724580 | Levin et al. | Mar 1998 | A |
D393830 | Tobler et al. | Apr 1998 | S |
5743262 | Lepper, Jr. et al. | Apr 1998 | A |
5748103 | Flach et al. | May 1998 | A |
5751957 | Hiroya et al. | May 1998 | A |
5752917 | Fuchs | May 1998 | A |
5758079 | Ludwig et al. | May 1998 | A |
5758644 | Diab et al. | Jun 1998 | A |
5760910 | Lepper, Jr. et al. | Jun 1998 | A |
5767791 | Stoop et al. | Jun 1998 | A |
5769785 | Diab et al. | Jun 1998 | A |
5772585 | Lavin et al. | Jun 1998 | A |
5782757 | Diab et al. | Jul 1998 | A |
5785659 | Caro et al. | Jul 1998 | A |
5791347 | Flaherty et al. | Aug 1998 | A |
5810734 | Caro et al. | Sep 1998 | A |
5822544 | Chaco et al. | Oct 1998 | A |
5823950 | Diab et al. | Oct 1998 | A |
5830131 | Caro et al. | Nov 1998 | A |
5833618 | Caro et al. | Nov 1998 | A |
D402805 | Nagano et al. | Dec 1998 | S |
5855550 | Lai et al. | Jan 1999 | A |
5860919 | Kiani-Azarbayjany et al. | Jan 1999 | A |
5871451 | Unger et al. | Feb 1999 | A |
5890929 | Mills et al. | Apr 1999 | A |
D409195 | Halstead et al. | May 1999 | S |
5903889 | de la Huerga et al. | May 1999 | A |
5904654 | Wohltmann et al. | May 1999 | A |
5919134 | Diab | Jul 1999 | A |
5924074 | Evans | Jul 1999 | A |
5934925 | Tobler et al. | Aug 1999 | A |
5940182 | Lepper, Jr. et al. | Aug 1999 | A |
5942986 | Shabot et al. | Aug 1999 | A |
5960431 | Choy | Sep 1999 | A |
D414870 | Saltztein et al. | Oct 1999 | S |
5987519 | Peifer et al. | Nov 1999 | A |
5995855 | Kiani et al. | Nov 1999 | A |
5997343 | Mills et al. | Dec 1999 | A |
6002952 | Diab et al. | Dec 1999 | A |
6011986 | Diab et al. | Jan 2000 | A |
6024699 | Surwit et al. | Feb 2000 | A |
6027452 | Flaherty et al. | Feb 2000 | A |
6036642 | Diab et al. | Mar 2000 | A |
D423504 | Nishii et al. | Apr 2000 | S |
6045509 | Caro et al. | Apr 2000 | A |
6057758 | Dempsey et al. | May 2000 | A |
6067462 | Diab et al. | May 2000 | A |
6081735 | Diab et al. | Jun 2000 | A |
6088607 | Diab et al. | Jul 2000 | A |
6093146 | Filangeri | Jul 2000 | A |
6101478 | Brown | Aug 2000 | A |
6110522 | Lepper, Jr. et al. | Aug 2000 | A |
6112224 | Peifer et al. | Aug 2000 | A |
6112226 | Weaver et al. | Aug 2000 | A |
6124597 | Shehada | Sep 2000 | A |
6128521 | Marro et al. | Oct 2000 | A |
6129675 | Jay | Oct 2000 | A |
6139494 | Cairnes | Oct 2000 | A |
6144868 | Parker | Nov 2000 | A |
6151516 | Kiani-Azarbayjany et al. | Nov 2000 | A |
6152754 | Gerhardt et al. | Nov 2000 | A |
6157850 | Diab et al. | Dec 2000 | A |
6165005 | Mills et al. | Dec 2000 | A |
6168563 | Brown | Jan 2001 | B1 |
6171237 | Avitall et al. | Jan 2001 | B1 |
6184521 | Coffin, IV et al. | Feb 2001 | B1 |
6206830 | Diab et al. | Mar 2001 | B1 |
6221012 | Maschke | Apr 2001 | B1 |
6229856 | Diab et al. | May 2001 | B1 |
6230142 | Benigno et al. | May 2001 | B1 |
6232609 | Snyder et al. | May 2001 | B1 |
6236872 | Diab et al. | May 2001 | B1 |
6241683 | Macklem et al. | Jun 2001 | B1 |
6253097 | Aronow et al. | Jun 2001 | B1 |
6256523 | Diab et al. | Jul 2001 | B1 |
6263222 | Diab et al. | Jul 2001 | B1 |
6278522 | Lepper, Jr. et al. | Aug 2001 | B1 |
6280213 | Tobler et al. | Aug 2001 | B1 |
6285896 | Tobler et al. | Sep 2001 | B1 |
6301493 | Marro et al. | Oct 2001 | B1 |
6308089 | von der Ruhr et al. | Oct 2001 | B1 |
D450679 | Soh | Nov 2001 | S |
6312378 | Bardy | Nov 2001 | B1 |
6317627 | Ennen et al. | Nov 2001 | B1 |
6321100 | Parker | Nov 2001 | B1 |
6322502 | Schoenberg et al. | Nov 2001 | B1 |
D452012 | Phillips | Dec 2001 | S |
6325761 | Jay | Dec 2001 | B1 |
6329139 | Nova et al. | Dec 2001 | B1 |
6334065 | Al-Ali et al. | Dec 2001 | B1 |
6338039 | Lonski et al. | Jan 2002 | B1 |
6343224 | Parker | Jan 2002 | B1 |
6349228 | Kiani et al. | Feb 2002 | B1 |
6360114 | Diab et al. | Mar 2002 | B1 |
6364834 | Reuss et al. | Apr 2002 | B1 |
6368283 | Xu et al. | Apr 2002 | B1 |
6371921 | Caro et al. | Apr 2002 | B1 |
6377829 | Al-Ali | Apr 2002 | B1 |
6380853 | Long et al. | Apr 2002 | B1 |
6385589 | Trusheim et al. | May 2002 | B1 |
6388240 | Schulz et al. | May 2002 | B2 |
6397091 | Diab et al. | May 2002 | B2 |
6406426 | Reuss et al. | Jun 2002 | B1 |
6424249 | Houvener | Jul 2002 | B1 |
6430437 | Marro | Aug 2002 | B1 |
6430525 | Weber et al. | Aug 2002 | B1 |
6440067 | DeLuca et al. | Aug 2002 | B1 |
6463311 | Diab | Oct 2002 | B1 |
6470199 | Kopotic et al. | Oct 2002 | B1 |
6501975 | Diab et al. | Dec 2002 | B2 |
6505059 | Kollias et al. | Jan 2003 | B1 |
6515273 | Al-Ali | Feb 2003 | B2 |
6519487 | Parker | Feb 2003 | B1 |
6525386 | Mills et al. | Feb 2003 | B1 |
6526300 | Kiani et al. | Feb 2003 | B1 |
6535132 | Walters et al. | Mar 2003 | B2 |
6541756 | Schulz et al. | Apr 2003 | B2 |
6542764 | Al-Ali et al. | Apr 2003 | B1 |
6544173 | West et al. | Apr 2003 | B2 |
6544174 | West et al. | Apr 2003 | B2 |
6551243 | Bocionek et al. | Apr 2003 | B2 |
6580086 | Schulz et al. | Jun 2003 | B1 |
6584336 | Ali et al. | Jun 2003 | B1 |
6595316 | Cybulski et al. | Jul 2003 | B2 |
6597932 | Tian et al. | Jul 2003 | B2 |
6597933 | Kiani et al. | Jul 2003 | B2 |
6606511 | Ali et al. | Aug 2003 | B1 |
6632181 | Flaherty et al. | Oct 2003 | B2 |
6639668 | Trepagnier | Oct 2003 | B1 |
6640116 | Diab | Oct 2003 | B2 |
6643530 | Diab et al. | Nov 2003 | B2 |
6650917 | Diab et al. | Nov 2003 | B2 |
6654624 | Diab et al. | Nov 2003 | B2 |
6658276 | Kianl et al. | Dec 2003 | B2 |
6661161 | Lanzo et al. | Dec 2003 | B1 |
6671531 | Al-Ali et al. | Dec 2003 | B2 |
6678543 | Diab et al. | Jan 2004 | B2 |
6678703 | Rothschild et al. | Jan 2004 | B2 |
6684090 | Ali et al. | Jan 2004 | B2 |
6684091 | Parker | Jan 2004 | B2 |
6697656 | Al-Ali | Feb 2004 | B1 |
6697657 | Shehada et al. | Feb 2004 | B1 |
6697658 | Al-Ali | Feb 2004 | B2 |
RE38476 | Diab et al. | Mar 2004 | E |
6699194 | Diab et al. | Mar 2004 | B1 |
6714804 | Al-Ali et al. | Mar 2004 | B2 |
RE38492 | Diab et al. | Apr 2004 | E |
6721582 | Trepagnier et al. | Apr 2004 | B2 |
6721585 | Parker | Apr 2004 | B1 |
6725075 | Al-Ali | Apr 2004 | B2 |
6728560 | Kollias et al. | Apr 2004 | B2 |
6735459 | Parker | May 2004 | B2 |
6745060 | Diab et al. | Jun 2004 | B2 |
6749556 | Russ | Jun 2004 | B2 |
6760607 | Al-Ali | Jul 2004 | B2 |
6770028 | Ali et al. | Aug 2004 | B1 |
6771994 | Kiani et al. | Aug 2004 | B2 |
6782093 | Uckun | Aug 2004 | B2 |
6784797 | Smith et al. | Aug 2004 | B2 |
6792300 | Diab et al. | Sep 2004 | B1 |
6804656 | Rosenfeld | Oct 2004 | B1 |
6813511 | Diab et al. | Nov 2004 | B2 |
6816741 | Diab | Nov 2004 | B2 |
6822564 | Al-Ali | Nov 2004 | B2 |
6826419 | Diab et al. | Nov 2004 | B2 |
6830711 | Mills et al. | Dec 2004 | B2 |
6836890 | Watts, Jr. et al. | Dec 2004 | B1 |
6850787 | Weber et al. | Feb 2005 | B2 |
6850788 | Al-Ali | Feb 2005 | B2 |
6852083 | Caro et al. | Feb 2005 | B2 |
6861639 | Al-Ali | Mar 2005 | B2 |
6898452 | Al-Ali et al. | May 2005 | B2 |
6915135 | McKee et al. | Jul 2005 | B1 |
6920345 | Al-Ali et al. | Jul 2005 | B2 |
6928370 | Anuzis et al. | Aug 2005 | B2 |
6931268 | Kiani-Azarbayjany et al. | Aug 2005 | B1 |
6934570 | Kiani et al. | Aug 2005 | B2 |
6939305 | Flaherty et al. | Sep 2005 | B2 |
6943348 | Coffin, IV | Sep 2005 | B1 |
6950687 | Al-Ali | Sep 2005 | B2 |
6961598 | Diab | Nov 2005 | B2 |
6970792 | Diab | Nov 2005 | B1 |
6979812 | Al-Ali | Dec 2005 | B2 |
6985764 | Mason et al. | Jan 2006 | B2 |
6993371 | Kiani et al. | Jan 2006 | B2 |
6996427 | Ali et al. | Feb 2006 | B2 |
6999904 | Weber et al. | Feb 2006 | B2 |
7003338 | Weber et al. | Feb 2006 | B2 |
7003339 | Diab et al. | Feb 2006 | B2 |
7015451 | Dalke et al. | Mar 2006 | B2 |
7024233 | Ali et al. | Apr 2006 | B2 |
7027849 | Al-Ali | Apr 2006 | B2 |
7028182 | Killcommons | Apr 2006 | B1 |
7030749 | Al-Ali | Apr 2006 | B2 |
7039449 | Al-Ali | May 2006 | B2 |
7041060 | Flaherty et al. | May 2006 | B2 |
7044916 | Flaherty et al. | May 2006 | B2 |
7044918 | Diab | May 2006 | B2 |
7048687 | Reuss et al. | May 2006 | B1 |
7062251 | Birkett et al. | Jun 2006 | B2 |
7067893 | Mills et al. | Jun 2006 | B2 |
7096052 | Mason et al. | Aug 2006 | B2 |
7096054 | Abdul-Hafiz et al. | Aug 2006 | B2 |
7132641 | Schulz et al. | Nov 2006 | B2 |
7142901 | Kiani et al. | Nov 2006 | B2 |
7149561 | Diab | Dec 2006 | B2 |
D539265 | Tompkins et al. | Mar 2007 | S |
7186966 | Al-Ali | Mar 2007 | B2 |
7190261 | Al-Ali | Mar 2007 | B2 |
7215984 | Diab | May 2007 | B2 |
7215986 | Diab | May 2007 | B2 |
7221971 | Diab | May 2007 | B2 |
7225006 | Al-Ali et al. | May 2007 | B2 |
7225007 | Al-Ali | May 2007 | B2 |
RE39672 | Shehada et al. | Jun 2007 | E |
7239905 | Kiani-Azarbayjany et al. | Jul 2007 | B2 |
7245953 | Parker | Jul 2007 | B1 |
7254429 | Schurman et al. | Aug 2007 | B2 |
7254431 | Al-Ali | Aug 2007 | B2 |
7254433 | Diab et al. | Aug 2007 | B2 |
7254434 | Schulz et al. | Aug 2007 | B2 |
7256708 | Rosenfeld | Aug 2007 | B2 |
7272425 | Al-Ali | Sep 2007 | B2 |
7274955 | Kiani et al. | Sep 2007 | B2 |
D554263 | Al-Ali | Oct 2007 | S |
7280858 | Al-Ali et al. | Oct 2007 | B2 |
7289835 | Mansfield et al. | Oct 2007 | B2 |
D554616 | Pierce | Nov 2007 | S |
7292883 | De Felice et al. | Nov 2007 | B2 |
7295866 | Al-Ali | Nov 2007 | B2 |
7307543 | Rosenfeld | Dec 2007 | B2 |
7315825 | Rosenfeld | Jan 2008 | B2 |
7321862 | Rosenfeld | Jan 2008 | B2 |
7328053 | Diab et al. | Feb 2008 | B1 |
7332784 | Mills et al. | Feb 2008 | B2 |
7340287 | Mason et al. | Mar 2008 | B2 |
7341559 | Schulz et al. | Mar 2008 | B2 |
7343186 | Lamego et al. | Mar 2008 | B2 |
D566282 | Al-Ali et al. | Apr 2008 | S |
7355512 | Al-Ali | Apr 2008 | B1 |
7356365 | Schurman | Apr 2008 | B2 |
7371981 | Abdul-Hafiz | May 2008 | B2 |
7373193 | Al-Ali et al. | May 2008 | B2 |
7373194 | Weber et al. | May 2008 | B2 |
7376453 | Diab et al. | May 2008 | B1 |
7377794 | Al Ali et al. | May 2008 | B2 |
7377899 | Weber et al. | May 2008 | B2 |
7382247 | Welch et al. | Jun 2008 | B2 |
7383070 | Diab et al. | Jun 2008 | B2 |
7395216 | Rosenfeld | Jul 2008 | B2 |
7411509 | Rosenfeld | Aug 2008 | B2 |
7415297 | Al-Ali et al. | Aug 2008 | B2 |
7421367 | Nye | Sep 2008 | B2 |
7427920 | Martin et al. | Sep 2008 | B2 |
7428432 | Ali et al. | Sep 2008 | B2 |
7433827 | Rosenfeld | Oct 2008 | B2 |
7438683 | Al-Ali et al. | Oct 2008 | B2 |
7440787 | Diab | Oct 2008 | B2 |
7454240 | Diab et al. | Nov 2008 | B2 |
7454359 | Rosenfeld | Nov 2008 | B2 |
7454360 | Rosenfeld | Nov 2008 | B2 |
7467002 | Weber et al. | Dec 2008 | B2 |
7467094 | Rosenfeld | Dec 2008 | B2 |
7469157 | Diab et al. | Dec 2008 | B2 |
7471969 | Diab et al. | Dec 2008 | B2 |
7471971 | Diab et al. | Dec 2008 | B2 |
7475019 | Rosenfeld | Jan 2009 | B2 |
7483729 | Al-Ali et al. | Jan 2009 | B2 |
7483730 | Diab et al. | Jan 2009 | B2 |
7489958 | Diab et al. | Feb 2009 | B2 |
7496391 | Diab et al. | Feb 2009 | B2 |
7496393 | Diab et al. | Feb 2009 | B2 |
D587657 | Al-Ali et al. | Mar 2009 | S |
7499741 | Diab et al. | Mar 2009 | B2 |
7499835 | Weber et al. | Mar 2009 | B2 |
7500950 | Al-Ali et al. | Mar 2009 | B2 |
7509154 | Diab et al. | Mar 2009 | B2 |
7509494 | Al-Ali | Mar 2009 | B2 |
7510849 | Schurman et al. | Mar 2009 | B2 |
7526328 | Diab et al. | Apr 2009 | B2 |
7530942 | Diab | May 2009 | B1 |
7530949 | Al Ali et al. | May 2009 | B2 |
7530955 | Diab et al. | May 2009 | B2 |
7563110 | Al-Ali et al. | Jul 2009 | B2 |
7570152 | Smith et al. | Aug 2009 | B2 |
7596398 | Al-Ali et al. | Sep 2009 | B2 |
D603836 | Hibbard et al. | Nov 2009 | S |
7618375 | Flaherty | Nov 2009 | B2 |
D606659 | Kiani et al. | Dec 2009 | S |
7647083 | Al-Ali et al. | Jan 2010 | B2 |
7650291 | Rosenfeld | Jan 2010 | B2 |
D609193 | Al-Ali et al. | Feb 2010 | S |
D614305 | Al-Ali et al. | Apr 2010 | S |
7706896 | Music et al. | Apr 2010 | B2 |
RE41317 | Parker | May 2010 | E |
7729733 | Al-Ali et al. | Jun 2010 | B2 |
7734320 | Al-Ali | Jun 2010 | B2 |
7734476 | Wildman et al. | Jun 2010 | B2 |
7761127 | Al-Ali et al. | Jul 2010 | B2 |
7761128 | Al-Ali et al. | Jul 2010 | B2 |
7764982 | Dalke et al. | Jul 2010 | B2 |
D621516 | Kiani et al. | Aug 2010 | S |
7778851 | Schoenberg | Aug 2010 | B2 |
7791155 | Diab | Sep 2010 | B2 |
7801581 | Diab | Sep 2010 | B2 |
7822452 | Schurman et al. | Oct 2010 | B2 |
RE41912 | Parker | Nov 2010 | E |
7831450 | Schoenberg | Nov 2010 | B2 |
7844313 | Kiani et al. | Nov 2010 | B2 |
7844314 | Al-Ali | Nov 2010 | B2 |
7844315 | Al-Ali | Nov 2010 | B2 |
7848935 | Gotlib | Dec 2010 | B2 |
7865222 | Weber et al. | Jan 2011 | B2 |
7873497 | Weber et al. | Jan 2011 | B2 |
7880606 | Al-Ali | Feb 2011 | B2 |
7880626 | Al-Ali et al. | Feb 2011 | B2 |
7891355 | Al-Ali et al. | Feb 2011 | B2 |
7894868 | Al-Ali et al. | Feb 2011 | B2 |
7899507 | Al-Ali et al. | Mar 2011 | B2 |
7899518 | Trepagnier et al. | Mar 2011 | B2 |
7904132 | Weber et al. | Mar 2011 | B2 |
7909772 | Popov et al. | Mar 2011 | B2 |
7910875 | Al-Ali | Mar 2011 | B2 |
7919713 | Al-Ali et al. | Apr 2011 | B2 |
7933642 | Istvan et al. | Apr 2011 | B2 |
7937128 | Al-Ali | May 2011 | B2 |
7937129 | Mason et al. | May 2011 | B2 |
7937130 | Diab et al. | May 2011 | B2 |
7941199 | Kiani | May 2011 | B2 |
7951086 | Flaherty et al. | May 2011 | B2 |
7957780 | Lamego et al. | Jun 2011 | B2 |
7962188 | Kiani et al. | Jun 2011 | B2 |
7962190 | Diab et al. | Jun 2011 | B1 |
7976472 | Kiani | Jul 2011 | B2 |
7988637 | Diab | Aug 2011 | B2 |
7990382 | Kiani | Aug 2011 | B2 |
7991446 | Ali et al. | Aug 2011 | B2 |
7991625 | Rosenfeld | Aug 2011 | B2 |
8000761 | Al-Ali | Aug 2011 | B2 |
8008088 | Bellott et al. | Aug 2011 | B2 |
RE42753 | Kiani-Azarbayjany et al. | Sep 2011 | E |
8019400 | Diab et al. | Sep 2011 | B2 |
8027846 | Schoenberg | Sep 2011 | B2 |
8028701 | Al-Ali et al. | Oct 2011 | B2 |
8029765 | Bellott et al. | Oct 2011 | B2 |
8036727 | Schurman et al. | Oct 2011 | B2 |
8036728 | Diab et al. | Oct 2011 | B2 |
8046040 | Ali et al. | Oct 2011 | B2 |
8046041 | Diab et al. | Oct 2011 | B2 |
8046042 | Diab et al. | Oct 2011 | B2 |
8048040 | Kiani | Nov 2011 | B2 |
8050728 | Al-Ali et al. | Nov 2011 | B2 |
RE43169 | Parker | Feb 2012 | E |
8118620 | Al-Ali et al. | Feb 2012 | B2 |
8126528 | Diab et al. | Feb 2012 | B2 |
8128572 | Diab et al. | Mar 2012 | B2 |
8130105 | Al-Ali et al. | Mar 2012 | B2 |
8145287 | Diab et al. | Mar 2012 | B2 |
8150487 | Diab et al. | Apr 2012 | B2 |
8170887 | Rosenfeld | May 2012 | B2 |
8175672 | Parker | May 2012 | B2 |
8175895 | Rosenfeld | May 2012 | B2 |
8180420 | Diab et al. | May 2012 | B2 |
8182443 | Kiani | May 2012 | B1 |
8185180 | Diab et al. | May 2012 | B2 |
8190223 | Al-Ali et al. | May 2012 | B2 |
8190227 | Diab et al. | May 2012 | B2 |
8203438 | Kiani et al. | Jun 2012 | B2 |
8203704 | Merritt et al. | Jun 2012 | B2 |
8204566 | Schurman et al. | Jun 2012 | B2 |
8219172 | Schurman et al. | Jul 2012 | B2 |
8224411 | Al-Ali et al. | Jul 2012 | B2 |
8228181 | Al-Ali | Jul 2012 | B2 |
8229533 | Diab et al. | Jul 2012 | B2 |
8233955 | Al-Ali et al. | Jul 2012 | B2 |
D665504 | Arimitsu | Aug 2012 | S |
8244325 | Al-Ali et al. | Aug 2012 | B2 |
8255026 | Al-Ali | Aug 2012 | B1 |
8255027 | Al-Ali et al. | Aug 2012 | B2 |
8255028 | Al-Ali et al. | Aug 2012 | B2 |
8260577 | Weber et al. | Sep 2012 | B2 |
8265723 | McHale et al. | Sep 2012 | B1 |
8274360 | Sampath et al. | Sep 2012 | B2 |
8301217 | Al-Ali et al. | Oct 2012 | B2 |
8306596 | Schurman et al. | Nov 2012 | B2 |
8310336 | Muhsin et al. | Nov 2012 | B2 |
8315683 | Al-Ali et al. | Nov 2012 | B2 |
RE43860 | Parker | Dec 2012 | E |
8326649 | Rosenfeld | Dec 2012 | B2 |
8337403 | Al-Ali et al. | Dec 2012 | B2 |
8346330 | Lamego | Jan 2013 | B2 |
8353842 | Al-Ali et al. | Jan 2013 | B2 |
8355766 | MacNeish, III et al. | Jan 2013 | B2 |
8358214 | Amigo | Jan 2013 | B2 |
8359080 | Diab et al. | Jan 2013 | B2 |
8364223 | Al-Ali et al. | Jan 2013 | B2 |
8364226 | Diab et al. | Jan 2013 | B2 |
D676136 | Arimitsu | Feb 2013 | S |
8374665 | Lamego | Feb 2013 | B2 |
8385995 | Al-ali et al. | Feb 2013 | B2 |
8385996 | Smith et al. | Feb 2013 | B2 |
8388353 | Kiani et al. | Mar 2013 | B2 |
8399822 | Al-Ali | Mar 2013 | B2 |
8401602 | Kiani | Mar 2013 | B2 |
8401874 | Rosenfeld | Mar 2013 | B2 |
8405608 | Al-Ali et al. | Mar 2013 | B2 |
8414499 | Al-Ali et al. | Apr 2013 | B2 |
8418524 | Al-Ali | Apr 2013 | B2 |
8423106 | Lamego et al. | Apr 2013 | B2 |
8428967 | Olsen et al. | Apr 2013 | B2 |
8430817 | Al-Ali et al. | Apr 2013 | B1 |
8437825 | Dalvi et al. | May 2013 | B2 |
8455290 | Siskavich | Jun 2013 | B2 |
8457703 | Al-Ali | Jun 2013 | B2 |
8457707 | Kiani | Jun 2013 | B2 |
8463349 | Diab et al. | Jun 2013 | B2 |
8466286 | Bellot et al. | Jun 2013 | B2 |
8471713 | Poeze et al. | Jun 2013 | B2 |
8473020 | Kiani et al. | Jun 2013 | B2 |
8483787 | Al-Ali et al. | Jul 2013 | B2 |
8489364 | Weber et al. | Jul 2013 | B2 |
8498684 | Weber et al. | Jul 2013 | B2 |
8504128 | Blank et al. | Aug 2013 | B2 |
8509867 | Workman et al. | Aug 2013 | B2 |
8515509 | Bruinsma et al. | Aug 2013 | B2 |
8523781 | Al-Ali | Sep 2013 | B2 |
8529301 | Al-Ali et al. | Sep 2013 | B2 |
8532727 | Ali et al. | Sep 2013 | B2 |
8532728 | Diab et al. | Sep 2013 | B2 |
D692145 | Al-Ali et al. | Oct 2013 | S |
8547209 | Kiani et al. | Oct 2013 | B2 |
8548548 | Al-Ali | Oct 2013 | B2 |
8548549 | Schurman et al. | Oct 2013 | B2 |
8548550 | Al-Ali et al. | Oct 2013 | B2 |
8560032 | Al-Ali et al. | Oct 2013 | B2 |
8560034 | Diab et al. | Oct 2013 | B1 |
8570167 | Al-Ali | Oct 2013 | B2 |
8570503 | Vo et al. | Oct 2013 | B2 |
8571617 | Reichgott et al. | Oct 2013 | B2 |
8571618 | Lamego et al. | Oct 2013 | B1 |
8571619 | Al-Ali et al. | Oct 2013 | B2 |
8577431 | Lamego et al. | Nov 2013 | B2 |
8581732 | Al-Ali et al. | Nov 2013 | B2 |
8584345 | Al-Ali et al. | Nov 2013 | B2 |
8588880 | Abdul-Hafiz et al. | Nov 2013 | B2 |
8600467 | Al-Ali et al. | Dec 2013 | B2 |
8600777 | Schoenberg | Dec 2013 | B2 |
8606342 | Diab | Dec 2013 | B2 |
8620678 | Gotlib | Dec 2013 | B2 |
8626255 | Al-Ali et al. | Jan 2014 | B2 |
8630691 | Lamego et al. | Jan 2014 | B2 |
8634889 | Al-Ali et al. | Jan 2014 | B2 |
8641631 | Sierra et al. | Feb 2014 | B2 |
8652060 | Al-Ali | Feb 2014 | B2 |
8663107 | Kiani | Mar 2014 | B2 |
8666468 | Al-Ali | Mar 2014 | B1 |
8667967 | Al-Ali et al. | Mar 2014 | B2 |
8670811 | O'Reilly | Mar 2014 | B2 |
8670814 | Diab et al. | Mar 2014 | B2 |
8676286 | Weber et al. | Mar 2014 | B2 |
8682407 | Al-Ali | Mar 2014 | B2 |
RE44823 | Parker | Apr 2014 | E |
RE44875 | Kiani et al. | Apr 2014 | E |
8690799 | Telfort et al. | Apr 2014 | B2 |
8700112 | Kiani | Apr 2014 | B2 |
8702627 | Telfort et al. | Apr 2014 | B2 |
8706179 | Parker | Apr 2014 | B2 |
8712494 | MacNeish, III et al. | Apr 2014 | B1 |
8715206 | Telfort et al. | May 2014 | B2 |
8718735 | Lamego et al. | May 2014 | B2 |
8718737 | Diab et al. | May 2014 | B2 |
8718738 | Blank et al. | May 2014 | B2 |
8720249 | Al-Ali | May 2014 | B2 |
8721541 | Al-Ali et al. | May 2014 | B2 |
8721542 | Al-Ali et al. | May 2014 | B2 |
8723677 | Kiani | May 2014 | B1 |
8740792 | Kiani et al. | Jun 2014 | B1 |
8754776 | Poeze et al. | Jun 2014 | B2 |
8755535 | Telfort et al. | Jun 2014 | B2 |
8755856 | Diab et al. | Jun 2014 | B2 |
8755872 | Marinow | Jun 2014 | B1 |
8761850 | Lamego | Jun 2014 | B2 |
8764671 | Kiani | Jul 2014 | B2 |
8768423 | Shakespeare et al. | Jul 2014 | B2 |
8771204 | Telfort et al. | Jul 2014 | B2 |
8777634 | Kiani et al. | Jul 2014 | B2 |
8781543 | Diab et al. | Jul 2014 | B2 |
8781544 | Al-Ali et al. | Jul 2014 | B2 |
8781549 | Al-Ali et al. | Jul 2014 | B2 |
8788003 | Schurman et al. | Jul 2014 | B2 |
8790268 | Al-Ali | Jul 2014 | B2 |
8801613 | Al-Ali et al. | Aug 2014 | B2 |
8821397 | Al-Ali et al. | Sep 2014 | B2 |
8821415 | Al-Ali et al. | Sep 2014 | B2 |
8830449 | Lamego et al. | Sep 2014 | B1 |
8831700 | Schurman et al. | Sep 2014 | B2 |
8840549 | Al-Ali et al. | Sep 2014 | B2 |
8847740 | Kiani et al. | Sep 2014 | B2 |
8849365 | Smith et al. | Sep 2014 | B2 |
8852094 | Al-Ali et al. | Oct 2014 | B2 |
8852994 | Wojtczuk et al. | Oct 2014 | B2 |
8868147 | Stippick et al. | Oct 2014 | B2 |
8868150 | Al-Ali et al. | Oct 2014 | B2 |
8870792 | Al-Ali et al. | Oct 2014 | B2 |
8878888 | Rosenfeld | Nov 2014 | B2 |
8886271 | Kiani et al. | Nov 2014 | B2 |
8888539 | Al-Ali et al. | Nov 2014 | B2 |
8888708 | Diab et al. | Nov 2014 | B2 |
8892180 | Weber et al. | Nov 2014 | B2 |
8897847 | Al-Ali | Nov 2014 | B2 |
8909310 | Lamego et al. | Dec 2014 | B2 |
8911377 | Al-Ali | Dec 2014 | B2 |
8912909 | Al-Ali et al. | Dec 2014 | B2 |
8920317 | Al-Ali et al. | Dec 2014 | B2 |
8921699 | Al-Ali et al. | Dec 2014 | B2 |
8922382 | Al-Ali et al. | Dec 2014 | B2 |
8929964 | Al-Ali et al. | Jan 2015 | B2 |
8942777 | Diab et al. | Jan 2015 | B2 |
8948834 | Diab et al. | Feb 2015 | B2 |
8948835 | Diab | Feb 2015 | B2 |
8965471 | Lamego | Feb 2015 | B2 |
8983564 | Al-Ali | Mar 2015 | B2 |
8989831 | Al-Ali et al. | Mar 2015 | B2 |
8996085 | Kiani et al. | Mar 2015 | B2 |
8998809 | Kiani | Apr 2015 | B2 |
9028429 | Telfort et al. | May 2015 | B2 |
9037207 | Al-Ali et al. | May 2015 | B2 |
9060721 | Reichgott et al. | Jun 2015 | B2 |
9066666 | Kiani | Jun 2015 | B2 |
9066680 | Al-Ali et al. | Jun 2015 | B1 |
9072474 | Al-Ali et al. | Jul 2015 | B2 |
9078560 | Schurman et al. | Jul 2015 | B2 |
9084569 | Weber et al. | Jul 2015 | B2 |
9095316 | Welch et al. | Aug 2015 | B2 |
9106038 | Telfort et al. | Aug 2015 | B2 |
9107625 | Telfort et al. | Aug 2015 | B2 |
9107626 | Al-Ali et al. | Aug 2015 | B2 |
9113831 | Al-Ali | Aug 2015 | B2 |
9113832 | Al-Ali | Aug 2015 | B2 |
9119595 | Lamego | Sep 2015 | B2 |
9131881 | Diab et al. | Sep 2015 | B2 |
9131882 | Al-Ali et al. | Sep 2015 | B2 |
9131883 | Al-Ali | Sep 2015 | B2 |
9131917 | Telfort et al. | Sep 2015 | B2 |
9138180 | Coverston et al. | Sep 2015 | B1 |
9138182 | Al-Ali et al. | Sep 2015 | B2 |
9138192 | Weber et al. | Sep 2015 | B2 |
9142117 | Muhsin et al. | Sep 2015 | B2 |
9153112 | Kiani et al. | Oct 2015 | B1 |
9153121 | Kiani et al. | Oct 2015 | B2 |
9161696 | Al-Ali et al. | Oct 2015 | B2 |
9161713 | Al-Ali et al. | Oct 2015 | B2 |
9167995 | Lamego et al. | Oct 2015 | B2 |
9176141 | Al-Ali et al. | Nov 2015 | B2 |
9186102 | Bruinsma et al. | Nov 2015 | B2 |
9192312 | Al-Ali | Nov 2015 | B2 |
9192329 | Al-Ali | Nov 2015 | B2 |
9192351 | Telfort et al. | Nov 2015 | B1 |
9195385 | Al-Ali et al. | Nov 2015 | B2 |
9211072 | Kiani | Dec 2015 | B2 |
9211095 | Al-Ali | Dec 2015 | B1 |
9218454 | Kiani et al. | Dec 2015 | B2 |
9226696 | Kiani | Jan 2016 | B2 |
9241662 | Al-Ali et al. | Jan 2016 | B2 |
9245668 | Vo et al. | Jan 2016 | B1 |
9259185 | Abdul-Hafiz et al. | Feb 2016 | B2 |
9267572 | Barker et al. | Feb 2016 | B2 |
9277880 | Poeze et al. | Mar 2016 | B2 |
9289167 | Diab et al. | Mar 2016 | B2 |
9295421 | Kiani et al. | Mar 2016 | B2 |
9307928 | Al-Ali et al. | Apr 2016 | B1 |
9323894 | Kiani | Apr 2016 | B2 |
D755392 | Hwang et al. | May 2016 | S |
9326712 | Kiani | May 2016 | B1 |
9333316 | Kiani | May 2016 | B2 |
9339220 | Lamego et al. | May 2016 | B2 |
9341565 | Lamego et al. | May 2016 | B2 |
9351673 | Diab et al. | May 2016 | B2 |
9351675 | Al-Ali et al. | May 2016 | B2 |
9364181 | Kiani et al. | Jun 2016 | B2 |
9368671 | Wojtczuk et al. | Jun 2016 | B2 |
9370325 | Al-Ali et al. | Jun 2016 | B2 |
9370326 | McHale et al. | Jun 2016 | B2 |
9370335 | Al-Ali et al. | Jun 2016 | B2 |
9375185 | Ali et al. | Jun 2016 | B2 |
9386953 | Al-Ali | Jul 2016 | B2 |
9386961 | Al-Ali et al. | Jul 2016 | B2 |
9392945 | Al-Ali et al. | Jul 2016 | B2 |
9397448 | Al-Ali et al. | Jul 2016 | B2 |
9408542 | Kinast et al. | Aug 2016 | B1 |
9436645 | Al-Ali et al. | Sep 2016 | B2 |
9445759 | Lamego et al. | Sep 2016 | B1 |
9466919 | Kiani et al. | Oct 2016 | B2 |
9474474 | Lamego et al. | Oct 2016 | B2 |
9480422 | Al-Ali | Nov 2016 | B2 |
9480435 | Olsen | Nov 2016 | B2 |
9492110 | Al-Ali et al. | Nov 2016 | B2 |
9510779 | Poeze et al. | Dec 2016 | B2 |
9517024 | Kiani et al. | Dec 2016 | B2 |
9532722 | Lamego et al. | Jan 2017 | B2 |
9538949 | Al-Ali et al. | Jan 2017 | B2 |
9538980 | Telfort et al. | Jan 2017 | B2 |
9549696 | Lamego et al. | Jan 2017 | B2 |
9554737 | Schurman et al. | Jan 2017 | B2 |
9560996 | Kiani | Feb 2017 | B2 |
9560998 | Al-Ali et al. | Feb 2017 | B2 |
9566019 | Al-Ali et al. | Feb 2017 | B2 |
9579039 | Jansen et al. | Feb 2017 | B2 |
9591975 | Dalvi et al. | Mar 2017 | B2 |
9622692 | Lamego et al. | Apr 2017 | B2 |
9622693 | Diab | Apr 2017 | B2 |
D788312 | Al-Ali et al. | May 2017 | S |
9636055 | Al-Ali et al. | May 2017 | B2 |
9636056 | Al-Ali | May 2017 | B2 |
9649054 | Lamego et al. | May 2017 | B2 |
9662052 | Al-Ali et al. | May 2017 | B2 |
9668679 | Schurman et al. | Jun 2017 | B2 |
9668680 | Bruinsma et al. | Jun 2017 | B2 |
9668703 | Al-Ali | Jun 2017 | B2 |
9675286 | Diab | Jun 2017 | B2 |
9687160 | Kiani | Jun 2017 | B2 |
9693719 | Al-Ali et al. | Jul 2017 | B2 |
9693737 | Al-Ali | Jul 2017 | B2 |
9697928 | Al-Ali et al. | Jul 2017 | B2 |
9717425 | Kiani et al. | Aug 2017 | B2 |
9717458 | Lamego et al. | Aug 2017 | B2 |
9724016 | Al-Ali et al. | Aug 2017 | B1 |
9724024 | Al-Ali | Aug 2017 | B2 |
9724025 | Kiani et al. | Aug 2017 | B1 |
9730640 | Diab et al. | Aug 2017 | B2 |
9743887 | Al-Ali et al. | Aug 2017 | B2 |
9749232 | Sampath et al. | Aug 2017 | B2 |
9750442 | Olsen | Sep 2017 | B2 |
9750443 | Smith et al. | Sep 2017 | B2 |
9750461 | Telfort | Sep 2017 | B1 |
9775545 | Al-Ali et al. | Oct 2017 | B2 |
9775546 | Diab et al. | Oct 2017 | B2 |
9775570 | Al-Ali | Oct 2017 | B2 |
9778079 | Al-Ali et al. | Oct 2017 | B1 |
9782077 | Lamego et al. | Oct 2017 | B2 |
9782110 | Kiani | Oct 2017 | B2 |
9787568 | Lamego et al. | Oct 2017 | B2 |
9788735 | Al-Ali | Oct 2017 | B2 |
9788768 | Al-Ali et al. | Oct 2017 | B2 |
9795300 | Al-Ali | Oct 2017 | B2 |
9795310 | Al-Ali | Oct 2017 | B2 |
9795358 | Telfort et al. | Oct 2017 | B2 |
9795739 | Al-Ali et al. | Oct 2017 | B2 |
9801556 | Kiani | Oct 2017 | B2 |
9801588 | Weber et al. | Oct 2017 | B2 |
9808188 | Perea et al. | Nov 2017 | B1 |
9814418 | Weber et al. | Nov 2017 | B2 |
9820691 | Kiani | Nov 2017 | B2 |
9833152 | Kiani et al. | Dec 2017 | B2 |
9833180 | Shakespeare et al. | Dec 2017 | B2 |
9839379 | Al-Ali et al. | Dec 2017 | B2 |
9839381 | Weber et al. | Dec 2017 | B1 |
9847002 | Kiani et al. | Dec 2017 | B2 |
9847749 | Kiani et al. | Dec 2017 | B2 |
9848800 | Lee et al. | Dec 2017 | B1 |
9848806 | Al-Ali et al. | Dec 2017 | B2 |
9848807 | Lamego | Dec 2017 | B2 |
9861298 | Eckerbom et al. | Jan 2018 | B2 |
9861304 | Al-Ali et al. | Jan 2018 | B2 |
9861305 | Weber et al. | Jan 2018 | B1 |
20010040512 | Hines et al. | Nov 2001 | A1 |
20010046366 | Susskind | Nov 2001 | A1 |
20020013518 | West et al. | Jan 2002 | A1 |
20020042723 | Rice et al. | Apr 2002 | A1 |
20020097277 | Pitroda | Jul 2002 | A1 |
20020167699 | Verplaetse et al. | Nov 2002 | A1 |
20020177758 | Schoenberg | Nov 2002 | A1 |
20020198473 | Kumar et al. | Dec 2002 | A1 |
20030002653 | Uckun | Jan 2003 | A1 |
20030052787 | Zerhusen et al. | Mar 2003 | A1 |
20030058838 | Wengrovitz | Mar 2003 | A1 |
20040001101 | Trajkovic et al. | Jan 2004 | A1 |
20040002637 | Huang et al. | Jan 2004 | A1 |
20040102683 | Khanuja et al. | May 2004 | A1 |
20040127774 | Moore et al. | Jul 2004 | A1 |
20040133087 | Ali et al. | Jul 2004 | A1 |
20040143677 | Novak | Jul 2004 | A1 |
20040148308 | Rajan et al. | Jul 2004 | A1 |
20040167804 | Simpson et al. | Aug 2004 | A1 |
20040172222 | Simpson et al. | Sep 2004 | A1 |
20040172301 | Mihai et al. | Sep 2004 | A1 |
20040203895 | Balasuriya | Oct 2004 | A1 |
20050004953 | Kurase | Jan 2005 | A1 |
20050055242 | Bello et al. | Mar 2005 | A1 |
20050065851 | Aronoff et al. | Mar 2005 | A1 |
20050125256 | Schoenberg | Jun 2005 | A1 |
20050165519 | Ariyur et al. | Jul 2005 | A1 |
20050179536 | Lederer | Aug 2005 | A1 |
20050206518 | Welch et al. | Sep 2005 | A1 |
20050231374 | Diem et al. | Oct 2005 | A1 |
20050232421 | Simons et al. | Oct 2005 | A1 |
20050251792 | Smith | Nov 2005 | A1 |
20050267655 | Gessner | Dec 2005 | A1 |
20060004745 | Kuhn et al. | Jan 2006 | A1 |
20060047682 | Black et al. | Mar 2006 | A1 |
20060080140 | Buttner et al. | Apr 2006 | A1 |
20060129713 | Xie | Jun 2006 | A1 |
20060135858 | Nidd et al. | Jun 2006 | A1 |
20060149597 | Powell et al. | Jul 2006 | A1 |
20060161054 | Reuss et al. | Jul 2006 | A1 |
20060224326 | St. Ores et al. | Oct 2006 | A1 |
20060237427 | Logan | Oct 2006 | A1 |
20060238333 | Welch et al. | Oct 2006 | A1 |
20060253042 | Stahmann et al. | Nov 2006 | A1 |
20060253301 | Simms et al. | Nov 2006 | A1 |
20060288095 | Torok et al. | Dec 2006 | A1 |
20060293571 | Bao et al. | Dec 2006 | A1 |
20070073555 | Buist | Mar 2007 | A1 |
20070075965 | Huppi et al. | Apr 2007 | A1 |
20070109098 | Siemon et al. | May 2007 | A1 |
20070180140 | Welch et al. | Aug 2007 | A1 |
20070213599 | Siejko et al. | Sep 2007 | A1 |
20070239377 | Reiner | Oct 2007 | A1 |
20070245158 | Giobbi et al. | Oct 2007 | A1 |
20070266389 | Ganguly et al. | Nov 2007 | A1 |
20070273504 | Tran | Nov 2007 | A1 |
20070279211 | Fenske et al. | Dec 2007 | A1 |
20070282478 | Al-Ali et al. | Dec 2007 | A1 |
20080004499 | Davis | Jan 2008 | A1 |
20080059556 | Greenspan et al. | Mar 2008 | A1 |
20080088414 | Suga et al. | Apr 2008 | A1 |
20080157980 | Sachanandani et al. | Jul 2008 | A1 |
20080174551 | Ishibashi | Jul 2008 | A1 |
20080194918 | Kulik et al. | Aug 2008 | A1 |
20080248781 | Cedo Perpinya | Oct 2008 | A1 |
20090051545 | Koblaz | Feb 2009 | A1 |
20090091458 | Deutsch | Apr 2009 | A1 |
20090119330 | Sampath et al. | May 2009 | A1 |
20090160541 | Liu et al. | Jun 2009 | A1 |
20090184823 | Tessier | Jul 2009 | A1 |
20090224907 | Sinha et al. | Sep 2009 | A1 |
20090247984 | Lamego et al. | Oct 2009 | A1 |
20090275813 | Davis | Nov 2009 | A1 |
20090275844 | Al-Ali | Nov 2009 | A1 |
20090299157 | Telfort et al. | Dec 2009 | A1 |
20100004518 | Vo et al. | Jan 2010 | A1 |
20100030040 | Poeze et al. | Feb 2010 | A1 |
20100069725 | Al-Ali | Mar 2010 | A1 |
20100234718 | Sampath et al. | Sep 2010 | A1 |
20100235782 | Powell et al. | Sep 2010 | A1 |
20100261979 | Kiani | Oct 2010 | A1 |
20100274100 | Behar et al. | Oct 2010 | A1 |
20100286488 | Cohen | Nov 2010 | A1 |
20100317936 | Al-Ali et al. | Dec 2010 | A1 |
20110001605 | Kiani et al. | Jan 2011 | A1 |
20110082711 | Poeze et al. | Apr 2011 | A1 |
20110105854 | Kiani et al. | May 2011 | A1 |
20110125060 | Telfort et al. | May 2011 | A1 |
20110172967 | Al-Ali et al. | Jul 2011 | A1 |
20110208015 | Welch et al. | Aug 2011 | A1 |
20110209915 | Telfort et al. | Sep 2011 | A1 |
20110213212 | Al-Ali | Sep 2011 | A1 |
20110230733 | Al-Ali | Sep 2011 | A1 |
20110237911 | Lamego et al. | Sep 2011 | A1 |
20120059267 | Lamego et al. | Mar 2012 | A1 |
20120116175 | Al-Ali et al. | May 2012 | A1 |
20120165629 | Merritt et al. | Jun 2012 | A1 |
20120179006 | Jansen et al. | Jul 2012 | A1 |
20120209082 | Al-Ali | Aug 2012 | A1 |
20120209084 | Olsen et al. | Aug 2012 | A1 |
20120227739 | Kiani | Sep 2012 | A1 |
20120265039 | Kiani | Oct 2012 | A1 |
20120283524 | Kiani et al. | Nov 2012 | A1 |
20120284053 | Rosenfeld | Nov 2012 | A1 |
20120286955 | Welch et al. | Nov 2012 | A1 |
20120296178 | Lamego et al. | Nov 2012 | A1 |
20120302894 | Diab et al. | Nov 2012 | A1 |
20120319816 | Al-Ali | Dec 2012 | A1 |
20120330112 | Lamego et al. | Dec 2012 | A1 |
20130023775 | Lamego et al. | Jan 2013 | A1 |
20130041591 | Lamego | Feb 2013 | A1 |
20130045685 | Kiani | Feb 2013 | A1 |
20130046204 | Lamego et al. | Feb 2013 | A1 |
20130060108 | Schurman et al. | Mar 2013 | A1 |
20130060147 | Welch et al. | Mar 2013 | A1 |
20130079610 | Al-Ali | Mar 2013 | A1 |
20130096405 | Garfio | Apr 2013 | A1 |
20130096936 | Sampath et al. | Apr 2013 | A1 |
20130109935 | Al-Ali et al. | May 2013 | A1 |
20130120142 | Wildman et al. | May 2013 | A1 |
20130162433 | Muhsin et al. | Jun 2013 | A1 |
20130178749 | Lamego | Jul 2013 | A1 |
20130190581 | Al-Ali et al. | Jul 2013 | A1 |
20130197328 | Diab et al. | Aug 2013 | A1 |
20130211214 | Olsen | Aug 2013 | A1 |
20130243021 | Siskavich | Sep 2013 | A1 |
20130253334 | Al-Ali et al. | Sep 2013 | A1 |
20130274571 | Diab et al. | Oct 2013 | A1 |
20130296672 | O'Neil et al. | Nov 2013 | A1 |
20130296713 | Al-Ali et al. | Nov 2013 | A1 |
20130317327 | Al-Ali et al. | Nov 2013 | A1 |
20130317370 | Dalvi et al. | Nov 2013 | A1 |
20130324808 | Al-Ali et al. | Dec 2013 | A1 |
20130324817 | Diab | Dec 2013 | A1 |
20130331660 | Al-Ali et al. | Dec 2013 | A1 |
20130331670 | Kiani | Dec 2013 | A1 |
20130338461 | Lamego et al. | Dec 2013 | A1 |
20140012100 | Al-Ali et al. | Jan 2014 | A1 |
20140025306 | Weber et al. | Jan 2014 | A1 |
20140031650 | Weber et al. | Jan 2014 | A1 |
20140034353 | Al-Ali et al. | Feb 2014 | A1 |
20140046674 | Rosenfeld | Feb 2014 | A1 |
20140051952 | Reichgott et al. | Feb 2014 | A1 |
20140051953 | Lamego et al. | Feb 2014 | A1 |
20140051954 | Al-Ali et al. | Feb 2014 | A1 |
20140058230 | Abdul-Hafiz et al. | Feb 2014 | A1 |
20140066783 | Kiani et al. | Mar 2014 | A1 |
20140073167 | Al-Ali et al. | Mar 2014 | A1 |
20140077956 | Sampath et al. | Mar 2014 | A1 |
20140081097 | Al-Ali et al. | Mar 2014 | A1 |
20140081100 | Muhsin et al. | Mar 2014 | A1 |
20140081175 | Telfort | Mar 2014 | A1 |
20140094667 | Schurman et al. | Apr 2014 | A1 |
20140100434 | Diab et al. | Apr 2014 | A1 |
20140114199 | Lamego et al. | Apr 2014 | A1 |
20140120564 | Workman et al. | May 2014 | A1 |
20140121482 | Merritt et al. | May 2014 | A1 |
20140121483 | Kiani | May 2014 | A1 |
20140125495 | Al-Ali | May 2014 | A1 |
20140127137 | Bellott et al. | May 2014 | A1 |
20140128696 | Al-Ali | May 2014 | A1 |
20140128699 | Al-Ali et al. | May 2014 | A1 |
20140129702 | Lamego et al. | May 2014 | A1 |
20140135588 | Al-Ali et al. | May 2014 | A1 |
20140142399 | Al-Ali et al. | May 2014 | A1 |
20140142401 | Al-Ali et al. | May 2014 | A1 |
20140142402 | Al-Ali et al. | May 2014 | A1 |
20140155712 | Lamego et al. | Jun 2014 | A1 |
20140163344 | Al-Ali | Jun 2014 | A1 |
20140163402 | Lamego et al. | Jun 2014 | A1 |
20140166076 | Kiani et al. | Jun 2014 | A1 |
20140171763 | Diab | Jun 2014 | A1 |
20140180038 | Kiani | Jun 2014 | A1 |
20140180154 | Sierra et al. | Jun 2014 | A1 |
20140180160 | Brown et al. | Jun 2014 | A1 |
20140187973 | Brown et al. | Jul 2014 | A1 |
20140194709 | Al-Ali et al. | Jul 2014 | A1 |
20140194711 | Al-Ali | Jul 2014 | A1 |
20140194766 | Al-Ali et al. | Jul 2014 | A1 |
20140200420 | Al-Ali | Jul 2014 | A1 |
20140200422 | Weber et al. | Jul 2014 | A1 |
20140206963 | Al-Ali | Jul 2014 | A1 |
20140213864 | Abdul-Hafiz et al. | Jul 2014 | A1 |
20140243627 | Diab et al. | Aug 2014 | A1 |
20140266790 | Al-Ali et al. | Sep 2014 | A1 |
20140275808 | Poeze et al. | Sep 2014 | A1 |
20140275835 | Lamego et al. | Sep 2014 | A1 |
20140275871 | Lamego et al. | Sep 2014 | A1 |
20140275872 | Merritt et al. | Sep 2014 | A1 |
20140275881 | Lamego et al. | Sep 2014 | A1 |
20140276115 | Dalvi et al. | Sep 2014 | A1 |
20140288400 | Diab et al. | Sep 2014 | A1 |
20140296664 | Bruinsma et al. | Oct 2014 | A1 |
20140303520 | Telfort et al. | Oct 2014 | A1 |
20140309506 | Lamego et al. | Oct 2014 | A1 |
20140309559 | Telfort et al. | Oct 2014 | A1 |
20140316217 | Purdon et al. | Oct 2014 | A1 |
20140316218 | Purdon et al. | Oct 2014 | A1 |
20140316228 | Blank et al. | Oct 2014 | A1 |
20140323825 | Al-Ali et al. | Oct 2014 | A1 |
20140323897 | Brown et al. | Oct 2014 | A1 |
20140323898 | Purdon et al. | Oct 2014 | A1 |
20140330092 | Al-Ali et al. | Nov 2014 | A1 |
20140330098 | Merrit et al. | Nov 2014 | A1 |
20140330099 | Al-Ali et al. | Nov 2014 | A1 |
20140333440 | Kiani | Nov 2014 | A1 |
20140336481 | Shakespeare et al. | Nov 2014 | A1 |
20140343436 | Al-Ali | Nov 2014 | A1 |
20140357966 | Al-Ali et al. | Dec 2014 | A1 |
20150005600 | Blank et al. | Jan 2015 | A1 |
20150011907 | Purdon et al. | Jan 2015 | A1 |
20150012231 | Poeze et al. | Jan 2015 | A1 |
20150032029 | Al-Ali et al. | Jan 2015 | A1 |
20150038859 | Dalvi et al. | Feb 2015 | A1 |
20150045637 | Dalvi | Feb 2015 | A1 |
20150080754 | Purdon et al. | Mar 2015 | A1 |
20150087936 | Al-Ali et al. | Mar 2015 | A1 |
20150094546 | Al-Ali | Apr 2015 | A1 |
20150097701 | Al-Ali et al. | Apr 2015 | A1 |
20150099950 | Al-Ali et al. | Apr 2015 | A1 |
20150099955 | Al-Ali et al. | Apr 2015 | A1 |
20150101844 | Al-Ali et al. | Apr 2015 | A1 |
20150106121 | Muhsin et al. | Apr 2015 | A1 |
20150112151 | Muhsin et al. | Apr 2015 | A1 |
20150116076 | Al-Ali et al. | Apr 2015 | A1 |
20150126830 | Schurman et al. | May 2015 | A1 |
20150165312 | Kiani | Jun 2015 | A1 |
20150196249 | Brown et al. | Jul 2015 | A1 |
20150216459 | Al-Ali et al. | Aug 2015 | A1 |
20150230755 | Al-Ali et al. | Aug 2015 | A1 |
20150238722 | Al-Ali | Aug 2015 | A1 |
20150245773 | Lamego et al. | Sep 2015 | A1 |
20150245794 | Al-Ali | Sep 2015 | A1 |
20150257689 | Al-Ali et al. | Sep 2015 | A1 |
20150272514 | Kiani et al. | Oct 2015 | A1 |
20150351697 | Weber et al. | Dec 2015 | A1 |
20150359429 | Al-Ali et al. | Dec 2015 | A1 |
20150366507 | Blank | Dec 2015 | A1 |
20150380875 | Coverston et al. | Dec 2015 | A1 |
20160029932 | Al-Ali | Feb 2016 | A1 |
20160051205 | Al-Ali et al. | Feb 2016 | A1 |
20160058347 | Reichgott et al. | Mar 2016 | A1 |
20160066824 | Al-Ali et al. | Mar 2016 | A1 |
20160081552 | Wojtczuk et al. | Mar 2016 | A1 |
20160095543 | Telfort et al. | Apr 2016 | A1 |
20160095548 | Al-Ali et al. | Apr 2016 | A1 |
20160103598 | Al-Ali et al. | Apr 2016 | A1 |
20160143548 | Al-Ali | May 2016 | A1 |
20160166182 | Al-Ali et al. | Jun 2016 | A1 |
20160166183 | Poeze et al. | Jun 2016 | A1 |
20160192869 | Kiani et al. | Jul 2016 | A1 |
20160196388 | Lamego | Jul 2016 | A1 |
20160197436 | Barker et al. | Jul 2016 | A1 |
20160213281 | Eckerbom et al. | Jul 2016 | A1 |
20160228043 | O'Neil et al. | Aug 2016 | A1 |
20160233632 | Scruggs et al. | Aug 2016 | A1 |
20160234944 | Schmidt et al. | Aug 2016 | A1 |
20160270735 | Diab et al. | Sep 2016 | A1 |
20160283665 | Sampath et al. | Sep 2016 | A1 |
20160287090 | Al-Ali et al. | Oct 2016 | A1 |
20160287786 | Kiani | Oct 2016 | A1 |
20160296169 | McHale et al. | Oct 2016 | A1 |
20160310052 | Al-Ali et al. | Oct 2016 | A1 |
20160314260 | Kiani | Oct 2016 | A1 |
20160324486 | Al-Ali et al. | Nov 2016 | A1 |
20160324488 | Olsen | Nov 2016 | A1 |
20160327984 | Al-Ali et al. | Nov 2016 | A1 |
20160328528 | Al-Ali et al. | Nov 2016 | A1 |
20160331332 | Al-Ali | Nov 2016 | A1 |
20160367173 | Dalvi et al. | Dec 2016 | A1 |
20170000394 | Al-Ali et al. | Jan 2017 | A1 |
20170007134 | Al-Ali et al. | Jan 2017 | A1 |
20170007190 | Al-Ali et al. | Jan 2017 | A1 |
20170007198 | Al-Ali et al. | Jan 2017 | A1 |
20170014083 | Diab et al. | Jan 2017 | A1 |
20170014084 | Al-Ali et al. | Jan 2017 | A1 |
20170027456 | Kinast et al. | Feb 2017 | A1 |
20170042488 | Muhsin | Feb 2017 | A1 |
20170055851 | Al-Ali | Mar 2017 | A1 |
20170055882 | Al-Ali et al. | Mar 2017 | A1 |
20170055887 | Al-Ali | Mar 2017 | A1 |
20170055896 | Al-Ali et al. | Mar 2017 | A1 |
20170079594 | Telfort et al. | Mar 2017 | A1 |
20170086723 | Al-Ali et al. | Mar 2017 | A1 |
20170143281 | Olsen | May 2017 | A1 |
20170147774 | Kiani | May 2017 | A1 |
20170156620 | Al-Ali et al. | Jun 2017 | A1 |
20170173632 | Al-Ali | Jun 2017 | A1 |
20170187146 | Kiani et al. | Jun 2017 | A1 |
20170188919 | Al-Ali et al. | Jul 2017 | A1 |
20170196464 | Jansen et al. | Jul 2017 | A1 |
20170196470 | Lamego et al. | Jul 2017 | A1 |
20170202490 | Al-Ali et al. | Jul 2017 | A1 |
20170224231 | Al-Ali | Aug 2017 | A1 |
20170224262 | Al-Ali | Aug 2017 | A1 |
20170228516 | Sampath et al. | Aug 2017 | A1 |
20170245790 | Al-Ali et al. | Aug 2017 | A1 |
20170251974 | Shreim et al. | Sep 2017 | A1 |
20170251975 | Shreim et al. | Sep 2017 | A1 |
20170258403 | Abdul-Hafiz et al. | Sep 2017 | A1 |
20170311891 | Kiani et al. | Nov 2017 | A1 |
20170325728 | Al-Ali et al. | Nov 2017 | A1 |
20170332976 | Al-Ali et al. | Nov 2017 | A1 |
20170340293 | Al-Ali et al. | Nov 2017 | A1 |
20170360310 | Kiani et al. | Dec 2017 | A1 |
20170367632 | Al-Ali et al. | Dec 2017 | A1 |
Number | Date | Country |
---|---|---|
2674654 | Oct 2009 | CA |
1443480 | Aug 2004 | EP |
1576925 | Sep 2005 | EP |
2001-299707 | Oct 2001 | JP |
2005-514078 | May 2005 | JP |
2008-541976 | Nov 2008 | JP |
2009-151473 | Jul 2009 | JP |
2015-198941 | Nov 2015 | JP |
2017-200587 | Nov 2017 | JP |
WO 9829790 | Jul 1998 | WO |
WO 9913766 | Mar 1999 | WO |
WO 0040143 | Jul 2000 | WO |
WO 2002067122 | Aug 2002 | WO |
WO 02093312 | Nov 2002 | WO |
WO 2007065015 | Jun 2007 | WO |
WO 2009049254 | Apr 2009 | WO |
WO 2010102069 | Sep 2010 | WO |
Entry |
---|
US 8,845,543, 09/2014, Diab et al. (withdrawn) |
Capuano et at. “Remote Telemetry—New Twists for Old Technology.” Nursing Management. vol. 26, No. 7. Jul. 1995. |
Decision to Refuse European Patent Application issued in European Application No. 08837990.4 dated Apr. 10, 2012, European Application No. 08837990.4 shares the same specification as the present application. |
Decision of Rejection dated Nov. 26, 2014 in corresponding Japanese Application No. 2011553097. |
Decision to Grant dated Apr. 14, 2015 in corresponding Japanese Application No. 2011-553097, 3 pgs. |
DeVita, Michael A., MD, “Medical Emergency Teams: A Vision of the Future,” Critical Connections, Feb. 2005, pp. 12-13. |
Emergin “General Overview,” http://www.emergin.com/technology/default.html, downloaded and printed from the Internet on Dec. 1, 2006 in 2 pages. |
European Office Action for EP application No. 08837990.4 dated Dec. 27, 2010. |
Grundy et al. “Telemedicine in Critical Care: An Experiment in Health Care Delivery.” Oct. 1977. |
Grundy et al. “Telemedicine in Critical Care: Problems in design, implementation and assessment.” vol. 10, No. 7. Jul. 1982. |
International Preliminary Report on Patentability in corresponding PCT Application No. PCT/US2010/026131 dated Sep. 6, 2011. |
International Search Report and Written Opinion dated Dec. 17, 2007 regarding PCT/US2006/046295. |
International Search Report and Written Opinion dated Apr. 1, 2009 regarding PCT/US2008/079643. |
International Search Report for application No. PCT/US2008/079643 dated Jan. 11, 2010. |
Lopez-Casado C. et al., “Network architecture for global biomedical monitoring service”, Engineering in Medicine and Biology Society, Sep. 2005, p. 2433-2436, Annual International Conference of the Shanghai, China Sep. 1-4, 2005, Piscataway, NJ, USA. |
Kang, Ho Hyun et al., “Wired/Wireless Integrated Medical Information Prototype System Using Web Service,” Enterprise Networking and Computing in Healthcare Industry, 2005, Healthcom 2005, Proceedings of 7th International Workshop on Busan, South Korea , Jun. 23-25, 2005, Piscataway, NJ, USA, pp. 41-44. ISBN: 0/7803-8940-9. |
Lubrin E. et al., “An Architecture for Wearable, Wireless, Smart Biosensors: The MoteCare Prototype”, Networking, International Conference on Systems and International Conference on Mobile Communications and Learning Technologies, 2006, in 6 pages. |
Lubrin E. et al., “Motecare: An Adaptive Smart BAN Health Monitoring System”, Proceedings of the 4th lasted International Conference on Biomedical Engineering, Feb. 15, 2006, pp. 60-67. |
Oetiker T., “MRTG-The Multi Router Traffic Grapher”, Proceedings of the Systems Administration Conference, Dec. 6, 1998, pp. 141-147, Boston, Massachusetts. |
Office Action dated Jan. 31, 2014 in corresponding Japanese Application No. 2011-553097, 8 pgs. |
Decision of Rejection dated Jan. 10, 2017 in corresponding Japanese Application No. 2015-099195, 8 pgs. |
Office Action dated Dec. 15, 2015 in corresponding European Application No. 10 708 058.2-1952, 6 pgs. |
Oxford BioSignals Starts Clinical Tirals in US of BioSign Patient Monitoring Technology. Medical Technology Business Europe (Mar. 3, 2005). |
Provision of the Minutes in Accordance with Rule 124(4) EPC in European Application No. 08837990.4 dated Apr. 10, 2012, European Application No. 08837990.4 shares the same specification as the present application. |
Riudavets J. et al., “Multi Router Traffic Grapher (MRTG) for Body Area Network (BAN) Surveillance” WSEAS Transactions on Computers, Dec. 1, 2004 pp. 1856-1862, vol. 3, Issue 6. |
Search Report dated May 27, 2010 in corresponding PCT Application No. PCT/US2010/026131, 11 pgs. |
Summons to Attend Oral Proceedings in European Application No. 08837990.4 dated Dec. 14, 2011, European Application No. 08837990.4 shares the same specification as the present application. |
WelchAllyn, “Accessories,” http:www.monitoring.welchallyn.com/products/accessories/, downloaded and printed from Internet on Nov. 14, 2006 in 1 page. |
WelchAllyn, “Product Overview,” http://www.monitoring.welchallyn.com/products/, downloaed and printed from the Internet on Nov. 14, 2006 in 2 pages. |
WelchAllyn, “Care Units,” http://www.monitoring.welchallyn.com/products/careunits/, downloded and printed from the Internet on Nov. 14, 2006 in 5 pages. |
WelchAllyn, “Monitoring Applications,” http://www.monitoring.welchallyn.com/products/applications/, downloaded and printed from the Internet on Nov. 14, 2006 in 2 pages. |
WelchAllyn, “Transport Monitoring,” http://www.monitoring.welchallyn.com/products/applications/transport.asp, downloaded and printed from the Internet on Nov. 14, 2006 in 2 pages. |
WelchAllyn, “Portable Bedside Monitoring,” http://www.monitoring.welchallyn.com/products/applications/portablebed.asp, downloaded and printed from the Internet on Nov. 14, 2006 in 1 page. |
WelchAllyn, “Centralized Monitoring,” http://www.monitoring.welchallyn.com/products/applications/centralized.asp, downloaded and printed from the Internet on Nov. 14, 2006 in 2 pages. |
WelchAllyn, “Miltary Field & Hospital,” http://www.monitoring.welchallyn.com/products/applications/military.asp, downloaded and printed from Internet on Nov. 14, 2006 2 pages. |
WelchAllyn, “Wireless/Telemetry Monitoring,” http://www.monitoring.welchallyn.com/products/wireless/, downloaded and printed from Internet on Nov. 14, 2006 in 1 page. |
WelchAllyn, “FlexNet™,” http://www.monitoring.welchallyn.com/products/wireless/flexnet.asp, downloaded and printed from Internet on Nov. 14, 2006 in 1 page. |
WelchAllyn, “Micropaq®,” http://www.monitoring.welchallyn.com/products/wireless/micropaq.asp, downloaded and printed from Internet on Nov. 14, 2006 in 1 page. |
WelchAllyn, “Wireless Propaq® CS,” http://www.monitoring.welchallyn.com/products/wireless/wirelesspropaqcs.asp, downloaded and printed from Internet on Nov. 14, 2006 in 2 pages. |
WelchAllyn, “Resource Library,” http://www.monitoring.welchallyn.com/products/wireless/resourcelib.asp, downloaded and printed from Internet on Nov. 14, 2006 in 3 pages. |
WelchAllyn, “Portable Monitors,” http://www.monitoring.welchallyn.com/products/portable/, downloaded and printed from Internet on Nov. 14, 2006 in 2 pages. |
WelchAllyn, “Propaq® CS,” http://www.monitoring.welchallyn.com/products/portable/propaqcs.asp, downloaded and printed from Internet on Nov. 14, 2006 in 2 pages. |
WelchAllyn, “Motion Tolerant Propaq® CS,” http://www.monitoring.welchallyn.com/products/portable/motiontolerantcs.asp, downloaded and printed from Internet on Nov. 14, 2006 in 2 pages. |
WelchAllyn, “Propaq Encore®,” http://www.monitoring.welchallyn.com/products/portable/propagencore.asp, downloaded and printed from Internet on Nov. 14, 2006 in 2 pages. |
WelchAllyn, “Motion Tolerant Propaq Encore®,” http://www.monitoring.welchallyn.com/products/portable/motiontolerantenc.asp, downloaded and printed from Internet on Nov. 14, 2006 in 2 pages. |
WelchAllyn, “Atlas™,” http://www.monitoring.welchallyn.com/products/portable/atlas.asp, downloaded and printed from Internet on Nov. 14, 2006 in 1 page. |
WelchAllyn, “Vital Signs Monitor 300 Series,” http://www.monitoring.welchallyn.com/products/portable/vitalsigns.asp, downloaded and printed from Internet on Nov. 14, 2006 in 2 pages. |
WelchAllyn, “Spot Vital Signs®,” http://www.monitoring.welchallyn.com/products/portable/spotvitalsigns.asp, downloaded and printed from Internet on Nov. 14, 2006 in 1 page. |
WelchAllyn, “Refurbished Monitors,” http://www.monitoring.welchallyn.com/products/portable/refurbished.asp, downloaded and printed from Internet on Nov. 14, 2006 in 1 page. |
WelchAllyn, “Centralized Monitoring Systems,” http://www.monitoring.welchallyn.com/products/systems/, downloaded and printed from Internet on Nov. 14, 2006 in 1 page. |
WelchAllyn, “Acuity® Central Station,” http://www.monitoring.welchallyn.com/products/systems/acuitycentral.asp, downloaded and printed from Internet on Nov. 14, 2006 in 1 page. |
WelchAllyn, “Acuity® LT Central Station,” http://www.monitoring.welchallyn.com/products/systems/acuityLTcentral.asp, downloaded and printed from Internet on Nov. 14, 2006 in 1 page. |
WelchAllyn, “Mobile Acuity LT™ Central Station,” http://www.monitoring.welchallyn.com/products/systems/mobileacuityLTcentral.asp, downloaded and printed from Internet on Nov. 14, 2006 in 1 page. |
WelchAllyn, “Flexible Monitoring,” http://www.monitoring.welchallyn.com/products/systems/flexible.asp, downloaded and printed from Internet on Nov. 14, 2006 in 2 pages. |
WelchAllyn, “Dedicated Network Monitors,” http://www.monitoring.welchallyn.com/products/systems/dedicated.asp, downloaded and printed from Internet on Nov. 14, 2006 in 1 page. |
WelchAllyn, “Networked Acuity®,” http://www.monitoring.welchallyn.com/products/systems/acuitynet.asp, downloaded and printed from Internet on Nov. 14, 2006 in 1 page. |
WelchAllyn, “Institution-Wide General Purpose Monitoring,” http://www.monitoring.welchallyn.com/products/systems/institution.asp, downloaded and printed from Internet on Nov. 14, 2006 in 1 page. |
WelchAllyn, “Process Reegineering,” http://www.monitoring.welchallyn.com/products/systems/processreeng.asp, downloaded and printed from Internet on Nov. 14, 2006 in 1 page. |
WelchAllyn, “Partners,” http://www.monitoring.welchallyn.com/products/partners/, downloaded and printed from Internet on Nov. 14, 2006 in 2 pages. |
WelchAllyn, “Welch Allyn OEM Technologies,” http://www.monitoring.welchallyn.com/products/oemtech/, downloaded and printed from Internet on Nov. 14, 2006 in 1 page. |
Office Action dated Mar. 18, 2016 in corresponding Japanese Application No. 2015-099195, 6 pgs. |
Office Action dated May 3, 2016 in corresponding European Application No. 10 708 058.2, 12 pgs. |
Number | Date | Country | |
---|---|---|---|
20110105854 A1 | May 2011 | US |
Number | Date | Country | |
---|---|---|---|
61296439 | Jan 2010 | US | |
61209147 | Mar 2009 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 12717081 | Mar 2010 | US |
Child | 12904377 | US |