The present disclosure relates to a medical protective garment, and more particularly to a medical protective garment capable of blocking external liquid from entering into the medical protective garment.
The joints between the headgear, the sleeves and the main body of the conventional medical protective garment are all achieved by stitching (overlock stitching). The passing of the sewing thread through the clothing material forms small pinholes, which easily affects the protective effect of the conventional medical protective garment. In order to solve this problem, the front side of the sewing thread, that is, the outer side of the clothing material, needs to be attached with a protective strip that has the protective effect. This type of strip can block out external liquid, which prevents the external liquid from entering into the interior of the protective garment from the gap between the stitches. However, attachment of the waterproof strip is not only manually performed and time consuming, but also increases the cost and the uncertainty of quality of the waterproof strips.
Furthermore, the conventional medical protective garment has stitching around the headgear and at the seams between the fabrics. Some stitching positions cannot be equipped with waterproof strips, which may lead to infiltration of external liquids, causing the effectiveness of the protective garment to be reduced.
In addition, gaps will also exist in the stitching between the front of the main body and the zipper of the conventional medical protective garment, and the material of the zipper fails to prevent the infiltration of external liquids into the protective garment.
Accordingly, how the protective effect of the medical protective garment can be improved through structural design to overcome the above-mentioned shortcomings has become an important issue in this technical field.
In response to the above-referenced technical inadequacies, the present disclosure provides a medical protective garment with no stitches at the joints, which can reduce the number of small pinholes and increase protection performance. In addition, the number of waterproof strips can also be reduced, so as to reduce the time and cost associated with manual labor.
In one aspect, the present disclosure provides a medical protective garment including a pair of front fabric pieces, a pair of rear fabric pieces, a headgear fabric piece and a weldable zipper. Each of the pair of front fabric pieces includes an integral front body part, an integral front trouser and an integral front sleeve that are connected to each other. Each of the rear fabric pieces includes an integral rear body part, a rear trouser and a rear sleeve that are connected to each other. Heat welding lines are formed on joints of the headgear fabric piece, the pair of front fabric pieces and the rear fabric pieces. The weldable zipper includes a pair of zipper strips, a material of the pair of zipper strips being heat welded to any one of the pair of front fabric pieces, the pair of rear fabric pieces and the headgear fabric piece.
Therefore, one of the beneficial effects of the present disclosure is that the protective performance of the medical protective garment in the present disclosure is improved by heat welding all connections and cooperating with the structural features of the weldable zipper, while also reducing the number of waterproof strips, which in turn reduces the time and cost associated with manual labor.
These and other aspects of the present disclosure will become apparent from the following description of the embodiment taken in conjunction with the following drawings and their captions, although variations and modifications therein may be affected without departing from the spirit and scope of the novel concepts of the disclosure.
The present disclosure will become more fully understood from the following detailed description and accompanying drawings.
The present disclosure is more particularly described in the following examples that are intended as illustrative only since numerous modifications and variations therein will be apparent to those skilled in the art. Like numbers in the drawings indicate like components throughout the views. As used in the description herein and throughout the claims that follow, unless the context clearly dictates otherwise, the meaning of “a”, “an”, and “the” includes plural reference, and the meaning of “in” includes “in” and “on”. Titles or subtitles can be used herein for the convenience of a reader, which shall have no influence on the scope of the present disclosure.
The terms used herein generally have their ordinary meanings in the art. In the case of conflict, the present document, including any definitions given herein, will prevail. The same thing can be expressed in more than one way. Alternative language and synonyms can be used for any term(s) discussed herein, and no special significance is to be placed upon whether a term is elaborated or discussed herein. A recital of one or more synonyms does not exclude the use of other synonyms. The use of examples anywhere in this specification including examples of any terms is illustrative only, and in no way limits the scope and meaning of the present disclosure or of any exemplified term. Likewise, the present disclosure is not limited to various embodiments given herein. Numbering terms such as “first”, “second” or “third” can be used to describe various components, signals or the like, which are for distinguishing one component/signal from another one only, and are not intended to, nor should be construed to impose any substantive limitations on the components, signals or the like.
Referring to
Referring to
Specifically, the back of the medical protective garment 1a has a rear central heat welding line S21 (
One of the features of the present disclosure is that it includes a weldable zipper 50 which includes a pair of zipper strips 51 and 52. The pair of zipper strips 51 and 52 can be heat welded to any one of the pair of front fabric pieces 10, the pair of rear fabric pieces 20 or the headgear fabric piece 30. The weldable zipper 50 can be, for example, a waterproof zipper, and both sides of the waterproof zipper are laminated with plastic films, such as PVC (polyvinyl chloride) or TPU (thermoplastic polyurethane). However, the present disclosure is not limited thereto. The material of the zipper strips 51 and 52 can be, for example, PET plastic (polyethylene terephthalate), polypropylene (PP, polypropylene) or the like.
In addition, in order to strengthen the protective effect, a front waterproof strip T10 can be attached to the weldable zipper 50 on the front of the medical protective garment 1a in the present embodiment. One side of the front waterproof strip T10 is first attached to any one side of the weldable zipper 50, and a release paper P is left on the other side of the front waterproof strip T10. After medical staff put on the medical protective garment 1a, they can tear off the release paper P, cover the weldable zipper 50 with the front waterproof strip T10, and attach the one side of the weldable zipper 50 to the other side of the weldable zipper 50. Therefore, the front of the weldable zipper 50 can be completely covered to achieve a good protective effect. In addition, as shown in
In addition, an improved feature of the present embodiment is that the weldable zipper 50 is arranged on the back of the medical protective garment 1a, so as to be matched with the one-piece headgear fabric piece 30b. Referring to
Specifically, the front of the medical protective garment 1b includes a front central heat welding line S11 and a neck heat welding line S13. The front central heat welding line S11 is connected to an inner edge of the pair of front fabric pieces 10, and the neck heat welding line S13 is connected to the headgear fabric piece 30 through the pair of front fabric pieces 10 and the pair of rear fabric pieces 20. A headgear heat welding line S32 is formed on the headgear fabric piece 30. Peripheral heat welding lines S12 and S14 are formed between the front fabric pieces 10 and the rear fabric pieces 20, including both sides of the sleeves, both sides of the body part and both sides of the trousers. The openings of the sleeves and trousers can be folded and elasticated, which can be achieved by stitching, since protective gloves or the like are often worn by the wearer.
In the present embodiment, the pair of zipper strips 51 and 52 of the weldable zipper 50 are further connected to the headgear fabric piece 30 through the neck heat welding line S13. This arrangement provides more space for the wearer, which can increase the wearing convenience.
In order to strengthen the protective function, the front of the medical protective garment 1b of the present embodiment may further include a front horizontal waterproof strip T11 and a front vertical waterproof strip T12, which respectively are attached to the junction of the front central heat welding line S11 and the neck heat welding line S13 to form a shape of the letter “T”.
In addition, the back of the medical protective garment 1b may further include a pair of rear horizontal waterproof strips T21 and a pair of rear vertical waterproof strips T22. The pair of rear horizontal waterproof strips T21 are attached to an upper end and a lower end of the weldable zipper 50, respectively. The pair of rear vertical waterproof strips T22 are attached to both sides of the weldable zipper 50, respectively.
In order to make the medical protective garment 1b of the present embodiment more convenient to wear, a zipper pull 55 of the weldable zipper 50 can also be connected to a drawstring L. The drawstring L allows the wearer to pull the zipper pull 55 upward to close the weldable zipper 50.
As shown in
In addition, in order to strengthen the protective effect, a back waterproof strip T20 can be attached to the weldable zipper 50 on the back of the medical protective garment 1c in the present embodiment. One side of the back waterproof strip T20 is first attached to any one side of the weldable zipper 50, and a release paper P is left on the other side of the back waterproof strip T20. After the medical staff put on the medical protective garment 1c, they can tear off the release paper P, and cover the weldable zipper 50 with the back waterproof strip T20, and attach it to the other side of the weldable zipper 50. Therefore, the weldable zipper 50 can be completely covered to achieve a good protective effect.
In conclusion, one of the beneficial effects of the present disclosure is that the protective performance of the medical protective garment in the present disclosure is improved by heat welding all connections and cooperating with the structural features of the weldable zipper. It can also reduce the number of waterproof strips, which can reduce the time and cost associated with manual labor.
The foregoing description of the exemplary embodiments of the disclosure has been presented only for the purposes of illustration and description and is not intended to be exhaustive or to limit the disclosure to the precise forms disclosed. Many modifications and variations are possible in light of the above teaching.
The embodiments were chosen and described in order to explain the principles of the disclosure and their practical application so as to enable others skilled in the art to utilize the disclosure and various embodiments and with various modifications as are suited to the particular use contemplated. Alternative embodiments will become apparent to those skilled in the art to which the present disclosure pertains without departing from its spirit and scope.