Medical pumping apparatus

Information

  • Patent Grant
  • 5443440
  • Patent Number
    5,443,440
  • Date Filed
    Friday, June 11, 1993
    31 years ago
  • Date Issued
    Tuesday, August 22, 1995
    29 years ago
Abstract
A medical device is provided for applying compressive pressures against a patient's foot. The device comprises first and second panels of flexible material secured to one another to form an inflatable bag to be fitted upon the foot. The bag has first and second separate fluid bladders. The first fluid bladder is adapted to engage a first portion of the foot and the second fluid bladder is adapted to engage a second portion of the foot. A boot is provided for holding the inflatable bag to the foot. A fluid supply is provided for applying pressurized fluid to the first and second fluid bladders such that the first fluid bladder applies a first compressive pressure upon the first portion of the foot and the second fluid bladder applies a second compressive pressure upon the second portion of the foot.
Description

BACKGROUND OF THE INVENTION
The present invention relates generally to medical pumping apparatus and, more particularly, to such an apparatus having an inflatable bag with first and second separate fluid bladders which apply distinct compressive pressures to separate portions of a patient's foot.
Medical pumping apparatus have been employed in the prior art to increase or stimulate blood flow in a limb extremity, such as a hand or a foot. For example, in U.S. Pat. No. 4,614,179, a pumping device is disclosed having an inflatable bag provided with a single bladder adapted to engage between plantar limits of the ball and heel of a foot to flatten the plantar arch and stimulate venous blood flow. Various embodiments of the inflatable bag are disclosed. Each embodiment, however, is provided with only a single bladder which engages only a limited portion of the foot.
It is believed that optimum venous blood flow in a foot is achieved when an inflatable ba is used that engages and applies pressure to a substantial portion of the foot. Oftentimes, however, an inflatable bag that encases a substantial portion of the foot and is inflated to a pressure level required to effect venous blood flow is found by the patient to be too uncomfortable.
The noted patent discloses a pump which communicates with the bag for cyclically inflating and deflating the bag. The pump, however, is not capable of recording patient compliance data (e.g, time, date and duration of each use by the patient) for subsequent downloading to a computer in a physician's office. Nor is it capable of having operating parameters input either manually or via a physician's computer.
The pumping device in the referenced patent also fails to include means for allowing a physician to run a prescreening test prior to prescribing use of the device to a patient to ensure that the patient does not have a venous blood flow problem, such as deep vein thrombosis (DVT). The pumping device further lacks means for predicting for each individual patient an appropriate time period for deflation or vent cycles.
Accordingly, there is a need for an improved medical pumping apparatus having an inflatable bag which engages a substantial portion of a patient's foot and achieves optimum blood flow at an acceptable patient comfort level. It is desirable that the apparatus include a fluid generator having a controller which is capable of creating and storing patient compliance data for subsequent transmission to a physician's computer. It is also desirable that the generator include a controller that is capable of storing operating parameters set manually via a manual selector or generated via a physician's computer. It would further be desirable to have a medical pumping apparatus which includes means for allowing a physician to run a prescreening test prior to prescribing use of the device to a patient to ensure that the patient does not have a venous blood flow problem. It would additionally be desirable to have a medical pumping apparatus provided with means for predicting for each individual patient an appropriate time period for deflation cycles.
SUMMARY OF THE INVENTION
These needs are met by the present invention, wherein an improved medical pumping apparatus is provided which includes an inflatable bag having first and second bladders for applying distinct compressive pressures to separate portions of a foot. The second bladder, which engages the heel, a forward portion of the sole and the dorsal aspect of the foot and is filled with fluid at a lower rate than that of the first bladder, compensates for reduced swelling which occurs during use. Further provided is a fluid generator for cyclically inflating and deflating the bag. The fluid generator is provided with a controller that is capable of storing operating parameters set manually via a manual selector or generated by way of a physician's computer. In the latter instance, the manual selector may be partially or completely disabled to prevent subsequent manual input of one or more different operating parameters by the patient. The fluid generator controller is also capable of producing and saving patient compliance data for subsequent transmission to a physician's computer. The apparatus further includes means for allowing a physician to run a prescreening test prior to prescribing use of the device to a patient to ensure that the patient does not have a venous blood flow problem, such as deep vein thrombosis. It also includes means for predicting for each individual patient an appropriate time period for deflation cycles.
In accordance with a first aspect of the present invention, a medical device is provided for applying compressive pressures against a patient's foot. The device comprises first and second panels of flexible material secured to one another to form an inflatable bag to be fitted upon the foot. The bag has first and second separate fluid bladders. The second fluid bladder surrounds a substantial portion of the first fluid bladder. The first fluid bladder is adapted to engage a first portion of the foot and the second fluid bladder is adapted to engage a second portion of the foot. Securing means is provided for holding the inflatable bag to the foot. Fluid supply means is provided for applying pressurized fluid to the first and second fluid bladders such that the first fluid bladder applies a first compressive pressure upon the first portion of the foot and the second fluid bladder applies a second compressive pressure upon the second portion of the foot.
The fluid supply means comprises generator means for cyclically generating fluid pulses during periodic inflation cycles. It also serves to vent fluid from the first and second bladders to atmosphere during periodic vent cycles between the inflation cycles. The fluid supply means further includes fluid conducting means connected to the first and second bladders and the generator means for communicating the fluid pulses generated by the generator means to the first and second bladders.
The generator means comprises controller means for storing an operating pressure value for the fluid pulses and an operating time period for the periodic vent cycles. It also comprises manual selector means for setting a preferred pressure value to be stored by the controller means as the operating pressure value and a preferred time period to be stored by the controller means as the operating time value.
The supply means may also include processor means associated with the generator means for generating a preferred pressure value for the fluid pulses and a preferred time period for the vent cycles. The processor means is coupled to the generator means for transmitting the preferred pressure value and the preferred time period to the controller means of the generator means to be stored by the controller means as the operating pressure value and the operating time period and disabling partially or completely the manual selector means whenever a preferred pressure value and a preferred time period are stored by the controller means in response to receiving same from the processor means. It is further contemplated by the present invention that processor means may be provided alone without manual selector means, or manual selector means may be provided alone without processor means.
The controller of the generator means further provides for producing and saving patient compliance data and for transmitting the patient compliance data to the processor means.
The operating pressure value for the fluid pulses is selected from a range of 3 to 7 psi. The operating pressure value is set at the maximum value which a patient finds to be acceptable from a comfort standpoint. The duration of each of the inflation cycles is approximately 3 seconds.
The fluid conducting means comprises a first tubular line connected at its distal end to the first bladder, a second tubular line connected at its distal end to the second bladder, a third tubular line connected at its distal end to a proximal end of the first tubular line, a fourth tubular line connected at its distal end to a proximal end of the second tubular line, and a fifth tubular line connected at its distal end to proximal ends of the third and fourth tubular lines. The fourth tubular line is provided with a restrictive orifice for preventing delivery of fluid into the second bladder at the same rate at which fluid is delivered into the first bladder.
The first portion of the foot comprises the plantar arch and the second portion of the foot includes the heel, a forward portion of the sole and the dorsal aspect of the foot.
The first and second panels of flexible material may be formed from polyurethane or polyvinyl chloride.
The securing means may comprise a boot which receives the bag and includes first and second tabs adapted to connect with one another after the boot and the bag are fitted upon a foot to hold the boot and the bag to the foot.
The medical device may further include means for allowing a physician to run a prescreening test prior to prescribing use of the device to a patient to ensure that the patient does not have a venous blood flow problem, such as deep vein thrombosis. It may also include means for predicting for each individual patient an appropriate time period for vent cycles.
In accordance with a second aspect of the present invention, an inflatable bag adapted to be secured to a patient's foot is provided for applying compressive pressures against the patient's foot upon receiving pressurized fluid from a fluid source via one or more fluid lines. The inflatable bag comprises first and second panels of flexible material secured to one another to form first and second separate fluid bladders. The first fluid bladder is adapted to engage a first portion of the foot for applying a first compressive pressure thereto and the second fluid bladder is adapted to engage a second portion of the foot for applying a second compressive pressure thereto. Tubular means extending from the first and second bladders is provided for connecting with the one or more fluid lines to permit the fluid source to supply pressurized fluid to the first and second bladders.
Accordingly, it is an object of the present invention to provide an improved medical pumping apparatus having an inflatable bag which engages a substantial portion of a patient's foot to achieve optimum blood flow at an acceptable patient comfort level. It is a further object of the present invention to provide a medical pumping apparatus having a fluid generator with a controller which is capable of producing and saving patient compliance data for subsequent transmission to a physician's computer. It is another object of the present invention to provide a medical pumping apparatus having a fluid generator with a controller that is capable of storing operating parameters set manually via a manual selector or generated by way of a physician's computer. It is yet another object of the present invention to provide an apparatus having means for allowing a physician to run a prescreening test prior to prescribing use of a medical pumping device to a patient to ensure that the patient does not have a venous blood flow problem. It is yet a further object of the present invention to provide a medical apparatus having means for predicting for each individual patient an appropriate time period for deflation cycles.
These and other objects of the present invention will be apparent from the following description, the accompanying drawings and the appended claims.





BRIEF DESCRIPTION OF THE DRAWINGS
FIG. 1 is a perspective view of medical pumping apparatus constructed and operable in accordance with the present invention;
FIG. 2 is a perspective view of the boot and inflatable bag of the present invention;
FIG. 3 is a cross-sectional view of the inflatable bag and the lower portion of the boot with the upper portion of the boot and a patient's foot shown in phantom;
FIG. 4 is a plan view of the inflatable bag shown in FIG. 2 and illustrating in phantom a patient's foot positioned over the inflatable bag;
FIG. 4A is a cross-sectional view taken along view line 4A--4A in FIG. 4;
FIG. 5 is a cross-sectional view taken along section line 5--5 in FIG. 4;
FIG. 6 is a schematic illustration of the controller of the fluid generator illustrated in FIG. 1;
FIG. 7 is a graphical representation of an inflation cycle and vent cycle for an inflatable bag;
FIG. 8 is a block diagram of the compressor, air reservoir, manifold and pressure sensor of the fluid generator illustrated in FIG. 1;
FIG. 9 is a circuit diagram for the infrared sensor illustrated in FIG. 1;
FIG. 10 is an example LRR curve for a normal patient;
FIG. 11 is a flow chart depicting steps performed to determine stabilization of the infrared sensor signal; and,
FIG. 12 is a flow chart depicting steps performed to determine the endpoint on the LRR curve and the LRR refill time.





DETAILED DESCRIPTION OF THE INVENTION
A medical pumping apparatus 10 constructed and operable in accordance with the present invention is shown in FIG. 1. The apparatus includes a boot 20 adapted to be fitted upon and secured to a patient's foot. The boot 20 is provided with an inflatable bag 30 (see FIGS. 2 and 4) which, when inflated, serves to apply compressive pressures upon the patient's foot to stimulate venous blood flow. The apparatus 10 further includes a fluid generator 40 which cyclically generates fluid pulses, air pulses in the illustrated embodiment, during periodic inflation cycles. The fluid pulses are communicated to the bag 30 via a first conducting line 50. The generator 40 also serves to vent fluid from the bag 30 to atmosphere during periodic vent or deflation cycles between the periodic inflation cycles.
Referring to FIGS. 2-5, the inflatable bag 30 is constructed from first and second panels 32 and 34 of flexible material such as polyurethane, polyvinyl chloride or the like. The panels 32 and 34 are heat sealed or otherwise secured to one another to form first and second fluid bladders 36 and 38, respectively. As best shown in FIG. 3, the first fluid bladder 36 engages a patient's foot 60 approximately at the plantar arch 62, which extends between the metatarsal heads and the heel 64. The second fluid bladder engages the foot approximately at the dorsal aspect 66, the heel 64 and a forward portion 67 of the sole 68 of the foot 60 beneath toe phalanges. As should be apparent, the exact foot portions engaged by the two bladders will vary somewhat from patient to patient.
As best shown in FIGS. 2 and 3, the boot 20 comprises a flexible outer shell 22 made from a flexible material, such as vinyl coated nylon. The inflatable bag is placed within the shell 22 and is adhesively bonded heat sealed or otherwise secured thereto. Interposed between the outer shell 22 and the inflatable bag 30 is a stiff sole member 24a formed, for example, from acrylonitrile butadiene styrene. The outer shell 22 is provided with first and second flaps 22a and 22b which, when fastened together, secure the boot 20 in a fitted position upon a patient's foot. Each of the flaps 22a and 22b is provided with patches 24 of loop-pile fastening material, such as that commonly sold under the trademark Velcro. The patches 24 of loop-pile material permit the flaps 22a and 22b to be fastened to one another. A porous sheet of lining material (not shown) comprising, for example, a sheet of polyester nonwoven fabric, may be placed over the upper surface 30a of the inflatable bag 30 such that it is interposed between the bag 30 and the sole 68 of the foot when the boot 20 is secured upon the foot 60.
The fluid generator 40 includes an outer case 42 having a front panel 42a. Housed within the outer case 42 is a controller 44 which is schematically illustrated in FIG. 6. The controller 44 stores an operating pressure value for the fluid pulses, an operating time period for the periodic inflation cycles and an operating time period for the periodic vent cycles. In the illustrated embodiment, the operating time period for the periodic inflation cycles is fixed at 3 seconds. The other two parameters may be varied.
The front panel 42a of the outer case 42 is provided with a keypad 42b for setting a preferred pressure value to be stored by the controller 44 as the operating pressure value. By way of example, the preferred pressure value may be selected from a range varying from 3 to 7 psi. The keypad 42b is also capable of setting a preferred time period to be stored by the controller 44 as the operating time period for the periodic vent cycles. For example, the preferred vent cycle time period may be selected from a range varying from 4 to 32 seconds. As an alternative to setting a time period for just the vent cycles, a combined time period, determined by adding the time period for the inflation cycles with the time period for the vent cycles, may be set via the keypad 42b for storage by the controller 44. A graphical representation of an inflation cycle followed by a vent cycle for the inflatable bag 30 is shown in FIG. 7.
In the illustrated embodiment, a processor 70 is provided (e.g., at a physician's office) for generating a preferred pressure value for the fluid pulses and a preferred time period for the vent cycles. The processor 70 is coupled to the fluid generator 40 via an interface cable 72 and transmits the preferred pressure value and the preferred time period to the controller 44 for storage by the controller 44 as the operating pressure value and the operating time period. The processor 70 also transmits a disabling signal to the controller 44 to effect either partial or complete disablement of the keypad 42b. As a result, the patient is precluded from adjusting the operating pressure value or the operating time period or both via the keypad 42b, or is permitted to adjust one or both values, but only within predefined limits. An operator may reactivate the keypad 42b for setting new operating parameters (i.e., to switch from the processor input mode to the keypad input mode) by actuating specific keypad buttons in a predefined manner.
The controller 44 further provides for producing and saving patient compliance data (e.g., time, date and duration of each use by the patient), which data can be transmitted by the controller 44 to the processor 70 for storage by same.
Further housed within the outer case 42 is an air compressor 45, an air reservoir 46, a pressure sensor 47 and a manifold 48, as shown schematically in FIG. 8. Extending from the manifold 48 are left and right fluid lines 48a and 48b which terminate at left and right fluid outlet sockets 49a and 49b. The left fluid socket 49a extends through the front panel 42a of the outer case 42 for engagement with a mating connector 51 located at the proximal end of the conducting line 50, see FIG. 1. The conducting line 50 is secured at its distal end to the inflatable bag 30. The right socket 49b likewise extends through the front panel 42a for engagement with a mating connector located at the proximal end of a second conducting line (not shown) which is adapted to be connected at its distal end to a second inflatable bag (not shown).
Compressed air generated, by the compressor 45 is supplied to the reservoir 46 for storage via fluid line 44a. The reservoir 46 communicates with the manifold 48 via a fluid line 46a.
An inflate solenoid, a vent solenoid, a channel solenoid and associated valves are provided within the manifold 48. The inflate solenoid effects the opening and closing of its associated valve to control the flow of fluid into the manifold 48 from the air reservoir 46 via fluid line 46a. The vent solenoid effects the opening and closing of its associated valve to control the flow of fluid from the manifold 48 to atmosphere via a vent line 48c. The channel solenoid effects the opening and closing of its associated valve to control the flow of fluid from the manifold 48 to fluid line 48a or fluid line 48b.
Actuation of the solenoids is controlled by the controller 44, which is coupled to the solenoids via conductors 44a. During inflation cycles, the controller 44 actuates the vent solenoid to prevent the venting of fluid in the manifold 48 to atmosphere via vent line 48c. The controller 44 further actuates the inflate solenoid to allow pressurized air to pass from the air reservoir 46, through the manifold 48 to either the fluid line 48a or the fluid line 48b.
During vent cycles, the controller 44 initially causes the inflate solenoid to stop pressurized fluid from passing into the manifold 48 from the reservoir 46. It then causes the vent solenoid to open for at least an initial portion of the vent cycle and vent the fluid in the manifold 48 to atmosphere.
Depending upon instructions input via the keypad 42b or the processor 70, the controller 44 also serves to control, via the channel solenoid, the flow of fluid to either line 48a or line 48b. If only a single boot 20 is being employed, the processor 70 does not activate the channel solenoid and line 48a, which is normally in communication with the manifold 48, communicates with the manifold 48 while line 48b is prevented from communicating with the manifold 48 by the valve associated with the channel solenoid. If two boots 20 are being employed, the controller 44 activates and deactivates the channel solenoid to alternately communicate the lines 48a and 48b with the manifold 48, thereby simulating walking. As should be apparent, when two boots 20 are used in an alternating manner, each boot will have its own separate inflation and vent cycles. Thus, during the vent cycle for the bag 30, an inflation cycle takes place for the other bag (not shown). The inflate solenoid allows pressurized fluid to pass from the air reservoir 46, through the manifold 48 and into the fluid line 48b associated with the other bag, while the channel solenoid has been activated to prevent communication of the fluid line 48a associated with the bag 30 with the manifold 48.
The air pressure sensor 47 communicates with the manifold 48 via an air line 47a and senses the pressure level within the manifold 48, which corresponds to the pressure level which is applied to either the fluid line 48a or the fluid line 48b. The pressure sensor 47 transmits pressure signals to the controller 44 via conductors 47b. Based upon those pressure signals, the controller 44 controls the operation of the inflate solenoid, such as by pulse width modulation or otherwise. Pulse width modulation for this application comprises activating the inflate solenoid for one pulse per cycle, with the pulse lasting until the desired pressure is achieved. The length of the pulse is based upon an average of the fluid pressure level during previous inflation cycles as measured by the pressure sensor 47. Pulse length and hence pressure level is iteratively adjusted in small steps based on each immediately preceding pulse. In this way, the fluid pressure within the manifold 48, and thereby the pressure which is applied to either fluid line 48a or fluid line 48b, is maintained substantially at the stored operating pressure value with no sudden changes in pressure level.
In an alternative embodiment, the pressure sensor 47 is replaced by a force sensor (not shown) secured to the bag 30 so as to be interposed between the first bladder 36 and the sole 68 of the foot 60. The force sensor senses the force applied by the bladder 36 to the foot 60 and transmits force signals to the controller 44 which, in response, controls the operation of the inflate solenoid to maintain the fluid pressure within the manifold 48, and thereby the pressure which is applied to either fluid line 48a or fluid line 48b, at the stored operating pressure level.
The conducting line 50, as best shown in FIGS. 1, 2 and 4, comprises a first tubular line 50a connected at its distal end to the first bladder 36, a second tubular line 50b connected at its distal end to the second bladder 38, a third tubular line 50c connected at its distal end to a proximal end of the first tubular line 50a, a fourth tubular line 50d connected at its distal end to a proximal end of the second tubular line 50b, and a fifth tubular line 50e integrally formed at its distal end with proximal ends of the third and fourth tubular lines 50c and 50d. The fourth tubular line 50d is provided with a restrictive orifice 53 for preventing delivery of fluid into the second bladder 38 at the same rate at which fluid is delivered into the first bladder 36. More specifically, the restrictive orifice 53 is dimensioned such that the fluid pressure in the first bladder 36 is greater than the fluid pressure level in the second bladder 38 during substantially the entirety of the inflation cycle.
The front panel 42a is further provided with a liquid crystal display (LCD) 42c for displaying the stored operating pressure value and the stored operating time period. The LCD 42c also serves to indicate via a visual warning if either or both of the first or second conducting lines are open or obstructed. Light-emitting diodes 42d are also provided for indicating whether the generator 40 is operating in the keypad input mode or the processor input mode. Light-emitting diodes 42f indicate which fluid outlets are active.
When a fluid pulse is generated by the generator 40, pressurized fluid is transmitted to the bag 30 via the conducting line 50. This results in the first fluid bladder 36 applying a first compressive pressure generally at the plantar arch 62 and the second bladder 36 applying a second, distinct compressive pressure generally at the dorsal aspect 66, the heel 64 and the forward portion 67 of the sole 68 of the foot 60. Application of compressive pressures upon these regions of the foot 60 effects venous blood flow in the deep plantar veins. When a second boot (not shown) is employed, pressurized fluid pulses are transmitted by the generator 40 to its associated inflatable bag so as to effect venous blood flow in the patient's other foot.
The apparatus 10 further includes an infrared sensor 75, see FIGS. 1 and 9. The sensor 75 can be used in combination with the fluid generator 40 and the processor 70 to allow a physician to prescreen patients before prescribing use of one or two of the boots 20 and the fluid generator 40. The prescreening test ensures that the patient does not have a venous blood flow problem, such as deep vein thrombosis. The prescreening test also allows the physician to predict for each individual patient a preferred time period for vent cycles.
In the illustrated embodiment, the sensor 75 is operatively connected through the generator 40 via cable 77 to the processor 70, see FIGS. 1, 6 and 9. The sensor 75 comprises three infrared-emitting diodes 75a which are spaced about a centrally located phototransistor 75b. The sensor 75 further includes a filtering capacitor 75c and three resistors 75d.
The sensor 75 is adapted to be secured to the skin tissue of a patient's leg approximately 10 cm above the ankle via a double-sided adhesive collar (not shown) or otherwise. The diodes 75a emit infrared radiation or light which passes into the skin tissue. A portion of the light is absorbed by the blood in the microvascular bed of the skin tissue. A remaining portion of the light is reflected towards the phototransistor 75b. An analog signal generated by the phototransistor 75b varies in dependence upon the amount of light reflected towards it. Because the amount of light reflected varies with the blood volume in the skin tissue, the analog signal can be evaluated to determine the refill time for the microvascular bed in the skin tissue (also referred to herein as the LRR refill time). Determining the microvascular bed refill time by evaluating a signal generated by a phototransistor in response to light reflected from the skin tissue is generally referred to as light reflection rheography (LRR).
To run the prescreening test, the sensor 75 is first secured to the patient in the manner described above. The patient is then instructed to perform a predefined exercise program, e.g., 10 dorsiflexions of the ankle within a predefined time period, e.g., 10 seconds. In a normal patient, the venous blood pressure falls due to the dorsiflexions causing the skin vessels to empty and the amount of light reflected towards the phototransistor 75b to increase. The patient continues to be monitored until the skin vessels are refilled by the patient's normal blood flow.
The signals generated b the phototransistor 75b during the prescreening test are buffered by the controller 44 and passed to the processor 70 via the interface cable 72. A digitizing board (not shown) is provided within the processor 70 to convert the analog signals into digital signals.
In order to minimize the effects of noise, the processor 70 filters the digital signals. The processor 70 filters the digital signals by taking 7 samples of sensor data and arranging those samples in sequential order from the lowest value to the highest value. It then selects the middle or "median" value and discards the remaining values. Based upon the median values, the processor 70 then plots a light reflection rheography (LRR) curve. As is known in the art, a physician can diagnose whether the patient has a venous blood flow problem from the skin tissue refill time taken from the LRR curve. An example LRR curve for a normal patient is shown in FIG. 10.
When the sensor 75 is initially secured to the patient's leg, its temperature increases until it stabilizes at approximately skin temperature. Until temperature stabilization has occurred, the signal generated by the sensor 75 varies, resulting in inaccuracies in the LRR curve generated by the processor 70. To prevent this from occurring, the processor 70 monitors the signal generated by the sensor 75 and produces the LRR curve only after the sensor 75 has stabilized. Sensor stabilization is particularly important because, during the stabilization period, the signals generated by the sensor 75 decline at a rate close to the rate at which the skin vessels refill.
FIG. 11 shows in flow chart form the steps which are used by the processor 70 to determine if the signal generated by the sensor 75 has stabilized. The first step 80 is to take 100 consecutive samples of filtered sensor data and obtain an average of those samples. After delaying approximately 0.5 second, the processor 70 takes another 100 consecutive samples of sensor data and obtains an average of those samples, see steps 81 and 82. In step 83, the processor 70 determines the slope of a line extending between the averages of the two groups sampled. In step 84, the processor 70 determines if the magnitude of the slope is less than a predefined threshold value T.sub.s, e.g., T.sub.s =0.72. If it is, stabilization has occurred. If the magnitude of the slope is equal to or exceeds the threshold value T.sub.s, the processor 70 determines whether 3 minutes have passed since the sensor 75 was initially secured to the patient's skin, see step 85. Experience has shown that stabilization will occur in any event within 3 minutes. If 3 minutes have passed, the processor 70 concludes that stabilization has occurred. If not, it repeats steps 80-85.
After generating the LRR curve, the processor 70 further creates an optimum refill line L.sub.r and plots the line L.sub.r for comparison by the physician with the actual LRR curve, see FIG. 10. The optimum refill line L.sub.r extends from the maximum point on the plotted LRR curve to a point on the baseline, which point is spaced along the X-axis by a selected number of seconds. It is currently believed that this time along the X-axis should be 30 seconds from the X-component of the maximum point; however other times close to 30 seconds may ultimately prove superior.
The processor 70 generates the endpoint of the LRR curve and the LRR refill time. FIG. 12 shows in flow chart form the steps which are used by the processor 70 to determine the endpoint on the LRR curve and the refill time.
In step 90, all filtered samples for a single prescreening test are loaded into the processor 70. In step 91, two window averages are determined. In a working embodiment of the invention, each window average is determined from 30 filtered data points, and the two window averages are separated by 5 filtered data points. Of course, other sample sizes for the windows can be used in accordance with the present invention. Further, the number of data points separating the windows can be varied. In step 92, the slope of a line extending between the two window averages is found. In step 93, if the slope is less than 0, the processor 70 moves the windows one data point to the right and returns to step 91. If the slope is greater than or equal to zero, the processor 70 determines the endpoint, see step 94. The endpoint is determined by identifying the lowest and highest data points from among all data points used in calculating the two window averages and taking the centerpoint between those identified data points. The processor then determines if the magnitude of the endpoint is less than a threshold value T.sub.p (e.g., T.sub.p =[peak value-(0.9)(peak value-baseline value)]), see step 95. If the endpoint is greater than or equal to the threshold value T.sub.p, the processor 70 moves the windows one data point to the right and returns to step 91. If the endpoint is less than the threshold value T.sub.p, the processor 70 identifies the endpoint and calculates the LRR refill time, see step 96. The LRR refill time is equal to the time between the maximum point on the LRR curve and the endpoint.
Further in accordance with the present invention, the processor 70 determines a preferred time period for the periodic vent cycles by estimating the refill time period for the patient's deep plantar veins based upon the determined LRR refill time. In order to determine the refill time period for the deep plantar veins, an equation is generated in the following manner.
LRR plots for a group of patients are generated in the manner described above using the boot 20, the inflatable bag 30, the fluid generator 40, the processor 70 and the sensor 75. The group must include patients ranging, preferably continuously ranging, from normal to seriously abnormal. The LRR refill time is also generated for each of these patients.
Refill times for the deep plantar veins are additionally determined for the patients in the group. The refill time is determined for each patient while he/she is fitted with the boot 20 and the inflatable bag 30 has applied compressive pressures to his/her foot. An accepted clinical test, such as phlebography or ultrasonic doppler, is used to determine the refill time for the deep plantar veins.
Data points having an X-component equal to the LRR refill time and a Y-component equal to the refill time for the deep plantar veins are plotted for the patients in the group. From those points a curve is generated. Linear regression or principal component analysis is employed to generate an equation for that curve. The equation is stored in the processor 70.
From the stored equation, the processor 70 estimates for each patient undergoing the prescreening test the patient's deep plantar veins refill time based upon the LRR refill time determined for that patient. The preferred time period for the periodic vent cycles is set equal to the deep plantar veins refill time and that preferred time period is transmitted by the processor 70 to the controller 44 for storage by the controller 44 as the operating time period for the periodic vent cycles.
It is further contemplated by the present invention that a look-up table, recorded in terms of LRR refill time and deep plantar veins refill time, could be stored within the processor 70 and used in place of the noted equation to estimate the preferred time period for the periodic vent cycles.
A program listing (written in Basic) in accordance with the present invention including statements for (1) determining stabilization of the sensor 75; (2) median filtering; and (3) determining the endpoint of the LRR curve is set forth below: ##SPC1##
Claims
  • 1. A medical device for applying compressive pressures against a patient's foot comprising:
  • first and second panels of flexible material secured to one another to form an inflatable bag to be fitted upon the foot, said bag having first and second separate fluid bladders with said second fluid bladder surrounding a substantial portion of said first fluid bladder, said first fluid bladder being adapted to engage a first portion of the foot which generally includes the plantar arch and said second fluid bladder being adapted to engage a second portion of the foot which generally includes the heel, the dorsal aspect, and a forward portion of the sole beneath the toe phalanges;
  • securing means for holding said inflatable bag to the foot; and
  • fluid supply means for applying pressurized fluid to said first and second fluid bladders such that said first fluid bladder applies a first compressive pressure upon the plantar arch and said second fluid bladder applies a second compressive pressure upon the heel, the dorsal aspect of the foot and the forward portion of the sole beneath the toe phalanges.
  • 2. A medical device as set forth in claim 1, wherein said fluid supply means is adapted to apply fluid to said first bladder at a greater rate than to said second bladder.
  • 3. A medical device as set forth in claim 1, wherein said supply means comprises generator means for cyclically generating fluid pulses during periodic inflation cycles; and
  • fluid conducting means connected to said first and second bladders and said generator means for communicating said fluid pulses generated by said generator means to said first and second bladders.
  • 4. A medical device as set forth in claim 3, wherein said generator means further provides for venting fluid from said first and second bladders to atmosphere during periodic vent cycles between said inflation cycles.
  • 5. A medical device as set forth in claim 4, wherein said generator means comprises controller means for storing an operating pressure value for said fluid pulses and an operating time period for said periodic vent cycles.
  • 6. A medical device as set forth in claim 5, wherein said generator means comprises manual selector means for setting a preferred pressure value to be stored by said controller means as said operating pressure value and a preferred time period to be stored by said controller means as said operating time value.
  • 7. A medical device as set forth in claim 6, wherein said supply means further comprises processor means associated with said generator means for generating a preferred pressure value for said fluid pulses and a preferred time period for said vent cycles, said processor means being coupled to said generator means for transmitting said preferred pressure value and said preferred time period to said controller means of said generator means to be stored by said controller means as said operating pressure value and said operating time period and disabling said manual selector means whenever a preferred pressure value and a preferred time period are stored by said controller means as said operating pressure value and said operating time period in response to receiving said preferred pressure value and said preferred time period from said processor means.
  • 8. A medical device as set forth in claim 7, wherein said controller means of said generator means further provides for producing and saving patient compliance data and for transmitting said patient compliance data to said processor means.
  • 9. A medical device as set forth in claim 5, wherein said supply means further comprises processor means associated with said generator means for generating a preferred pressure value for said fluid pulses and a preferred time period for said vent cycles, said processor means being coupled to said generator means for transmitting said preferred pressure value and said preferred time period to said controller means of said generator means to be stored by said controller means as said operating pressure value and said operating time period.
  • 10. A medical device as set forth in claim 3, wherein said generator means comprises controller means for storing an operating pressure value for said fluid pulses which is in the range of 3 to 7 psi.
  • 11. A medical device as set forth in claim 3, wherein said generator means comprises controller means for storing an operating time period for said inflation cycles equal to approximately 3 seconds.
  • 12. A medical device as set forth in claim 3, wherein said fluid conducting means comprises a first tubular line connected at its distal end to said first bladder, a second tubular line connected at its distal end to said second bladder, a third tubular line connected at its distal end to a proximal end of said first tubular line, a fourth tubular line connected at its distal end to a proximal end of said second tubular line, and a fifth tubular line connected at its distal end to proximal ends of said third and fourth tubular lines, said fourth tubular line being provided with a restrictive orifice for preventing delivery of fluid into said second bladder at the same rate at which fluid is delivered into said first bladder.
  • 13. A medical device as set forth in claim 1, wherein the fluid supplied by said supply means is air.
  • 14. A medical device as set forth in claim 1, wherein said first and second panels of flexible material are formed from polyurethane.
  • 15. A medical device as set forth in claim 1, wherein said first and second panels of flexible material are formed from polyvinyl chloride.
  • 16. A medical device as set forth in claim 7, further comprising sensor means adapted to be secured to skin tissue of a leg of the patient for generating signals indicative of blood flow in the skin tissue of the leg; and
  • said processor means further generating from said signals a skin tissue blood volume curve.
  • 17. An inflatable bag adapted to be secured to a patient's foot for applying compressive pressures against the patient's foot upon receiving pressurized fluid from a fluid source via one or more fluid lines, said bag comprising:
  • first and second panels of flexible material secured to one another to form first and second separate fluid bladders with said second fluid bladder surrounding a substantial portion of said first fluid bladder, said first fluid bladder being adapted to engage a first portion of the foot which includes the plantar arch for applying a first compressive pressure thereto and said second fluid bladder being adapted to engage a second portion of the foot which includes the heel, the dorsal aspect, and a forward portion of the sole beneath the toe phalanges for applying a second compressive pressure thereto; and
  • tubular means extending from said first and second bladders for connecting with said one or more fluid lines to permit the fluid source to supply pressurized fluid to said first and second bladders.
  • 18. An inflatable bag adapted to be secured to a patient's foot for applying compressive pressures against the patient's foot upon receiving pressurized fluid from a fluid source, said bag comprising:
  • first and second panels of flexible material secured to one another to form first and second separate fluid bladders with said second fluid bladder surrounding a substantial portion of said first fluid bladder, said first fluid bladder being adapted to engage a first portion of the foot which includes the plantar arch for applying a first compressive pressure thereto and said second fluid bladder being adapted to engage a second portion of the foot which includes the heel, the dorsal aspect and a forward portion of the sole beneath the toe phalanges for applying a second compressive pressure thereto; and
  • one or more fluid conducting lines connected to said first and second bladders and the fluid source to permit the fluid source to supply pressurized fluid to said first and second bladders.
US Referenced Citations (79)
Number Name Date Kind
399053 Grossan Nov 1976
1492514 Jensen Apr 1924
1608239 Rosett Nov 1926
2531074 Miller Nov 1950
2638090 Nantz May 1953
2694395 Brown Nov 1954
2781041 Weinberg Feb 1957
2880721 Corcoran Apr 1959
2893382 Demeny Jul 1959
3171410 Towle, Jr. et al. Mar 1965
3403673 MacLeod Oct 1968
3525333 Mencacci Aug 1970
3774598 Wilson et al. Nov 1973
3811431 Apstein May 1974
3824992 Nicholson et al. Jul 1974
3826249 Lee et al. Jul 1974
3835845 Maher Sep 1974
3859989 Spielberg Jan 1975
3865102 Butwell et al. Feb 1975
3865103 Folman Feb 1975
3866604 Curless et al. Feb 1975
3888242 Harris et al. Jun 1975
3892229 Taylor et al. Jul 1975
3908642 Vinmont Sep 1975
3920006 Lapidus Nov 1975
3942518 Tenteris et al. Mar 1976
3976056 Brawn Aug 1976
3982531 Shaffer Sep 1976
4029087 Dye et al. Jun 1977
4030488 Hasty Jun 1977
4044759 Ghayowan Aug 1977
4054129 Byars et al. Oct 1977
4077402 Benjamin, Jr. et al. Mar 1978
4091804 Hasty May 1978
4153050 Bishop et al. May 1979
4186732 Christoffel Feb 1980
4198961 Arkans Apr 1980
4202325 Villari et al. May 1980
4206751 Schneider Jun 1980
4207876 Annis Jun 1980
4231355 Nara Nov 1980
4269175 Dillon May 1981
4270527 Peters et al. Jun 1981
4311135 Brueckner et al. Jan 1982
4370975 Wright Feb 1983
4372297 Perlin Feb 1983
4374518 Villanueva Feb 1983
4402312 Villari et al. Sep 1983
4408599 Mummurt Oct 1983
4418690 Mummert Dec 1983
4453538 Whitney Jun 1984
4461301 Ochs Jul 1984
4494550 Blazek et al. Jan 1985
4502470 Kiser et al. Mar 1985
4519395 Hrushesky May 1985
4574812 Arkans Mar 1986
4577626 Marukawa et al. Mar 1986
4614179 Gardner et al. Sep 1986
4614180 Garner et al. Sep 1986
4624244 Taberi Nov 1986
4696289 Gardner et al. Sep 1987
4702232 Gardner et al. Oct 1987
4721101 Gardner et al. Jan 1988
4753226 Zheng et al. Jun 1988
4809684 Gardner et al. Mar 1989
4841956 Gardner et al. Jun 1989
4846160 Gardner et al. Jul 1989
4858147 Conwell Aug 1989
4945905 Dye et al. Aug 1990
4974597 Walloch Dec 1990
4993420 Welkavitz et al. Feb 1991
5014714 Millay et al. May 1991
5060279 Crawford et al. Oct 1991
5090417 Moelan et al. Feb 1992
5099851 Mata et al. Mar 1992
5121745 Israel Jun 1992
5126967 Simko Jun 1982
5157733 Takeo et al. Oct 1992
5207214 Romano May 1993
Foreign Referenced Citations (22)
Number Date Country
2390156 Jan 1979 FRX
0039629 Nov 1981 FRX
2430651 Jan 1976 DEX
2716137 Jul 1978 DEX
3009408 Sep 1981 DEX
233387 May 1926 GBX
473639 Oct 1937 GBX
479261 Feb 1938 GBX
490341 Aug 1938 GBX
754883 Aug 1956 GBX
813352 May 1959 GBX
2050174 Jan 1981 GBX
2055580 Mar 1981 GBX
2077108 Dec 1981 GBX
2103489 Feb 1983 GBX
2141938 Jan 1985 GBX
2148720 Jun 1985 GBX
632354 Nov 1978 SUX
WO8809653 Dec 1988 WOX
8911845 Dec 1989 WOX
9103979 Apr 1991 WOX
WO9312708 Jul 1993 WOX
Non-Patent Literature Citations (28)
Entry
Gardner et al, "Reduction of Post-Traumatic Swelling and Compartment Pressure by Impulse Compression of the Foot," The Journal of Bone & Joint Surgery, vol. 72B, No. 5, Sep. 1990, pp. 810-815.
Gardner et al, "The Venous Pump of the Human Foot-Preliminary Report," Bristol Medics-Chisurgical Journal, Jul. 1983.
MacEachern et al, "The Venous Foot Pump," Paper presented at the British Orthopedic Assoc., Autumn Meeting, Sep. 18-20, 1985.
Brochure, "The AV-1000.TM. A Remarkable New Non-Invasive Diagnostic Tool that Belongs in Every Physician's Office", Hemodynamics, Inc.
Blazek et al, "Functional Diagnostics of Peripheral Vein Disorders," Oct. 1984, pp. 4-7.
Weinert, "Photoplethyemography (PPG) and Light Reflection Rheography (LRR)", pp. 31-33.
Hubner, "Is the Light Reflection Rheography (LRR) Suitable as a Diagnostic Method in the Phlebology Practice?", Phlebology and Proctology, 1986; 15:, pp. 209-212.
"Correlation of Venous Pressure Measurements with Light Reflection Rheography (LRR)", Hemodynamics Incorporated.
Stubbs, "Newscomputers", pp. 1-12.
McCarthy et al, "A New Method of Preventing the Fatal Embolus," Surgery, vol. 25, No. 6, Jun. 1949, pp. 891-896.
Parrot, J., "The Effect of a Mechanical Venous Pump on the Circulation in the Feet in the Presence of Arterial Obstruction," University of Manitoba, Oct. 1972.
Brochure, Flowtron Air, Ventilated Compression System, Huntleigh Technology, England & Aberdeen, New Jersey.
Brochure, "Hemaflo-Intermittent Compression", Medipedic, Jackson, Michigan.
Kuster et al., "Anatomy of the Veins of the Foot," Surgery, Gynecology & Obsterics, pp. 817-823, Oct. 1968.
Rastgeldi, "I. Pressure Treatment of Peripheral Vascular Diseases and II. Intermittent Pressure Treatment of Peripheral Vascular Diseases," Puscula Medica, Supplementum XXVII 1972, pp. 1-49.
"Chapitre VII. Marche Du Sang Dans Le Membre Inferieur.--Des Conditions Qui President a la Direction et a la Vitesse de L'Ecoulement," Researches anatomiques et considerations physiologiques sur la circulation veineuse du pied et al jambe, Paris: Adrien Delahaye, 1869:60-Includes English translation.
Cotton et al., "The prevention of deep vein thrombosis, with particular reference to mechanical methods of prevention", Surgery, vol. 81, No. 2, pp. 228-235, Feb. 1977.
Dillon, "An End-Diastolic Air Compression Boot for Circulation Augmentation," Journal of Clinical Engineering, vol. 5, No. 1, pp. 63-66, Jan.-Mar. 1980.
Clark et al., "Pneumatic Compression of the Calf and Postoperative Deep-Vein Thrombosis," The Lancet, pp. 5-7, Jul. 6, 1974.
Winckler, "Les Veins Du Peid" (The Veins of the Foot), Arch. anat. (Strasbourg) 37, pp. 175-184, 1923 (Includes English translation).
Pegum et al., "Anatomy of Venous Return from the Foot," Cardiovasc. Res., vol. 1, pp. 241-248, 1967.
Pegum et al., "Physiology of Venous Return from the Foot," Cardiocasc. Res., vol. 1, pp. 249-254, 1967.
Gullmo, "The Strain of Obstruction Syndrome of teh Femoral Vein," From the Roentgendiagnostic Department of the University Clinics of Lund and the Roentgen Department, Lasarettet, Halsingborg, Sweden, Acta. Radiologica, vol. 46, pp. 119-137, submitted for publication Jul. 9, 1956.
Chermet, "Atlas of Phlebography of the Lower Limbs including the Iliac Veins," The Hague, p. 37, 1982.
Roberts et al., "The Effect of Intermittently Applied External Pressure on the Haemodynamics of the Lower Limb in Man," Brit. J. Surg., vol. 59, No. 3, pp. 223-226, Mar. 1972.
Basmajian et al., "The Role of Muscles in Arch Support of the Foot," The Journal of Bone and Joint Surgery, vol. 45-A, No. 6, pp. 1184-1190, Sep. 6, 1963.
Basmajian et al., "An Electromyographic Study of Certain Muscles of the Leg and Foot in the Standing Position," Surgery, Gynecology and Obstetrics, pp. 662-666.
Scheinberg et al., "The Relation Between Arterial Pressure and Blood Flow in the Foot," American Heart Journal, pp. 409-420, 1948.