The present disclosure relates to a pneumatic drive for a medical robot that manipulates a surgical tool by an actuator.
In recent years, surgical operations using surgery assisting devices have come into widespread use. The surgery assisting device includes a surgical instrument that is inserted into the body cavity of a patient to perform various surgical operations. Because of the work environment of the surgical instruments, precise driving is required for patient safety.
According to an aspect of one or more embodiments, there is provided a pneumatic drive for a medical robot comprising a manifold having a plurality of cylinders extending in a first direction; and respective rods corresponding to the plurality of cylinders, the rods extending on one side of the plurality of cylinders in the first direction, wherein the manifold has a plurality of air supply ports that feed the cylinders with air for moving the respective rods forward and backward, the plurality of air supply ports being provided on another side of the manifold in the first direction.
According to another aspect of one or more embodiments, there is provided a pneumatic drive for a medical robot, the pneumatic drive comprising a manifold comprising a plurality of cylinders extending in a first direction; and a plurality of rods corresponding respectively to the plurality of cylinders, the plurality of rods extending from one side of the plurality of cylinders in the first direction, wherein the manifold comprises a plurality of air supply ports that feed the plurality of cylinders with air for moving the plurality of rods forward and backward, the plurality of air supply ports being provided on another side of the manifold in the first direction.
According to yet another aspect of one or more embodiments, there is provided an apparatus for a medical robot, the apparatus comprising a manifold comprising a plurality of cylinders extending in a first direction; and a plurality of rods corresponding respectively to the plurality of cylinders, the plurality of rods extending from a first side of the manifold in the first direction, wherein the manifold comprises a plurality of first air ports corresponding respectively to the plurality of cylinders, the plurality of first air ports being provided on a second side of the manifold in the first direction, each first air port of the plurality of first air ports supplying air to a corresponding cylinder for a forward movement of the rod of the corresponding cylinder in a forward direction.
The above and/or other aspects will become apparent and more readily appreciated from the following description of exemplary embodiments, taken in conjunction with the accompanying drawings in which:
Surgery using medical robots is attracting attention as a technique that enhances the possibility of not only reducing the burden on a surgeon but also the burden on a patient through highly accurate and stable treatment as well as the possibility of remote medical care. In such medical robots, there is a medical robot in which a drive mechanism using pneumatic pressure is used as an actuator as the drive source for driving a surgical tool.
There is a manipulator system that can easily improve the accuracy of movement and suppress the occurrence of troubles due to disturbance in a surgical manipulator having a pneumatically driven external force detection function.
There is also a control system that executes pneumatic servo control for a pneumatically driven robot arm that holds and operates a medical device. The control system includes a switching unit and a control unit. The switching unit switches between a passive operation mode and an active operation mode. In the active operation mode, the control unit sets a target pressure based on a result of positional control using an error of the current position of a robot arm with respect to a target position and executes the pressure control based on the target pressure. In the passive operation mode, the control unit sets a target pressure required for self-weight compensation from the current position of the robot arm and executes the pressure control based on the target pressure.
When a drive mechanism using pneumatic pressure is used as the drive source for driving a surgical tool in a medical robot, it is advantageous to reduce the size of the drive mechanism. In particular, as the control of the operation, orientation, angle, etc. of the surgical tool is complicated, a number of drive sources are required to independently drive each operation. The size of the drive mechanism increases as the number of drive sources increases, so a technique to reduce the size of the drive mechanism is important.
An aspect of various embodiments is to provide a pneumatic drive for a medical robot that is capable of reducing the size of the device configuration.
According to an aspect of one or more embodiments, there is provided a pneumatic drive for a medical robot. The pneumatic drive may include a manifold having a plurality of cylinders extending in a first direction; and respective rods corresponding to the plurality of cylinders. The rods extend on one side in the first direction. The manifold further has a plurality of air supply ports that feed the cylinders with air for moving the respective rods forward and backward. The air supply ports are provided on the other side in the first direction in the manifold.
According to such a configuration, all of the plurality of air supply ports that feed the cylinders with air for moving the rods forward and backward are provided on the other side in the first direction in the manifold, and it is therefore possible to consolidate the arrangement of the plurality of air supply ports on one side (rear side) of the manifold to reduce the size of the device configuration.
In the pneumatic drive for a medical robot, the plurality of cylinders may be arranged in a second direction orthogonal to the first direction. This configuration allows the plurality of air supply ports to be consolidated in a direction different from the direction (second direction) in which the plurality of cylinders is arranged in the manifold.
In the pneumatic drive for a medical robot, a pipe located between one of the plurality of air supply ports and the one side of the cylinder may be provided to supply air for backward movement of the rod to the one side of the cylinder, and the pipe may be juxtaposed with the cylinder and extends in the first direction. With this configuration, the pipe communicating with one of the plurality of air supply ports consolidated on the other side of the manifold can be extended in the first direction to send air to the one side of the cylinder.
In the pneumatic drive for a medical robot, a plurality of pipes may be provided corresponding to the plurality of respective cylinders, and the plurality of pipes may be provided so as to be arranged in the second direction orthogonal to the first direction. With this configuration, the plurality of cylinders and the plurality of pipes are arranged in the second direction thereby to achieve an efficient layout of the cylinders and the pipes.
The pneumatic drive for a medical robot may include a peripheral member attached using the manifold as a reference. The manifold itself can be used as a structural member by making the plurality of cylinders into a manifold, and the peripheral member can therefore be disposed on the manifold as a reference.
In the pneumatic drive for a medical robot, a linear encoder may be provided corresponding to each of the plurality of cylinders, and the peripheral member may include a detector of the linear encoder. This configuration allows the detector of the linear encoder to be disposed at a position that does not interfere with the air supply ports. Moreover, the relative position between the detector and a linear motion guide supporting a scale portion of the linear encoder can be set with the same accuracy as the positioning accuracy between the linear motion guide and the manifold.
In the pneumatic drive for a medical robot, a substrate on which the plurality of the detectors is mounted may be provided as the peripheral member, and the substrate may be provided on the manifold so that the plurality of detectors is juxtaposed in the second direction orthogonal to the first direction. This configuration allows the substrate to be provided on the manifold, and the plurality of detectors can thereby be arranged to line up with the plurality of cylinders.
According to various embodiments, it is possible to provide a pneumatic drive for a medical robot capable of reducing the size of the device configuration.
Hereinafter, one or more embodiments will be described with reference to the drawings. In the following description, the same members are denoted by the same reference numerals and the description of members once explained may be omitted.
(Configuration of Pneumatic Drive)
As illustrated in
The drape 200 is disposed between the medical robot 500, which holds the surgical tool 100, and the surgical tool 100 and serves to isolate the surgical tool 100 and the medical robot 500 from each other. The drape 200 also serves to transmit power in the forward/backward direction from power transmission parts 550 of the medical robot 500 to movable parts 150 (see
The tip portion (mounting portion 520) of the multi-degree-of-freedom arm 510 is configured to be rotatable around an axis in the extending direction. The arm portion of the multi-degree-of-freedom arm 510 is also axially rotatable. The surgical tool 100 attached to the medical robot 500 can therefore approach a patient from various angles by using the multi-degree-of-freedom arm 510.
As illustrated in
The medical robot 500 is provided with a pneumatic drive 1 for driving the power transmission parts 550. The pneumatic drive 1 is incorporated in the housing of the multi-degree-of-freedom arm 510 (see
As illustrated in
Between the pneumatic drive 1 and the surgical tool 100, operation members 20 operated by the driving force of the pneumatic drive 1 and transmission members 30 located between the pneumatic drive 1 and the operation members 20 are provided.
The pneumatic drive 1 sends air to the cylinders 10 based on control signals output from a control unit (not illustrated) and linearly moves the rods 11 in the forward/backward direction (Z direction) by the balance of pneumatic pressures in the cylinders 10. The forward/backward operations of the rods 11 are transmitted from the transmission members 30 to the operation members 20, drive the power transmission parts 550, and are transmitted to the surgical tool 100. The driving force transmitted to the surgical tool 100 is transmitted from the power transmission parts 550 to the movable parts 150, and the treatment part 130 is operated by the operations of the movable parts 150.
(Specific Example of Pneumatic Drive)
In the pneumatic drive 1 according to some embodiments, the manifold 15 is provided with a plurality of cylinders 10. The cylinders 10 extend in the Z direction and are juxtaposed with each other in the X direction. That is, the plurality of cylinders 10 is arranged in the Z direction. In the example illustrated in
The manifold 15 is provided with air supply ports 17 for feeding respective cylinders 10 with air. The air supply ports 17 are used as ports for supplying air into the cylinders 10, and as ports for discharging air to the outside of the cylinders 10. For descriptive purposes, these ports will be described by referring to them as the air supply ports 17.
At least two air supply ports 17 are provided for moving a rod 11 forward and backward with respect to one cylinder 10. In the present embodiment, two air supply ports 17 correspond to one cylinder 10, and a total of six air supply ports 17 are therefore provided for the three cylinders 10. All of these six air supply ports 17 are provided on the other side of the manifold 15 in the Z direction (the side opposite to the rods 11).
Thus, making the plurality of cylinders 10 into a manifold contributes to a reduced size of the device. That is, the rigidity of the plurality of cylinders 10 alone is not high, and it is difficult to use the cylinders 10 as structural members. If the cylinders 10 are used as structural members, the size is increased in order to increase the rigidity. In the present embodiment, the rigidity of the manifold 15 is increased by making the plurality of cylinders 10 into a manifold, and the manifold 15 itself can be used as a structural member. Moreover, the manifold 15 can be used as a reference for attaching peripheral members by utilizing the rigidity of the manifold 15. These can contribute to a reduced size of the device. Furthermore, all of the plurality of air supply ports 17 are provided on the other side of the manifold 15, and the arrangement of the plurality of air supply ports 17 can thereby be consolidated on the one side (rear side) of the manifold 15 to reduce the size of the device configuration. In some embodiments, even in the pneumatic drive 1 including the plurality of cylinders 10 and the plurality of air supply ports 17 which supply air to the cylinders 10 in one manifold, the efficient layout achieves a reduced size of the device through juxtaposing the plurality of cylinders 10 in the X direction in the manifold 15 and consolidating all the air supply ports 17 on the other side in the Z direction.
(Operation of Pneumatic Drive)
Although not illustrated in
Here, in the two air supply ports 17 provided for one cylinder 10, the port which supplies the air for moving the rod 11 forward (air for forward movement A1) will be referred to as an air supply port 17a, and the port which supplies the air for moving the rod 11 backward (air for backward movement A2) will be referred to as an air supply port 17b.
The cylinder 10 is provided with a piston 12, and the rod 11 is operated to move forward and backward by the piston 12 which moves in the cylinder 10. The other side of the cylinder 10 is provided with a communication hole 19 that communicates with a space S1 on the other side of the piston 12 in the cylinder 10. The communication hole 19 is provided from the space S1 to the other end of the cylinder 10 in the Z direction. The communication hole 19 may be provided on the extension of the rod 11 in the Z direction (on the extension of the central axis of the cylinder 10). The communication hole 19 is provided with the air supply port 17a.
The pipe 18 communicates with a space S2 on the one side of the piston 12 in the cylinder 10, extends in the Z direction in parallel with the cylinder 10, and is provided up to the other end of the cylinder 10. The pipe 18 is provided with the air supply port 17b. This configuration allows the air supply ports 17a and 17b to be consolidated and juxtaposed on the other side of the cylinder 10.
As illustrated in
On the other hand, as illustrated in
As in the pneumatic drive 1 according to some embodiments, when the pipes 18 arranged in the X direction are provided corresponding to respective cylinders 10, the cylinders 10 and the pipes 18 are arranged in the X direction, and an efficient layout of the cylinders 10 and pipes 18 is realized. Moreover, all the air supply ports 17 are consolidated on the other side of the manifold 15; therefore, there is no member of the manifold 15 protruding in the X direction or the Y direction, and a reduced size of the device can be achieved. This configuration can enhance the degree of freedom in design when incorporating the pneumatic drive 1 into the multi-degree-of-freedom arm 510 of the medical robot 500 and easily achieve a reduced size of the entire medical robot 500.
(Configuration with Linear Encoder)
The configuration with a linear encoder in the pneumatic drive 1 according to some embodiments will then be described.
One end portion in the Y direction of the transmission member 30 provided between the rod 11 and the operation member 20 is fixed to a scale portion 60 of a linear encoder 61 supported by a linear motion guide 50. The linear motion guide 50 supports the scale portion 60 so that it is movable in the Z direction. The transmission member 30 therefore comes to a state of being supported by the linear motion guide 50 via the scale portion 60 and is supported so as to be linearly movable in the Z direction together with the scale portion 60.
When the rod 11 is driven in the Z direction by the pneumatic drive 1 from the state illustrated in
Furthermore, the rigidity of the scale portion 60, which is a large member, suppresses the movement of the transmission member 30 in the X direction and the Y direction. This configuration allows the transmission member 30 to accurately move in the Z direction. In some embodiments, the accuracy of the linear motion of the manipulation member 20 is ensured by the linear motion guide 50 which supports the scale portion 60. It therefore suffices that the pneumatic drive 1 is capable of driving, and the driving direction of the rod 11 may be slightly deviated.
In the manifold 15 having a plurality of cylinders 10, the cylinders 10 are provided with respective scale portions 60. The detectors 65 facing the respective scale portions 60 are mounted on the substrate 63 and are provided on the manifold 15 via the substrate 63.
The substrate 63 is attached onto the manifold 15 so that the detectors 65 are juxtaposed with each other in the X direction. With this configuration, by providing the substrate 63 on the manifold 15, the detectors 65 can be arranged so as to be aligned with the cylinders 10.
In some embodiments, the air supply ports 17 are consolidated on the other side of the manifold 15; therefore, there is a sufficient area (positions that do not interfere with the air supply ports 17) for attaching the substrate 63 onto the manifold 15, and the detectors 65 can be easily arranged to face the respective scale portions 60 via one substrate 63 in a state of being juxtaposed in the X direction.
Thus, according to some embodiments, the pneumatic drive 1 for the medical robot 500 can be reduced in size even with a device configuration having a plurality of cylinders 10.
Although various embodiments have been described above, the present disclosure is not limited to these examples. For example, an example has been described in which one manifold 15 includes three cylinders 10 and three rods 11, but the number is not limited to three. Moreover, an example of the forceps has been described as the treatment part 130 of the surgical tool 100, but a treatment part 130 other than the forceps may be employed. Although the substrate 63 on which the detector 65 is mounted has been described as a specific example of the peripheral member, the detector 65 may be provided directly on the manifold 15. In this case, the detector 65 is a peripheral member by itself. Furthermore, the scope of the present disclosure encompasses those to which a person skilled in the art appropriately makes addition or removal of constitutional elements or design changes with respect to the previously-described embodiments or specific examples and those in which features of the embodiments are appropriately combined, provided that they have the subject matters of the present disclosure.
It should be understood that the present disclosure is not limited to the above embodiments, but various other changes and modifications may be made therein without departing from the spirit and scope of the appended claims.
This U.S. Application is a continuation application of International Application No. PCT/JP2020/016953 filed Apr. 17, 2020, the contents of which being incorporated by reference herein in its entirety.
Number | Date | Country | |
---|---|---|---|
Parent | PCT/JP2020/016953 | Apr 2020 | US |
Child | 17896684 | US |