Medical sensor and technique for using the same

Information

  • Patent Grant
  • 8346328
  • Patent Number
    8,346,328
  • Date Filed
    Friday, December 21, 2007
    16 years ago
  • Date Issued
    Tuesday, January 1, 2013
    11 years ago
Abstract
Embodiments disclosed may include a sensor which may be adapted to provide information related to its position on a patient's tissue. A sensor may be provided with tissue contact sensors which may relay a signal related to the sensor's proper placement adjacent a patient's tissue. Such a sensor may be useful for providing information to a clinician about the status of a sensor, such as if a sensor may be located more closely to the tissue in order to provide improved measurements.
Description
BACKGROUND

The present disclosure relates generally to medical devices and, more particularly, to sensors used for sensing physiological parameters of a patient.


This section is intended to introduce the reader to various aspects of art that may be related to various aspects of the present disclosure, which are described and/or claimed below. This discussion is believed to be helpful in providing the reader with background information to facilitate a better understanding of the various aspects of the present invention. Accordingly, it should be understood that these statements are to be read in this light, and not as admissions of prior art.


In the field of medicine, doctors often desire to monitor certain physiological characteristics of their patients. Accordingly, a wide variety of devices may have been developed for monitoring many such physiological characteristics. Such devices may provide doctors and other healthcare personnel with information they may utilize to provide the best possible healthcare for their patients. As a result, such monitoring devices may have become an indispensable part of modern medicine.


One technique for monitoring certain physiological characteristics of a patient is commonly referred to as pulse oximetry, and the devices built based upon pulse oximetry techniques are commonly referred to as pulse oximeters. Pulse oximetry may be used to measure various blood flow characteristics, such as the oxygen saturation of hemoglobin in arterial blood, the volume of individual blood pulsations supplying the tissue, and/or the rate of blood pulsations corresponding to each heartbeat of a patient. The “pulse” in pulse oximetry may refer to the time varying amount of arterial blood in the tissue during each cardiac cycle.


Pulse oximeters may utilize a non-invasive sensor capable of transmitting light through a patient's tissue and that photoelectrically detects the absorption and/or scattering of the transmitted light in such tissue. Physiological characteristics may then be calculated based at least in part upon the amount of light absorbed or scattered. The light passed through the tissue may be typically selected to be of one or more wavelengths that may be absorbed or scattered by the blood in an amount correlative to the amount of the blood constituent present in the blood. The amount of light absorbed and/or scattered may then be used to estimate the amount of blood constituent in the tissue using various algorithms.


To facilitate accurate and reliable measurements when monitoring physiological characteristics of a patient, a pulse oximetry sensor should be adequately in contact with the patient's tissue. When a sensor is dislodged or removed from the patient, or contact is inadequate, some or all of the emitted light does not pass through the patient's tissue, and the detected light may no longer relate in the same way to a physiological constituent. Because detected light unrelated to a physiological constituent may result in measurement inaccuracies, it may be desirable to provide a mechanism for indicating that sensor is not in sufficient contact with the patient's tissue.


SUMMARY

Certain aspects commensurate in scope with the originally claimed invention are set forth below. It should be understood that these aspects are presented merely to provide the reader with a brief summary of certain forms that the invention might take and that these aspects are not intended to limit the scope of the invention. Indeed, the invention may encompass a variety of aspects that may not be set forth below.


There is provided a sensor that includes: a sensor body; an emitter and a detector disposed adjacent the sensor body; and an electrode tissue contact sensor disposed adjacent the sensor body, wherein the electrode tissue contact sensor is capable of providing a signal related to the distance from the electrode to tissue of a patient.


There is also provided a sensor that includes: a sensor body; an emitter and a detector disposed adjacent the sensor body; and a temperature-based tissue contact sensor disposed adjacent the sensor body, wherein the temperature-based tissue contact sensor is capable of providing an electrical feedback signal related to distance between the temperature-based tissue contact sensor and tissue of a patient.


There is also provided a sensor that includes: a sensor body; and an emitter disposed adjacent the sensor body, wherein the emitter is capable of emitting a reference wavelength strongly absorbed by tissue of a patient, and a signal wavelength utilized to detect a tissue constituent; and a detector capable of detecting the reference wavelength and the signal wavelength.





BRIEF DESCRIPTION OF THE DRAWINGS

Aspects of embodiments may become apparent upon reading the following detailed description and upon reference to the drawings in which:



FIG. 1 illustrates a perspective view of bandage-style medical sensor including a contact sensor, according to an embodiment;



FIG. 2A is cross-sectional view of a medical sensor including a plunger-activated mechanical contact sensor, according to an embodiment;



FIG. 2B is cross-sectional view of the sensor of FIG. 2A applied to a patient's tissue with the mechanical contact sensor engaged to close a circuit, according to an embodiment;



FIG. 2C shows an alternative embodiment of the sensor of FIG. 2A in which engagement of the mechanical contact sensor opens a circuit, according to an embodiment;



FIG. 3A is cross-sectional view of a medical sensor including an alternative mechanical contact sensor, according to an embodiment;



FIG. 3B is cross-sectional view of the sensor of FIG. 3A applied to a patient's tissue with the mechanical contact sensor engaged to close a circuit, according to an embodiment;



FIG. 3C shows an alternative embodiment of the sensor of FIG. 3A in which engagement of the mechanical contact sensor opens a circuit, according to an embodiment;



FIG. 4 illustrates an exemplary strain-gauge semiconductor contact sensor, according to an embodiment;



FIG. 5A illustrates an exemplary optical-type contact sensor including a mechanical plunger, according to an embodiment;



FIG. 5B is a view of the sensor of FIG. 5A applied to a patient's tissue with the optical contact blocked, according to an embodiment;



FIG. 6A illustrates an alternative optical-type contact sensor, according to an embodiment;



FIG. 6B is a view of the sensor of FIG. 6A applied to a patient's tissue with the optical contact opened, according to an embodiment;



FIG. 7A illustrates an alternative optical-type contact sensor in which the sensor's emitter emits a “sensor-off” wavelength that may be detected when the sensor is not in generally adequate contact with the tissue, according to an embodiment;



FIG. 7B is a view of the sensor of FIG. 7A applied to a patient's tissue in which the sensor's contact with the skin blocks the “sensor-off” wavelength, according to an embodiment;



FIG. 8 illustrates an exemplary temperature contact sensor, according to an embodiment;



FIGS. 9A and 9B illustrate an exemplary electrode contact sensor, according to an embodiment;



FIG. 10 illustrates a pulse oximetry system coupled to a multi-parameter patient monitor and a sensor, according to an embodiment; and



FIG. 11 is a block diagram of an exemplary pulse oximetry model connected to a sensor, according to an embodiment.





DETAILED DESCRIPTION

One or more embodiments will be described below. In an effort to provide a concise description of these embodiments, not all features of an actual implementation are described in the specification. It should be appreciated that in the development of any such actual implementation, as in any engineering or design project, numerous implementation-specific decisions must be made to achieve the developers' specific goals, such as compliance with system-related and business-related constraints, which may vary from one implementation to another. Moreover, it should be appreciated that such a development effort might be complex and time consuming, but would nevertheless be a routine undertaking of design, fabrication, and manufacture for those of ordinary skill having the benefit of this disclosure.


In an embodiment, medical sensors for pulse oximetry or other applications utilizing spectrophotometry may be provided which may provide a signal related to a “sensor on” and/or a “sensor off” state. In an embodiment, the sensors may include one or more tissue contact sensors. Such sensors may provide a signal to a downstream medical device in order to convey a change in sensor status medical device and to a healthcare practitioner, for example when a sensor falls off of a patient or moves relative to a patient's tissue. Further, embodiments of such sensors may be capable of providing information as to proper sensor application. By providing information related to the correct placement of a sensor, sensors as provided herein may reduce measurement errors which may result from a sensor being located too far from the tissue to provide accurate measurements, as well as other inadequate sensor placement.



FIG. 1 shows an embodiment of a sensor 10 with a generic contact sensor 12 disposed generally adjacent and/or on a sensor body 14. As depicted in this embodiment, the sensor 10 may have a bandage-style sensor body 14, capable of conforming to a patient's foot. In an embodiment, the sensor 10 includes an emitter 16 and a detector 18. The signal from the detector 18 and the signal from the contact sensor 12 may be sent via sensor cable 20 to a downstream medical device discussed in more detail below. It should also be understood that the contact sensor 12 may be a separate assembly disposed generally adjacent and/or on the sensor body 14, or may be integral with the sensor circuit connected to the emitter 16 and the detector 18. In an embodiment, a mechanical switch contact sensor, such has those provided herein, may be electrically in series with the emitter 16. A closing or opening of a circuit may control power to the emitter 16 or the detector 18.


In an embodiment, the contact sensor 12 may be used with any suitable sensor type, including reusable and/or disposable sensors, as well as clip-on or bandage-style sensors, among others. Further, it should be understood that the contact sensor 12 may be used with sensors applied to any suitable tissue site (e.g., finger, ear, toe, forehead). The contact sensor 12 may be disposed on the sensor body 14 in any suitable location. As depicted in this embodiment, the contact sensor 12 may be proximate to the emitter 16. In transmission-type sensors 10 in which the emitter 16 and the detector 18 are positioned across the tissue from one another, it may be advantageous to position the contact sensor 12 away from the area between the emitter 16 and the detector 18. In this case, the contact sensor 12 may not be located in an area of the sensor body 14 that may fold around the tissue and thus may not conform closely enough to provide an accurate contact signal. In an embodiment, in reflectance-type sensors in which the emitter 16 and the detector 18 are side-by-side, the contact sensor 12 may be located in any suitable location on the sensor body 14.



FIG. 2A and FIG. 2B illustrate an embodiment of a medical sensor 10A with a micro-switch contact sensor 12A. The micro-switch contact sensor 12A may be disposed on or generally adjacent to the sensor 10A in any appropriate location, such as between the emitter 16 and the detector 18, as depicted. The micro-switch contact sensor 12A may include a plunger assembly 32 which may be capable of closing a circuit 28 upon proper application of the sensor 10A to the probed tissue site.


In an embodiment, the plunger assembly 32 includes a tissue contact element 33, a biasing member 34, and a switch element 35. Generally, the switch element 35 may be formed from any suitable conductive material, such as a metal. The tissue contact element 33 may be formed from any suitable material that may be sufficiently resilient to transmit pressure from the tissue to the biasing member 34, while also being generally comfortable against a patient's tissue.


In an embodiment, suitable materials for forming the tissue contact element 33 may include thermoplastic polymers or metals, for example. The plunger assembly 32 may be biased by the biasing member, such as a spring 34, such that the switch element 35 will not close the circuit 28 without sufficient pressure being applied to the tissue contact element 33. This may result in the “resting state” of the circuit 28 being open. The open circuit may thus correspond to the “sensor off” state.


The spring 34 may be sized such that when the sensor 10A is properly applied against a monitoring site, the plunger assembly 32 will move, and the switch element 35 will close the circuit 28 across the contacts 36. In such an embodiment, the closed circuit may correspond to the “sensor on” state.


In an embodiment, as depicted in FIG. 2C, the plunger assembly 32′ may be biased such the resting “sensor off” state of the circuit 28′ is closed, and the application of force from the sensor 10A being applied to the tissue results in the switch element 35′ moving to open the circuit 28′. In such an embodiment, the open circuit may correspond to the “sensor on” state.


The spring-based contact sensor 12A may provide the advantage of design flexibility as the biasing member 34 may be sized for any suitable force or pressure specification, depending on the configuration of the sensor 10A and the sensing site. Further, since the spring 34 may be configured to move only after a threshold force has been applied, the use of a spring 34 may prevent false positive “sensor on” states from incidental contact with the sensor 10A. In one embodiment, the pressure range that may be used with the spring 34 in order to close the circuit 28 may be higher than typical venous pressure (e.g., 3-5 mm Hg) and lower than typical capillary pressure (e.g., 22 mm Hg). For example, the pressure may generally be between 15 mm Hg and 20 mm Hg in an adult patient.



FIG. 3A illustrates an embodiment of a sensor 10B with a contact sensor 12B which includes a leaf spring switch 42. In an embodiment, the leaf spring switch 42 includes a tissue contact element 44 which may be capable of resting against the tissue site being probed. In an embodiment, the leaf spring switch 42 is connected to a circuit 46, such that when the sensor is in the resting “sensor off” state, the circuit 46 is open. Upon suitable pressure being applied to the leaf spring switch 42, the leaf spring switch 42 is pushed against the contact 48, causing the circuit 46 to close, resulting in a signal which may indicate that the sensor is in the “sensor on” state, as shown in FIG. 3B. Thus, the portion of the leaf spring switch 42 that closes the circuit may be formed from a suitably conductive material. In an embodiment, such a contact sensor 12B may be relatively simple in design and configuration, and lightweight. This may enable certain cost and manufacturing advantages. In an alternative embodiment, shown in FIG. 3C, the leaf spring switch 42′ of the contact sensor 12B′ may be biased so that the resting “sensor off” state is a closed circuit 46′. When the sensor is in close contact with the skin, the leaf spring switch 42′ is pushed up, resulting in an open circuit indicating the “sensor on” state.



FIG. 4 shows an embodiment of a sensor 10C with a strain gauge contact sensor 12C. The strain gauge contact sensor 12C may incorporate a conductive grid 52 applied to a carrier matrix 54, for example a semiconductive material, that is capable of relaying a signal related to a pressure level when the sensor 10C is properly applied at a sensing site. In an embodiment, the electrical resistance of the grid may vary linearly with strain, and force or pressure on the strain gauge contact sensor 12C may be determined by measuring the change in resistance. Such a configuration may provide the advantage of relaying more detailed information about the nature of the contact rather than only an on/off signal. A downstream medical device such as a monitor, discussed below, may process the signal in order to characterize the nature of the pressure and determine if the pressure is associated with a “sensor on” or “sensor off” state, among other determinations utilizing the signal.



FIGS. 5A and SB illustrate an embodiment of a sensor 10D, which may include a contact sensor 12D in which a mechanical switch may affect an optical component. In such an embodiment, a mechanical component may move within an optical path to block light from reaching a detector, or may move generally out of an optical path to allow light to reach a detector. Thus, the contact sensor 12D may relay a signal related to detected light as an indication of whether the sensor 10D is properly applied to the tissue. In addition to an emitter 16 and detector 18 (not shown) which are related to the physiological signal sensing function of the sensor 10D, the sensor 10D may also include additional optical components that are part of the contact sensor 12D.


As depicted in the embodiment in FIG. 5, the contact sensor 12D may include a secondary emitter 62 and a secondary detector 64 which are generally in-line with apertures 66 along their optical path. In an embodiment, a spring-biased plunger assembly 68 may be configured to block light or allow light to reach the secondary detector 64, depending on whether pressure is being applied to the spring biased plunger assembly 68.


The spring-biased plunger assembly 68 may move a predetermined amount upon proper application of the sensor 10D to a tissue site. The application of the sensor 10D may transmit a force to the spring-biased plunger assembly 68 which may move a shutter 70 generally out of line with the optical path between the secondary emitter 62 and the secondary detector 64, which may inhibit and/or prevent emitted light from impinging the secondary detector 64, as shown in FIG. 5B. In an embodiment, the secondary emitter 62 and the secondary detector 64 may be operatively connected to a downstream medical device, which may process the contact sensor 12D signal. Thus, the “sensor on” signal may be related to a decrease in light detected by the secondary detector 64.


In an embodiment, the shutter 70 may be positioned along the spring biased plunger assembly 68 such that the application of pressure to the contact sensor 12D may move the shutter 70 generally in-line with the optical path, and thus the “sensor on” signal may be related to an increase in detected light. In any embodiment, the shutter 70 may be positioned along a movable rod 72 which is part of the spring biased plunger assembly 68. Generally, the rod 72 may be formed from or be covered with a light absorbing material that may effectively block all or part of the light along the optical path. The shutter 70 may be a aperture or opening in the rod 72 which is suitably sized and shaped to allow some, or most of the light from the secondary emitter 62 to pass through to the detector 64.



FIGS. 6A and 6B illustrate an embodiment of a sensor 10E in which a contact sensor 12E includes a mechanical switch which may prevent the emitter 16 from emitting light into the tissue unless the sensor 10E has been properly applied to the patient. The pressure of application of a leaf spring 80 to the tissue site may move a shutter 82, disposed adjacent or on the leaf spring 80, into position to allow light from the emitter 16 to enter the tissue and be reflected back to the detector 18. In an embodiment, an internal light barrier 83 may provide a limited optical path for the emitted light, such that it is substantially directed towards the shutter 82. An absence of detection of emitted light may indicate to a downstream medical device as a “sensor off” condition. Such a configuration may provide the advantage of a streamlined contact sensor which is incorporated into, and provides physical feedback to, the physiological sensing components. However, such an arrangement may not allow a downstream medical device to differentiate between a nonfunctional emitter 16 and a “sensor off” condition. In such an embodiment, the downstream monitor may run a test program to check the condition emitter 16.


In an embodiment, as shown in FIGS. 7A and 7B, a sensor 10F may include a contact sensor 12F. Contact sensor 12F may be capable of relaying an optical signal related to sensor contact utilizing particular emitted wavelengths which may be associated with a “sensor off” condition. In an embodiment, such wavelengths may be distinct from the wavelengths used to detect the physiological constituent. The wavelengths related to the “sensor off” condition may be generally strongly absorbed by the tissue, while the physiological constituent wavelengths may be generally not strongly absorbed by the tissue.


The emitter 16 may be configured to emit multiple wavelengths of light. In an embodiment, a first wavelength, as shown by dashed arrow 84, may be related to a physiological constituent. A second wavelength, as shown by solid arrow 86, may be strongly absorbed by a patient's tissue. If the sensor is not properly applied to the tissue, as shown in FIG. 7A, light of the second wavelength 86 may not be absorbed by the tissue, and may impinge the detector 18. If the sensor 10F is properly applied to the patient's tissue, light of the second wavelength 86 may be substantially absorbed by the patient's tissue, and may not impinge the detector. Furthermore, light related to the physiological constituent may properly pass through the tissue to impinge the detector 18. Thus, the “sensor off” condition may be related to an increase in light of the second wavelength 86 impinging the detector 18.


In this embodiment, such a configuration may not employ any additional mechanical components, and thus may provide manufacturing advantages. The wavelengths related to the “sensor off” condition may be selected based on the optical absorption properties of the tissue and the distance between the emitter 16 and the detector 18, among other considerations. For a pulse oximetry sensor having an emitter-detector spacing of at least a few millimeters, such a wavelength may be selected to be generally longer than about 1200 nm, so as to generally be strongly absorbed by water in the tissue, or shorter than about 600 nm, so as to be generally strongly absorbed by hemoglobin in the blood perfusing the tissue.



FIG. 8 illustrates an embodiment of a sensor 10G, in which the contact sensor 12G employs one or more temperature sensors to relay a signal related to tissue contact. The temperature sensor 90 (such as a thermistor) may be capable of measuring the temperature of the tissue site being probed. The temperature sensor 90 may provide a temperature signal which may be processed by a downstream medical device, and compared against a threshold value, such as ambient temperature, to provide an indication of a “sensor off” condition. In an embodiment, a measured temperature may be compared to a clinically determined average skin surface temperature. A significantly lower temperature measurement may indicate a “sensor off” state. In an embodiment, the contact sensor 12G of the sensor 10G may employ a plurality of temperature sensors 90 to provide additional temperature reference points. For example, when the difference between the two temperature readings is greater than a predetermined threshold value, a downstream medical device may interpret that condition as a “sensor off.”


In an embodiment, a second temperature sensor (not shown) may be positioned on a non-tissue-contacting surface to measure an ambient temperature. Accordingly, when the difference between the first and second temperature measurements is less than a predetermined threshold value downstream medical device may interpret that condition as a “sensor off.” The dual temperature sensing configuration, which may be more expensive than a single temperature sensing configuration, may provide a generally more reliable measurement, which may be based at least in part upon a difference between temperature measurements.


In addition to contact measurements based on mechanical switches, optical measurements, and temperature, a sensor contact with the tissue may be determined from electrical properties inherent to certain sensing components. In an embodiment, as shown in FIGS. 9A and 9B, a sensor 10H may include a contact sensor 12H having a single electrode 92 that may provide a noise signal related to the distance of the electrode 92 from the tissue. In most patient monitoring environments, electrical noise from sources such as electric lights, nearby motors, radio transmission facilities, or other nearby electrical instrumentation, is generally present. The patient's body acts, in part, as an antenna that receives these ambient noise signals. As shown in FIG. 9A, when the distance, indicated as D1, from the tissue to the electrode 92 is relatively far, the electrode 92 may be in electrical-ohmic isolation from the skin and the detected noise signal, indicated by reference numeral 94, may be relatively small. As the distance between the tissue and the electrode 92 decreases, as shown in FIG. 9B, the detected noise signal, indicated by reference numeral 96, may be relatively larger. The noise signal 94 detected by the electrode 92 may be compared to a predetermined threshold corresponding with good sensor placement. For example, if the noise signal 94 is sufficiently large, the sensor 10H may be determined to be in close contact with the skin.


Such a configuration may provide cost and convenience advantages over dual electrode contact sensors that measure impedance of the skin between two electrodes. For dual electrode sensors, electrical impedance of the skin may be affected by tissue integrity and hydration as well as by the distance between the two electrodes, which may vary. As In sensor 10H a single electrode 92 relays a noise signal related to the gap between the sensor 10H and the tissue. Accordingly, the skin itself does not conduct the detected noise signal 94. Thus, the signal may not be influenced by the tissue characteristics unique to each patient. Accordingly, the sensor 10H may be more readily calibrated than dual electrode contact sensors that measure impedance of the skin between two electrodes that send a current through the skin.


In various embodiments, regardless of the type of contact sensor 12 used, a sensor, illustrated generically as a sensor 10, may be used in conjunction with a downstream medical device, which may include a pulse oximetry monitor 100, as illustrated in FIG. 10. It should be appreciated that the cable 20 of the sensor 10 may be coupled to the monitor 100 or it may be coupled to a transmission device (not shown) to facilitate wireless transmission between the sensor 10 and the monitor 100. The monitor 100 may be any suitable pulse oximeter, such as those available from Nellcor Puritan Bennett Inc. Furthermore, to upgrade conventional pulse oximetry provided by the monitor 100 to provide additional functions, the monitor 100 may be coupled to a multi-parameter patient monitor 102 via a cable or wireless connection 104 connected to a sensor input port or via a cable or wireless connection 106 connected to a digital communication port.



FIG. 11 is a block diagram of an embodiment of a pulse oximeter which may be configured to implement the embodiments of the present disclosure. Light from emitter 16 may pass into a blood perfused tissue 112, and may be scattered, and then detected by detector 18. A sensor 10 containing an emitter 16 and a detector 18 may also contain an encoder 116 which may be capable of providing signals indicative of the wavelength(s) of light source 16 to allow the oximeter to select appropriate calibration coefficients for calculating oxygen saturation. The encoder 116 may, in an embodiment, be a resistor. In an embodiment, the sensor 10 also includes a contact sensor 12 and may be capable of carrying a signal from the contact sensor 12 to a monitor 100.


In an embodiment, the sensor 10 may be connected to a pulse oximetry monitor 100. The monitor 100 may include a microprocessor 122 coupled to an internal bus 124. Also connected to the bus may be a RAM memory 126 and a display 128. A time processing unit (TPU) 130 may provide timing control signals to light drive circuitry 132, which controls when the emitter 16 is activated, and if multiple light sources are used, the multiplexed timing for the different light sources. TPU 130 may also control the gating-in of signals from detector 18 through an amplifier 133 and a switching circuit 134. These signals are sampled at the proper time, depending at least in part upon which of multiple light sources is activated, if multiple light sources are used. The received signal from the detector 18 and the contact sensor 12 may be passed through an amplifier 136, a low pass filter 138, and an analog-to-digital converter 140. The digital data may then be stored in a queued serial module (QSM) 142, for later downloading to RAM 126 as QSM 142 fills up. In an embodiment, there may be multiple parallel paths of separate amplifier, filter, and A/D converters for multiple light wavelengths or spectra received.


In an embodiment, the monitor 100 may be configured to receive signals from the sensor 10. The signals may be related to a physiological constituent and/or a contact sensor 12 that may be processed by the monitor 100 to indicate a sensor condition such as “sensor on” or “sensor off.” The monitor 100 may be configured to provide an indication about the sensor condition, such as an audio alarm, visual alarm or a display message, such as “CHECK SENSOR.” Further, the monitor 100 may be configured to receive information about the contact sensor 12 from a memory chip or other device, such as the encoder 116, which may be on the sensor 10 or the cable 20. In an embodiment, such a device may include a code or other identification parameter that may allow the monitor 100 to select an appropriate software or hardware instruction for processing the signal.


In an embodiment, a monitor 100 may run an algorithm or code for processing the signal provided by the contact sensor 12 The processing algorithm may receive information that a circuit is either opened or closed, allowing for a simple binary determination of “sensor on” or “sensor off,” depending on the parameters of the particular contact sensor 12. In other embodiments, a more complex algorithm may process a signal from a primary detector 18, and/or a secondary detector, and/or other detectors, and may compare an increase or decrease in detected light to empirically-derived stored parameters to determine the sensor condition. In other embodiments, a signal may result in a hardware switch that may open or close a circuit, which may trigger the display 128 to display a sensor state message.


In an embodiment, based at least in part upon the received signals corresponding to the light received by detector 18, microprocessor 122 may calculate the oxygen saturation using various algorithms. These algorithms may require coefficients, which may be empirically determined, and may correspond to the wavelengths of light used. The algorithms may be stored in a ROM 146 and accessed and operated according to microprocessor 122 instructions.


In an embodiment of a two-wavelength system, the particular set of coefficients chosen for any pair of wavelength spectra may be determined by a value indicated by the encoder 116 corresponding to a particular light source in a particular sensor 10. In one embodiment, multiple resistor values may be assigned to select different sets of coefficients. In another embodiment, the same resistors are used to select from among the coefficients appropriate for an infrared source paired with either a near red source or far red source. The selection between whether the near red or far red set will be chosen can be selected with a control input from control inputs 154. Control inputs 154 may be, for instance, a switch on the pulse oximeter, a keyboard, or a port providing instructions from a remote host computer. Furthermore, any number of methods or algorithms may be used to determine a patient's pulse rate, oxygen saturation or any other desired physiological parameter.


In an embodiment, a monitor 100 may provide instructions to vary the emitter drive 132 frequency and/or pattern, and verify that the detected and de-multiplexed light signals are unaffected. Accordingly, when the sensor is receiving a significant portion of its signals from the ambient light (i.e. corresponding to a “sensor off” condition), then a change in the emitter 16 drive frequency and/or pattern will likely result in a change in the detected photocurrent and/or the de-multiplexed waveform (resulting from a change in alias frequencies). This technique may be more advantageous in a setting with sufficient ambient light.


In an embodiment, the sensor 10 includes an emitter 16 and a detector 18 that may be of any suitable type. For example, the emitter 16 may be one or more light emitting diodes adapted to transmit one or more wavelengths of light in the red to infrared range, and the detector 18 may one or more photodetectors selected to receive light in the range or ranges emitted from the emitter 16. Alternatively, an emitter 16 may also be a laser diode or a vertical cavity surface emitting laser (VCSEL), or other light source. The emitter 16 and detector 18 may also include optical fiber sensing elements.


In an embodiment, an emitter 16 may include a broadband or “white light” source, and the detector could include any of a variety of elements for selecting specific wavelengths, such as reflective or refractive elements or interferometers. These types of emitters and/or detectors may be coupled to the rigid or rigidified sensor via fiber optics.


In an embodiment, a sensor 10 may sense light detected from the tissue at a different wavelength from the light emitted into the tissue. Such sensors may be adapted to sense fluorescence, phosphorescence, Raman scattering, Rayleigh scattering, and/or multi-photon events or photoacoustic effects. For pulse oximetry applications using either transmission or reflectance type sensors the oxygen saturation of the patient's arterial blood may be determined using two or more wavelengths of light, most commonly red and near infrared wavelengths. Similarly, in other applications, a tissue water fraction (or other tissue constituent related metric) or a concentration of one or more biochemical components in an aqueous environment may be measured using two or more wavelengths of light. In various embodiments, these wavelengths may be infrared wavelengths between about 1,000 nm to about 2,500 nm.


It should be understood that, as used herein, the term “light” may refer to one or more of ultrasound, radio, microwave, millimeter wave, infrared, visible, ultraviolet, gamma ray or X-ray electromagnetic radiation, and may also include any wavelength within the ultrasound, radio, microwave, millimeter wave, infrared, visible, ultraviolet, or X-ray spectra, and that any suitable wavelength of light may be appropriate for use with the present techniques.


In an embodiment, the emitter 16 and the detector 18 may be disposed on or generally adjacent to a sensor body 14, which may be made of any suitable material, such as plastic, foam, woven material, or paper. In an embodiment, the emitter 16 and the detector 18 may be remotely located and optically coupled to the sensor 10 using optical fibers. In various embodiments, the sensor 10 is coupled to a cable 20 that is responsible for transmitting electrical and/or optical signals to and from the emitter 16 and detector 18 of the sensor 10. The cable 20 may be permanently coupled to the sensor 10, or it may be removably coupled to the sensor 10—the latter alternative being more useful and cost efficient in situations where the sensor 10 is disposable.


In various embodiments, the sensor 10 may be a “transmission type” sensor. Transmission type sensors may include an emitter 16 and detector 18 that are placed on opposing sides of the sensor site. If the sensor site is a fingertip, for example, the sensor 10 is positioned over the patient's fingertip such that the emitter 16 and detector 18 lie on either side of the patient's nail bed. In other words, the sensor 10 is positioned so that the emitter 16 is located on the patient's fingernail and the detector 18 is located 180° opposite the emitter 16 on the patient's finger pad.


During operation, the emitter 16 shines one or more wavelengths of light through the patient's fingertip, and the light received by the detector 18 is processed to determine various physiological characteristics of the patient. In each of the embodiments discussed herein, it should be understood that the locations of the emitter 16 and the detector 18 may be exchanged. For example, the detector 18 may be located at the top of the finger and the emitter 16 may be located underneath the finger. In either arrangement, the sensor 10 may perform in substantially the same manner.


Reflectance type sensors also operate by emitting light into the tissue and detecting the light that is transmitted and scattered by the tissue. Reflectance type sensors may include an emitter 16 and detector 18 which are typically placed on the same side of the sensor site. For example, a reflectance type sensor may be placed on a patient's fingertip or foot such that the emitter 16 and detector 18 lie side-by-side. Reflectance type sensors detect light photons that are scattered back to the detector 18. A sensor 10 may also be a “transflectance” sensor, such as a sensor that may subtend a portion of a baby's heel.


While the resent disclosure may be capable of various modifications and alternative forms, embodiments have been shown by way of example in the drawings and have been described in detail herein. However, it should be understood that the disclosure is not intended to be limited to the particular forms disclosed. Indeed, the present techniques may not only be applied to measurements of blood oxygen saturation, but these techniques may also be utilized for the measurement and/or analysis of other blood constituents. For example, using the same, different, or additional wavelengths, the present techniques may be utilized for the measurement and/or analysis of additional blood or tissue constituents, such as carboxyhemoglobin, met-hemoglobin, total hemoglobin, intravascular dyes, and/or water content. Rather, the disclosure is to cover all modifications, equivalents, and alternatives falling within the spirit and scope of the invention as defined by the following appended claims.

Claims
  • 1. A sensor comprising: a sensor body;an emitter and a detector disposed adjacent the sensor body;a temperature-based tissue contact sensor disposed adjacent the sensor body, wherein the temperature-based tissue contact sensor is configured to provide an electrical feedback signal related to distance between the temperature-based tissue contact sensor and tissue of a patient; andan encoder comprising stored data or code related to the temperature-based tissue contact sensor, wherein the stored data or code is configured to be read by a monitor to cause the monitor to select a set of instructions for processing the electrical feedback signal from the temperature-based tissue contact sensor and determining if the temperature-based tissue contact sensor is in contact with the tissue of the patient.
  • 2. The sensor, as set forth in claim 1, wherein the sensor comprises a pulse oximetry sensor or a sensor configured to measure a water fraction.
  • 3. The sensor, as set forth in claim 1, wherein the emitter comprises a light emitting diode.
  • 4. The sensor, as set forth in claim 1, wherein the detector comprises a photodetector.
  • 5. The sensor, as set forth in claim 1, wherein the tissue contact sensor comprises at least two temperature sensors.
  • 6. The sensor, as set forth in claim 5, wherein the at least two temperature sensors are positioned to contact the patient.
  • 7. The sensor, as set for in claim 5, wherein at least one of the at least two temperature sensors is configured to sense ambient temperature.
  • 8. The sensor, as set forth in claim 5, wherein a first temperature sensor of the at least two temperature sensors is disposed adjacent the sensor body proximate to the emitter.
  • 9. The sensor, as set forth in claim 5, wherein a first temperature sensor of the at least two temperature sensors is disposed adjacent the sensor body proximate to the detector.
  • 10. A system comprising: a sensor comprising:a sensor body;an emitter and a detector disposed on the sensor body;a temperature-based tissue contact sensor disposed on or adjacent the sensor body, wherein the temperature-based tissue contact sensor is configured to provide a signal related to distance between the temperature-based tissue contact sensor and tissue of a patient; anda patient monitor operatively coupled to the sensor and the temperature-based tissue contact sensor and comprising a processor configured to receive the signal and determine if the sensor is in contact with the tissue of the patient based at least in part upon the signal from the temperature-based tissue contact sensor.
  • 11. The system, as set forth in claim 10, wherein the processor is configured to compare the signal to a threshold and determine that the sensor is not in contact with the tissue of the patient if the signal is representative of a measured temperature that is lower than a predetermined threshold.
  • 12. The system, as set forth in claim 11, wherein the threshold comprises a predetermined average skin surface temperature of the patient.
  • 13. The system, as set forth in claim 10, wherein the processor is configured to compare the signal to a threshold and determine that the sensor is in contact with the tissue of the patient if the signal is representative of a measured temperature that is higher than a predetermined threshold comprising a predetermined average skin surface temperature of the patient.
  • 14. A system, comprising: a sensor comprising: a sensor body;an emitter and a detector disposed on the sensor body; anda first temperature sensor disposed on a surface of the sensor body configured to contact a tissue of a patient when the sensor is applied to a patient, wherein the first temperature sensor is configured to provide a first signal; anda second temperature sensor disposed on a non-tissue-contacting surface of the sensor body, wherein the second temperature sensor is configured to provide a second signal; anda patient monitor operatively coupled to the sensor and comprising:an input circuit configured to receive the first signal and the second signal;a memory storing instructions for:determining a first temperature measurement based on the first signal;determining a second temperature measurement based on the second signal; anddetermining a sensor condition based on a difference between the first temperature measurement and the second temperature measurement; andan output circuit configured to provide an indication of the sensor condition.
  • 15. The system, as set forth in claim 14, wherein the instructions for determining a sensor condition based on a difference between the first temperature measurement and the second temperature measurement comprise comparing the difference to a threshold.
  • 16. The system, as set forth in claim 14, comprising a display configured to display the indication of the sensor condition.
  • 17. The system, as set forth in claim 16, wherein the indication of the sensor condition comprises a text indication.
  • 18. The system, as set forth in claim 16, wherein the indication of the sensor condition comprises an alarm.
US Referenced Citations (940)
Number Name Date Kind
3403555 Versaci et al. Oct 1968 A
3536545 Traynor et al. Oct 1970 A
D222454 Beeber Oct 1971 S
3721813 Condon et al. Mar 1973 A
4098772 Bonk et al. Jul 1978 A
D250275 Bond Nov 1978 S
D251387 Ramsay et al. Mar 1979 S
D262488 Rossman et al. Dec 1981 S
4334544 Hill et al. Jun 1982 A
4350165 Striese Sep 1982 A
4353372 Ayer Oct 1982 A
4380240 Jobsis et al. Apr 1983 A
4406289 Wesseling et al. Sep 1983 A
4510551 Brainard, II Apr 1985 A
4586513 Hamaguri May 1986 A
4603700 Nichols et al. Aug 1986 A
4621643 New, Jr. et al. Nov 1986 A
4653498 New, Jr. et al. Mar 1987 A
4677528 Miniet Jun 1987 A
4685464 Goldberger et al. Aug 1987 A
4694833 Hamaguri Sep 1987 A
4697593 Evans et al. Oct 1987 A
4700708 New, Jr. et al. Oct 1987 A
4714080 Edgar, Jr. et al. Dec 1987 A
4714341 Hamaguri et al. Dec 1987 A
4722120 Lu Feb 1988 A
4726382 Boehmer et al. Feb 1988 A
4759369 Taylor Jul 1988 A
4770179 New, Jr. et al. Sep 1988 A
4773422 Isaacson et al. Sep 1988 A
4776339 Schreiber Oct 1988 A
4781195 Martin Nov 1988 A
4783815 Buttner Nov 1988 A
4796636 Branstetter et al. Jan 1989 A
4800495 Smith Jan 1989 A
4800885 Johnson Jan 1989 A
4802486 Goodman et al. Feb 1989 A
4805623 Jöbsis Feb 1989 A
4807630 Malinouskas Feb 1989 A
4807631 Hersh et al. Feb 1989 A
4819646 Cheung et al. Apr 1989 A
4819752 Zelin Apr 1989 A
4824242 Frick et al. Apr 1989 A
4825872 Tan et al. May 1989 A
4825879 Tan et al. May 1989 A
4830014 Goodman et al. May 1989 A
4832484 Aoyagi et al. May 1989 A
4846183 Martin Jul 1989 A
4848901 Hood, Jr. Jul 1989 A
4854699 Edgar, Jr. Aug 1989 A
4859056 Prosser et al. Aug 1989 A
4859057 Taylor et al. Aug 1989 A
4863265 Flower et al. Sep 1989 A
4865038 Rich et al. Sep 1989 A
4867557 Takatani et al. Sep 1989 A
4869253 Craig, Jr. et al. Sep 1989 A
4869254 Stone et al. Sep 1989 A
4880304 Jaeb et al. Nov 1989 A
4883055 Merrick Nov 1989 A
4883353 Hansmann et al. Nov 1989 A
4890619 Hatschek Jan 1990 A
4892101 Cheung et al. Jan 1990 A
4901238 Suzuki et al. Feb 1990 A
4908762 Suzuki et al. Mar 1990 A
4911167 Corenman et al. Mar 1990 A
4913150 Cheung et al. Apr 1990 A
4926867 Kanda et al. May 1990 A
4927264 Shiga et al. May 1990 A
4928692 Goodman et al. May 1990 A
4934372 Corenman et al. Jun 1990 A
4938218 Goodman et al. Jul 1990 A
4942877 Sakai et al. Jul 1990 A
4948248 Lehman Aug 1990 A
4955379 Hall Sep 1990 A
4960126 Conlon et al. Oct 1990 A
4964408 Hink et al. Oct 1990 A
4971062 Hasebe et al. Nov 1990 A
4974591 Awazu et al. Dec 1990 A
5007423 Branstetter et al. Apr 1991 A
5025791 Niwa Jun 1991 A
RE33643 Isaacson et al. Jul 1991 E
5028787 Rosenthal et al. Jul 1991 A
5035243 Muz Jul 1991 A
5040039 Schmitt et al. Aug 1991 A
5041187 Hink et al. Aug 1991 A
5054488 Muz Oct 1991 A
5055671 Jones Oct 1991 A
5058588 Kaestle Oct 1991 A
5065749 Hasebe et al. Nov 1991 A
5066859 Karkar et al. Nov 1991 A
5069213 Polczynski Dec 1991 A
5078136 Stone et al. Jan 1992 A
5086229 Rosenthal et al. Feb 1992 A
5088493 Giannini et al. Feb 1992 A
5090410 Saper et al. Feb 1992 A
5094239 Jaeb et al. Mar 1992 A
5094240 Muz Mar 1992 A
5099841 Heinonen et al. Mar 1992 A
5099842 Mannheimer et al. Mar 1992 A
H1039 Tripp, Jr. et al. Apr 1992 H
5104623 Miller Apr 1992 A
5109849 Goodman et al. May 1992 A
5111817 Clark et al. May 1992 A
5113861 Rother May 1992 A
D326715 Schmidt Jun 1992 S
5119463 Vurek et al. Jun 1992 A
5125403 Culp Jun 1992 A
5127406 Yamaguchi Jul 1992 A
5131391 Sakai et al. Jul 1992 A
5140989 Lewis et al. Aug 1992 A
5152296 Simons Oct 1992 A
5154175 Gunther Oct 1992 A
5158082 Jones Oct 1992 A
5170786 Thomas et al. Dec 1992 A
5188108 Secker et al. Feb 1993 A
5190038 Polson et al. Mar 1993 A
5193542 Missanelli et al. Mar 1993 A
5193543 Yelderman Mar 1993 A
5203329 Takatani et al. Apr 1993 A
5209230 Swedlow et al. May 1993 A
5213099 Tripp et al. May 1993 A
5216598 Branstetter et al. Jun 1993 A
5217012 Young et al. Jun 1993 A
5217013 Lewis et al. Jun 1993 A
5218207 Rosenthal Jun 1993 A
5218962 Mannheimer et al. Jun 1993 A
5224478 Sakai et al. Jul 1993 A
5226417 Swedlow et al. Jul 1993 A
5228440 Chung et al. Jul 1993 A
5237994 Goldberger Aug 1993 A
5239185 Ito et al. Aug 1993 A
5246002 Prosser Sep 1993 A
5246003 DeLonzor Sep 1993 A
5247931 Norwood Sep 1993 A
5247932 Chung et al. Sep 1993 A
5249576 Goldberger et al. Oct 1993 A
5253645 Friedman et al. Oct 1993 A
5253646 Delpy et al. Oct 1993 A
5259381 Cheung et al. Nov 1993 A
5259761 Schnettler et al. Nov 1993 A
5263244 Centa et al. Nov 1993 A
5267562 Ukawa et al. Dec 1993 A
5267563 Swedlow et al. Dec 1993 A
5267566 Choucair et al. Dec 1993 A
5273036 Kronberg et al. Dec 1993 A
5275159 Griebel Jan 1994 A
5278627 Aoyagi et al. Jan 1994 A
5279295 Martens et al. Jan 1994 A
5285783 Secker Feb 1994 A
5285784 Seeker Feb 1994 A
5287853 Vester et al. Feb 1994 A
5291884 Heinemann et al. Mar 1994 A
5297548 Pologe Mar 1994 A
5299120 Kaestle Mar 1994 A
5299570 Hatschek Apr 1994 A
5309908 Friedman et al. May 1994 A
5311865 Mayeux May 1994 A
5313940 Fuse et al. May 1994 A
5323776 Blakeley et al. Jun 1994 A
5329922 Atlee, III Jul 1994 A
5337744 Branigan Aug 1994 A
5339810 Ivers et al. Aug 1994 A
5343818 McCarthy et al. Sep 1994 A
5343869 Pross et al. Sep 1994 A
5348003 Caro Sep 1994 A
5348004 Hollub et al. Sep 1994 A
5348005 Merrick et al. Sep 1994 A
5349519 Kaestle Sep 1994 A
5349952 McCarthy et al. Sep 1994 A
5349953 McCarthy et al. Sep 1994 A
5351685 Potratz Oct 1994 A
5353799 Chance Oct 1994 A
5355880 Thomas et al. Oct 1994 A
5355882 Ukawa et al. Oct 1994 A
5361758 Hall et al. Nov 1994 A
5365066 Krueger, Jr. et al. Nov 1994 A
5368025 Young et al. Nov 1994 A
5368026 Swedlow et al. Nov 1994 A
5368224 Richardson et al. Nov 1994 A
5372136 Steuer et al. Dec 1994 A
5377675 Ruskewicz et al. Jan 1995 A
5385143 Aoyagi Jan 1995 A
5387122 Goldberger et al. Feb 1995 A
5390670 Centa et al. Feb 1995 A
5392777 Swedlow et al. Feb 1995 A
5398680 Polson et al. Mar 1995 A
5402777 Warring et al. Apr 1995 A
5402779 Chen et al. Apr 1995 A
5411023 Morris, Sr. et al. May 1995 A
5411024 Thomas et al. May 1995 A
5413099 Schmidt et al. May 1995 A
5413100 Barthelemy et al. May 1995 A
5413101 Sugiura May 1995 A
5413102 Schmidt et al. May 1995 A
5417207 Young et al. May 1995 A
5421329 Casciani et al. Jun 1995 A
5425360 Nelson Jun 1995 A
5425362 Siker et al. Jun 1995 A
5427093 Ogawa et al. Jun 1995 A
5429128 Cadell et al. Jul 1995 A
5429129 Lovejoy et al. Jul 1995 A
5431159 Baker et al. Jul 1995 A
5431170 Mathews Jul 1995 A
5437275 Amundsen et al. Aug 1995 A
5438986 Disch et al. Aug 1995 A
5448991 Polson et al. Sep 1995 A
5452717 Branigan et al. Sep 1995 A
5465714 Scheuing Nov 1995 A
5469845 DeLonzor et al. Nov 1995 A
RE35122 Corenman et al. Dec 1995 E
5482034 Lewis et al. Jan 1996 A
5482036 Diab et al. Jan 1996 A
5485847 Baker, Jr. Jan 1996 A
5490505 Diab et al. Feb 1996 A
5490523 Isaacson et al. Feb 1996 A
5491299 Naylor et al. Feb 1996 A
5494032 Robinson et al. Feb 1996 A
5494043 O'Sullivan et al. Feb 1996 A
5497771 Rosenheimer Mar 1996 A
5499627 Steuer et al. Mar 1996 A
5503148 Pologe et al. Apr 1996 A
5505199 Kim Apr 1996 A
5507286 Solenberger Apr 1996 A
5511546 Hon Apr 1996 A
5517988 Gerhard May 1996 A
5520177 Ogawa et al. May 1996 A
5521851 Wei et al. May 1996 A
5522388 Ishikawa et al. Jun 1996 A
5524617 Mannheimer Jun 1996 A
5529064 Rall et al. Jun 1996 A
5533507 Potratz et al. Jul 1996 A
5551423 Sugiura Sep 1996 A
5551424 Morrison et al. Sep 1996 A
5553614 Chance Sep 1996 A
5553615 Carim et al. Sep 1996 A
5555882 Richardson et al. Sep 1996 A
5558096 Palatnik Sep 1996 A
5560355 Merchant et al. Oct 1996 A
5564417 Chance Oct 1996 A
5575284 Athan et al. Nov 1996 A
5575285 Takanashi et al. Nov 1996 A
5577500 Potratz Nov 1996 A
5582169 Oda et al. Dec 1996 A
5584296 Cui et al. Dec 1996 A
5588425 Sackner et al. Dec 1996 A
5588427 Tien Dec 1996 A
5590652 Inai Jan 1997 A
5595176 Yamaura Jan 1997 A
5596986 Goldfarb Jan 1997 A
5611337 Bukta Mar 1997 A
5617852 MacGregor Apr 1997 A
5619991 Guthrie et al. Apr 1997 A
5619992 Guthrie et al. Apr 1997 A
5626140 Feldman et al. May 1997 A
5630413 Thomas et al. May 1997 A
5632272 Diab et al. May 1997 A
5632273 Suzuki May 1997 A
5634459 Gardosi Jun 1997 A
5638593 Gerhardt et al. Jun 1997 A
5638816 Kiani-Azarbayjany et al. Jun 1997 A
5638818 Diab et al. Jun 1997 A
5645060 Yorkey Jul 1997 A
5645440 Tobler et al. Jul 1997 A
5660567 Nierlich et al. Aug 1997 A
5662105 Tien Sep 1997 A
5662106 Swedlow et al. Sep 1997 A
5664270 Bell et al. Sep 1997 A
5666952 Fuse et al. Sep 1997 A
5671529 Nelson Sep 1997 A
5673692 Schulze et al. Oct 1997 A
5673693 Solenberger Oct 1997 A
5676139 Goldberger et al. Oct 1997 A
5676141 Hollub Oct 1997 A
5678544 DeLonzor et al. Oct 1997 A
5680857 Pelikan et al. Oct 1997 A
5685299 Diab et al. Nov 1997 A
5685301 Klomhaus Nov 1997 A
5687719 Sato et al. Nov 1997 A
5687722 Tien et al. Nov 1997 A
5692503 Kuenstner Dec 1997 A
5692505 Fouts Dec 1997 A
5709205 Bukta Jan 1998 A
5713355 Richardson et al. Feb 1998 A
5724967 Venkatachalam Mar 1998 A
5727547 Levinson et al. Mar 1998 A
5730124 Yamauchi Mar 1998 A
5731582 West Mar 1998 A
D393830 Tobler et al. Apr 1998 S
5743260 Chung et al. Apr 1998 A
5743262 Lepper, Jr. et al. Apr 1998 A
5743263 Baker, Jr. Apr 1998 A
5746206 Mannheimer May 1998 A
5746697 Swedlow et al. May 1998 A
5752914 DeLonzor et al. May 1998 A
5755226 Carim et al. May 1998 A
5758644 Diab et al. Jun 1998 A
5760910 Lepper, Jr. et al. Jun 1998 A
5766125 Aoyagi et al. Jun 1998 A
5766127 Pologe et al. Jun 1998 A
5769785 Diab et al. Jun 1998 A
5772587 Gratton et al. Jun 1998 A
5774213 Trebino et al. Jun 1998 A
5776058 Levinson et al. Jul 1998 A
5776059 Kaestle Jul 1998 A
5779630 Fein et al. Jul 1998 A
5779631 Chance Jul 1998 A
5782237 Casciani et al. Jul 1998 A
5782756 Mannheimer Jul 1998 A
5782757 Diab et al. Jul 1998 A
5782758 Ausec et al. Jul 1998 A
5786592 Hök Jul 1998 A
5788634 Suda et al. Aug 1998 A
5790729 Pologe et al. Aug 1998 A
5792052 Isaacson et al. Aug 1998 A
5795292 Lewis et al. Aug 1998 A
5797841 DeLonzor et al. Aug 1998 A
5800348 Kaestle Sep 1998 A
5800349 Isaacson et al. Sep 1998 A
5803910 Potratz Sep 1998 A
5807246 Sakaguchi et al. Sep 1998 A
5807247 Merchant et al. Sep 1998 A
5807248 Mills Sep 1998 A
5810723 Aldrich Sep 1998 A
5810724 Gronvall Sep 1998 A
5813980 Levinson et al. Sep 1998 A
5817008 Rafert et al. Oct 1998 A
5817009 Rosenheimer et al. Oct 1998 A
5817010 Hibl Oct 1998 A
5818985 Merchant et al. Oct 1998 A
5820550 Polson et al. Oct 1998 A
5823950 Diab et al. Oct 1998 A
5823952 Levinson et al. Oct 1998 A
5827179 Lichter et al. Oct 1998 A
5827182 Raley et al. Oct 1998 A
5829439 Yokosawa et al. Nov 1998 A
5830135 Bosque et al. Nov 1998 A
5830136 DeLonzor et al. Nov 1998 A
5830137 Scharf Nov 1998 A
5839439 Nierlich et al. Nov 1998 A
RE36000 Swedlow et al. Dec 1998 E
5842979 Jarman et al. Dec 1998 A
5842981 Larsen et al. Dec 1998 A
5842982 Mannheimer Dec 1998 A
5846190 Woehrle Dec 1998 A
5851178 Aronow Dec 1998 A
5851179 Ritson et al. Dec 1998 A
5853364 Baker, Jr. et al. Dec 1998 A
5860919 Kiani-Azarbayjany et al. Jan 1999 A
5865736 Baker, Jr. et al. Feb 1999 A
5879294 Anderson et al. Mar 1999 A
5885213 Richardson et al. Mar 1999 A
5890929 Mills et al. Apr 1999 A
5891021 Dillon et al. Apr 1999 A
5891022 Pologe Apr 1999 A
5891024 Jarman et al. Apr 1999 A
5891025 Buschmann et al. Apr 1999 A
5891026 Wang et al. Apr 1999 A
5902235 Lewis et al. May 1999 A
5910108 Solenberger Jun 1999 A
5911690 Rall Jun 1999 A
5912656 Tham et al. Jun 1999 A
5913819 Taylor et al. Jun 1999 A
5916154 Hobbs et al. Jun 1999 A
5916155 Levinson et al. Jun 1999 A
5919133 Taylor et al. Jul 1999 A
5919134 Diab Jul 1999 A
5920263 Huttenhoff et al. Jul 1999 A
5921921 Potratz et al. Jul 1999 A
5922607 Bernreuter Jul 1999 A
5924979 Swedlow et al. Jul 1999 A
5924980 Coetzee Jul 1999 A
5924982 Chin Jul 1999 A
5924985 Jones Jul 1999 A
5934277 Mortz Aug 1999 A
5934925 Tobler et al. Aug 1999 A
5940182 Lepper, Jr. et al. Aug 1999 A
5954644 Dettling et al. Sep 1999 A
5957840 Terasawa et al. Sep 1999 A
5960610 Levinson et al. Oct 1999 A
5961450 Merchant et al. Oct 1999 A
5961452 Chung et al. Oct 1999 A
5964701 Asada et al. Oct 1999 A
5971930 Elghazzawi Oct 1999 A
5978691 Mills Nov 1999 A
5978693 Hamilton et al. Nov 1999 A
5983120 Groner et al. Nov 1999 A
5983122 Jarman et al. Nov 1999 A
5987343 Kinast Nov 1999 A
5991648 Levin Nov 1999 A
5995855 Kiani et al. Nov 1999 A
5995856 Mannheimer et al. Nov 1999 A
5995858 Kinast Nov 1999 A
5995859 Takahashi Nov 1999 A
5997343 Mills et al. Dec 1999 A
5999834 Wang et al. Dec 1999 A
6002952 Diab et al. Dec 1999 A
6005658 Kaluza et al. Dec 1999 A
6006120 Levin Dec 1999 A
6011985 Athan et al. Jan 2000 A
6011986 Diab et al. Jan 2000 A
6014576 Raley et al. Jan 2000 A
6018673 Chin et al. Jan 2000 A
6018674 Aronow Jan 2000 A
6022321 Amano et al. Feb 2000 A
6023541 Merchant et al. Feb 2000 A
6026312 Shemwell et al. Feb 2000 A
6026314 Amerov et al. Feb 2000 A
6031603 Fine et al. Feb 2000 A
6035223 Baker, Jr. Mar 2000 A
6036642 Diab et al. Mar 2000 A
6041247 Weckstrom et al. Mar 2000 A
6044283 Fein et al. Mar 2000 A
6047201 Jackson, III Apr 2000 A
6055447 Well Apr 2000 A
6061584 Lovejoy et al. May 2000 A
6064898 Aldrich May 2000 A
6064899 Fein et al. May 2000 A
6067462 Diab et al. May 2000 A
6073038 Wang et al. Jun 2000 A
6078829 Uchida Jun 2000 A
6078833 Hueber Jun 2000 A
6081735 Diab et al. Jun 2000 A
6083157 Noller Jul 2000 A
6083172 Baker, Jr. et al. Jul 2000 A
6088607 Diab et al. Jul 2000 A
6094592 Yorkey et al. Jul 2000 A
6095974 Shemwell et al. Aug 2000 A
6104938 Huiku et al. Aug 2000 A
6104939 Groner Aug 2000 A
6112107 Hannula Aug 2000 A
6113541 Dias et al. Sep 2000 A
6115621 Chin Sep 2000 A
6122535 Kaestle et al. Sep 2000 A
6133994 Mathews et al. Oct 2000 A
6135952 Coetzee Oct 2000 A
6144444 Haworth et al. Nov 2000 A
6144867 Walker et al. Nov 2000 A
6144868 Parker Nov 2000 A
6149481 Wang et al. Nov 2000 A
6151107 Schöllermann et al. Nov 2000 A
6151516 Kiani-Azarbayjany et al. Nov 2000 A
6151518 Hayashi Nov 2000 A
6152754 Gerhardt et al. Nov 2000 A
6154667 Miura et al. Nov 2000 A
6157850 Diab et al. Dec 2000 A
6159147 Lichter Dec 2000 A
6163175 Larsen et al. Dec 2000 A
6163715 Larsen et al. Dec 2000 A
6165005 Mills et al. Dec 2000 A
6173196 Delonzor et al. Jan 2001 B1
6178343 Bindszus et al. Jan 2001 B1
6179159 Gurley Jan 2001 B1
6181958 Steuer et al. Jan 2001 B1
6181959 Schöllermann et al. Jan 2001 B1
6184521 Coffin, IV et al. Feb 2001 B1
6188470 Grace Feb 2001 B1
6192260 Chance Feb 2001 B1
6195575 Levinson Feb 2001 B1
6198951 Kosuda et al. Mar 2001 B1
6206830 Diab et al. Mar 2001 B1
6213952 Finarov et al. Apr 2001 B1
6217523 Amano et al. Apr 2001 B1
6222189 Misner et al. Apr 2001 B1
6223064 Lynn Apr 2001 B1
6226539 Potratz May 2001 B1
6226540 Bernreuter et al. May 2001 B1
6229856 Diab et al. May 2001 B1
6230035 Aoyagi et al. May 2001 B1
6233470 Tsuchiya May 2001 B1
6236871 Tsuchiya May 2001 B1
6236872 Diab et al. May 2001 B1
6240305 Tsuchiya May 2001 B1
6253097 Aronow et al. Jun 2001 B1
6253098 Walker et al. Jun 2001 B1
6256523 Diab et al. Jul 2001 B1
6256524 Walker et al. Jul 2001 B1
6261236 Grinblatov Jul 2001 B1
6263221 Chance et al. Jul 2001 B1
6263222 Diab et al. Jul 2001 B1
6263223 Sheperd et al. Jul 2001 B1
6266546 Steuer et al. Jul 2001 B1
6266547 Walker et al. Jul 2001 B1
6272363 Casciani et al. Aug 2001 B1
6278522 Lepper, Jr. et al. Aug 2001 B1
6280213 Tobler et al. Aug 2001 B1
6280381 Malin et al. Aug 2001 B1
6285894 Oppelt et al. Sep 2001 B1
6285895 Ristolainen et al. Sep 2001 B1
6285896 Tobler et al. Sep 2001 B1
6298252 Kovach et al. Oct 2001 B1
6308089 Von der Ruhr et al. Oct 2001 B1
6321100 Parker Nov 2001 B1
6330468 Scharf Dec 2001 B1
6334065 Al-Ali et al. Dec 2001 B1
6339715 Bahr et al. Jan 2002 B1
6342039 Lynn Jan 2002 B1
6343223 Chin et al. Jan 2002 B1
6343224 Parker Jan 2002 B1
6349228 Kiani et al. Feb 2002 B1
6351658 Middleman et al. Feb 2002 B1
6353750 Kimura Mar 2002 B1
6356774 Bernstein et al. Mar 2002 B1
6360113 Dettling Mar 2002 B1
6360114 Diab et al. Mar 2002 B1
6361501 Amano et al. Mar 2002 B1
6363269 Hanna et al. Mar 2002 B1
D455834 Donars et al. Apr 2002 S
6370408 Merchant et al. Apr 2002 B1
6370409 Chung et al. Apr 2002 B1
6371921 Caro Apr 2002 B1
6374129 Chin et al. Apr 2002 B1
6377829 Al-Ali et al. Apr 2002 B1
6381479 Norris Apr 2002 B1
6381480 Stoddar et al. Apr 2002 B1
6385471 Mortz May 2002 B1
6385821 Modgil et al. May 2002 B1
6388240 Schulz et al. May 2002 B2
6393310 Kuenster May 2002 B1
6393311 Edgar, Jr. et al. May 2002 B1
6397091 Diab et al. May 2002 B2
6397092 Norris et al. May 2002 B1
6397093 Aldrich May 2002 B1
6398727 Bui et al. Jun 2002 B1
6400971 Finarov et al. Jun 2002 B1
6400972 Fine Jun 2002 B1
6400973 Winter Jun 2002 B1
6402690 Rhee et al. Jun 2002 B1
6408198 Hanna et al. Jun 2002 B1
6411832 Guthermann Jun 2002 B1
6411833 Baker, Jr. et al. Jun 2002 B1
6415166 Van Hoy et al. Jul 2002 B1
6421549 Jacques Jul 2002 B1
6430423 DeLonzor et al. Aug 2002 B2
6430513 Wang et al. Aug 2002 B1
6430525 Weber et al. Aug 2002 B1
6434408 Heckel et al. Aug 2002 B1
6438396 Cook Aug 2002 B1
6438399 Kurth Aug 2002 B1
6449501 Reuss Sep 2002 B1
6453183 Walker Sep 2002 B1
6453184 Hyogo et al. Sep 2002 B1
6456862 Benni Sep 2002 B2
6461305 Schnall Oct 2002 B1
6463310 Swedlow et al. Oct 2002 B1
6463311 Diab Oct 2002 B1
6466808 Chin et al. Oct 2002 B1
6466809 Riley Oct 2002 B1
6470199 Kopotic et al. Oct 2002 B1
6470200 Walker et al. Oct 2002 B2
6480729 Stone Nov 2002 B2
6490466 Fein et al. Dec 2002 B1
6493568 Bell Dec 2002 B1
6496711 Athan et al. Dec 2002 B1
6498942 Esenaliev et al. Dec 2002 B1
6501974 Huiku Dec 2002 B2
6501975 Diab et al. Dec 2002 B2
6505060 Norris Jan 2003 B1
6505061 Larson Jan 2003 B2
6505133 Hanna et al. Jan 2003 B1
6510329 Heckel Jan 2003 B2
6510331 Williams et al. Jan 2003 B1
6512937 Blank et al. Jan 2003 B2
6515273 Al-Ali Feb 2003 B2
6519484 Lovejoy et al. Feb 2003 B1
6519486 Edgar, Jr. et al. Feb 2003 B1
6519487 Parker Feb 2003 B1
6525386 Mills et al. Feb 2003 B1
6526300 Kiani et al. Feb 2003 B1
6526301 Larsen et al. Feb 2003 B2
6541756 Schulz et al. Apr 2003 B2
6542764 Al-Ali et al. Apr 2003 B1
6546267 Sugiura et al. Apr 2003 B1
6553241 Mannheimer et al. Apr 2003 B2
6553242 Sarussi Apr 2003 B1
6553243 Gurley Apr 2003 B2
6554788 Hunley Apr 2003 B1
6556852 Schulze et al. Apr 2003 B1
6560470 Pologe May 2003 B1
6564077 Mortara May 2003 B2
6564088 Soller et al. May 2003 B1
6571113 Fein et al. May 2003 B1
6571114 Koike et al. May 2003 B1
6574491 Elghazzawi Jun 2003 B2
6579242 Bui et al. Jun 2003 B2
6580086 Schulz et al. Jun 2003 B1
6584336 Ali et al. Jun 2003 B1
6587703 Cheng et al. Jul 2003 B2
6587704 Fine et al. Jul 2003 B1
6589172 Williams et al. Jul 2003 B2
6591122 Schmitt Jul 2003 B2
6591123 Fein et al. Jul 2003 B2
6594511 Stone et al. Jul 2003 B2
6594512 Huang Jul 2003 B2
6594513 Jobsis et al. Jul 2003 B1
6597931 Cheng et al. Jul 2003 B1
6600940 Fein et al. Jul 2003 B1
6606510 Swedlow et al. Aug 2003 B2
6606511 Ali et al. Aug 2003 B1
6606512 Muz et al. Aug 2003 B2
6608562 Kimura et al. Aug 2003 B1
6609016 Lynn Aug 2003 B1
6615064 Aldrich Sep 2003 B1
6615065 Barrett et al. Sep 2003 B1
6618602 Levin et al. Sep 2003 B2
6622034 Gorski et al. Sep 2003 B1
6628975 Fein et al. Sep 2003 B1
6631281 Kästle Oct 2003 B1
6632181 Flaherty Oct 2003 B2
6640116 Diab Oct 2003 B2
6643530 Diab et al. Nov 2003 B2
6643531 Katarow Nov 2003 B1
6647279 Pologe Nov 2003 B2
6647280 Bahr et al. Nov 2003 B2
6650916 Cook Nov 2003 B2
6650917 Diab et al. Nov 2003 B2
6650918 Terry Nov 2003 B2
6654621 Palatnik et al. Nov 2003 B2
6654622 Eberhard et al. Nov 2003 B1
6654623 Kästle Nov 2003 B1
6654624 Diab et al. Nov 2003 B2
6658276 Kianl et al. Dec 2003 B2
6658277 Wassermann Dec 2003 B2
6662033 Casciani et al. Dec 2003 B2
6665551 Suzuki Dec 2003 B1
6668182 Hubelbank Dec 2003 B2
6668183 Hicks et al. Dec 2003 B2
6671526 Aoyagi et al. Dec 2003 B1
6671528 Steuer et al. Dec 2003 B2
6671530 Chung et al. Dec 2003 B2
6671531 Al-Ali et al. Dec 2003 B2
6671532 Fudge et al. Dec 2003 B1
6675031 Porges et al. Jan 2004 B1
6678543 Diab et al. Jan 2004 B2
6681126 Solenberger Jan 2004 B2
6681128 Steuer et al. Jan 2004 B2
6681454 Modgil et al. Jan 2004 B2
6684090 Ali et al. Jan 2004 B2
6684091 Parker Jan 2004 B2
6694160 Chin Feb 2004 B2
6697653 Hanna Feb 2004 B2
6697655 Sueppel et al. Feb 2004 B2
6697656 Al-Ali Feb 2004 B1
6697658 Al-Ali Feb 2004 B2
RE38476 Diab et al. Mar 2004 E
6699194 Diab et al. Mar 2004 B1
6699199 Asada et al. Mar 2004 B2
6701170 Stetson Mar 2004 B2
6702752 Dekker Mar 2004 B2
6707257 Norris Mar 2004 B2
6708049 Berson et al. Mar 2004 B1
6709402 Dekker Mar 2004 B2
6711424 Fine et al. Mar 2004 B1
6711425 Reuss Mar 2004 B1
6712762 Lichter Mar 2004 B1
6714803 Mortz Mar 2004 B1
6714804 Al-Ali et al. Mar 2004 B2
6714805 Jeon et al. Mar 2004 B2
RE38492 Diab et al. Apr 2004 E
6719686 Coakley et al. Apr 2004 B2
6719705 Mills Apr 2004 B2
6720734 Norris Apr 2004 B2
6721584 Baker, Jr. et al. Apr 2004 B2
6721585 Parker Apr 2004 B1
6725074 Kästle Apr 2004 B1
6725075 Al-Ali Apr 2004 B2
6731962 Katarow May 2004 B1
6731963 Finarov et al. May 2004 B2
6731967 Turcott May 2004 B1
6735459 Parker May 2004 B2
6745060 Diab et al. Jun 2004 B2
6745061 Hicks et al. Jun 2004 B1
6748253 Norris et al. Jun 2004 B2
6748254 O'Neill et al. Jun 2004 B2
6754515 Pologe Jun 2004 B1
6754516 Mannheimer Jun 2004 B2
6760607 Al-Ali Jul 2004 B2
6760609 Jacques Jul 2004 B2
6760610 Tschupp et al. Jul 2004 B2
6763255 DeLonzor et al. Jul 2004 B2
6763256 Kimball et al. Jul 2004 B2
6770028 Ali et al. Aug 2004 B1
6771994 Kiani et al. Aug 2004 B2
6773397 Kelly Aug 2004 B2
6778923 Norris et al. Aug 2004 B2
6780158 Yarita Aug 2004 B2
6791689 Weckstrom Sep 2004 B1
6792300 Diab et al. Sep 2004 B1
6801797 Mannheimer et al. Oct 2004 B2
6801798 Geddes et al. Oct 2004 B2
6801799 Mendelson Oct 2004 B2
6801802 Sitzman et al. Oct 2004 B2
6802812 Walker et al. Oct 2004 B1
6805673 Dekker Oct 2004 B2
6810277 Edgar, Jr. et al. Oct 2004 B2
6813511 Diab et al. Nov 2004 B2
6816741 Diab Nov 2004 B2
6819950 Mills Nov 2004 B2
6822564 Al-Ali Nov 2004 B2
6825619 Norris Nov 2004 B2
6826419 Diab et al. Nov 2004 B2
6829496 Nagai et al. Dec 2004 B2
6830549 Bui et al. Dec 2004 B2
6830711 Mills et al. Dec 2004 B2
6836679 Baker, Jr. et al. Dec 2004 B2
6839579 Chin Jan 2005 B1
6839580 Zonios et al. Jan 2005 B2
6839582 Heckel Jan 2005 B2
6839659 Tarassenko et al. Jan 2005 B2
6842635 Parker Jan 2005 B1
6845256 Chin et al. Jan 2005 B2
6850787 Weber et al. Feb 2005 B2
6850788 Al-Ali Feb 2005 B2
6850789 Schweitzer, Jr. et al. Feb 2005 B2
6861639 Al-Ali Mar 2005 B2
6863652 Huang et al. Mar 2005 B2
6865407 Kimball et al. Mar 2005 B2
6879850 Kimball Apr 2005 B2
6882874 Huiku Apr 2005 B2
6898452 Al-Ali et al. May 2005 B2
6909912 Melker et al. Jun 2005 B2
6912413 Rantala et al. Jun 2005 B2
6920345 Al-Ali et al. Jul 2005 B2
6931269 Terry Aug 2005 B2
6934570 Kiani et al. Aug 2005 B2
6941162 Fudge et al. Sep 2005 B2
6947781 Asada et al. Sep 2005 B2
6950687 Al-Ali Sep 2005 B2
6954664 Sweitzer Oct 2005 B2
6968221 Rosenthal Nov 2005 B2
6979812 Al-Ali Dec 2005 B2
6983178 Fine et al. Jan 2006 B2
6985762 Brashears et al. Jan 2006 B2
6985763 Boas et al. Jan 2006 B2
6985764 Mason et al. Jan 2006 B2
6987994 Mortz Jan 2006 B1
6990426 Yoon et al. Jan 2006 B2
6992751 Okita et al. Jan 2006 B2
6992772 Block Jan 2006 B2
6993371 Kiani et al. Jan 2006 B2
6993372 Fine et al. Jan 2006 B2
6996427 Ali et al. Feb 2006 B2
7003338 Weber et al. Feb 2006 B2
7003339 Diab et al. Feb 2006 B2
7006855 Sarussi Feb 2006 B1
7006856 Baker, Jr. et al. Feb 2006 B2
7016715 Stetson Mar 2006 B2
7020507 Scharf et al. Mar 2006 B2
7024233 Ali et al. Apr 2006 B2
7024235 Melker et al. Apr 2006 B2
7025728 Ito et al. Apr 2006 B2
7027849 Al-Ali Apr 2006 B2
7027850 Wasserman Apr 2006 B2
7039449 Al-Ali May 2006 B2
7039538 Baker May 2006 B2
7043289 Fine et al. May 2006 B2
7047055 Boas et al. May 2006 B2
7060035 Wasserman Jun 2006 B2
7062307 Norris et al. Jun 2006 B2
7067893 Mills et al. Jun 2006 B2
7072701 Chen et al. Jul 2006 B2
7072702 Edgar, Jr. et al. Jul 2006 B2
7079880 Stetson Jul 2006 B2
7085597 Fein et al. Aug 2006 B2
7096052 Mason et al. Aug 2006 B2
7096054 Abdul-Hafiz et al. Aug 2006 B2
7107088 Aceti Sep 2006 B2
7113815 O'Neil et al. Sep 2006 B2
7123950 Mannheimer Oct 2006 B2
7127278 Melker et al. Oct 2006 B2
7130671 Baker, Jr. et al. Oct 2006 B2
7132641 Schulz et al. Nov 2006 B2
7133711 Chernoguz et al. Nov 2006 B2
7139559 Kenagy et al. Nov 2006 B2
7142901 Kiani et al. Nov 2006 B2
7162288 Nordstrom et al. Jan 2007 B2
7190987 Kindekugel et al. Mar 2007 B2
7194293 Baker Mar 2007 B2
7198778 Achilefu et al. Apr 2007 B2
7209774 Baker Apr 2007 B2
7215984 Diab et al. May 2007 B2
7225006 Al-Ali et al. May 2007 B2
7228161 Chin Jun 2007 B2
7236881 Schmitt et al. Jun 2007 B2
7248910 Li et al. Jul 2007 B2
7254433 Diab et al. Aug 2007 B2
7254434 Schulz et al. Aug 2007 B2
7280858 Al-Ali et al. Oct 2007 B2
7295866 Al-Ali Nov 2007 B2
7305262 Brodnick et al. Dec 2007 B2
7315753 Baker, Jr. et al. Jan 2008 B2
7389131 Kanayama Jun 2008 B2
7392075 Baker Jun 2008 B2
7471969 Diab et al. Dec 2008 B2
7474907 Baker Jan 2009 B2
7500950 Al-Ali et al. Mar 2009 B2
20020016537 Muz et al. Feb 2002 A1
20020026109 Diab et al. Feb 2002 A1
20020028990 Shepherd et al. Mar 2002 A1
20020038078 Ito Mar 2002 A1
20020042558 Mendelson Apr 2002 A1
20020068859 Knopp Jun 2002 A1
20020072681 Schnali Jun 2002 A1
20020103423 Chin et al. Aug 2002 A1
20020116797 Modgil et al. Aug 2002 A1
20020128544 Diab et al. Sep 2002 A1
20020133067 Jackson, III Sep 2002 A1
20020156354 Larson Oct 2002 A1
20020173706 Takatani Nov 2002 A1
20020190863 Lynn Dec 2002 A1
20030018243 Gerhardt et al. Jan 2003 A1
20030036690 Geddes et al. Feb 2003 A1
20030045785 Diab et al. Mar 2003 A1
20030073889 Keilbach et al. Apr 2003 A1
20030073890 Hanna Apr 2003 A1
20030100840 Sugiura et al. May 2003 A1
20030187337 Tarassenko et al. Oct 2003 A1
20030197679 Ali et al. Oct 2003 A1
20030212316 Leiden et al. Nov 2003 A1
20030225323 Kiani et al. Dec 2003 A1
20040006261 Swedlow et al. Jan 2004 A1
20040024326 Yeo et al. Feb 2004 A1
20040039272 Abdul-Hafiz et al. Feb 2004 A1
20040039273 Terry Feb 2004 A1
20040054291 Schulz et al. Mar 2004 A1
20040068164 Diab et al. Apr 2004 A1
20040092805 Yarita May 2004 A1
20040097797 Porges et al. May 2004 A1
20040098009 Boecker et al. May 2004 A1
20040117891 Hannula et al. Jun 2004 A1
20040147824 Diab et al. Jul 2004 A1
20040158134 Diab et al. Aug 2004 A1
20040162472 Berson et al. Aug 2004 A1
20040167381 Lichter Aug 2004 A1
20040186358 Chernow et al. Sep 2004 A1
20040204637 Diab et al. Oct 2004 A1
20040204638 Diab et al. Oct 2004 A1
20040204639 Casciani et al. Oct 2004 A1
20040204865 Lee et al. Oct 2004 A1
20040210146 Diab et al. Oct 2004 A1
20040215085 Schnall Oct 2004 A1
20040236196 Diab et al. Nov 2004 A1
20050004479 Townsend et al. Jan 2005 A1
20050014999 Rahe-Meyer Jan 2005 A1
20050020887 Goldberg Jan 2005 A1
20050033131 Chen Feb 2005 A1
20050043599 O'Mara Feb 2005 A1
20050043600 Diab et al. Feb 2005 A1
20050049468 Carlson Mar 2005 A1
20050070773 Chin Mar 2005 A1
20050075546 Samsoondar Apr 2005 A1
20050075548 Al-Ali et al. Apr 2005 A1
20050075550 Lindekugel Apr 2005 A1
20050085704 Schulz Apr 2005 A1
20050090720 Wu Apr 2005 A1
20050197548 Dietiker Sep 2005 A1
20050197579 Baker Sep 2005 A1
20050197793 Baker Sep 2005 A1
20050228248 Dietiker Oct 2005 A1
20050250998 Huiku Nov 2005 A1
20050256386 Chan Nov 2005 A1
20050272986 Smith Dec 2005 A1
20050277819 Kiani et al. Dec 2005 A1
20060020179 Anderson Jan 2006 A1
20060030764 Porges Feb 2006 A1
20060058594 Ishizuka et al. Mar 2006 A1
20060074280 Martis Apr 2006 A1
20060084852 Mason et al. Apr 2006 A1
20060084878 Banet Apr 2006 A1
20060089547 Sarussi Apr 2006 A1
20060106294 Maser et al. May 2006 A1
20060122476 Van Slyke Jun 2006 A1
20060122517 Banet Jun 2006 A1
20060129039 Lindner Jun 2006 A1
20060155198 Schmid Jul 2006 A1
20060173257 Nagai Aug 2006 A1
20060195280 Baker Aug 2006 A1
20060211925 Lamego et al. Sep 2006 A1
20060211932 Al-Ali et al. Sep 2006 A1
20060217604 Fein et al. Sep 2006 A1
20060217605 Fein et al. Sep 2006 A1
20060217606 Fein et al. Sep 2006 A1
20060217607 Fein et al. Sep 2006 A1
20060217608 Fein et al. Sep 2006 A1
20060220881 Al-Ali et al. Oct 2006 A1
20060224059 Swedlow et al. Oct 2006 A1
20060226992 Al-Ali et al. Oct 2006 A1
20060229510 Fein et al. Oct 2006 A1
20060229511 Fein et al. Oct 2006 A1
20060238358 Al-Ali et al. Oct 2006 A1
20070027376 Todokoro et al. Feb 2007 A1
20070032710 Raridan et al. Feb 2007 A1
20070032712 Raridan et al. Feb 2007 A1
20070032715 Eghbal et al. Feb 2007 A1
20070043269 Mannheimer et al. Feb 2007 A1
20070043270 Mannheimer et al. Feb 2007 A1
20070043271 Mannheimer et al. Feb 2007 A1
20070043272 Mannheimer et al. Feb 2007 A1
20070043273 Mannheimer et al. Feb 2007 A1
20070043274 Mannheimer et al. Feb 2007 A1
20070043275 Manheimer et al. Feb 2007 A1
20070043276 Mannheimer et al. Feb 2007 A1
20070043277 Mannheimer et al. Feb 2007 A1
20070043278 Mannheimer et al. Feb 2007 A1
20070043279 Mannheimer et al. Feb 2007 A1
20070043280 Mannheimer et al. Feb 2007 A1
20070043282 Mannheimer et al. Feb 2007 A1
20070049810 Mannheimer et al. Mar 2007 A1
20070060808 Hoarau Mar 2007 A1
20070073117 Raridan Mar 2007 A1
20070073121 Hoarau et al. Mar 2007 A1
20070073122 Hoarau Mar 2007 A1
20070073123 Raridan Mar 2007 A1
20070073125 Hoarau et al. Mar 2007 A1
20070073126 Raridan Mar 2007 A1
20070073128 Hoarau Mar 2007 A1
20070078315 Kling et al. Apr 2007 A1
20070078316 Hoarau Apr 2007 A1
20070088207 Mannheimer et al. Apr 2007 A1
20070100220 Baker et al. May 2007 A1
20070106137 Baker et al. May 2007 A1
20070129616 Rantala Jun 2007 A1
20070208240 Nordstrom et al. Sep 2007 A1
20070225614 Naghavi et al. Sep 2007 A1
20070260129 Chin Nov 2007 A1
20070260130 Chin Nov 2007 A1
20070260131 Chin Nov 2007 A1
20070282478 Al-Ali et al. Dec 2007 A1
20070299328 Chin et al. Dec 2007 A1
20080081974 Pav Apr 2008 A1
20080088467 Al-Ali Apr 2008 A1
20080097175 Boyce et al. Apr 2008 A1
20080103375 Kiani May 2008 A1
20080108884 Kiani May 2008 A1
20080183057 Taube Jul 2008 A1
20080188733 Al-Ali et al. Aug 2008 A1
20080221418 Al-Ali et al. Sep 2008 A1
20080255436 Baker Oct 2008 A1
20080262326 Hete et al. Oct 2008 A1
20080262328 Adams Oct 2008 A1
20080287757 Berson et al. Nov 2008 A1
Foreign Referenced Citations (192)
Number Date Country
3405444 Aug 1985 DE
3516338 Nov 1986 DE
3703458 Aug 1988 DE
3938759 May 1991 DE
4210102 Sep 1993 DE
4423597 Aug 1995 DE
19632361 Feb 1997 DE
69123448 May 1997 DE
19703220 Jul 1997 DE
19640807 Sep 1997 DE
19647877 Apr 1998 DE
10030862 Jan 2002 DE
20318882 Apr 2004 DE
0127947 May 1984 EP
00194105 Sep 1986 EP
00204459 Dec 1986 EP
0262779 Apr 1988 EP
0315040 Oct 1988 EP
0314331 May 1989 EP
00352923 Jan 1990 EP
0360977 Apr 1990 EP
00430340 Jun 1991 EP
0435500 Jul 1991 EP
0572684 May 1992 EP
00497021 Aug 1992 EP
0529412 Aug 1992 EP
0531631 Sep 1992 EP
0566354 Apr 1993 EP
0587009 Aug 1993 EP
00630203 Sep 1993 EP
0572684 Dec 1993 EP
00615723 Sep 1994 EP
00702931 Mar 1996 EP
00724860 Aug 1996 EP
00793942 Sep 1997 EP
0864293 Sep 1998 EP
01006863 Oct 1998 EP
01006864 Oct 1998 EP
0875199 Nov 1998 EP
00998214 Dec 1998 EP
0898933 Mar 1999 EP
0898933 Mar 1999 EP
01332713 Aug 2003 EP
01469773 Aug 2003 EP
1502529 Jul 2004 EP
01491135 Dec 2004 EP
1807001 Jul 2007 EP
2685865 Jan 1992 FR
2259545 Mar 1993 GB
63275325 Nov 1988 JP
2013450 Jan 1990 JP
2111343 Apr 1990 JP
02191434 Jul 1990 JP
2237544 Sep 1990 JP
03173536 Jul 1991 JP
3170866 Jul 1991 JP
3245042 Oct 1991 JP
4174648 Jun 1992 JP
4191642 Jul 1992 JP
4332536 Nov 1992 JP
3124073 Mar 1993 JP
5049624 Mar 1993 JP
5049625 Mar 1993 JP
3115374 Apr 1993 JP
05200031 Aug 1993 JP
2005200031 Aug 1993 JP
5212016 Aug 1993 JP
06014906 Jan 1994 JP
06014906 Jan 1994 JP
6016774 Mar 1994 JP
3116255 Apr 1994 JP
6029504 Apr 1994 JP
6098881 Apr 1994 JP
06154177 Jun 1994 JP
6269430 Sep 1994 JP
6285048 Oct 1994 JP
7001273 Jan 1995 JP
7124138 May 1995 JP
7136150 May 1995 JP
3116259 Jun 1995 JP
3116260 Jun 1995 JP
7155311 Jun 1995 JP
7155313 Jun 1995 JP
3238813 Jul 1995 JP
7171139 Jul 1995 JP
3134144 Sep 1995 JP
7236625 Sep 1995 JP
7246191 Sep 1995 JP
8256996 Oct 1996 JP
9192120 Jul 1997 JP
10216113 Aug 1998 JP
10216114 Aug 1998 JP
10216115 Aug 1998 JP
10337282 Dec 1998 JP
11019074 Jan 1999 JP
11155841 Jun 1999 JP
11188019 Jul 1999 JP
11244268 Sep 1999 JP
20107157 Apr 2000 JP
20237170 Sep 2000 JP
21245871 Sep 2001 JP
22224088 Aug 2002 JP
22282242 Oct 2002 JP
23153881 May 2003 JP
23153882 May 2003 JP
23169791 Jun 2003 JP
23194714 Jul 2003 JP
23210438 Jul 2003 JP
23275192 Sep 2003 JP
23339678 Dec 2003 JP
24008572 Jan 2004 JP
24089546 Mar 2004 JP
24113353 Apr 2004 JP
24135854 May 2004 JP
24148069 May 2004 JP
24148070 May 2004 JP
24159810 Jun 2004 JP
24166775 Jun 2004 JP
24194908 Jul 2004 JP
24202190 Jul 2004 JP
24248819 Sep 2004 JP
24248820 Sep 2004 JP
24261364 Sep 2004 JP
24290412 Oct 2004 JP
24290544 Oct 2004 JP
24290545 Oct 2004 JP
24329406 Nov 2004 JP
24329607 Nov 2004 JP
24329928 Nov 2004 JP
24337605 Dec 2004 JP
24344367 Dec 2004 JP
24351107 Dec 2004 JP
25034472 Feb 2005 JP
WO 9809566 Oct 1989 WO
WO 9001293 Feb 1990 WO
WO9001293 Feb 1990 WO
WO 9004352 May 1990 WO
WO 9101678 Feb 1991 WO
WO 9111137 Aug 1991 WO
WO 9200513 Jan 1992 WO
WO 9221281 Dec 1992 WO
WO 9309711 May 1993 WO
WO 9313706 Jul 1993 WO
WO 9316629 Sep 1993 WO
WO 9403102 Feb 1994 WO
WO 9423643 Oct 1994 WO
WO 9502358 Jan 1995 WO
WO 9512349 May 1995 WO
WO 9516970 Jun 1995 WO
WO 9613208 May 1996 WO
WO 9639927 Dec 1996 WO
WO 9736536 Oct 1997 WO
WO 9736538 Oct 1997 WO
WO 9749330 Dec 1997 WO
WO 9817174 Apr 1998 WO
WO 9818382 May 1998 WO
WO 9843071 Oct 1998 WO
WO 9851212 Nov 1998 WO
WO 9857577 Dec 1998 WO
WO 9900053 Jan 1999 WO
WO 9932030 Jul 1999 WO
WO 9947039 Sep 1999 WO
WO 9963884 Dec 1999 WO
WO 0021438 Apr 2000 WO
WO 0028888 May 2000 WO
WO 0059374 Oct 2000 WO
WO 0113790 Mar 2001 WO
WO 0116577 Mar 2001 WO
WO 0117421 Mar 2001 WO
WO 0147426 Mar 2001 WO
WO 0140776 Jun 2001 WO
WO 0176461 Oct 2001 WO
WO 0214793 Feb 2002 WO
WO 0235999 May 2002 WO
WO 02062213 Aug 2002 WO
WO 02074162 Sep 2002 WO
WO 03000125 Jan 2003 WO
WO 03001180 Jan 2003 WO
WO 03009750 Feb 2003 WO
WO 03011127 Feb 2003 WO
WO 03039326 May 2003 WO
WO 03063697 Aug 2003 WO
WO 03073924 Sep 2003 WO
WO 2004000114 Dec 2003 WO
WO 2004006748 Jan 2004 WO
WO 2004075746 Sep 2004 WO
WO 2005002434 Jan 2005 WO
WO 2005009221 Feb 2005 WO
WO 2005010567 Feb 2005 WO
WO 2005010568 Feb 2005 WO
WO 2005020120 Mar 2005 WO
WO 2005065540 Jul 2005 WO
Related Publications (1)
Number Date Country
20090163783 A1 Jun 2009 US