Medical sensor and technique for using the same

Information

  • Patent Grant
  • 8600469
  • Patent Number
    8,600,469
  • Date Filed
    Monday, February 7, 2011
    14 years ago
  • Date Issued
    Tuesday, December 3, 2013
    11 years ago
Abstract
A medical sensor may be adapted to account for factors that cause irregularities in pulse oximetry measurements or other spectrophotemetric measurements. Sensors are provided with surface features that reduce the amount of outside light or shunted light that impinge the detecting elements of the sensor. The sensor is adapted to reduce the effect of outside light or shunted light on pulse oximetry measurements.
Description
BACKGROUND OF THE INVENTION

1. Field of the Invention


The present invention relates generally to medical devices and, more particularly, to sensors used for sensing physiological parameters of a patient.


2. Description of the Related Art


This section is intended to introduce the reader to various aspects of art that may be related to certain aspects of the present invention, which are described and/or claimed below. This discussion is believed to be helpful in providing the reader with background information to facilitate a better understanding of the various aspects of the present invention. Accordingly, it should be understood that these statements are to be read in this light, and not as admissions of prior art.


In the field of medicine, doctors often desire to monitor certain physiological characteristics of their patients. Accordingly, a wide variety of devices have been developed for monitoring many such characteristics of a patient. Such devices provide doctors and other healthcare personnel with the information they need to provide the best possible healthcare for their patients. As a result, such monitoring devices have become an indispensable part of modern medicine.


One technique for monitoring certain physiological characteristics of a patient is commonly referred to as pulse oximetry, and the devices built based upon pulse oximetry techniques are commonly referred to as pulse oximeters. Pulse oximetry measures various blood flow characteristics, such as the blood-oxygen saturation of hemoglobin in arterial blood, the volume of individual blood pulsations supplying the tissue, and/or the rate of blood pulsations corresponding to each heartbeat of a patient. In fact, the “pulse” in pulse oximetry refers to the time varying amount of arterial blood in the tissue during each cardiac cycle.


Pulse oximeters typically utilize a non-invasive sensor that emits light into a patient's tissue and that photoelectrically detects the absorption and/or scattering of the transmitted light in such tissue. One or more of the above physiological characteristics may then be calculated based upon the amount of light absorbed or scattered. More specifically, the light passed through the tissue is typically selected to be of one or more wavelengths that may be absorbed or scattered by the blood in an amount related to the amount of a blood constituent present in the blood. The amount of light absorbed and/or scattered may then be used to estimate the amount of the blood constituent in the tissue using various algorithms.


The pulse oximetry measurement depends in part on the assumption that the contribution of light that has not passed through a patient's tissue is negligible. However, outside light may leak into a sensor, causing detection of light that is not related to the amount of blood constituent present in the blood. Additionally, light from a sensor's emitter may be reflected around the exterior of the tissue and may impinge the detector without traveling first through the tissue. These light sources may cause measurement variations that do not relate to amount of the blood constituent.


Some outside light infiltration into the sensor may be avoided by fitting the sensor snugly against the patient's tissue. However, such a conforming fit may be difficult to achieve over a range of patient physiologies without adjustment or excessive attention on the part of medical personnel. Additionally, an overly tight fit may cause local exsanguination of the tissue around the sensor. Exsanguinated tissue, which is devoid of blood, may shunt the sensor light through the tissue, which may also result in increased measurement errors.


SUMMARY

Certain aspects commensurate in scope with the originally claimed invention are set forth below. It should be understood that these aspects are presented merely to provide the reader with a brief summary of certain forms that the invention might take and that these aspects are not intended to limit the scope of the invention. Indeed, the invention may encompass a variety of aspects that may not be set forth below.


There is provided a sensor that includes: a sensor body; an emitter disposed on the sensor body, wherein the emitter is adapted to transmit light into tissue; a detector disposed on the sensor body, wherein the detector is adapted to detect the light; and a patterned region disposed on a tissue-contacting surface of the sensor body between the emitter and the detector, the patterned region being configured to at least absorb, refract, redirect, or diffract the light.


There is also provided a pulse oximetry system that includes: a pulse oximetry monitor; and a pulse oximetry sensor adapted to be operatively coupled to the monitor, the sensor comprising: a sensor body; an emitter disposed on the sensor body, wherein the emitter is adapted to transmit light into tissue; a detector disposed on the sensor body, wherein the detector is adapted to detect the light; and a patterned region disposed on a tissue-contacting surface of the sensor body between the emitter and the detector, the patterned region being configured to at least absorb, refract, redirect, or diffract the light.


There is also provided a method that includes: delivering a first light through a patient's tissue; detecting the first light delivered through the tissue; and redirecting a second light that does not propagate through the tissue away from the detector with a patterned region.


There is also provided a method that includes: providing a sensor body; providing an emitter adapted to transmit light into tissue; providing a detector adapted to detect the light; and providing a patterned region on a tissue-contacting surface of the sensor body between the emitter and the detector, the patterned region being configured to at least absorb, refract, redirect, or diffract the light.


There is also provided a sensor that includes: a sensor body adapted to operate in a transmission mode; an emitter disposed on the sensor body, wherein the emitter is adapted to deliver a first light into a tissue; a detector disposed on the sensor body, wherein the detector is adapted to detect the first light; and at least one protrusion disposed on a tissue-contacting surface of the sensor body, wherein the at least one protrusion is adapted to reduce the amount of a second light impinging the detector at an incident angle substantially not in-line with an imaginary axis connecting the emitter and the detector.


There is also provided a pulse oximetry system that includes: a pulse oximetry monitor; and a pulse oximetry sensor adapted to be operatively coupled to the monitor, the sensor comprising: a sensor body adapted to operate in a transmission mode; an emitter disposed on the sensor body, wherein the emitter is adapted to deliver a first light into a tissue; a detector disposed on the sensor body, wherein the detector is adapted to detect the first light; and at least one protrusion disposed on a tissue-contacting surface of the sensor body, wherein the at least one protrusion is adapted to reduce the amount of a second light impinging the detector at an incident angle substantially not in-line with an imaginary axis connecting the emitter and the detector.


There is also provided a method that includes: delivering a first light through a patient's tissue; detecting the first light delivered through the tissue; and redirecting a second light that does not propagate through the tissue away from the detector with a protruding feature.


There is also provided a method that includes: providing a transmission-type sensor body; providing an emitter adapted to transmit a first light into tissue; providing a detector adapted to detect the first light; providing at least one protrusion disposed on a tissue-contacting surface of the sensor body, wherein the at least one protrusion is adapted to reduce the amount of a second light impinging the detector at an incident angle substantially not in-line with an imaginary axis connecting the emitter and the detector.


There is also provided a sensor that includes: a sensor body adapted to operate in a reflectance mode; an emitter disposed on the sensor body, wherein the emitter is adapted to deliver a first light into a tissue; a detector disposed on the sensor body, wherein the detector is adapted to detect the first light; and at least one protrusion disposed on a tissue-contacting surface of the sensor body, wherein the at least one protrusion is adapted to reduce the amount of a second light impinging the detector at an incident angle substantially in-line with an imaginary axis connecting the emitter and the detector.


There is also provided a pulse oximetry system that includes: a pulse oximetry monitor; and a pulse oximetry sensor adapted to be operatively coupled to the monitor, the sensor comprising: a sensor body adapted to operate in a reflectance mode; an emitter disposed on the sensor body, wherein the emitter is adapted to deliver a first light into a tissue; a detector disposed on the sensor body, wherein the detector is adapted to detect the first light; and at least one protrusion disposed on a tissue-contacting surface of the sensor body, wherein the at least one protrusion is adapted to reduce the amount of a second light impinging the detector at an incident angle substantially in-line with an imaginary axis connecting the emitter and the detector.


There is also provided a method that includes: providing a sensor body; providing an emitter adapted to transmit a first light into tissue; providing a detector adapted to detect the first light; and providing at least one protrusion adapted to reduce the amount of a second light impinging the detector disposed on a tissue-contacting surface of the sensor body, wherein the second light has an incident angle substantially in-line with an imaginary axis connecting the emitter and the detector.


There is also provided a sensor that includes: a sensor body; an emitter disposed on the sensor body, wherein the emitter is adapted to transmit a light into tissue; a detector disposed on the sensor body, wherein the detector is adapted to detect the light; and a light diffracting material disposed on a tissue-contacting surface of the sensor body.





BRIEF DESCRIPTION OF THE DRAWINGS

Advantages of the invention may become apparent upon reading the following detailed description and upon reference to the drawings in which:



FIG. 1A illustrates a perspective view of an embodiment of an exemplary bandage-style sensor with a patterned region in accordance with the present invention;



FIG. 1B illustrates a perspective view of the sensor of FIG. 1A with a checkerboard patterned region;



FIG. 1C illustrates a cross-sectional view of the sensor of FIG. 1B applied to a patient's digit;



FIG. 2 illustrates a cross-sectional view of an exemplary sensor with protruding features applied to a patient's digit;



FIG. 3 illustrates a cross-sectional view of an exemplary reflectance sensor with protruding features;



FIG. 4A illustrates a perspective view of an embodiment of an exemplary bandage-style sensor with protruding features in a concentric pattern in accordance with the present invention;



FIG. 4B illustrates a cross-sectional view of the sensor of FIG. 4A applied to a patient's forehead;



FIG. 5A illustrates a cross-sectional view of a region of an exemplary sensor with light absorbing protruding features in accordance with the present invention;



FIG. 5B illustrates a cross-sectional view of a region of an exemplary sensor with protruding features with a light absorbing coating in accordance with the present invention;



FIG. 5C illustrates a cross-sectional view of a region of an exemplary sensor with light refracting protruding features with a light absorbing backing in accordance with the present invention;



FIG. 5D illustrates a cross-sectional view of a region of an exemplary sensor with light diffracting protruding features in accordance with the present invention;



FIG. 6 illustrates exemplary protruding features for use with a sensor in accordance with the present invention;



FIG. 7 illustrates a cross-sectional view of an exemplary sensor with a light diffracting material in accordance with the present invention; and



FIG. 8 illustrates a pulse oximetry system coupled to a multi-parameter patient monitor and a sensor according to embodiments of the present invention.





DETAILED DESCRIPTION OF SPECIFIC EMBODIMENTS

One or more specific embodiments of the present invention will be described below. In an effort to provide a concise description of these embodiments, not all features of an actual implementation are described in the specification. It should be appreciated that in the development of any such actual implementation, as in any engineering or design project, numerous implementation-specific decisions must be made to achieve the developers' specific goals, such as compliance with system-related and business-related constraints, which may vary from one implementation to another. Moreover, it should be appreciated that such a development effort might be complex and time consuming, but would nevertheless be a routine undertaking of design, fabrication, and manufacture for those of ordinary skill having the benefit of this disclosure.


It is desirable to eliminate, reduce, or account for the possible influence of light sources which may cause variability in pulse oximetry measurements. In accordance with the present techniques, pulse oximetry sensors are provided that reduce the amount of outside light that impinges the detecting elements of a sensor. Such sensors also reduce the amount of “shunted” light, i.e., light originating from light emitting elements of the sensor that impinges the detecting elements of a sensor without first passing through tissue. Sensors according to the present techniques incorporate surface features on or near the tissue-contacting surface of the sensor, such as protruding elements or printed patterns, to influence the path of light from the undesired light sources and to direct such light away from the detecting elements of the sensor. Such sensors may absorb, refract, or diffract the light originating from these undesired light sources before such light can impinge the detecting elements of the sensor.


Pulse oximetry sensors are typically placed on a patient in a location that is normally perfused with arterial blood to facilitate measurement of the desired blood characteristics, such as arterial oxygen saturation measurement (SpO2). The most common sensor sites include a patient's fingertips, toes, earlobes, or forehead. Regardless of the placement of a sensor 10 used for pulse oximetry, the reliability of the pulse oximetry measurement is related to the accurate detection of transmitted light that has passed through the perfused tissue and that has not been supplemented by undesired light sources. Such supplementation and/or modulation of the light transmitted by the sensor can cause variability in the resulting pulse oximetry measurements. The contribution of ambient or shunted light may adversely affect the measurement of the particular blood constituent, such as SpO2.


In many cases, light from undesired light sources propagates along an optical path that is distinguishable from the optical path of the emitted light that is related to a blood constituent. In a transmission-type sensor, the sensor's emitter and detector lie on opposing sides of the tissue when the sensor is applied to a patient. The optical path of the signal light, which is light originating from the emitter that properly passes through perfused tissue, is substantially in-line with an imaginary axis connecting the emitter and the detector. For reflectance-type sensors, the optical path of the emitted signal light is somewhat more complicated, as the light first enters the perfused tissue and then is scattered back to the detector. In both transmission-type and reflectance-type sensors, shunted light and ambient light generally propagate at angles substantially off-axis from the optical path of the signal light.


The exemplary sensors discussed below have surface features that act to divert shunted or ambient light away from the light detecting elements of a sensor. In certain embodiments, those features may be patterns or designs. More specifically, FIG. 1A illustrates a perspective view of an exemplary bandage-style sensor 10 having a generic patterned region 12 disposed on a tissue-contacting surface 14 of the sensor body 16. As one with skill in the art understands, the tissue-contacting surface 14 of the sensor body 16 may be actually touching a patient's tissue, or may be almost touching the patient's tissue, depending on the closeness of the sensor's 10 fit. As depicted, the patterned region 12 is disposed in the region between the emitter 18 and the detector 20. The patterned region 12 may include a material that absorbs, refracts, or diffracts light. The sensor 10 may be applied to a patient's tissue with adhesives bandages 11.


For example, FIG. 1B illustrates a perspective view of the sensor 10A having a checkerboard pattern 22 disposed on a tissue-contacting surface of the sensor body. As depicted, the checkerboard is an alternating pattern of a light absorbing material 23. The material surrounding the portions of light absorbing material 23 may be the material from which the sensor body 16 is constructed.



FIG. 1C depicts a cross-sectional view of the sensor 10A with a checkerboard pattern 22 applied to a patient's digit 24. The optical path of signal light originating from the emitter is substantially in-line with an imaginary axis 26 connecting the emitter 18 and the detector 20. A small percentage of the light emitted by the emitter 18 may not enter the perfused digit 24. Instead, this light may be shunted around the space between the digit 24 and the sensor body 16. The shunted light, depicted by wavy arrow 27, impinges the light absorbing material in the checkerboard pattern 22, which absorbs the light, thus preventing it from reflecting around the gap between the sensor body 16 and the digit 24 to impinge the detector 20. It should be understood that the gap between the sensor body 16 and the digit 24 may be microscopic in scale for a sensor body 16 that conforms closely to the digit 24. Further, the gap may be discontinuous when interrupted by points where the sensor body 16 is touching the digit 24. The checkerboard pattern 22 reduces the overall reflectivity of the sensor body 16 on the tissue-contacting surface 14, which may reduce the amount of shunted light that reaches the detector 20. The checkerboard pattern 22, or other suitable pattern or design, may easily be applied to the sensor body 16 with inks or dyes, and is thus a low-cost modification which may reduce measurement errors. In certain embodiments, the patterned region 12 does not protrude from the sensor body 16. However, in other embodiments, as depicted in FIG. 1C, the checkerboard pattern may be laminated onto the sensor body 16 so that it protrudes slightly from the sensor body 16.


A patterned region 12 may include a first material and a second material. The first material may be the material from which the sensor body is constructed. The second material may be a light absorbing, light refracting, or light diffracting material, or a combination thereof. The patterned region 12 may include more than two materials, and may also include materials that are intermediate in their ability to absorb, refract, or diffract light. The patterned region 12 may also include an anti-reflective material. In certain embodiments, the patterned region 12 may be a single material that is applied in varying intensity or concentration to the sensor body. For example, a checkerboard pattern 22 may be an alternating pattern of black ink and gray ink.


Additionally, the patterned region 12 may be a regular pattern, such as a checkerboard pattern 22, a concentric circles pattern, or a striped pattern. The patterned region 12 may also be an irregular pattern that is customized to provide redirection of light in specific areas of the sensor 10 which ambient or shunted light may be most likely to impinge. The patterned region 12 may be microscopic in scale, or it may be visible to the unaided eye. In certain embodiments, it is envisioned that the sensor body 16 is impregnated with the inks, dyes, or paints used to make the patterned region 12.


Generally, it is envisioned that the patterned region 12 will cover at least 1% of the surface area of the tissue-contacting surface 14 of a sensor body 16. The tissue contacting surface 14 may include only the sensor body 16 or may also include the combined total tissue-contacting area of the sensor body 16 and of the adhesive bandages 11. In certain embodiments, the patterned region 12 will cover 10-50% of the surface area of the tissue-contacting surface 14 of a sensor body 16. In other embodiments, the patterned region may cover at least 75% of the surface area of a tissue-contacting surface 14 of a sensor body 16. Generally, it is contemplated that in addition to disposing a patterned region between an emitter 18 and detector 20, it may be advantageous to dispose a patterned region near any edges of the sensor 10A that may allow ambient light to infiltrate into a sensor's 10 interior.


Furthermore, the patterned region 12 may have three-dimensional protruding surface features that function to divert ambient or shunted light away from the light detecting elements of the sensor. FIG. 2 depicts a cross-sectional view of a transmission-type sensor 10B applied to a patient digit 28. The sensor 10B has protruding surface features 30 disposed on the tissue-contacting surface 32 of the sensor body 34. The protruding surface features 30 may be integrally formed or molded with the sensor body 34, or they may be applied to the tissue-contacting surface 32 of the sensor body 34 adhesively or otherwise. The protruding surface features 30 may be small-scale protruding features. Generally, small-scale protruding features as described herein are contemplated to protrude less than about 0.001 mm from the tissue-contacting surface 32 of the sensor body 34. In certain embodiments, the small-scale protruding features are not visible to the unaided eye. Alternatively, the protruding surface features 30 may be large-scale protruding features. Generally, large-scale protruding features as described herein are clearly visible to the unaided eye, and they are contemplated to protrude at least about 0.001 mm from the tissue-contacting surface 32 of the sensor body 34. In certain embodiments, the large-scale protruding features protrude about 0.001 mm to about 1 mm from the tissue-contacting surface 32 of the sensor body 34. The protruding features may be sized and shaped to avoid substantially interfering with a suitably conforming sensor fit.


Turning to FIG. 2 in greater detail, the optical path of signal light originating from the emitter is substantially in-line with an imaginary axis 36 connecting the emitter 40 and the detector 42. However, a small percentage of the light from the emitter, illustrated by wavy arrow 38, may not pass through the perfused tissue, but instead may be reflected off the surface of the digit 28 and shunted around the gap between the digit 28 and the tissue-contacting surface 32 of the sensor body 34. As the shunted light, wavy arrow 38, propagates along its optical path, it impinges the protruding features 30 on the tissue-contacting surface 32. The protruding features 30 change the optical path of the shunted light, reducing the amount of shunted light that impinges on the detector 42.


The sensor 10B may also reduce the contribution of outside light sources to pulse oximetry measurements. Ambient light, depicted as wavy arrow 44, is shown leaking into the sensor 10B and impinging on the protruding features 30. The protruding features 30 reduce the amount of ambient light that reaches the detector 42. As the protruding features 30 are not in-line with the imaginary axis 36, the optical path of the light transmitted by the emitter 40 into the digit 28 is not substantially affected by the protruding features 30. Hence, the contribution of shunted light and ambient to the light received by the detector 42 is reduced, thus improving the signal to noise ratio.


In certain embodiments, it may be advantageous to use large-scale protruding features, as described above, to redirect light from undesired light sources away from a detector. For example, when using reflectance type sensors, it may be useful to block light that may shunt directly between the emitter and detector of such a sensor. FIG. 3 illustrates a cross-sectional view of a reflectance-type sensor 10C with large-scale protruding features 46 adapted to block light from the emitter 48 that shunts directly to the detector 50 without first passing through perfused tissue. In certain embodiments, a light shunt between the emitter 48 and the detector 50 may be addressed by placing one or more large-scale protruding features 46 on the tissue-contacting surface 52 of the sensor body 54 between the emitter 48 and the detector 50. As the emitted light, depicted by wavy arrow 56, strikes the side of the large-scale protruding features 46, it will be redirected away from the detector 50. As depicted, the large-scale protruding features 46 are heterogeneous in size, and they are arranged such that the protruding features 46 closest to the detector 50 protrude the most from the sensor body 54. In certain embodiments, at least one of the large-scale surface features 46 should protrude from the tissue-contacting surface 52 of the sensor body 54 at least as far as the detector 50 protrudes from the tissue-contacting surface 52 of the sensor body 54.


In another embodiment, shown in FIGS. 4A and 4B, large-scale protruding features may be arranged to form a pattern. FIG. 4A is a perspective view of a forehead sensor 10D with protruding features 56 arranged in concentric circles that substantially encircle an emitter 58 and a detector 60. FIG. 4B is a cross-sectional view of the sensor 10D applied to a patient's forehead. Such an arrangement of protruding features 56 may be advantageous in forming a seal with the tissue 62, thus creating a barrier against any ambient light or shunted light that may leak into the sensor 10D. The ambient light, depicted by wavy arrows 64, impinges the protruding features and is prevented from reaching the detector 60. The optical path of the signal light, depicted by wavy arrow 66, is substantially unaffected by the protruding features 56.


In general, when shunted or ambient light impinges the protruding features, as described above, its optical path is altered and redirected away from the detector of a sensor 10. This may be accomplished in a variety of ways, as seen in FIGS. 5A-D, which depict cross-sectional views of exemplary sensor bodies with protruding features dispersed in the patterned area 12. It should be understood that any of the protruding features described below in FIGS. 5A-D may large-scale or small-scale, and they may be used alone or in combination with one another on any suitable sensor.


For example, as depicted in FIG. 5A, protruding features 68 may be made of a light-absorbing material. The impinging light, depicted as wavy arrow 70, is refracted into the bulk of the light-absorbing material where it is absorbed. In another embodiment, as seen in FIG. 5B, protruding features 72 may have a light-absorbing coating 74. The impinging light, depicted by wavy arrow 76, is absorbed as it contacts the light-absorbing coating 74 of the protruding features 72. In another embodiment, shown in FIG. 5C, protruding features 78 may be made of a substantially optically refractive material with an absorptive backing 80. The light, depicted by wavy arrow 82, is refracted into the refractive material of the protruding features 78, and the refracted light, depicted by wavy arrow 84, is absorbed by the absorptive backing 80.


Alternatively, in another embodiment, shown in FIG. 5D, light from undesired light sources may be directed away from the detector through diffraction. In such an embodiment, protruding features 86 may be made of a diffracting material. For example, the diffracting material may be an interference grating material. As the impinging light, depicted by wavy arrow 88, impinges the protruding features 86, it is diffracted into destructively interfering beams, depicted by wavy arrows 90 and 92, that substantially cancel each other out. It is contemplated that the diffracting material may be adapted to selectively interfere with at least certain wavelengths. Thus, all or certain wavelengths of the impinging light may be prevented from reaching a detector.


As described above, it may be advantageous to refract a beam of light when it impinges a protruding feature as described herein. Ambient light or shunted light may impinge a protruding feature after propagating through air in the gap between the tissue and the sensor body. Alternatively, if the protruding feature is pressed tightly against the tissue, the light may travel through the cutaneous layer of the tissue to impinge the protruding feature. Light that impinges a protruding feature at an incident angle not normal, i.e., not 90 degrees, to the interface of the protruding feature with the air or tissue and the protruding feature will tend to be refracted. Thus, the protruding features may be shaped to promote light refraction. For example, as shown in FIG. 6, the protruding feature may have a generally sawtooth shape 94, which may be nonorthogonal to incident light leaking in. In another embodiment, a protruding feature 96 may have a complex profile in order to present a variety of possible interfaces to impinging light. Alternatively, a protruding feature 98 may have a curved profile to promote refraction. In certain embodiments, it is contemplated that the protruding features may incorporate a patterned region, as described herein, on their surfaces.


As described above in FIG. 5D, materials with light diffracting properties may direct light from undesired light sources away from the detecting elements of a sensor. FIG. 7 is a cross-sectional view of an alternate embodiment of a sensor 10E with a light diffracting material 100 disposed as a thin layer on a tissue-contacting surface 102 of the sensor body 104 applied to a patient's digit 106. The light diffracting material 100 is disposed in a region between an emitter 108 and a detector 110. Light shunted by the emitter 108, depicted by wavy arrow 112, impinges the light diffracting material 100. The light diffracting material reduces the reflectivity of the shunted light by “smearing” the light into multiple component wavelengths 114, many of which may interfere. The shunted light is thus prevented from reflecting around the gap between the sensor body 104 and the digit 106 to impinge the detector 110. It is contemplated that the diffracting material as described here and in FIG. 5D may be customized to selectively reduce certain wavelengths. Specifically, the slit pattern of diffraction grating may be optimized.


It should be appreciated that sensors as described herein may include light absorbing materials, light refracting materials, light diffracting materials, or any combination thereof. For example, a tissue-contacting surface, including all or part of any patterned regions or protruding features as described above, of a sensor body may be formed from, coated with, or impregnated with such materials. It should also be appreciated that, as discussed above, the sensor body may contain such materials only on a tissue-contacting surface, or, in alternate embodiments, the sensor body may be constructed entirely from such materials in appropriate regions as described herein.


It should also be appreciated that light absorbing materials may be adapted to absorb light at a particular wavelength. In certain embodiments, when light absorbing material is disposed between an emitter and a detector of a sensor, it may be advantageous to use light absorbing material that absorbs a wavelength emitted by the emitter in order to absorb shunted light from the emitter. For example, a light absorbing material may absorb at least about 50% of one or more wavelengths of light from the emitter, or may absorb a range of 50% to 95% of one or more wavelengths of light from the emitter. A light absorbing material may also absorb at least about 90% to at least 95% of one or more wavelengths of visible light and near-infrared light. In a specific embodiment, a pulse oximetry sensor may emit at least one wavelength of light in the wavelength range of 500 nm-1000 nm. For example, a sensor may emit light and wavelengths of 660 nm and 900 nm, which are wavelengths that may be absorbed by dark pigment. In other embodiments, when the light absorbing material is disposed near the edges of a sensor in order to absorb ambient light, which includes multiple wavelengths of light, it may be desirable to use an absorptive material that is adapted to absorb a broad range of wavelengths. Examples of light absorbing materials may include, but are not limited to, black or dark pigment, black or dark woven fabric or cloth, and infrared blockers.


Keeping in mind the preceding points, the exemplary sensor designs herein are provided as examples of sensors that increase the amount of light collected by a sensor 10 that has passed through perfused tissue while reducing or eliminating outside light and/or shunted light. It should be appreciated that a sensor 10 according to the present teachings may be adapted for use on any digit, and may also be adapted for use on a forehead, earlobe, or other sensor site. For example, a sensor 10 may be a clip-style sensor, appropriate for a patient earlobe or digit. Alternatively, a sensor 10 may be a bandage-style or wrap-style sensor for use on a digit or forehead.


A sensor, illustrated generically as a sensor 10, may be used in conjunction with a pulse oximetry monitor 116, as illustrated in FIG. 8. It should be appreciated that the cable 118 of the sensor 10 may be coupled to the monitor 116 or it may be coupled to a transmission device (not shown) to facilitate wireless transmission between the sensor 10 and the monitor 116. The monitor 116 may be any suitable pulse oximeter, such as those available from Nellcor Puritan Bennett Inc. Furthermore, to upgrade conventional pulse oximetry provided by the monitor 116 to provide additional functions, the monitor 116 may be coupled to a multi-parameter patient monitor 120 via a cable 122 connected to a sensor input port or via a cable 124 connected to a digital communication port.


The sensor 10 includes an emitter 126 and a detector 128 that may be of any suitable type. For example, the emitter 126 may be one or more light emitting diodes adapted to transmit one or more wavelengths of light in the red to infrared range, and the detector 128 may be a photodetector selected to receive light in the range or ranges emitted from the emitter 126. For pulse oximetry applications using either transmission or reflectance type sensors the oxygen saturation of the patient's arterial blood may be determined using two or more wavelengths of light, most commonly red and near infrared wavelengths. Similarly, in other applications, a tissue water fraction (or other body fluid related metric) or a concentration of one or more biochemical components in an aqueous environment may be measured using two or more wavelengths of light, most commonly near infrared wavelengths between about 1,000 nm to about 2,500 nm. It should be understood that, as used herein, the term “light” may refer to one or more of infrared, visible, ultraviolet, or even X-ray electromagnetic radiation, and may also include any wavelength within the infrared, visible, ultraviolet, or X-ray spectra.


The emitter 126 and the detector 128 may be disposed on a sensor body 130, which may be made of any suitable material, such as plastic, rubber, silicone, foam, woven material, or paper. Alternatively, the emitter 126 and the detector 128 may be remotely located and optically coupled to the sensor 10 using optical fibers. In the depicted embodiments, the sensor 10 is coupled to a cable 118 that is responsible for transmitting electrical and/or optical signals to and from the emitter 126 and detector 128 of the sensor 10. The cable 118 may be permanently coupled to the sensor 10, or it may be removably coupled to the sensor 10—the latter alternative being more useful and cost efficient in situations where the sensor 10 is disposable.


The sensor 10 may be a “transmission type” sensor. Transmission type sensors include an emitter 126 and detector 128 that are typically placed on opposing sides of the sensor site. If the sensor site is a fingertip, for example, the sensor 10 is positioned over the patient's fingertip such that the emitter 126 and detector 128 lie on either side of the patient's nail bed. In other words, the sensor 10 is positioned so that the emitter 126 is located on the patient's fingernail and the detector 128 is located 180° opposite the emitter 126 on the patient's finger pad. During operation, the emitter 126 shines one or more wavelengths of light through the patient's fingertip and the light received by the detector 128 is processed to determine various physiological characteristics of the patient. In each of the embodiments discussed herein, it should be understood that the locations of the emitter 126 and the detector 128 may be exchanged. For example, the detector 128 may be located at the top of the finger and the emitter 126 may be located underneath the finger. In either arrangement, the sensor 10 will perform in substantially the same manner.


Reflectance type sensors generally operate under the same general principles as transmittance type sensors. However, reflectance type sensors include an emitter 126 and detector 128 that are typically placed on the same side of the sensor site. For example, a reflectance type sensor may be placed on a patient's fingertip or forehead such that the emitter 126 and detector 128 lie side-by-side. Reflectance type sensors detect light photons that are scattered back to the detector 128.


While the invention may be susceptible to various modifications and alternative forms, specific embodiments have been shown by way of example in the drawings and have been described in detail herein. However, it should be understood that the invention is not intended to be limited to the particular forms disclosed. Indeed, the present techniques may not only be applied to measurements of blood oxygen saturation, but these techniques may also be utilized for the measurement and/or analysis of other blood constituents using principles of pulse oximetry. For example, using the same, different, or additional wavelengths, the present techniques may be utilized for the measurement and/or analysis of carboxyhemoglobin, met-hemoglobin, total hemoglobin, intravascular dyes, and/or water content. Rather, the invention is to cover all modifications, equivalents, and alternatives falling within the spirit and scope of the invention as defined by the following appended claims.

Claims
  • 1. A sensor comprising: a conformable sensor body;an emitter disposed on a tissue-contacting surface of the sensor body;a detector disposed on the tissue-contacting surface of the sensor body; anda patterned region disposed on the tissue-contacting surface of the sensor body, wherein the patterned region is configured to reduce an incidence of shunted or ambient light reaching the detector and wherein the patterned region protrudes less than about 0.001 mm from the tissue-contacting surface of the sensor body.
  • 2. The sensor, as set forth in claim 1, wherein the sensor is in a reflectance configuration.
  • 3. The sensor, as set forth in claim 1, wherein the sensor is in a transmission configuration.
  • 4. The sensor, as set forth in claim 1, wherein the sensor body is adapted for placement on a patient's digit.
  • 5. The sensor, as set forth in claim 1, wherein the sensor body is adapted for placement on a patient's forehead.
  • 6. The sensor, as set forth in claim 1, wherein the sensor comprises a pulse oximetry sensor.
  • 7. The sensor, as set forth in claim 1, wherein the patterned region comprises a single material applied in varying concentration to the tissue-contacting surface of the sensor.
  • 8. A sensor comprising: a sensor body;an emitter disposed on the sensor body;a detector disposed on the sensor body; anda patterned region disposed on a tissue-contacting surface of the sensor body, wherein the patterned region comprises portions of a light absorbing material that are configured to reduce an incidence of shunted or ambient light reaching the detector and wherein the portions of the light absorbing material defining the patterned region are microscopic in scale.
  • 9. The sensor, as set forth in claim 8, wherein the sensor is in a reflectance configuration.
  • 10. The sensor, as set forth in claim 8, wherein the sensor is in a transmission configuration.
  • 11. The sensor, as set forth in claim 8, wherein the sensor body is adapted for placement on a patient's digit.
  • 12. The sensor, as set forth in claim 8, wherein the sensor body is adapted for placement on a patient's forehead.
  • 13. The sensor, as set forth in claim 8, wherein the sensor comprises a pulse oximetry sensor.
  • 14. The sensor, as set forth in claim 8, wherein the sensor body is conformable.
  • 15. A sensor comprising: a sensor body;an emitter disposed on the sensor body;a detector disposed on the sensor body; and
  • 16. The sensor, as set forth in claim 15, wherein the at least one protrusion substantially surrounds the detector.
  • 17. The sensor, as set forth in claim 15, wherein the at least one protrusion protrudes at least about 0.001 mm from the tissue-contacting surface.
  • 18. The sensor, as set forth in claim 15, wherein the irregular profile comprises a sawtooth profile.
  • 19. The sensor, as set forth in claim 15, wherein the irregular profile comprises a curved profile.
  • 20. The sensor, as set forth in claim 15, wherein the sensor comprises a pulse oximetry sensor.
  • 21. The sensor, as set forth in claim 15, wherein the sensor body is conformable.
CROSS REFERENCE TO RELATED APPLICATIONS

This application is a continuation of prior U.S. application Ser. No. 11/241,508, filed Sep. 29, 2005, the specification of which is incorporated by reference in its entirety.

US Referenced Citations (938)
Number Name Date Kind
3403555 Versaci et al. Oct 1968 A
3536545 Traynor et al. Oct 1970 A
D222454 Beeber Oct 1971 S
3721813 Condon et al. Mar 1973 A
4098772 Bonk et al. Jul 1978 A
D250275 Bond Nov 1978 S
D251387 Ramsey et al. Mar 1979 S
D262488 Rossman et al. Dec 1981 S
4334544 Hill et al. Jun 1982 A
4350165 Striese Sep 1982 A
4353372 Ayer Oct 1982 A
4380240 Jobsis et al. Apr 1983 A
4406289 Wesseling et al. Sep 1983 A
4510551 Brainard, II Apr 1985 A
4586513 Hamaguri May 1986 A
4603700 Nichols et al. Aug 1986 A
4621643 New, Jr. et al. Nov 1986 A
4653498 New, Jr. et al. Mar 1987 A
4677528 Miniet Jun 1987 A
4685464 Goldberger et al. Aug 1987 A
4694833 Hamaguri Sep 1987 A
4697593 Evans et al. Oct 1987 A
4700708 New, Jr. et al. Oct 1987 A
4714080 Edgar, Jr. et al. Dec 1987 A
4714341 Hamaguri et al. Dec 1987 A
4722120 Lu Feb 1988 A
4726382 Boehmer et al. Feb 1988 A
4759369 Taylor Jul 1988 A
4770179 New, Jr. et al. Sep 1988 A
4773422 Isaacson et al. Sep 1988 A
4776339 Schreiber Oct 1988 A
4781195 Martin Nov 1988 A
4783815 Buttner Nov 1988 A
4796636 Branstetter et al. Jan 1989 A
4800495 Smith Jan 1989 A
4800885 Johnson Jan 1989 A
4802486 Goodman et al. Feb 1989 A
4805623 Jöbsis Feb 1989 A
4807630 Malinouskas Feb 1989 A
4807631 Hersh et al. Feb 1989 A
4819646 Cheung et al. Apr 1989 A
4819752 Zelin Apr 1989 A
4824242 Frick et al. Apr 1989 A
4825872 Tan et al. May 1989 A
4825879 Tan et al. May 1989 A
4830014 Goodman et al. May 1989 A
4832484 Aoyagi et al. May 1989 A
4846183 Martin Jul 1989 A
4848901 Hood, Jr. Jul 1989 A
4854699 Edgar, Jr. Aug 1989 A
4859056 Prosser et al. Aug 1989 A
4859057 Taylor et al. Aug 1989 A
4863265 Flower et al. Sep 1989 A
4865038 Rich et al. Sep 1989 A
4867557 Takatani et al. Sep 1989 A
4869253 Craig, Jr. et al. Sep 1989 A
4869254 Stone et al. Sep 1989 A
4880304 Jaeb et al. Nov 1989 A
4883055 Merrick Nov 1989 A
4883353 Hausman et al. Nov 1989 A
4890619 Hatschek Jan 1990 A
4892101 Cheung et al. Jan 1990 A
4901238 Suzuki et al. Feb 1990 A
4908762 Suzuki et al. Mar 1990 A
4911167 Corenman et al. Mar 1990 A
4913150 Cheung et al. Apr 1990 A
4926867 Kanda et al. May 1990 A
4927264 Shiga et al. May 1990 A
4928692 Goodman et al. May 1990 A
4934372 Corenman et al. Jun 1990 A
4938218 Goodman et al. Jul 1990 A
4942877 Sakai et al. Jul 1990 A
4948248 Lehman Aug 1990 A
4955379 Hall Sep 1990 A
4960126 Conlon et al. Oct 1990 A
4964408 Hink et al. Oct 1990 A
4971062 Hasebe et al. Nov 1990 A
4974591 Awazu et al. Dec 1990 A
5007423 Branstetter et al. Apr 1991 A
5025791 Niwa Jun 1991 A
RE33643 Isaacson et al. Jul 1991 E
5028787 Rosenthal et al. Jul 1991 A
5035243 Muz Jul 1991 A
5040539 Schmitt et al. Aug 1991 A
5041187 Hink et al. Aug 1991 A
5054488 Muz Oct 1991 A
5055671 Jones Oct 1991 A
5058588 Kaestle Oct 1991 A
5065749 Hasebe et al. Nov 1991 A
5066859 Karkar et al. Nov 1991 A
5069213 Polczynski Dec 1991 A
5078136 Stone et al. Jan 1992 A
5086229 Rosenthal et al. Feb 1992 A
5088493 Giannini et al. Feb 1992 A
5090410 Saper et al. Feb 1992 A
5094239 Jaeb et al. Mar 1992 A
5094240 Muz Mar 1992 A
5099841 Heinonen et al. Mar 1992 A
5099842 Mannheimer et al. Mar 1992 A
H1039 Tripp et al. Apr 1992 H
5104623 Miller Apr 1992 A
5109849 Goodman et al. May 1992 A
5111817 Clark et al. May 1992 A
5113861 Rother May 1992 A
D326715 Schmidt Jun 1992 S
5125403 Culp Jun 1992 A
5127406 Yamaguchi Jul 1992 A
5131391 Sakai et al. Jul 1992 A
5140989 Lewis et al. Aug 1992 A
5152296 Simons Oct 1992 A
5154175 Gunther Oct 1992 A
5158082 Jones Oct 1992 A
5170786 Thomas et al. Dec 1992 A
5188108 Secker et al. Feb 1993 A
5190038 Polson et al. Mar 1993 A
5193542 Missanelli et al. Mar 1993 A
5193543 Yelderman Mar 1993 A
5203329 Takatani et al. Apr 1993 A
5209230 Swedlow et al. May 1993 A
5213099 Tripp et al. May 1993 A
5216598 Branstetter et al. Jun 1993 A
5217012 Young et al. Jun 1993 A
5217013 Lewis et al. Jun 1993 A
5218207 Rosenthal Jun 1993 A
5218962 Mannheimer et al. Jun 1993 A
5224478 Sakai et al. Jul 1993 A
5226417 Swedlow et al. Jul 1993 A
5228440 Chung et al. Jul 1993 A
5237994 Goldberger Aug 1993 A
5239185 Ito et al. Aug 1993 A
5246002 Prosser Sep 1993 A
5246003 DeLonzor Sep 1993 A
5247931 Norwood Sep 1993 A
5247932 Chung et al. Sep 1993 A
5249576 Goldberger et al. Oct 1993 A
5253645 Friedman et al. Oct 1993 A
5253646 Delpy et al. Oct 1993 A
5259381 Cheung et al. Nov 1993 A
5259761 Schnettler et al. Nov 1993 A
5263244 Centa et al. Nov 1993 A
5267562 Ukawa et al. Dec 1993 A
5267563 Swedlow et al. Dec 1993 A
5267566 Choucair et al. Dec 1993 A
5273036 Kronberg et al. Dec 1993 A
5275159 Griebel Jan 1994 A
5278627 Aoyagi et al. Jan 1994 A
5279295 Martens et al. Jan 1994 A
5285783 Secker Feb 1994 A
5285784 Seeker Feb 1994 A
5287853 Vester et al. Feb 1994 A
5291884 Heinemann et al. Mar 1994 A
5297548 Pologe Mar 1994 A
5299120 Kaestle Mar 1994 A
5299570 Hatschek Apr 1994 A
5309908 Friedman et al. May 1994 A
5311865 Mayeux May 1994 A
5313940 Fuse et al. May 1994 A
5323776 Blakeley et al. Jun 1994 A
5329922 Atlee, III Jul 1994 A
5337744 Branigan Aug 1994 A
5339810 Ivers et al. Aug 1994 A
5343818 McCarthy et al. Sep 1994 A
5343869 Pross et al. Sep 1994 A
5348003 Caro Sep 1994 A
5348004 Hollub et al. Sep 1994 A
5348005 Merrick et al. Sep 1994 A
5349519 Kaestle Sep 1994 A
5349952 McCarthy et al. Sep 1994 A
5349953 McCarthy et al. Sep 1994 A
5351685 Potratz Oct 1994 A
5353799 Chance Oct 1994 A
5355880 Thomas et al. Oct 1994 A
5355882 Ukawa et al. Oct 1994 A
5361758 Hall et al. Nov 1994 A
5365066 Krueger, Jr. et al. Nov 1994 A
5368025 Young et al. Nov 1994 A
5368026 Swedlow et al. Nov 1994 A
5368224 Richardson et al. Nov 1994 A
5372136 Steuer et al. Dec 1994 A
5377675 Ruskewicz et al. Jan 1995 A
5385143 Aoyagi Jan 1995 A
5386827 Chance et al. Feb 1995 A
5387122 Goldberger et al. Feb 1995 A
5390670 Centa et al. Feb 1995 A
5392777 Swedlow et al. Feb 1995 A
5398680 Polson et al. Mar 1995 A
5402777 Warring et al. Apr 1995 A
5402779 Chen et al. Apr 1995 A
5411023 Morris, Sr. et al. May 1995 A
5411024 Thomas et al. May 1995 A
5413099 Schmidt et al. May 1995 A
5413100 Barthelemy et al. May 1995 A
5413101 Sugiura May 1995 A
5413102 Schmidt et al. May 1995 A
5417207 Young et al. May 1995 A
5421329 Casciani et al. Jun 1995 A
5425360 Nelson Jun 1995 A
5425362 Siker et al. Jun 1995 A
5427093 Ogawa et al. Jun 1995 A
5429128 Cadell et al. Jul 1995 A
5429129 Lovejoy et al. Jul 1995 A
5431159 Baker et al. Jul 1995 A
5431170 Mathews Jul 1995 A
5437275 Amundsen et al. Aug 1995 A
5438986 Disch et al. Aug 1995 A
5448991 Polson et al. Sep 1995 A
5452717 Branigan et al. Sep 1995 A
5465714 Scheuing Nov 1995 A
5469845 DeLonzor et al. Nov 1995 A
RE35122 Corenman et al. Dec 1995 E
5482034 Lewis et al. Jan 1996 A
5482036 Diab et al. Jan 1996 A
5485847 Baker, Jr. Jan 1996 A
5490505 Diab et al. Feb 1996 A
5490523 Isaacson et al. Feb 1996 A
5491299 Naylor et al. Feb 1996 A
5494032 Robinson et al. Feb 1996 A
5494043 O'Sullivan et al. Feb 1996 A
5497769 Gratton et al. Mar 1996 A
5497771 Rosenheimer Mar 1996 A
5499627 Steuer et al. Mar 1996 A
5503148 Pologe et al. Apr 1996 A
5505199 Kim Apr 1996 A
5507286 Solenberger Apr 1996 A
5511546 Hon Apr 1996 A
5517988 Gerhard May 1996 A
5520177 Ogawa et al. May 1996 A
5521851 Wei et al. May 1996 A
5522388 Ishikawa et al. Jun 1996 A
5524617 Mannheimer Jun 1996 A
5529064 Rall et al. Jun 1996 A
5533507 Potratz et al. Jul 1996 A
5551423 Sugiura Sep 1996 A
5551424 Morrison et al. Sep 1996 A
5553614 Chance Sep 1996 A
5553615 Carim et al. Sep 1996 A
5555882 Richardson et al. Sep 1996 A
5558096 Palatnik Sep 1996 A
5560355 Merchant et al. Oct 1996 A
5564417 Chance Oct 1996 A
5575284 Athan et al. Nov 1996 A
5575285 Takanashi et al. Nov 1996 A
5577500 Potratz Nov 1996 A
5582169 Oda et al. Dec 1996 A
5584296 Cui et al. Dec 1996 A
5588425 Sackner et al. Dec 1996 A
5588427 Tien Dec 1996 A
5590652 Inai Jan 1997 A
5595176 Yamaura Jan 1997 A
5596986 Goldfarb Jan 1997 A
5611337 Bukta Mar 1997 A
5617852 MacGregor Apr 1997 A
5619991 Sloane Apr 1997 A
5619992 Guthrie et al. Apr 1997 A
5626140 Feldman et al. May 1997 A
5630413 Thomas et al. May 1997 A
5632272 Diab et al. May 1997 A
5632273 Suzuki May 1997 A
5634459 Gardosi Jun 1997 A
5638593 Gerhardt et al. Jun 1997 A
5638816 Kiani-Azarbayjany et al. Jun 1997 A
5638818 Diab et al. Jun 1997 A
5645060 Yorkey et al. Jul 1997 A
5645440 Tobler et al. Jul 1997 A
5660567 Nierlich et al. Aug 1997 A
5662105 Tien Sep 1997 A
5662106 Swedlow et al. Sep 1997 A
5664270 Bell et al. Sep 1997 A
5666952 Fuse et al. Sep 1997 A
5671529 Nelson Sep 1997 A
5673692 Schulze et al. Oct 1997 A
5673693 Solenberger Oct 1997 A
5676139 Goldberger et al. Oct 1997 A
5676141 Hollub Oct 1997 A
5678544 DeLonzor et al. Oct 1997 A
5680857 Pelikan et al. Oct 1997 A
5685299 Diab et al. Nov 1997 A
5685301 Klomhaus Nov 1997 A
5687719 Sato et al. Nov 1997 A
5687722 Tien et al. Nov 1997 A
5692503 Kuenstner Dec 1997 A
5692505 Fouts Dec 1997 A
5709205 Bukta Jan 1998 A
5713355 Richardson et al. Feb 1998 A
5724967 Venkatachalam Mar 1998 A
5727547 Levinson et al. Mar 1998 A
5730124 Yamauchi Mar 1998 A
5731582 West Mar 1998 A
D393830 Tobler et al. Apr 1998 S
5743260 Chung et al. Apr 1998 A
5743262 Lepper, Jr. et al. Apr 1998 A
5743263 Baker, Jr. Apr 1998 A
5746206 Mannheimer May 1998 A
5746697 Swedlow et al. May 1998 A
5752914 DeLonzor et al. May 1998 A
5755226 Carim et al. May 1998 A
5758644 Diab et al. Jun 1998 A
5760910 Lepper, Jr. et al. Jun 1998 A
5766125 Aoyagi et al. Jun 1998 A
5766127 Pologe et al. Jun 1998 A
5769785 Diab et al. Jun 1998 A
5772587 Gratton et al. Jun 1998 A
5774213 Trebino et al. Jun 1998 A
5776058 Levinson et al. Jul 1998 A
5776059 Kaestle Jul 1998 A
5779630 Fein et al. Jul 1998 A
5779631 Chance Jul 1998 A
5782237 Casciani et al. Jul 1998 A
5782756 Mannheimer Jul 1998 A
5782757 Diab et al. Jul 1998 A
5782758 Ausec et al. Jul 1998 A
5786592 Hök Jul 1998 A
5788634 Suda et al. Aug 1998 A
5790729 Pologe et al. Aug 1998 A
5792052 Isaacson et al. Aug 1998 A
5795292 Lewis et al. Aug 1998 A
5797841 DeLonzor et al. Aug 1998 A
5800348 Kaestle Sep 1998 A
5800349 Isaacson et al. Sep 1998 A
5803910 Potratz Sep 1998 A
5807246 Sakaguchi et al. Sep 1998 A
5807247 Merchant et al. Sep 1998 A
5807248 Mills Sep 1998 A
5810723 Aldrich Sep 1998 A
5810724 Gronvall Sep 1998 A
5813980 Levinson et al. Sep 1998 A
5817008 Rafert et al. Oct 1998 A
5817009 Rosenheimer et al. Oct 1998 A
5817010 Hibl Oct 1998 A
5818985 Merchant et al. Oct 1998 A
5820550 Polson et al. Oct 1998 A
5823950 Diab et al. Oct 1998 A
5823952 Levinson et al. Oct 1998 A
5827179 Lichter et al. Oct 1998 A
5827182 Raley et al. Oct 1998 A
5829439 Yokosawa et al. Nov 1998 A
5830135 Bosque et al. Nov 1998 A
5830136 DeLonzor et al. Nov 1998 A
5830137 Scharf Nov 1998 A
5839439 Nierlich et al. Nov 1998 A
RE36000 Swedlow et al. Dec 1998 E
5842979 Jarman et al. Dec 1998 A
5842981 Larsen et al. Dec 1998 A
5842982 Mannheimer Dec 1998 A
5846190 Woehrle Dec 1998 A
5851178 Aronow Dec 1998 A
5851179 Ritson et al. Dec 1998 A
5853364 Baker, Jr. et al. Dec 1998 A
5860919 Kiani-Azarbayjany et al. Jan 1999 A
5865736 Baker, Jr. et al. Feb 1999 A
5879294 Anderson et al. Mar 1999 A
5885213 Richardson et al. Mar 1999 A
5890929 Mills et al. Apr 1999 A
5891021 Dillon et al. Apr 1999 A
5891022 Pologe Apr 1999 A
5891024 Jarman et al. Apr 1999 A
5891025 Buschmann et al. Apr 1999 A
5891026 Wang et al. Apr 1999 A
5902235 Lewis et al. May 1999 A
5910108 Solenberger Jun 1999 A
5911690 Rall Jun 1999 A
5912656 Tham et al. Jun 1999 A
5913819 Taylor et al. Jun 1999 A
5916154 Hobbs et al. Jun 1999 A
5916155 Levinson et al. Jun 1999 A
5919133 Taylor et al. Jul 1999 A
5919134 Diab Jul 1999 A
5920263 Huttenhoff et al. Jul 1999 A
5921921 Potratz et al. Jul 1999 A
5922607 Bernreuter Jul 1999 A
5924979 Swedlow et al. Jul 1999 A
5924980 Coetzee Jul 1999 A
5924982 Chin Jul 1999 A
5924985 Jones Jul 1999 A
5934277 Mortz Aug 1999 A
5934925 Tobler et al. Aug 1999 A
5940182 Lepper, Jr. et al. Aug 1999 A
5954644 Dettling et al. Sep 1999 A
5957840 Terasawa et al. Sep 1999 A
5960610 Levinson et al. Oct 1999 A
5961450 Merchant et al. Oct 1999 A
5961452 Chung et al. Oct 1999 A
5964701 Asada et al. Oct 1999 A
5971930 Elghazzawi Oct 1999 A
5978691 Mills Nov 1999 A
5978693 Hamilton et al. Nov 1999 A
5983120 Groner et al. Nov 1999 A
5983122 Jarman et al. Nov 1999 A
5987343 Kinast Nov 1999 A
5991648 Levin Nov 1999 A
5995855 Kiani et al. Nov 1999 A
5995856 Mannheimer et al. Nov 1999 A
5995858 Kinast Nov 1999 A
5995859 Takahashi Nov 1999 A
5997343 Mills et al. Dec 1999 A
5999834 Wang et al. Dec 1999 A
6002952 Diab et al. Dec 1999 A
6005658 Kaluza et al. Dec 1999 A
6006120 Levin Dec 1999 A
6011985 Athan et al. Jan 2000 A
6011986 Diab et al. Jan 2000 A
6014576 Raley et al. Jan 2000 A
6018673 Chin et al. Jan 2000 A
6018674 Aronow Jan 2000 A
6022321 Amano et al. Feb 2000 A
6023541 Merchant et al. Feb 2000 A
6026312 Shemwell et al. Feb 2000 A
6026314 Amerov et al. Feb 2000 A
6031603 Fine et al. Feb 2000 A
6035223 Baker, Jr. Mar 2000 A
6036642 Diab et al. Mar 2000 A
6041247 Weckstrom et al. Mar 2000 A
6044283 Fein et al. Mar 2000 A
6047201 Jackson, III Apr 2000 A
6055447 Weil Apr 2000 A
6061584 Lovejoy et al. May 2000 A
6064898 Aldrich May 2000 A
6064899 Fein et al. May 2000 A
6067462 Diab et al. May 2000 A
6073038 Wang et al. Jun 2000 A
6078829 Uchida Jun 2000 A
6078833 Hueber Jun 2000 A
6081735 Diab et al. Jun 2000 A
6083157 Noller Jul 2000 A
6083172 Baker, Jr. et al. Jul 2000 A
6088607 Diab et al. Jul 2000 A
6094592 Yorkey et al. Jul 2000 A
6095974 Shemwell et al. Aug 2000 A
6104938 Huiku et al. Aug 2000 A
6104939 Groner Aug 2000 A
6112107 Hannula Aug 2000 A
6113541 Dias et al. Sep 2000 A
6115621 Chin Sep 2000 A
6122535 Kaestle et al. Sep 2000 A
6133994 Mathews et al. Oct 2000 A
6135952 Coetzee Oct 2000 A
6144444 Haworth et al. Nov 2000 A
6144867 Walker et al. Nov 2000 A
6144868 Parker Nov 2000 A
6149481 Wang et al. Nov 2000 A
6151107 Schöllermann et al. Nov 2000 A
6151516 Kiani-Azarbayjany et al. Nov 2000 A
6151518 Hayashi Nov 2000 A
6152754 Gerhardt et al. Nov 2000 A
6154667 Miura et al. Nov 2000 A
6157850 Diab et al. Dec 2000 A
6159147 Lichter Dec 2000 A
6163715 Larsen et al. Dec 2000 A
6165005 Mills et al. Dec 2000 A
6171258 Karakasoglu et al. Jan 2001 B1
6173196 Delonzor et al. Jan 2001 B1
6178343 Bindszus et al. Jan 2001 B1
6179159 Gurley Jan 2001 B1
6181958 Steuer et al. Jan 2001 B1
6181959 Schöllermann et al. Jan 2001 B1
6184521 Coffin, IV et al. Feb 2001 B1
6188470 Grace Feb 2001 B1
6192260 Chance Feb 2001 B1
6195574 Kumar et al. Feb 2001 B1
6195575 Levinson Feb 2001 B1
6198951 Kosuda et al. Mar 2001 B1
6206830 Diab et al. Mar 2001 B1
6213952 Finarov et al. Apr 2001 B1
6217523 Amano et al. Apr 2001 B1
6222189 Misner et al. Apr 2001 B1
6223064 Lynn Apr 2001 B1
6226539 Potratz May 2001 B1
6226540 Bernreuter et al. May 2001 B1
6229856 Diab et al. May 2001 B1
6230035 Aoyagi et al. May 2001 B1
6233470 Tsuchiya May 2001 B1
6236871 Tsuchiya May 2001 B1
6236872 Diab et al. May 2001 B1
6240305 Tsuchiya May 2001 B1
6253097 Aronow et al. Jun 2001 B1
6253098 Walker et al. Jun 2001 B1
6256523 Diab et al. Jul 2001 B1
6256524 Walker et al. Jul 2001 B1
6261236 Grimblatov Jul 2001 B1
6263221 Chance et al. Jul 2001 B1
6263222 Diab et al. Jul 2001 B1
6263223 Shepherd et al. Jul 2001 B1
6266546 Steuer et al. Jul 2001 B1
6266547 Walker et al. Jul 2001 B1
6272363 Casciani et al. Aug 2001 B1
6272367 Chance Aug 2001 B1
6278522 Lepper, Jr. et al. Aug 2001 B1
6280213 Tobler et al. Aug 2001 B1
6280381 Malin et al. Aug 2001 B1
6285894 Oppelt et al. Sep 2001 B1
6285895 Ristolainen et al. Sep 2001 B1
6285896 Tobler et al. Sep 2001 B1
6298252 Kovach et al. Oct 2001 B1
6308089 Von der Ruhr et al. Oct 2001 B1
6321100 Parker Nov 2001 B1
6330468 Scharf Dec 2001 B1
6334065 Al-Ali et al. Dec 2001 B1
6339715 Bahr et al. Jan 2002 B1
6342039 Lynn Jan 2002 B1
6343223 Chin et al. Jan 2002 B1
6343224 Parker Jan 2002 B1
6349228 Kiani et al. Feb 2002 B1
6351658 Middleman et al. Feb 2002 B1
6353750 Kimura Mar 2002 B1
6356774 Bernstein et al. Mar 2002 B1
6360113 Dettling Mar 2002 B1
6360114 Diab et al. Mar 2002 B1
6361501 Amano et al. Mar 2002 B1
6363269 Hanna et al. Mar 2002 B1
D455834 Donars et al. Apr 2002 S
6370408 Merchant et al. Apr 2002 B1
6370409 Chung et al. Apr 2002 B1
6371921 Caro Apr 2002 B1
6374129 Chin et al. Apr 2002 B1
6377829 Al-Ali et al. Apr 2002 B1
6381479 Norris Apr 2002 B1
6381480 Stoddar et al. Apr 2002 B1
6385471 Mortz May 2002 B1
6385821 Modgil et al. May 2002 B1
6388240 Schulz et al. May 2002 B2
6393310 Kuenstner May 2002 B1
6393311 Edgar, Jr. et al. May 2002 B1
6397091 Diab et al. May 2002 B2
6397092 Norris et al. May 2002 B1
6397093 Aldrich May 2002 B1
6400971 Finarov et al. Jun 2002 B1
6400972 Fine Jun 2002 B1
6400973 Winter Jun 2002 B1
6402690 Rhee et al. Jun 2002 B1
6408198 Hanna et al. Jun 2002 B1
6411832 Guthermann Jun 2002 B1
6411833 Baker, Jr. et al. Jun 2002 B1
6421549 Jacques Jul 2002 B1
6430423 DeLonzor et al. Aug 2002 B2
6430513 Wang et al. Aug 2002 B1
6430525 Weber et al. Aug 2002 B1
6434408 Heckel et al. Aug 2002 B1
6438396 Cook Aug 2002 B1
6438399 Kurth Aug 2002 B1
6449501 Reuss Sep 2002 B1
6453183 Walker Sep 2002 B1
6453184 Hyogo et al. Sep 2002 B1
6456862 Benni Sep 2002 B2
6461305 Schnall Oct 2002 B1
6463310 Swedlow et al. Oct 2002 B1
6463311 Diab Oct 2002 B1
6466808 Chin et al. Oct 2002 B1
6466809 Riley Oct 2002 B1
6470199 Kopotic et al. Oct 2002 B1
6470200 Walker et al. Oct 2002 B2
6480729 Stone Nov 2002 B2
6490466 Fein et al. Dec 2002 B1
6493568 Bell Dec 2002 B1
6496711 Athan et al. Dec 2002 B1
6498942 Esenaliev et al. Dec 2002 B1
6501974 Huiku Dec 2002 B2
6501975 Diab et al. Dec 2002 B2
6505060 Norris Jan 2003 B1
6505061 Larson Jan 2003 B2
6505133 Hanna et al. Jan 2003 B1
6510329 Heckel Jan 2003 B2
6510331 Williams et al. Jan 2003 B1
6512937 Blank et al. Jan 2003 B2
6515273 Al-Ali Feb 2003 B2
6519484 Lovejoy et al. Feb 2003 B1
6519486 Edgar, Jr. et al. Feb 2003 B1
6519487 Parker Feb 2003 B1
6525386 Mills et al. Feb 2003 B1
6526300 Kiani et al. Feb 2003 B1
6526301 Larsen et al. Feb 2003 B2
6541756 Schulz et al. Apr 2003 B2
6542764 Al-Ali et al. Apr 2003 B1
6542772 Chance Apr 2003 B1
6546267 Sugiura et al. Apr 2003 B1
6553241 Mannheimer et al. Apr 2003 B2
6553242 Sarussi Apr 2003 B1
6553243 Gurley Apr 2003 B2
6554788 Hunley Apr 2003 B1
6556852 Schulze et al. Apr 2003 B1
6560470 Pologe May 2003 B1
6564077 Mortara May 2003 B2
6564088 Soller et al. May 2003 B1
6571113 Fein et al. May 2003 B1
6571114 Koike et al. May 2003 B1
6574491 Elghazzawi Jun 2003 B2
6580086 Schulz et al. Jun 2003 B1
6584336 Ali et al. Jun 2003 B1
6587703 Cheng et al. Jul 2003 B2
6587704 Fine et al. Jul 2003 B1
6589172 Williams et al. Jul 2003 B2
6591122 Schmitt Jul 2003 B2
6591123 Fein et al. Jul 2003 B2
6594511 Stone et al. Jul 2003 B2
6594512 Huang Jul 2003 B2
6594513 Jobsis et al. Jul 2003 B1
6596016 Vreman et al. Jul 2003 B1
6597931 Cheng et al. Jul 2003 B1
6597933 Kiani et al. Jul 2003 B2
6600940 Fein et al. Jul 2003 B1
6606510 Swedlow et al. Aug 2003 B2
6606511 Ali et al. Aug 2003 B1
6606512 Muz et al. Aug 2003 B2
6608562 Kimura et al. Aug 2003 B1
6609016 Lynn Aug 2003 B1
6615064 Aldrich Sep 2003 B1
6615065 Barrett et al. Sep 2003 B1
6618602 Levin et al. Sep 2003 B2
6618614 Chance Sep 2003 B1
6622034 Gorski et al. Sep 2003 B1
6628975 Fein et al. Sep 2003 B1
6631281 Kästle Oct 2003 B1
6632181 Flaherty Oct 2003 B2
6640116 Diab Oct 2003 B2
6643530 Diab et al. Nov 2003 B2
6643531 Katarow Nov 2003 B1
6647279 Pologe Nov 2003 B2
6647280 Bahr et al. Nov 2003 B2
6650916 Cook Nov 2003 B2
6650917 Diab et al. Nov 2003 B2
6650918 Terry Nov 2003 B2
6654621 Palatnik et al. Nov 2003 B2
6654622 Eberhard et al. Nov 2003 B1
6654623 Kästle Nov 2003 B1
6654624 Diab et al. Nov 2003 B2
6658276 Kianl et al. Dec 2003 B2
6658277 Wasserman Dec 2003 B2
6662033 Casciani et al. Dec 2003 B2
6665551 Suzuki Dec 2003 B1
6668182 Hubelbank Dec 2003 B2
6668183 Hicks et al. Dec 2003 B2
6671526 Aoyagi et al. Dec 2003 B1
6671528 Steuer et al. Dec 2003 B2
6671530 Chung et al. Dec 2003 B2
6671531 Al-Ali et al. Dec 2003 B2
6671532 Fudge et al. Dec 2003 B1
6675031 Porges et al. Jan 2004 B1
6678543 Diab et al. Jan 2004 B2
6681126 Solenberger Jan 2004 B2
6681128 Steuer et al. Jan 2004 B2
6681454 Modgil et al. Jan 2004 B2
6684090 Ali et al. Jan 2004 B2
6684091 Parker Jan 2004 B2
6694160 Chin Feb 2004 B2
6697653 Hanna Feb 2004 B2
6697655 Sueppel et al. Feb 2004 B2
6697656 Al-Ali Feb 2004 B1
6697658 Al-Ali Feb 2004 B2
RE38476 Diab et al. Mar 2004 E
6699194 Diab et al. Mar 2004 B1
6699199 Asada et al. Mar 2004 B2
6701170 Stetson Mar 2004 B2
6702752 Dekker Mar 2004 B2
6707257 Norris Mar 2004 B2
6708049 Berson et al. Mar 2004 B1
6709402 Dekker Mar 2004 B2
6711424 Fine et al. Mar 2004 B1
6711425 Reuss Mar 2004 B1
6711426 Benaron et al. Mar 2004 B2
6712762 Lichter Mar 2004 B1
6714803 Mortz Mar 2004 B1
6714804 Al-Ali et al. Mar 2004 B2
6714805 Jeon et al. Mar 2004 B2
RE38492 Diab et al. Apr 2004 E
6719686 Coakley et al. Apr 2004 B2
6719705 Mills Apr 2004 B2
6720734 Norris Apr 2004 B2
6721584 Baker, Jr. et al. Apr 2004 B2
6721585 Parker Apr 2004 B1
6725074 Kästle Apr 2004 B1
6725075 Al-Ali Apr 2004 B2
6731962 Katarow May 2004 B1
6731963 Finarov et al. May 2004 B2
6731967 Turcott May 2004 B1
6735459 Parker May 2004 B2
6745060 Diab et al. Jun 2004 B2
6745061 Hicks et al. Jun 2004 B1
6748253 Norris et al. Jun 2004 B2
6748254 O'Neil et al. Jun 2004 B2
6754515 Pologe Jun 2004 B1
6754516 Mannheimer Jun 2004 B2
6760607 Al-All Jul 2004 B2
6760609 Jacques Jul 2004 B2
6760610 Tscupp et al. Jul 2004 B2
6763255 DeLonzor et al. Jul 2004 B2
6763256 Kimball et al. Jul 2004 B2
6770028 Ali et al. Aug 2004 B1
6771994 Kiani et al. Aug 2004 B2
6773397 Kelly Aug 2004 B2
6778923 Norris et al. Aug 2004 B2
6780158 Yarita Aug 2004 B2
6791689 Weckstrom Sep 2004 B1
6792300 Diab et al. Sep 2004 B1
6801797 Mannheimer et al. Oct 2004 B2
6801798 Geddes et al. Oct 2004 B2
6801799 Mendelson Oct 2004 B2
6801802 Sitzman et al. Oct 2004 B2
6802812 Walker et al. Oct 2004 B1
6805673 Dekker Oct 2004 B2
6810277 Edgar, Jr. et al. Oct 2004 B2
6813511 Diab et al. Nov 2004 B2
6816266 Varshneya et al. Nov 2004 B2
6816741 Diab Nov 2004 B2
6819950 Mills Nov 2004 B2
6822564 Al-Ali Nov 2004 B2
6825619 Norris Nov 2004 B2
6826419 Diab et al. Nov 2004 B2
6829496 Nagai et al. Dec 2004 B2
6830711 Mills et al. Dec 2004 B2
6836679 Baker, Jr. et al. Dec 2004 B2
6839579 Chin Jan 2005 B1
6839580 Zonios et al. Jan 2005 B2
6839582 Heckel Jan 2005 B2
6839659 Tarassenko et al. Jan 2005 B2
6842635 Parker Jan 2005 B1
6845256 Chin et al. Jan 2005 B2
6850787 Weber et al. Feb 2005 B2
6850788 Al-Ali Feb 2005 B2
6850789 Schweitzer, Jr. et al. Feb 2005 B2
6861639 Al-Ali Mar 2005 B2
6862091 Johnson Mar 2005 B2
6863652 Huang et al. Mar 2005 B2
6865407 Kimball et al. Mar 2005 B2
6879850 Kimball Apr 2005 B2
6882874 Huiku Apr 2005 B2
6898452 Al-Ali et al. May 2005 B2
6909912 Melker et al. Jun 2005 B2
6912413 Rantala et al. Jun 2005 B2
6920345 Al-Ali et al. Jul 2005 B2
6931269 Terry Aug 2005 B2
6934570 Kiani et al. Aug 2005 B2
6934571 Wiesmann et al. Aug 2005 B2
6941162 Fudge et al. Sep 2005 B2
6947781 Asada et al. Sep 2005 B2
6950687 Al-Ali Sep 2005 B2
6954664 Sweitzer Oct 2005 B2
6968221 Rosenthal Nov 2005 B2
6979812 Al-Ali Dec 2005 B2
6983178 Fine et al. Jan 2006 B2
6985763 Boas et al. Jan 2006 B2
6985764 Mason et al. Jan 2006 B2
6990365 Parker et al. Jan 2006 B1
6990426 Yoon et al. Jan 2006 B2
6992751 Okita et al. Jan 2006 B2
6992772 Block Jan 2006 B2
6993371 Kiani et al. Jan 2006 B2
6993372 Fine et al. Jan 2006 B2
6996427 Ali et al. Feb 2006 B2
7003338 Weber et al. Feb 2006 B2
7003339 Diab et al. Feb 2006 B2
7006855 Sarussi Feb 2006 B1
7006856 Baker, Jr. et al. Feb 2006 B2
7010341 Chance Mar 2006 B2
7016715 Stetson Mar 2006 B2
7020507 Scharf et al. Mar 2006 B2
7024233 Ali et al. Apr 2006 B2
7024235 Melker et al. Apr 2006 B2
7025728 Ito et al. Apr 2006 B2
7027849 Al-Ali Apr 2006 B2
7027850 Wasserman Apr 2006 B2
7039449 Al-Ali May 2006 B2
7043289 Fine et al. May 2006 B2
7047054 Benni May 2006 B2
7047055 Boas et al. May 2006 B2
7060035 Wasserman Jun 2006 B2
7062307 Norris et al. Jun 2006 B2
7067893 Mills et al. Jun 2006 B2
7072701 Chen et al. Jul 2006 B2
7072702 Edgar, Jr. et al. Jul 2006 B2
7079880 Stetson Jul 2006 B2
7085597 Fein et al. Aug 2006 B2
7096052 Mason et al. Aug 2006 B2
7096054 Abdul-Hafiz et al. Aug 2006 B2
7107088 Aceti Sep 2006 B2
7107116 Geng Sep 2006 B2
7113815 O'Neil et al. Sep 2006 B2
7117590 Koenig et al. Oct 2006 B2
7123950 Mannheimer Oct 2006 B2
7127278 Melker et al. Oct 2006 B2
7130671 Baker, Jr. et al. Oct 2006 B2
7132641 Schulz et al. Nov 2006 B2
7133711 Chernoguz et al. Nov 2006 B2
7134754 Kerr et al. Nov 2006 B2
7139559 Kenagy et al. Nov 2006 B2
7139603 Chance Nov 2006 B2
7142901 Kiani et al. Nov 2006 B2
7162288 Nordstrom et al. Jan 2007 B2
7171065 Lee et al. Jan 2007 B2
7190987 Kindekugel et al. Mar 2007 B2
7198778 Achilefu et al. Apr 2007 B2
7215984 Diab et al. May 2007 B2
7225006 Al-Ali et al. May 2007 B2
7228161 Chin Jun 2007 B2
7236811 Schmitt et al. Jun 2007 B2
7242997 Geng Jul 2007 B2
7248910 Li et al. Jul 2007 B2
7251518 Herrmann Jul 2007 B2
7254427 Cho et al. Aug 2007 B2
7254433 Diab et al. Aug 2007 B2
7254434 Schulz et al. Aug 2007 B2
7272425 Al-Ali Sep 2007 B2
7280858 Al-Ali et al. Oct 2007 B2
7283242 Thornton Oct 2007 B2
7295866 Al-Ali Nov 2007 B2
7305262 Brodnick et al. Dec 2007 B2
7313427 Benni Dec 2007 B2
7315753 Baker, Jr. et al. Jan 2008 B2
7330746 Demuth et al. Feb 2008 B2
7340287 Mason et al. Mar 2008 B2
7341559 Schulz et al. Mar 2008 B2
7341560 Henderson et al. Mar 2008 B2
7343186 Lamego et al. Mar 2008 B2
7373188 Delonzor et al. May 2008 B2
7400918 Parker et al. Jul 2008 B2
7424317 Parker et al. Sep 2008 B2
7457652 Porges et al. Nov 2008 B2
7676253 Raridan, Jr. Mar 2010 B2
7729736 Raridan, Jr. Jun 2010 B2
7904130 Raridan, Jr. Mar 2011 B2
20020016537 Muz et al. Feb 2002 A1
20020026109 Diab et al. Feb 2002 A1
20020028990 Shepherd et al. Mar 2002 A1
20020038078 Ito Mar 2002 A1
20020042558 Mendelson Apr 2002 A1
20020068859 Knopp Jun 2002 A1
20020072681 Schnall Jun 2002 A1
20020116797 Modgil et al. Aug 2002 A1
20020128544 Diab et al. Sep 2002 A1
20020133067 Jackson, III Sep 2002 A1
20020156354 Larson Oct 2002 A1
20020173706 Takatani Nov 2002 A1
20020190863 Lynn Dec 2002 A1
20030018243 Gerhardt et al. Jan 2003 A1
20030036690 Geddes et al. Feb 2003 A1
20030045785 Diab et al. Mar 2003 A1
20030073889 Keilbach et al. Apr 2003 A1
20030073890 Hanna Apr 2003 A1
20030100840 Sugiura et al. May 2003 A1
20030187337 Tarassenko et al. Oct 2003 A1
20030197679 Ali et al. Oct 2003 A1
20030208112 Schmidt et al. Nov 2003 A1
20030212316 Leiden et al. Nov 2003 A1
20030225323 Kiani et al. Dec 2003 A1
20040006261 Swedlow et al. Jan 2004 A1
20040024326 Yeo et al. Feb 2004 A1
20040039272 Abdul-Hafiz et al. Feb 2004 A1
20040039273 Terry Feb 2004 A1
20040054291 Schulz et al. Mar 2004 A1
20040068164 Diab et al. Apr 2004 A1
20040092805 Yarita May 2004 A1
20040097797 Porges et al. May 2004 A1
20040098009 Boecker et al. May 2004 A1
20040117891 Hannula et al. Jun 2004 A1
20040147824 Diab et al. Jul 2004 A1
20040158134 Diab et al. Aug 2004 A1
20040162472 Berson et al. Aug 2004 A1
20040167381 Lichter Aug 2004 A1
20040186358 Chernow et al. Sep 2004 A1
20040204637 Diab et al. Oct 2004 A1
20040204638 Diab et al. Oct 2004 A1
20040204639 Casciani et al. Oct 2004 A1
20040204865 Lee et al. Oct 2004 A1
20040210146 Diab et al. Oct 2004 A1
20040215085 Schnall Oct 2004 A1
20040230108 Melker et al. Nov 2004 A1
20040236196 Diab et al. Nov 2004 A1
20050004479 Townsend et al. Jan 2005 A1
20050014999 Rahe-Meyer Jan 2005 A1
20050020887 Goldberg Jan 2005 A1
20050033131 Chen Feb 2005 A1
20050043599 O'Mara Feb 2005 A1
20050043600 Diab et al. Feb 2005 A1
20050049468 Carlson Mar 2005 A1
20050065415 Cho et al. Mar 2005 A1
20050070773 Chin Mar 2005 A1
20050075546 Samsoondar Apr 2005 A1
20050075550 Lindekugel Apr 2005 A1
20050084202 Smith et al. Apr 2005 A1
20050085704 Schulz Apr 2005 A1
20050090720 Wu Apr 2005 A1
20050113704 Lawson et al. May 2005 A1
20050119543 Parker Jun 2005 A1
20050131286 Parker et al. Jun 2005 A1
20050163412 Glebov et al. Jul 2005 A1
20050197548 Dietiker Sep 2005 A1
20050228248 Dietiker Oct 2005 A1
20050256386 Chan Nov 2005 A1
20050267346 Faber et al. Dec 2005 A1
20050272986 Smith Dec 2005 A1
20050277819 Kiani et al. Dec 2005 A1
20060020179 Anderson Jan 2006 A1
20060030764 Porges Feb 2006 A1
20060058594 Ishizuka et al. Mar 2006 A1
20060058690 Bartnik et al. Mar 2006 A1
20060074280 Martis Apr 2006 A1
20060084852 Mason et al. Apr 2006 A1
20060084878 Banet Apr 2006 A1
20060089547 Sarussi Apr 2006 A1
20060106294 Maser et al. May 2006 A1
20060122517 Banet Jun 2006 A1
20060129039 Lindner Jun 2006 A1
20060155198 Schmid Jul 2006 A1
20060173257 Nagai Aug 2006 A1
20060176471 Hendriks et al. Aug 2006 A1
20060200018 Al-Ali Sep 2006 A1
20060211932 Al-Ali Sep 2006 A1
20060224058 Mannheimer Oct 2006 A1
20060276697 Demuth et al. Dec 2006 A1
20070021659 DeLonzor et al. Jan 2007 A1
20070032710 Raridan et al. Feb 2007 A1
20070032712 Raridan et al. Feb 2007 A1
20070032715 Eghbal et al. Feb 2007 A1
20070038050 Sarussi Feb 2007 A1
20070049813 Blouin Mar 2007 A1
20070060807 Oishi Mar 2007 A1
20070060808 Hoarau Mar 2007 A1
20070073116 Kiani et al. Mar 2007 A1
20070073117 Raridan Mar 2007 A1
20070073121 Hoarau et al. Mar 2007 A1
20070073122 Hoarau Mar 2007 A1
20070073125 Hoarau et al. Mar 2007 A1
20070073126 Raridan Mar 2007 A1
20070073128 Hoarau Mar 2007 A1
20070078315 Kling et al. Apr 2007 A1
20070078316 Hoarau Apr 2007 A1
20070129613 Rochester et al. Jun 2007 A1
20070260129 Chin Nov 2007 A1
20070260130 Chin Nov 2007 A1
20070260131 Chin Nov 2007 A1
20070299328 Chin et al. Dec 2007 A1
20080017800 Benni Jan 2008 A1
20080033267 Al-Ali Feb 2008 A1
20080058622 Baker, Jr. Mar 2008 A1
20080097173 Soyemi et al. Apr 2008 A1
20080132771 Parker et al. Jun 2008 A1
20080154104 Lamego et al. Jun 2008 A1
20080198361 Kaushal et al. Aug 2008 A1
20080214911 Forstner Sep 2008 A1
20080230363 Yang et al. Sep 2008 A1
Foreign Referenced Citations (203)
Number Date Country
3405444 Aug 1985 DE
3516338 Nov 1986 DE
37 03 458 Aug 1988 DE
3938759 May 1991 DE
4210102 Sep 1993 DE
4423597 Aug 1995 DE
19632361 Feb 1997 DE
69123448 May 1997 DE
19703220 Jul 1997 DE
19640807 Sep 1997 DE
19647877 Apr 1998 DE
10030862 Jan 2002 DE
20318882 Apr 2004 DE
0127947 May 1984 EP
00194105 Sep 1986 EP
00204459 Dec 1986 EP
0262 779 Apr 1988 EP
0315040 Oct 1988 EP
0314331 May 1989 EP
00352923 Jan 1990 EP
0360977 Apr 1990 EP
00430340 Jun 1991 EP
0435500 Jul 1991 EP
0572684 May 1992 EP
00497021 Aug 1992 EP
0529412 Aug 1992 EP
0531631 Sep 1992 EP
0566354 Apr 1993 EP
0587009 Aug 1993 EP
00630203 Sep 1993 EP
0572684 Dec 1993 EP
00615723 Sep 1994 EP
0702931 Mar 1996 EP
00702931 Mar 1996 EP
00724860 Aug 1996 EP
00793942 Sep 1997 EP
0864293 Sep 1998 EP
01006863 Oct 1998 EP
01006864 Oct 1998 EP
0875199 Nov 1998 EP
00998214 Dec 1998 EP
0898933 Mar 1999 EP
0630203 Jul 2002 EP
01332713 Aug 2003 EP
01469773 Aug 2003 EP
1502529 Jul 2004 EP
01491135 Dec 2004 EP
1905356 Apr 2008 EP
2685865 Jan 1992 FR
2259545 Mar 1993 GB
63275325 Nov 1988 JP
2013450 Jan 1990 JP
2111343 Apr 1990 JP
02191434 Jul 1990 JP
2237544 Sep 1990 JP
3170866 Jul 1991 JP
03173536 Jul 1991 JP
3245042 Oct 1991 JP
4174648 Jun 1992 JP
4191642 Jul 1992 JP
4332536 Nov 1992 JP
3124073 Mar 1993 JP
5049624 Mar 1993 JP
5049625 Mar 1993 JP
3115374 Apr 1993 JP
2005200031 Aug 1993 JP
05200031 Aug 1993 JP
5212016 Aug 1993 JP
06014906 Jan 1994 JP
6016774 Mar 1994 JP
3116255 Apr 1994 JP
6029504 Apr 1994 JP
6098881 Apr 1994 JP
06154177 Jun 1994 JP
6269430 Sep 1994 JP
6285048 Oct 1994 JP
7001273 Jan 1995 JP
7124138 May 1995 JP
7136150 May 1995 JP
3116259 Jun 1995 JP
3116260 Jun 1995 JP
7155311 Jun 1995 JP
7155313 Jun 1995 JP
3238813 Jul 1995 JP
7171139 Jul 1995 JP
3134144 Sep 1995 JP
7236625 Sep 1995 JP
7246191 Sep 1995 JP
8256996 Oct 1996 JP
9192120 Jul 1997 JP
10216113 Aug 1998 JP
10216114 Aug 1998 JP
10216115 Aug 1998 JP
10337282 Dec 1998 JP
11019074 Jan 1999 JP
11155841 Jun 1999 JP
11188019 Jul 1999 JP
11244268 Sep 1999 JP
20107157 Apr 2000 JP
20237170 Sep 2000 JP
21245871 Sep 2001 JP
22224088 Aug 2002 JP
22282242 Oct 2002 JP
23153881 May 2003 JP
23153882 May 2003 JP
23169791 Jun 2003 JP
23194714 Jul 2003 JP
23210438 Jul 2003 JP
23275192 Sep 2003 JP
23339678 Dec 2003 JP
24008572 Jan 2004 JP
24089546 Mar 2004 JP
24113353 Apr 2004 JP
24135854 May 2004 JP
24148069 May 2004 JP
24148070 May 2004 JP
24159810 Jun 2004 JP
24166775 Jun 2004 JP
24194908 Jul 2004 JP
24202190 Jul 2004 JP
24248819 Sep 2004 JP
24248820 Sep 2004 JP
24261364 Sep 2004 JP
24290412 Oct 2004 JP
24290544 Oct 2004 JP
24290545 Oct 2004 JP
24329406 Nov 2004 JP
24329607 Nov 2004 JP
24329928 Nov 2004 JP
24337605 Dec 2004 JP
24344367 Dec 2004 JP
24351107 Dec 2004 JP
25034472 Feb 2005 JP
WO8909566 Oct 1989 WO
WO 9001293 Feb 1990 WO
WO9001293 Feb 1990 WO
WO9004352 May 1990 WO
WO 9101678 Feb 1991 WO
WO 9111137 Aug 1991 WO
WO9200513 Jan 1992 WO
WO9221281 Dec 1992 WO
WO 9221281 Dec 1992 WO
WO9309711 May 1993 WO
WO 9313706 Jul 1993 WO
WO9316629 Sep 1993 WO
WO 9316629 Sep 1993 WO
WO 9403102 Feb 1994 WO
WO9423643 Oct 1994 WO
WO 9423643 Oct 1994 WO
WO 9502358 Jan 1995 WO
WO 9512349 May 1995 WO
WO9516970 Jun 1995 WO
WO 9613208 May 1996 WO
WO 9639927 Dec 1996 WO
WO9736536 Oct 1997 WO
WO9736538 Oct 1997 WO
WO 9749330 Dec 1997 WO
WO 9817174 Apr 1998 WO
WO 9818382 May 1998 WO
WO 9843071 Oct 1998 WO
WO 9851212 Nov 1998 WO
WO 9857577 Dec 1998 WO
WO9900053 Jan 1999 WO
WO 9932030 Jul 1999 WO
WO 9947039 Sep 1999 WO
WO9963884 Dec 1999 WO
WO 0021438 Apr 2000 WO
WO 0028888 May 2000 WO
WO 0059374 Oct 2000 WO
WO 0113790 Mar 2001 WO
WO 0116577 Mar 2001 WO
WO 0117421 Mar 2001 WO
WO 0147426 Mar 2001 WO
WO 0140776 Jun 2001 WO
WO0167946 Sep 2001 WO
WO 0176461 Oct 2001 WO
WO 0214793 Feb 2002 WO
WO 0235999 May 2002 WO
WO 02062213 Aug 2002 WO
WO 02074162 Sep 2002 WO
WO02085202 Oct 2002 WO
WO 03000125 Jan 2003 WO
WO 03001180 Jan 2003 WO
WO 03009750 Feb 2003 WO
WO 03011127 Feb 2003 WO
WO03020129 Mar 2003 WO
WO 03039326 May 2003 WO
WO03063697 Aug 2003 WO
WO 03063697 Aug 2003 WO
WO 03073924 Sep 2003 WO
WO 2004000114 Dec 2003 WO
WO 2004006748 Jan 2004 WO
WO2004069046 Aug 2004 WO
WO 2004075746 Sep 2004 WO
WO 2005002434 Jan 2005 WO
WO 2005009221 Feb 2005 WO
WO 2005010567 Feb 2005 WO
WO 2005010568 Feb 2005 WO
WO 2005020120 Mar 2005 WO
WO2005025399 Mar 2005 WO
WO2005065540 Jul 2005 WO
WO 2005065540 Jul 2005 WO
WO2006097910 Sep 2006 WO
Non-Patent Literature Citations (130)
Entry
Addison, Paul S., et al.; “A novel time-frequency-based 3D Lissajous figure method and its application to the determination of oxygen saturation from the photoplethysmogram,” Institute of Physic Publishing, Meas. Sci. Technol., vol. 15, pp. L15-L18 (2004).
Aoyagi, T., et al.; “Analysis of Motion Artifacts in Pulse Oximetry,” Japanese Society ME, vol. 42, p. 20 (1993) (Article in Japanese—contains English summary of article).
Aoyagi, T., et al.; “Pulse Oximeters: background, present and future,” Neonatal Care, vol. 13, No. 7, pp. 21-27 (2000) (Article in Japanese—contains English summary of article).
Aoyagi, Talmo; “Pulse oximetry: its invention, theory, and future,” Journal of Anesthesia, vol. 17, pp. 259-266 (2003).
Avidan, A.; “Pulse oximeter ear probe,” Anaesthesia, vol. 58, pp. 726 (2003).
Barnum, P.T., et al.; “Novel Pulse Oximetry Technology Capable of Reliable Bradycardia Monitoring in the Neonate,” Respiratory Care, vol. 42, No. 1, p. 1072 (Nov. 1997).
Barreto, A.B., et al.; “Adaptive Cancelation of Motion artifact in Photoplethysmographic Blood Volume Pulse Measurements for Exercise Evaluation,” IEEE-EMBC and CMBC—Theme 4: Signal Processing, pp. 983-984 (1995).
Barreto, Armando B., et al.; “Adaptive LMS Delay Measurement in dual Blood Volume Pulse Signals for Non-Invasive Monitoring,” IEEE, pp. 117-120 (1997).
Belal, Suliman Yousef, et al.; “A fuzzy system for detecting distorted plethysmogram pulses in neonates and paediatric patients,” Physiol. Meas., vol. 22, pp. 397-412 (2001).
Block, Frank E., Jr., et al.; “Technology evaluation report: Obtaining pulse oximeter signals when the usual probe cannot be used,” International journal of clinical Monitoring and Computing, vol. 14, pp. 23-28 (1997).
Branche, Paul C., et al.; “Measurement Reproducibility and Sensor Placement Considerations in Designing a Wearable Pulse Oximeter for Military Applications,” 2 pgs. (2004).
Buschman, J.P., et al.; “Principles and Problems of Calibration of Fetal Oximeters,” Biomedizinische Technik, vol. 42, pp. 265-266 (1997).
Chan, K.W., et al.; “17.3: Adaptive Reduction of Motion Artifact from Photoplethysmographic Recordings using a Variable Step-Size LMS Filter,” IEEE, pp. 1343-1346 (2002).
Coetzee, Frans M.; “Noise-Resistant Pulse Oximetry Using a Synthetic Reference Signal,” IEEE Transactions on Biomedical Engineering, vol. 47, No. 8, Aug. 2000, pp. 1018-1026.
Crespi, F., et al.; “Near infrared oxymeter prototype for non-invasive analysis of rat brain oxygenation,” Optical Sensing, Proceedings of SPIE, vol. 5459, pp. 38-45 (2004).
Crilly, Paul B., et al.; “An Integrated Pulse Oximeter System for Telemedicine Applications,” IEEE Instrumentation and Measurement Technology Conference, Ottawa, Canada; May 19-21, 1997; pp. 102-104.
Cubeddu, Rinaldo, et al.; “Portable 8-channel time-resolved optical imager for functional studies of biological tissues,” Photon Migration, Optical Coherence Tomography, and Microscopy, Proceedings of SPIE, vol. 4431, pp. 260-265 (2001).
Cyrill, D., et al.; “Adaptive Comb Filter for Quasi-Periodic Physiologic Signals,” Proceedings of the 25th Annual International Conference of the IEEE EMBS, Cancun, Mexico, Sep. 17-21, 2003; pp. 2439-2442.
Cysewska-Sobusaik, Anna; “Metrological Problems With noninvasive Transillumination of Living Tissues,” Proceedings of SPIE, vol. 4515, pp. 15-24 (2001).
DeKock, Marc; “Pulse Oximetry Probe Adhesive Disks: a Potential for Infant Aspiration,” Anesthesiology, vol. 89, pp. 1603-1604 (1998).
Earthrowl-Gould, T., et al.; “Chest and abdominal surface motion measurement for continuous monitoring of respiratory function,” Proc. Instn Mech Engrs, V215, Part H; pp. 515-520 (2001).
East, Christine E., et al.; “Fetal Oxygen Saturation and Uterine Contractions During Labor,” American Journal of Perinatology, vol. 15, No. 6, pp. 345-349 (Jun. 1998).
Edrich, Thomas, et al.; “Can the Blood Content of the Tissues be Determined Optically During Pulse Oximetry Without Knowledge of the Oxygen Saturation?—An In-Vitro Investigation,” Proceedings of the 20th Annual International conference of the IEEE Engineering in Medicine and Biology Society, vol. 20, No. 6, pp. 3072-3075 (1998).
Edrich, Thomas, et al.; “Pulse Oximetry: An Improved In Vitro Model that Reduces Blood Flow-Related Artifacts,” IEEE Transactions on Biomedical Engineering, vol. 47, No. 3, pp. 338-343 (Mar. 2000).
Ericson, M.N., et al.; “In vivo application of a minimally invasive oximetry based perfusion sensor,” Proceedings of the Second Joint EMBS/BMES Conference, Houston, Texas; Oct. 23-26, 2002, pp. 1789-1790.
Faisst, Karin, et al.; “Intrapartum Reflectance Pulse Oximetry: Effects of Sensor Location and Fixation Duration on Oxygen Saturation Readings,” Journal of Clinical Monitoring, vol. 13, pp. 299-302 (1997).
Ferrell, T.L., et al.; “Medical Telesensors,” SPIE, vol. 3253, pp. 193-198 (1998).
Gehring, Harmut, et al.; “The Effects of Motion Artifact and Low Perfusion on the Performance of a New Generation of Pulse Oximeters in Volunteers Undergoing Hypoxemia,” Respiratory Care, Vo. 47, No. 1, pp. 48-60 (Jan. 2002).
Gisiger, P.A., et al.; “OxiCarbo®, a single sensor for the non-invasive measurement of arterial oxygen saturation and CO2 partial pressure at the ear lobe,” Sensor and Actuators, vol. B-76, pp. 527-530 (2001).
Goldman, Julian M.; “Masimo Signal Extraction Pulse Oximetry,” Journal of Clinical Monitoring and Computing, vol. 16, pp. 475-483 (2000).
Gosney, S., et al.; “An alternative position for the pulse oximeter probe,” Anaesthesia, vol. 56, p. 493 (2001).
Gostt, R., et al.; “Pulse Oximetry Artifact Recognition Algorithm for Computerized Anaesthetic Records,” Journal of Clinical Monitoring and Computing Abstracts, p. 471 (2002).
Hamilton, Patrick S., et al.; “Effect of Adaptive Motion-Artifact Reduction on QRS Detection,” Biomedical Instrumentation & Technology, pp. 197-202 (undated).
Hase, Kentaro, et al.; “Continuous Measurement of Blood Oxygen Pressure Using a Fiber Optic Sensor Based on Phosphorescense Quenching,” Proceedings of the Second Joint EMBS/BMES Conference, Houston, Texas; Oct. 23-26, 2002, pp. 1777-1778.
Hayes, Matthew J., et al.; “A New Method for Pulse Oximetry Possessing Inherent Insensitivity to Artifact,” IEEE Transactions on Biomedical Engineering, vol. 48, No. 4, pp. 452-461 (Apr. 2001).
Hayes, Matthew J., et al.; “Artifact reduction in photoplethysmography,” Applied Optics, vol. 37, No. 31, pp. 7437-7446 (Nov. 1998).
Hayes, Matthew J., et al.; “Quantitative evaluation of photoplethysmographic artifact reduction for pulse oximetry,” SPIE, vol. 3570, pp. 138-147 (Sep. 1998).
Heuss, Ludwig T., et al.; “Combined Pulse Oximetry / Cutaneous Carbon dioxide Tension Monitoring During Colonoscopies: Pilot study with a Smart Ear Clip,” Digestion, vol. 70, pp. 152-158 (2004).
Ikeda, Kenji, et al.; “Improvement of Photo-Electric Plethysmograph Applying Newly Developed Opto-Electronic Devices,” IEEE Tencon, pp. 1109-1112 (1999).
Irie, A., et al.; “Respiration Monitors—Pulse Oximeters,” Neonatal Care, vol. 15, No. 12, pp. 78-83 (2002) (Article in Japanese—contains English summary of article).
Itoh, K., et al.; “Pulse Oximeter,” Toyaku Zasshi (Toyaku Journal), vol. 25, No. 8, pp. 50-54 (2003) (Article in Japanese—contains English summary of article).
Izumi, Akio, et al.; “Accuracy and Utility of a New Reflectance Pulse Oximeter for Fetal Monitoring During Labor,” Journal of Clinical Monitoring, vol. 13, pp. 103-108 (1997).
Hayoz, et al.; “World's First Combined digital Pulse Oximetry Pulse Oximetry and Carbon Dioxide Tension Ear Sensor”, Abstracts, A6, p. S103. (undated).
Huang, et al.; “Low Power Motion Tolerant Pulse Oximetry,” Abstracts, A7, p. S103. (undated).
Johansson; “Neural network for photoplethysmographic respiratory rate monitoring,” Medical & Biological Engineering & Computing, vol. 41, pp. 242-248 (2003).
Johnston, W.S., et al.; “Extracting Breathing Rate Infromation from a Wearable Reflectance Pulse Oximeter Sensor,” Proceedings of the 26th Annual International conference of the IEEE EMBS, San Francisco, California; Sep. 1-5, 2004; pp. 5388-5391.
Johnston, William S., et al.; “Effects of Motion Artifacts on helmet-Mounted Pulse Oximeter Sensors,” 2 pgs. (2004).
Jopling, Michae W., et al.; “Issues in the Laboratory Evaluation of Pulse Oximeter Performance,” Anesth Analg, vol. 94, pp. S62-S68 (2002).
Jovanov, E., et al.; “Reconfigurable intelligent Sensors for Health Monitoring: A case Study of Pulse Oximeter Sensor,” Proceedings o the 26thAnnual International conference of the IEEE EMBS, San Francisco, California, Sep. 1-5, 2004, pp. 4759-4762.
Kaestle, S.; “An Algorithm for Reliable Processing of Pulse Oximetry Signals Under strong Noise Conditions,” Dissertation Book, Lubeck University, Germany (1999).
Kaestle, S.; “Determining Artefact Sensitivity of New Pulse Oximeters in Laboratory Using Signals Obtained from Patient,” Biomedizinische Technik, vol. 45 (2000).
Kim, J.M., et al.; “Signal Processing Using Fourier & Wavelet Transform,” pp. II-310-II-311 (undated).
Kocher, Serge, et al.; “Performance of a Digital PCO2/SPO2 Ear Sensor,” Journal of Clinical Monitoring and Computing, vol. 18, pp. 75-59 (2004).
Koga, I., et al.; “Sigmoid colonic reflectance pulse oximetry and tonometry in a porcine experimental hypoperfusion shock model,” Acta Anaesthesiol Scand, vol. 46, pp. 1212-1216 (2002).
König, Volker, et al.; “Reflectance Pulse Oximetry—Principles and Obstetric Application in the Zurich System,” Journal of Clinical Monitoring and Computing, vol. 14, pp. 403-412 (1998).
Kubota, H., et al.; “Simultaneous Monitoring of PtcCO2 and SpO2 using a Miniature earlobe sensor,” Jinko Kokyo (Aritificial Respiration), vol. 20, No. 1, pp. 24-29 (2003).
Kyriacou, P. A., et al.; “Investication of oesophageal photoplethysmographic signals and blood oxygen saturation measurements in cardiothoracic surgery patients,” Physiological Measurement, vol. 23, No. 3, pp. 533-545 (Aug. 2002).
Kyriacou, P. A., et al.; “Esophageal Pulse Oximetry Utilizing Reflectance Photoplethysmography,” IEEE Transactions on Biomedical Engineering, vol. 49, No. 11, pp. 1360-1368 (Nov. 2002).
Leahy, Martin J., et al.; “Sensor Validation in Biomedical Applications,” IFAC Modelling and Control in Biomedical Systems, Warwick, UK; pp. 221-226 (1997).
Lebak, J.W., et al.; “Implementation of a Standards-Based Pulse Oximeter on a Wearable, Embedded Platform,” Proceeding of the 25th Annual International Conference of the IEEE EMBS, Cancun, Mexico, Sep. 17-21, 2003; pp. 3196-3198.
Lee, C.M., et al.; “Reduction of motion artifacts from photoplethysmographic recordings using wavelet denoising approach,” IEEE EMBS Asian-Pacific Conference on Biomedical Engineering, Oct. 20-22, 2003; pp. 194-195.
Lee, C.M., et al.; “Reduction of Motion Artifacts from Photoplethysmographic Records Using a Wavelet Denoising Approach,” IEEE, pp. 194-195 (undated).
Liu, Ying, et al.; “Sensor design of new type reflectance pulse oximetry,” Optics in Health Care and Biomedical Optics: Diagnostics and Treatment, Proceedings of SPIE, vol. 4916, pp. 98-102 (2002).
Lopez-Silva, S.M., et al.; “Transmittance Photoplethysmography and Pulse Oximetry With Near Infrared Laser Diodes,” IMTC 2004—Instrumentation and Measurement Technology Conference, Como, Italy, May 18-20, 2004; pp. 718-723.
Lutter, N., et al.; “Accuracy of Noninvasive Continuous Blood Pressure; Measurement Utilising the Pulse Transit Time,” Journal of clinical Monitoring and Computing, vol. 17, Nos. 7-8, pp. 469 (2002).
Lutter, N., et al.; “Comparison of Different Evaluation Methods for a Multi-wavelength Pulse Oximeter,” Biomedizinische Technik, vol. 43, (1998).
Lutter, Norbert O., et al.; “False Alarm Rates of Three Third-Generation Pulse Oximeters in PACU, ICU and IABP Patients,” Anesth Analg, vol. 94, pp. S69-S75 (2002).
Maletras, Francois-Xavier, et al.; “Construction and calibration of a new design of Fiber Optic Respiratory Plethysmograph (FORP),” Optomechanical Design and Engineering, Proceedings of SPIE, vol. 4444, pp. 285-293 (2001).
Mannheimer, Paul D., et al.; “The influence of Larger Subcutaneous Blood Vessels on Pulse Oximetry,” Journal of Clinical Monitoring and Computing, vol. 18, pp. 179-188 (2004).
Mannheimer, Paul D., et al.; “Wavelength Selection for Low-Saturation Pulse Oximetry,” IEEE Transactions on Biomedical Engineering, vol. 44, No. 3, pp. 148-158 (Mar. 1997).
Masin, Donald I., et al.; “Fetal Transmission Pulse Oximetry,” Proceedings 19th International Conference IEEE/EMBS, Oct. 30-Nov. 2, 1997; pp. 2326-2329.
Matsui, A., et al.; “Pulse Oximeter,” Neonatal Care, vol. 16, No. 3, pp. 38-45 (2003) (Article in Japanese—contains English summary of article).
Matsuzawa, Y., et al.; “Pulse Oximeter,” Home Care Medicine, pp. 42-45 (Jul. 2004); (Article in Japanese—contains English summary of article).
Matthews, Nora S. et al.; “An evaluation of pulse oximeters in dogs, cats and horses,” Veterinary Anaesthesia and Analgesia, vol. 30, pp. 3-14 (2003).
Mendelson, Y., et al.; “Measurement Site and Photodetector Size Considerations in Optimizing Power Consumption of a Wearable Reflectance Pulse Oximeter,” Proceedings of the 25th Annual International conference of the IEEE EMBS, Cancun, Mexico, Sep. 17-21, 2003; pp. 3016-3019.
Nagl, L., et al.; “Wearable Sensor System for Wireless State-of-Health Determination in Cattle,” Proceeding of the 25th Annual International Conference of the IEEE EMBS, Cancun, Mexico, Sep. 17-21, 2003; pp. 3012-3015.
Nakagawa, M., et al.; “Oxygen Saturation Monitor,” Neonatal Monitoring, vol. 26, No. 5, pp. 536-539 (2003) (Article in Japanese—contains English summary of article).
Nijland, Mark J.M., et al.; “Assessment of fetal scalp oxygen saturation determination in the sheep by transmission pulse oximetry,” Am. J. Obstet Gynecol., vol. 183, No. 6, pp. 1549-1553 (Dec. 2000).
Nijland, Roel, et al.; “Validation of Reflectance Pulse Oximetry: An Evaluation of a new Sensor in Piglets,” Journal of Clinical Monitoring, vol. 13, pp. 43-49 (1997).
Nilsson, Lena, et al.; “Monitoring of Respiratory Rate in Postoperative Care Using a New Photoplethysmographic Technique,” Journal of Clinical Monitoring and Computing, vol. 16, pp. 309-315 (2000).
Nogawa, Masamichi, et al.; “A New Hybrid Reflectance Optical Pulse Oximetry Sensor for Lower Oxygen Saturation Measurement and for Broader Clinical Application,” SPIE, vol. 2976, pp. 78-87 (undated).
Nogawa, Masamichi, et al.; “A Novel Hybrid Reflectance Pulse Oximater Sensor with improved Linearity and General Applicability to Various Portions of the Body,” Proceedings of the 20th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, vol. 20, No. 4, pp. 1858-1861 (1998).
Nuhr, M., et al.: “Forehead SpO2 monitoring compared to finger SpO2 recording in emergency transport,” Anaesthesia, vol. 59, pp. 390-393 (2004).
Odagiri, Y.; “Pulse Wave Measuring Device,” Micromechatronics, vol. 42, No. 3, pp. 6-11 (undated) (Article in Japanese—contains English summary of article).
Östmark, Åke, et al.; “Mobile Medical Applications Made Feasible Through Use of EIS Platforms,” IMTC—Instrumentation and Measurement Technology Conference, Vail, Colorado; May 20-22, 2003; pp. 292-295.
Lang, et al.; “Signal Identification and Quality Indicator™ for Motion Resistant Pulse Oximetry,” Abstracts, A10, p. S105. (undated).
Pickett, John, et al.; “Pulse Oximetry and PPG Measurements in Plastic Surgery,” Proceedings—19th International Conference—IEEE/EMBS, Chicago, Illinois, Oct. 30-Nov. 2, 1997, pp. 2330-2332.
Plummer, John L., et al.; “Identification of Movement Artifact by the Nellcor N-200 and N-3000 Pulse Oximeters,” Journal of clinical Monitoring, vol. 13, pp. 109-113 (1997).
Poets, C. F., et al.; “Detection of movement artifact in recorded pulse oximeter saturation,” Eur. J. Pediatr.; vol. 156, pp. 808-811 (1997).
Pothisarn, W., et al.; “A non-invasive hemoglobin measurement based pulse oximetry,” Optics in Health Care and Biomedical Optics: Diagnostics and Treatment; Proceedings of SPIE, vol. 4916; pp. 498-504 (2002).
Pujary, C., et al.; “Photodetector Size Considerations in the Design of a Noninvasive Reflectance Pulse Oximeter for Telemedicine Applications,” IEEE, pp. 148-149 (2003).
Relente, A.R., et al.; “Characterization and Adaptive Filtering of Motion Artifacts in Pulse Oximetry using Accelerometers,” Proceedings of the Second joint EMBS/BMES Conference, Houston, Texas, Oct. 23-26, 2002; pp. 1769-1770.
Reuss, James L.; “Factors Influencing Fetal Pulse Oximetry Performance,” Journal of clinical Monitoring and Computing, vol. 18, pp. 13-14 (2004).
Rhee, Sokwoo, et al.; “Artifact-Resistant, Power-Efficient Design of Finger-Ring Plethysmographic Sensor—Part I: Design and Analysis,” Proceedings of the 22nd Annual EMBS Internatonal Conference, Chicago, Illinois; Jul. 23-28, 2000; pp. 2792-2795.
Rhee, Sokwoo, et al.; “Artifact-Resistant, Power-Efficient Design of Finger-Ring Plethysmographic Sensor—Part II: Prototyping and Benchmarking,” Proceedings of the 22nd Annual EMBS International Conference, Chicago, Illinois; Jul. 23-28, 2000; pp. 2796-2799.
Rhee, Sokwoo, et al.; “Artifact-Resistant, Power-Efficient Design of Finger-Ring Plethysmographic Sensor,” IEEE Transactions on Biomedical Engineering, vol. 48, No. 7, pp. 795-805 (Jul. 2001).
Rhee, Sokwoo, et al.; “Design of a Artifact-Free Wearable Plethysmographic Sensor,” Proceedings of the First joint BMES/EMBS Conference, Oct. 13-16, 1999, Altanta, Georgia, p. 786.
Rhee, Sokwoo, et al.; “The Ring Sensor: a New Ambulatory Wearable Sensor for Twenty-Four Hour Patient Monitoring,” Proceedings of the 20th annual International Conference of the IEEE Engineering in Medicine and Biology Society, vol. 20, No. 4, pp. 1906-1909 (Oct. 1998).
Rheineck-Leyssius, Aart t., et al.; “Advanced Pulse Oximeter Signal Processing Technology Compared to Simple Averaging: I. Effect on Frequency of Alarms in the Operating Room,” Journal of Clinical Anestesia, vol. 11, pp. 192-195 (1999).
Rohling, Roman, et al.; “Clinical Investigation of a New Combined Pulse Oximetry and Carbon Dioxide Tension Sensor in Adult Anaesthesia,” Journal o Clinical Monitoring and Computing, vol. 15; pp. 23-27 (1999).
Schulz, Christian Eric; “Design of a Pulse Oximetry Sensor Housing Assembly,” California State University Master's Thesis, UMI Dissertation Services, UMI No. 1401306, (May 2000) 63 pages.
Seelbach-Göbel, Birgit, et al.; “The prediction of fetal acidosis by means of intrapartum fetal pulse oximetry,” Am J. Obstet. Gynecol., vol. 180, No. 1, Part 1, pp. 73-81 (1999).
Shaltis, Phillip, et al.; “Implementation and Validation of a Power-Efficient, High-Speed Modulation Design for Wireless Oxygen Saturation Measurement Systems,” IEEE, pp. 193-194 (2002).
Lopez-Silva, Sonnia Maria, et al.; “Near-infrared transmittance pulse oximetry with laser diodes,” Journal of Biomedical Optics, vol. 8, No. 3, pp. 525-533 (Jul. 2003).
Lopez-Silva, Sonnia Maria, et al.; “NIR transmittance pulse oximetry system with laser diodes,” Clinical Diagnostic Systems, Proceedings of SPIE, vol. 4255, pp. 80-87 (2001).
“Smaller Product, Tighter Tolerances Pose Dispensing Challenges for Medical Device Manufacturer,” Adhesives Age, pp. 40-41 (Oct. 1997).
Soto, Denise A.; “A Comparative Study of Pulse Oximeter Measurements: Digit Versus Earlobe,” Master of Science Thesis, California State University Dominguez Hills, May 1997, 46 pgs.
Spigulis, Janis, et al.; “Optical multi-channel sensing of skin blood pulsations,” Optical Sensing, Proceedings of SPIE, vol. 5459, pp. 46-53 (2004).
Stetson, Paul F.; “Determining Heart Rate from Noisey Pulse Oximeter Signals Using Fuzzy Logic,” The IEEE International Conference on Fuzzy Systems, St. Louis, Missouri, May 25-28, 2003; pp. 1053-1058.
Such, Hans Olaf; “Optoelectronic Non-invasive Vascular Diagnostics Using multiple Wavelength and Imaging Approach,” Dissertation, (1998).
Sugino, Shigekzau, et al.; “Forehead is as sensitive as finger pulse oximetry during general anesthesia,” Can J. Anesth.; General Anesthesia, vol. 51, No. 5; pp. 432-436 (2004).
Tobata, H., et al.; “Study of Ambient Light Affecting Pulse Oximeter Probes,” Ikigaku (Medical Technology), vol. 71, No. 10, pp. 475-476 (2002) (Article in Japanese—contains English summary of article).
Todd, Bryan, et al.; “The Identification of Peaks in Physiological Signals,” Computers and Biomedical Research, vol. 32, pp. 322-335 (1999).
Tremper, K.K.; “A Second Generation Technique for Evaluating Accuracy and Reliability of Second Generation Pulse Oximeters,” Journal of Clinical Monitoring and Computing, vol. 16, pp. 473-474 (2000).
Urquhart, C., et al.; “Ear probe pulse oximeters and neonates,” Anaesthesia, vol. 60, p. 294 (2005).
Vicenzi, Martin N.; “Transesophageal versus surface pulse oximetry in intensive care unit patients,” Crit. Care Med.; vol. 28, No. 7, pp. 2268-2270 (2000).
Vincente, L.M., et al.; “Adaptive Pre-Processing of Photoplethysmographic Blood Volume Pulse Measurements,” pp. 114-117 (1996).
Warren, Steve, et al.; “A Distributed Infrastructure for Veterinary Telemedicine,” Proceedings of the 25th Annual International Conference of the IEEE EMBS, Cancun, Mexico; Sep. 17-21, 2003; pp. 1394-1397.
Warren, Steve, et al.; “Wearable Sensors and Component-Based Design for Home Health Care,” Proceedings of the Second Joint EMBS/BMES Conference, Houston, Texas; Oct. 23-26, 2002; pp. 1871-1872.
Wendelken, Suzanne, et al.; “The Feasibility of Using a Forehead Reflectance Pulse Oximeter for Automated Remote Triage,” IEEE, pp. 180-181 (2004).
Yamaya, Yoshiki, et al.; “Validity of pulse oximetry during maximal exercise in normoxia, hypoxia, and hyperoxia,” J. Appl. Physiol., vol. 92, pp. 162-168 (2002).
Yamazaki, Nakaji, et al.; “Motion Artifact Resistant Pulse Oximeter (Durapulse PA 2100),” Journal of Oral Cavity Medicine, vol. 69, No. 4, pp. 53 (date unknown) (Article in Japanese—contains English summary of article).
Yan, Yong-sheng, et al.; “Reduction of motion artifact in pulse oximetry by smoothed pseudo Wigner-Ville distribution,” Journal of NeuroEngineering and Rehabilitation, vol. 2, No. 3 (9 pages) (Mar. 2005).
Yang, Boo-Ho, et al.; “A Twenty-Four Hour Tele-Nursing System Using a Ring Sensor,” Proceedings of the 1998 IEEE International Conference on Robotics & Automation, Leaven, Belgium, May 1998; pp. 387-392.
Yang, Boo-Ho, et al.; “Development of the ring sensor for healthcare automation,” Robotics and Autonomous Systems, vol. 30, pp. 273-281 (2000).
Yao, Jianchu, et al.; “A Novel Algorithm to Separate Motion Artifacts from Photoplethysmographic Signals Obtained With a Reflectance Pulse Oximeter,” Proceedings of the 26th Annual International conference of the IEEE EMBS, San Francisco, California, Sep. 1-5, 2004; pp. 2153-2156.
Yao, Jianchu, et al.; “Design of a Plug-and-Play Pulse Oximeter,” Proceedings of the Second Joint EMBS/BMES Conference, Houston, Texas, Oct. 23-26, 2002; pp. 1752-1753.
Yokota, Nakaura, Takahashi, et al.; “Pilot Model of a Reflectance-Type Pulse Oximeter for Pre-hospital Evaluation,” Journal of the Japanese Society of Emergency Medicine, Kanto Region, vol. 21, pp. 26-27 (2000) (Article in Japanese—contains English summary of article).
Yoon, Gilwon, et al.; Multiple diagnosis based on Photo-plethysmography: hematocrib, SpO2, pulse and respiration, Optics in Health Care and Biomedical optics: Diagnostics and Treatment; Proceedings of the SPIE, vol. 4916; pp. 185-188 (2002).
Azhar, N., et al.; “Automatic Feedback Control of Oxygen Therapy Using Pulse Oximetry,” Annual International Conference of the IEEE Engineering in Medicine and Biology Society, vol. 13, No. 4, pp. 1614-1615 (1991).
Related Publications (1)
Number Date Country
20110130638 A1 Jun 2011 US
Continuations (1)
Number Date Country
Parent 11241508 Sep 2005 US
Child 13022465 US