The present disclosure relates generally to medical devices and, more particularly, to sensors used for sensing physiological parameters of a patient.
This section is intended to introduce the reader to various aspects of art that may be related to various aspects of the present disclosure, which are described and/or claimed below. This discussion is believed to be helpful in providing the reader with background information to facilitate a better understanding of the various aspects of the present invention. Accordingly, it should be understood that these statements are to be read in this light, and not as admissions of prior art.
In the field of medicine, doctors often desire to monitor certain physiological characteristics of their patients. Accordingly, a wide variety of devices may have been developed for monitoring many such physiological characteristics. Such devices may provide doctors and other healthcare personnel with information they may utilize to provide the best possible healthcare for their patients. As a result, such monitoring devices may have become an indispensable part of modern medicine.
One technique for monitoring certain physiological characteristics of a patient is commonly referred to as pulse oximetry, and the devices built based upon pulse oximetry techniques are commonly referred to as pulse oximeters. Pulse oximetry may be used to measure various blood flow characteristics, such as the oxygen saturation of hemoglobin in arterial blood, the volume of individual blood pulsations supplying the tissue, and/or the rate of blood pulsations corresponding to each heartbeat of a patient. The “pulse” in pulse oximetry may refer to the time varying amount of arterial blood in the tissue during each cardiac cycle.
Pulse oximeters may utilize a non-invasive sensor capable of transmiting light through a patient's tissue and that photoelectrically detects the absorption and/or scattering of the transmitted light in such tissue. Pphysiological characteristics may then be calculated based at least in part upon the amount of light absorbed or scattered. The light passed through the tissue may be typically selected to be of one or more wavelengths that may be absorbed or scattered by the blood in an amount correlative to the amount of the blood constituent present in the blood. The amount of light absorbed and/or scattered may then be used to estimate the amount of blood constituent in the tissue using various algorithms.
To facilitate accurate and reliable measurements when monitoring physiological characteristics of a patient, a pulse oximetry sensor should be adequately in contact with the patient's tissue. When a sensor is dislodged or removed from the patient, or contact is inadequate, some or all of the emitted light does not pass through the patient's tissue, and the detected light may no longer relate in the same way to a physiological constituent. Because detected light unrelated to a physiological constituent may result in measurement inaccuracies, it may be desirable to provide a mechanism for indicating that sensor is not in sufficient contact with the patient's tissue.
Certain aspects commensurate in scope of the disclosure are set forth below. It should be understood that these aspects are presented merely to provide the reader with a brief summary of certain forms that embodimnets might take and that these aspects are not intended to limit the scope of the invention and/or disclosure. Indeed, the disclosure may encompass a variety of aspects that may not be set forth below.
In an embodiment, there may be provided a sensor that includes, a sensor body, an emitter and a detector disposed on the sensor body, and a tissue contact sensor disposed adjacent the sensor body. The tissue contact sensor may be capable of providing an electrical signal related to a movement of a mechanical component of the tissue contact sensor.
In an embodiment, there may also be provided a pulse oximetry system that includes, a pulse oximetry monitor, and a pulse oximetry sensor capable of being operatively coupled to the monitor. In an embodiment the sensor may include, a sensor body, an emitter and a detector disposed generally adjacent the sensor body, and a tissue contact sensor disposed generally adjacent the sensor body, where the tissue contact sensor may be capable of providing an electrical signal to the monitor related to a movement of a mechanical component of the tissue contact sensor.
In an embodiment, there may be provided a method which includes, moving a mechanical component of a tissue contact sensor, disposed on a medical sensor, relative to an emitter and a detector disposed generally adjacent the medical sensor, and providing an electrical signal related to the movement of the mechanical component of the tissue contact sensor.
In an embodiment, there may be provided a method of manufacturing a sensor which includes, providing a sensor body upon which an emitter and a detector are capable of being disposed, and providing a tissue contact sensor disposed generally adjacent the sensor body, wherein the tissue contact sensor may be capable of providing an electrical signal related to a movement of a mechanical component of the tissue contact sensor.
Aspects of embodiments may become apparent upon reading the following detailed description and upon reference to the drawings in which:
One or more embodiments will be described below. In an effort to provide a concise description of these embodiments, not all features of an actual implementation are described in the specification. It should be appreciated that in the development of any such actual implementation, as in any engineering or design project, numerous implementation-specific decisions must be made to achieve the developers' specific goals, such as compliance with system-related and business-related constraints, which may vary from one implementation to another. Moreover, it should be appreciated that such a development effort might be complex and time consuming, but would nevertheless be a routine undertaking of design, fabrication, and manufacture for those of ordinary skill having the benefit of this disclosure.
In an embodiment, medical sensors for pulse oximetry or other applications utilizing spectrophotometry may be provided which may provide a signal related to a “sensor on” and/or a “sensor off” state. In an embodiment, the sensors may include one or more tissue contact sensors. Such sensors may provide a signal to a downstream medical device in order to convey a change in sensor status medical device and to a healthcare practitioner, for example when a sensor falls off of a patient or moves relative to a patient's tissue. Further, embodiments of such sensors may be capable of providing information as to proper sensor application. By providing information related to the correct placement of a sensor, sensors as provided herein may reduce measurement errors which may result from a sensor being located too far from the tissue to provide accurate measurements, as well as other inadequate sensor placement.
In an embodiment, the contact sensor 12 may be used with any suitable sensor type, including reusable and/or disposable sensors, as well as clip-on or bandage-style sensors, among others. Further, it should be understood that the contact sensor 12 may be used with sensors applied to any suitable tissue site (e.g., finger, ear, toe, forehead). The contact sensor 12 may be disposed on the sensor body 14 in any suitable location. As depicted in this embodiment, the contact sensor 12 may be proximate to the emitter 16. In transmission-type sensors 10 in which the emitter 16 and the detector 18 are positioned across the tissue from one another, it may be advantageous to position the contact sensor 12 away from the area between the emitter 16 and the detector 18. In this case, the contact sensor 12 may not be located in an area of the sensor body 14 that may fold around the tissue and thus may not conform closely enough to provide an accurate contact signal. In an embodiment, in reflectance-type sensors in which the emitter 16 and the detector 18 are side-by-side, the contact sensor 12 may be located in any suitable location on the sensor body 14.
In an embodiment, the plunger assembly 32 includes a tissue contact element 33, a biasing memeber 34, and a switch element 35. Generally, the switch element 35 may be formed from any suitable conductive material, such as a metal. The tissue contact element 33 may be formed from any suitable material that may be sufficiently resilient to transmit pressure from the tissue to the biasing member 34, while also being generally comfortable against a patient's tissue.
In an embodiment, suitable materials for forming the tissue contact element 33 may include thermoplastic polymers or metals, for example. The plunger assembly 32 may be biased by the biasing member, such as a spring 34, such that the switch element 35 will not close the circuit 28 without sufficient pressure being applied to the tissue contact element 33. This may result in the “resting state” of the circuit 28 being open. The open circuit may thus correspond to the “sensor off” state.
The spring 34 may be sized such that when the sensor 10A is properly applied against a monitoring site, the plunger assembly 32 will move, and the switch element 35 will close the circuit 28 across the contacts 36. In such an embodiment, the closed circuit may correspond to the “sensor on” state.
In an embodiment, as depicted in
The spring-based contact sensor 12A may provide the advantage of design flexibility as the biasing member 34 may be sized for any suitable force or pressure specification, depending on the configuration of the sensor 10A and the sensing site. Further, since the spring 34 may be configured to move only after a threshold force has been applied, the use of a spring 34 may prevent false positive “sensor on” states from incidental contact with the sensor 10A. In one embodiment, the pressure range that may be used with the spring 34 in order to close the circuit 28 may be higher than typical venous pressure (e.g., 3-5 mm Hg) and lower than typical capillary pressure (e.g., 22 mm Hg). For example, the pressure may generally be between 15 mm Hg and 20 mm Hg in an adult patient.
As depicted in the embodiment in
The spring-biased plunger assembly 68 may move a predetermined amount upon proper application of the sensor 10D to a tissue site. The application of the sensor 10D may transmit a force to the spring-biased plunger assembly 68 which may move a shutter 70 generally out of line with the optical path between the secondary emitter 62 and the secondary detector 64, which may inhibit and/or prevent emitted light from impinging the secondary detector 64, as shown in
In an embodiment, the shutter 70 may be positioned along the spring biased plunger assembly 68 such that the application of pressure to the contact sensor 12D may move the shutter 70 generally in-line with the optical path, and thus the “sensor on” signal may be related to an increase in detected light. In any embodiment, the shutter 70 may be positioned along a movable rod 72 which is part of the spring biased plunger assembly 68. Generally, the rod 72 may be formed from or be covered with a light absorbing material that may effectively block all or part of the light along the optical path. The shutter 70 may be a aperture or opening in the rod 72 which is suitably sized and shaped to allow some, or most of the light from the secondary emitter 62 to pass through to the detector 64.
In an embodiment, as shown in
The emitter 16 may be configured to emit multiple wavelengths of light. In an embodiment, a first wavelength, as shown by dashed arrow 84, may be related to a physiological constituent. A second wavelength, as shown by solid arrow 86, may be strongly absorbed by a patient's tissue. If the sensor is not properly applied to the tissue, as shown in
In this embodiment, such a configuration may not employ any additional mechanical components, and thus may provide manufacturing advantages. The wavelengths related to the “sensor off” condition may be selected based on the optical absorption properties of the tissue and the distance between the emitter 16 and the detector 18, among other considerations. For a pulse oximetry sensor having an emitter-detector spacing of at least a few millimeters, such a wavelength may be selected to be generally longer than about 1200 nm, so as to generally be strongly absorbed by water in the tissue, or shorter than about 600 nm, so as to be generally strongly absorbed by hemoglobin in the blood perfusing the tissue.
In an embodiment, a second temperature sensor (not shown) may be positioned on a non-tissue-contacting surface to measure an ambient temperature. Accordingly, when the difference between the first and second temperature measurements is less than a predetermined threshold value downstream medical device may interpret that condition as a “sensor off.” The dual temperature sensing configuration, which may be more expensive than a single temperature sensing configuration, may provide a generally more reliable measurement, which may be based at least in part upon a difference between temperature measurements.
In addition to contact measurements based on mechanical switches, optical measurements, and temperature, a sensor contact with the tissue may be determined from electrical properties inherent to certain sensing components. In an embodiment, as shown in
Such a configuration may provide cost and convenience advantages over dual electrode contact sensors that measure impedance of the skin between two electrodes. For dual electrode sensors, electrical impedance of the skin may be affected by tissue integrity and hydration as well as by the distance between the two electrodes, which may vary. As In sensor 10H a single electrode 92 relays a noise signal related to the gap between the sensor 10H and the tissue. Accordingly, the skin itself does not conduct the detected noise signal 94. Thus, the signal may not be influenced by the tissue characteristics unique to each patient. Accordingly, the sensor 10H may be more readily calibrated than dual electrode contact sensors that measure impedance of the skin between two electrodes that send a current through the skin.
In various embodiments, regardless of the type of contact sensor 12 used, a sensor, illustrated generically as a sensor 10, may be used in conjunction with a downstream medical device, which may include a pulse oximetry monitor 100, as illustrated in
In an embodiment, the sensor 10 may be connected to a pulse oximetry monitor 100. The monitor 100 may include a microprocessor 122 coupled to an internal bus 124. Also connected to the bus may be a RAM memory 126 and a display 128. A time processing unit (TPU) 130 may provide timing control signals to light drive circuitry 132, which controls when the emitter 16 is activated, and if multiple light sources are used, the multiplexed timing for the different light sources. TPU 130 may also control the gating-in of signals from detector 18 through an amplifier 133 and a switching circuit 134. These signals are sampled at the proper time, depending at least in part upon which of multiple light sources is activated, if multiple light sources are used. The received signal from the detector 18 and the contact sensor 12 may be passed through an amplifier 136, a low pass filter 138, and an analog-to-digital converter 140. The digital data may then be stored in a queued serial module (QSM) 142, for later downloading to RAM 126 as QSM 142 fills up. In an embodiment, there may be multiple parallel paths of separate amplifier, filter, and A/D converters for multiple light wavelengths or spectra received.
In an embodiment, the monitor 100 may be configured to receive signals from the sensor 10. The signals may be related to a physiological constituent and/or a contact sensor 12 that may be processed by the monitor 100 to indicate a sensor condition such as “sensor on” or “sensor off.” The monitor 100 may be configured to provide an indication about the sensor condition, such as an audio alarm, visual alarm or a display message, such as “CHECK SENSOR.” Further, the monitor 100 may be configured to receive information about the contact sensor 12 from a memory chip or other device, such as the encoder 116, which may be on the sensor 10 or the cable 20. In an embodiment, such a device may include a code or other identification parameter that may allow the monitor 100 to select ah appropriate software or hardware instruction for processing the signal.
In an embodiment, a monitor 100 may run an algorithm or code for processing the signal provided by the contact sensor 12 The processing algorithm may receive information that a circuit is either opened or closed, allowing for a simple binary determination of “sensor on” or “sensor off,” depending on the parameters of the particular contact sensor 12. In other embodiments, a more complex algorithm may process a signal from a primary detector 18, and/or a secondary detector, and/or other detectors, and may compare an increase or decrease in detected light to empirically-derived stored parameters to determine the sensor condition. In other embodiments, a signal may result in a hardware switch that may open or close a circuit, which may trigger the display 128 to display a sensor state message.
In an embodiment, based at least in part upon the received signals corresponding to the light received by detector 18, microprocessor 122 may calculate the oxygen saturation using various algorithms. These algorithms may require coefficients, which may be empirically determined, and may correspond to the wavelengths of light used. The algorithms may be stored in a ROM 146 and accessed and operated according to microprocessor 122 instructions.
In an embodiment of a two-wavelength system, the particular set of coefficients chosen for any pair of wavelength spectra may be determined by a value indicated by the encoder 116 corresponding to a particular light source in a particular sensor 10. In one embodiment, multiple resistor values may be assigned to select different sets of coefficients. In another embodiment, the same resistors are used to select from among the coefficients appropriate for an infrared source paired with either a near red source or far red source. The selection between whether the near red or far red set will be chosen can be selected with a control input from control inputs 154. Control inputs 154 may be, for instance, a switch on the pulse oximeter, a keyboard, or a port providing instructions from a remote host computer. Furthermore, any number of methods or algorithms may be used to determine a patient's pulse rate, oxygen saturation or any other desired physiological parameter.
In an embodiment, a monitor 100 may provide instructions to vary the emitter drive 132 frequency and/or pattern, and verify that the detected and de-multiplexed light signals are unaffected. Accordingly, when the sensor is receiving a significant portion of its signals from the ambient light (i.e. corresponding to a “sensor off” condition), then a change in the emitter 16 drive frequency and/or pattern will likely result in a change in the detected photocurrent and/or the de-multiplexed waveform (resulting from a change in alias frequencies). This technique may be more advantageous in a setting with sufficient ambient light.
In an embodiment, the sensor 10 includes an emitter 16 and a detector 18 that may be of any suitable type. For example, the emitter 16 may be one or more light emitting diodes adapted to transmit one or more wavelengths of light in the red to infrared range, and the detector 18 may one or more photodetectors selected to receive light in the range or ranges emitted from the emitter 16. Alternatively, an emitter 16 may also be a laser diode or a vertical cavity surface emitting laser (VCSEL), or other light source. The emitter 16 and detector 18 may also include optical fiber sensing elements.
In an embodiment, an emitter 16 may include a broadband or “white light” source, and the detector could include any of a variety of elements for selecting specific wavelengths, such as reflective or refractive elements or interferometers. These types of emitters and/or detectors may be coupled to the rigid or rigidified sensor via fiber optics.
In an embodiment, a sensor 10 may sense light detected from the tissue at a different wavelength from the light emitted into the tissue. Such sensors may be adapted to sense fluorescence, phosphorescence, Raman scattering, Rayleigh scattering, and/or multi-photon events or photoacoustic effects. For pulse oximetry applications using either transmission or reflectance type sensors the oxygen saturation of the patient's arterial blood may be determined using two or more wavelengths of light, most commonly red and near infrared wavelengths. Similarly, in other applications, a tissue water fraction (or other tissue constituent related metric) or a concentration of one or more biochemical components in an aqueous environment may be measured using two or more wavelengths of light. In various embodiments, these wavelengths may be infrared wavelengths between about 1,000 nm to about 2,500 nm.
It should be understood that, as used herein, the term “light” may refer to one or more of ultrasound, radio, microwave, millimeter wave, infrared, visible, ultraviolet, gamma ray or X-ray electromagnetic radiation, and may also include any wavelength within the ultrasound, radio, microwave, millimeter wave, infrared, visible, ultraviolet, or X-ray spectra, and that any suitable wavelength of light may be appropriate for use with the present techniques.
In an embodiment, the emitter 16 and the detector 18 may be disposed on or generally adjacent to a sensor body 14, which may be made of any suitable material, such as plastic, foam, woven material, or paper. In an embodiment, the emitter 16 and the detector 18 may be remotely located and optically coupled to the sensor 10 using optical fibers. In various embodiments, the sensor 10 is coupled to a cable 20 that is responsible for transmitting electrical and/or optical signals to and from the emitter 16 and detector 18 of the sensor 10. The cable 20 may be permanently coupled to the sensor 10, or it may be removably coupled to the sensor 10—the latter alternative being more useful and cost efficient in situations where the sensor 10 is disposable.
In various embodiments, the sensor 10 may be a “transmission type” sensor. Transmission type sensors may include an emitter 16 and detector 18 that are placed on opposing sides of the sensor site. If the sensor site is a fingertip, for example, the sensor 10 is positioned over the patient's fingertip such that the emitter 16 and detector 18 lie on either side of the patient's nail bed. In other words, the sensor 10 is positioned so that the emitter 16 is located on the patient's fingernail and the detector 18 is located 180° opposite the emitter 16 on the patient's finger pad.
During operation, the emitter 16 shines one or more wavelengths of light through the patient's fingertip, and the light received by the detector 18 is processed to determine various physiological characteristics of the patient. In each of the embodiments discussed herein, it should be understood that the locations of the emitter 16 and the detector 18 may be exchanged. For example, the detector 18 may be located at the top of the finger and the emitter 16 may be located underneath the finger. In either arrangement, the sensor 10 may perform in substantially the same manner.
Reflectance type sensors also operate by emitting light into the tissue and detecting the light that is transmitted and scattered by the tissue. Reflectance type sensors may include an emitter 16 and detector 18 which are typically placed on the same side of the sensor site. For example, a reflectance type sensor may be placed on a patient's fingertip or foot such that the emitter 16 and detector 18 lie side-by-side. Reflectance type sensors detect light photons that are scattered back to the detector 18. A sensor 10 may also be a “transflectance” sensor, such as a sensor that may subtend a portion of a baby's heel.
While the resent disclosure may be capable of various modifications and alternative forms, embodiments have been shown by way of example in the drawings and have been described in detail herein. However, it should be understood that the disclosure is not intended to be limited to the particular forms disclosed. Indeed, the present techniques may not only be applied to measurements of blood oxygen saturation, but these techniques may also be utilized for the measurement and/or analysis of other blood constituents. For example, using the same, different, or additional wavelengths, the present techniques may be utilized for the measurement and/or analysis of additional blood or tissue constituents, such as carboxyhemoglobin, met-hemoglobin, total hemoglobin, intravascular dyes, and/or water content. Rather, the disclosure is to cover all modifications, equivalents, and alternatives falling within the spirit and scope of the invention as defined by the following appended claims.
Number | Name | Date | Kind |
---|---|---|---|
2720708 | Snell | Oct 1955 | A |
3403555 | Versaci et al. | Oct 1968 | A |
3418664 | Carmichael et al. | Dec 1968 | A |
3536545 | Traynor et al. | Oct 1970 | A |
D222454 | Beeber | Oct 1971 | S |
3721813 | Condon et al. | Mar 1973 | A |
3852736 | Cook et al. | Dec 1974 | A |
4098772 | Bonk et al. | Jul 1978 | A |
D250275 | Bond | Nov 1978 | S |
D251387 | Ramsey et al. | Mar 1979 | S |
4222389 | Rubens | Sep 1980 | A |
4297871 | Wright et al. | Nov 1981 | A |
D262488 | Rossman et al. | Dec 1981 | S |
4334544 | Hill et al. | Jun 1982 | A |
4350165 | Striese | Sep 1982 | A |
4353372 | Ayer | Oct 1982 | A |
4380240 | Jobsis et al. | Apr 1983 | A |
4406289 | Wesseling et al. | Sep 1983 | A |
4502726 | Adams | Mar 1985 | A |
4510551 | Brainard, II | Apr 1985 | A |
4586513 | Hamaguri | May 1986 | A |
4603700 | Nichols et al. | Aug 1986 | A |
4621643 | New, Jr. et al. | Nov 1986 | A |
4653498 | New, Jr. et al. | Mar 1987 | A |
4677528 | Miniet | Jun 1987 | A |
4685464 | Goldberger et al. | Aug 1987 | A |
4694833 | Hamaguri | Sep 1987 | A |
4697593 | Evans et al. | Oct 1987 | A |
4700708 | New, Jr. et al. | Oct 1987 | A |
4714080 | Edgar, Jr. et al. | Dec 1987 | A |
4714341 | Hamaguri et al. | Dec 1987 | A |
4722120 | Lu | Feb 1988 | A |
4726382 | Boehmer et al. | Feb 1988 | A |
4759369 | Taylor | Jul 1988 | A |
4770179 | New, Jr. et al. | Sep 1988 | A |
4773422 | Isaacson et al. | Sep 1988 | A |
4776339 | Schreiber | Oct 1988 | A |
4781195 | Martin | Nov 1988 | A |
4783815 | Buttner | Nov 1988 | A |
4796636 | Branstetter et al. | Jan 1989 | A |
4800495 | Smith | Jan 1989 | A |
4800885 | Johnson | Jan 1989 | A |
4802486 | Goodman et al. | Feb 1989 | A |
4805623 | Jöbsis | Feb 1989 | A |
4807630 | Malinouskas | Feb 1989 | A |
4807631 | Hersh et al. | Feb 1989 | A |
4819646 | Cheung et al. | Apr 1989 | A |
4819752 | Zelin | Apr 1989 | A |
4824242 | Frick et al. | Apr 1989 | A |
4825872 | Tan et al. | May 1989 | A |
4825879 | Tan et al. | May 1989 | A |
4830014 | Goodman et al. | May 1989 | A |
4832484 | Aoyagi et al. | May 1989 | A |
4846183 | Martin | Jul 1989 | A |
4848901 | Hood, Jr. | Jul 1989 | A |
4854699 | Edgar, Jr. | Aug 1989 | A |
4859056 | Prosser et al. | Aug 1989 | A |
4859057 | Taylor et al. | Aug 1989 | A |
4863265 | Flower et al. | Sep 1989 | A |
4865038 | Rich et al. | Sep 1989 | A |
4867557 | Takatani et al. | Sep 1989 | A |
4869253 | Craig, Jr. et al. | Sep 1989 | A |
4869254 | Stone et al. | Sep 1989 | A |
4880304 | Jaeb et al. | Nov 1989 | A |
4883055 | Merrick | Nov 1989 | A |
4883353 | Hansmann et al. | Nov 1989 | A |
4890619 | Hatschek | Jan 1990 | A |
4892101 | Cheung et al. | Jan 1990 | A |
4901238 | Suzuki et al. | Feb 1990 | A |
4908762 | Suzuki et al. | Mar 1990 | A |
4911167 | Corenman et al. | Mar 1990 | A |
4913150 | Cheung et al. | Apr 1990 | A |
4926867 | Kanda et al. | May 1990 | A |
4927264 | Shiga et al. | May 1990 | A |
4928692 | Goodman et al. | May 1990 | A |
4934372 | Corenman et al. | Jun 1990 | A |
4938218 | Goodman et al. | Jul 1990 | A |
4942877 | Sakai et al. | Jul 1990 | A |
4948248 | Lehman | Aug 1990 | A |
4955379 | Hall | Sep 1990 | A |
4960126 | Conlon et al. | Oct 1990 | A |
4964408 | Hink et al. | Oct 1990 | A |
4971062 | Hasebe et al. | Nov 1990 | A |
4974591 | Awazu et al. | Dec 1990 | A |
5007423 | Branstetter et al. | Apr 1991 | A |
5025791 | Niwa | Jun 1991 | A |
RE33643 | Isaacson et al. | Jul 1991 | E |
5028787 | Rosenthal et al. | Jul 1991 | A |
5035243 | Muz | Jul 1991 | A |
5040039 | Schmitt et al. | Aug 1991 | A |
5041187 | Hink et al. | Aug 1991 | A |
5054488 | Muz | Oct 1991 | A |
5055671 | Jones | Oct 1991 | A |
5058588 | Kaestle | Oct 1991 | A |
5065749 | Hasebe et al. | Nov 1991 | A |
5066859 | Karkar et al. | Nov 1991 | A |
5069213 | Polczynski | Dec 1991 | A |
5078136 | Stone et al. | Jan 1992 | A |
5086229 | Rosenthal et al. | Feb 1992 | A |
5088493 | Giannini et al. | Feb 1992 | A |
5090410 | Saper et al. | Feb 1992 | A |
5094239 | Jaeb et al. | Mar 1992 | A |
5094240 | Muz | Mar 1992 | A |
5099841 | Heinonen et al. | Mar 1992 | A |
5099842 | Mannheimer et al. | Mar 1992 | A |
H1039 | Tripp, Jr. et al. | Apr 1992 | H |
5104623 | Miller | Apr 1992 | A |
5109849 | Goodman et al. | May 1992 | A |
5111817 | Clark et al. | May 1992 | A |
5113861 | Rother | May 1992 | A |
D326715 | Schmidt | Jun 1992 | S |
5125403 | Culp | Jun 1992 | A |
5127406 | Yamaguchi | Jul 1992 | A |
5131391 | Sakai et al. | Jul 1992 | A |
5140989 | Lewis et al. | Aug 1992 | A |
5152296 | Simons | Oct 1992 | A |
5154175 | Gunther | Oct 1992 | A |
5158082 | Jones | Oct 1992 | A |
5170786 | Thomas et al. | Dec 1992 | A |
5188108 | Secker et al. | Feb 1993 | A |
5190038 | Polson et al. | Mar 1993 | A |
5193542 | Missanelli et al. | Mar 1993 | A |
5193543 | Yelderman | Mar 1993 | A |
5203329 | Takatani et al. | Apr 1993 | A |
5209230 | Swedlow et al. | May 1993 | A |
5213099 | Tripp et al. | May 1993 | A |
5216598 | Branstetter et al. | Jun 1993 | A |
5217012 | Young et al. | Jun 1993 | A |
5217013 | Lewis et al. | Jun 1993 | A |
5218207 | Rosenthal | Jun 1993 | A |
5218962 | Mannheimer et al. | Jun 1993 | A |
5224478 | Sakai et al. | Jul 1993 | A |
5226417 | Swedlow et al. | Jul 1993 | A |
5228440 | Chung et al. | Jul 1993 | A |
5237994 | Goldberger | Aug 1993 | A |
5239185 | Ito et al. | Aug 1993 | A |
5246002 | Prosser | Sep 1993 | A |
5246003 | DeLonzor | Sep 1993 | A |
5247931 | Norwood | Sep 1993 | A |
5247932 | Chung et al. | Sep 1993 | A |
5249576 | Goldberger et al. | Oct 1993 | A |
5253645 | Friedman et al. | Oct 1993 | A |
5253646 | Delpy et al. | Oct 1993 | A |
5259381 | Cheung et al. | Nov 1993 | A |
5259761 | Schnettler et al. | Nov 1993 | A |
5263244 | Centa et al. | Nov 1993 | A |
5267562 | Ukawa et al. | Dec 1993 | A |
5267563 | Swedlow et al. | Dec 1993 | A |
5267566 | Choucair et al. | Dec 1993 | A |
5273036 | Kronberg et al. | Dec 1993 | A |
5275159 | Griebel | Jan 1994 | A |
5278627 | Aoyagi et al. | Jan 1994 | A |
5279295 | Martens et al. | Jan 1994 | A |
5285783 | Secker | Feb 1994 | A |
5285784 | Seeker | Feb 1994 | A |
5287853 | Vester et al. | Feb 1994 | A |
5291884 | Heinemann et al. | Mar 1994 | A |
5297548 | Pologe | Mar 1994 | A |
5299120 | Kaestle | Mar 1994 | A |
5299570 | Hatschek | Apr 1994 | A |
5309908 | Friedman et al. | May 1994 | A |
5311865 | Mayeux | May 1994 | A |
5313940 | Fuse et al. | May 1994 | A |
5323776 | Blakely et al. | Jun 1994 | A |
5329922 | Atlee, III | Jul 1994 | A |
5337744 | Branigan | Aug 1994 | A |
5339810 | Ivers et al. | Aug 1994 | A |
5343818 | McCarthy et al. | Sep 1994 | A |
5343869 | Pross et al. | Sep 1994 | A |
5348003 | Caro | Sep 1994 | A |
5348004 | Hollub et al. | Sep 1994 | A |
5348005 | Merrick et al. | Sep 1994 | A |
5349519 | Kaestle | Sep 1994 | A |
5349952 | McCarthy et al. | Sep 1994 | A |
5349953 | McCarthy et al. | Sep 1994 | A |
5351685 | Potratz | Oct 1994 | A |
5353799 | Chance | Oct 1994 | A |
5355880 | Thomas et al. | Oct 1994 | A |
5355882 | Ukawa et al. | Oct 1994 | A |
5361758 | Hall et al. | Nov 1994 | A |
5365066 | Krueger, Jr. et al. | Nov 1994 | A |
5368025 | Young et al. | Nov 1994 | A |
5368026 | Swedlow et al. | Nov 1994 | A |
5368224 | Richardson et al. | Nov 1994 | A |
5372136 | Steuer et al. | Dec 1994 | A |
5377675 | Ruskewicz et al. | Jan 1995 | A |
5385143 | Aoyagi | Jan 1995 | A |
5387122 | Goldberger et al. | Feb 1995 | A |
5390670 | Centa et al. | Feb 1995 | A |
5392777 | Swedlow et al. | Feb 1995 | A |
5398680 | Polson et al. | Mar 1995 | A |
5402777 | Warring et al. | Apr 1995 | A |
5402779 | Chen et al. | Apr 1995 | A |
5411023 | Morris, Sr. et al. | May 1995 | A |
5411024 | Thomas et al. | May 1995 | A |
5413099 | Schmidt et al. | May 1995 | A |
5413100 | Barthelemy et al. | May 1995 | A |
5413101 | Sugiura | May 1995 | A |
5413102 | Schmidt et al. | May 1995 | A |
5417207 | Young et al. | May 1995 | A |
5421329 | Casciani et al. | Jun 1995 | A |
5425360 | Nelson | Jun 1995 | A |
5425362 | Siker et al. | Jun 1995 | A |
5427093 | Ogawa et al. | Jun 1995 | A |
5429128 | Cadell et al. | Jul 1995 | A |
5429129 | Lovejoy et al. | Jul 1995 | A |
5431159 | Baker et al. | Jul 1995 | A |
5431170 | Mathews | Jul 1995 | A |
5437275 | Amundsen et al. | Aug 1995 | A |
5438986 | Disch et al. | Aug 1995 | A |
5448991 | Polson et al. | Sep 1995 | A |
5452717 | Branigan et al. | Sep 1995 | A |
5465714 | Scheuing | Nov 1995 | A |
5469845 | DeLonzor et al. | Nov 1995 | A |
RE35122 | Corenman et al. | Dec 1995 | E |
5482034 | Lewis et al. | Jan 1996 | A |
5482036 | Diab et al. | Jan 1996 | A |
5485847 | Baker, Jr. | Jan 1996 | A |
5490505 | Diab et al. | Feb 1996 | A |
5490523 | Isaacson et al. | Feb 1996 | A |
5491299 | Naylor et al. | Feb 1996 | A |
5494032 | Robinson et al. | Feb 1996 | A |
5494043 | O'Sullivan et al. | Feb 1996 | A |
5497771 | Rosenheimer | Mar 1996 | A |
5499627 | Steuer et al. | Mar 1996 | A |
5503148 | Pologe et al. | Apr 1996 | A |
5505199 | Kim | Apr 1996 | A |
5507286 | Solenberger | Apr 1996 | A |
5511546 | Hon | Apr 1996 | A |
5517988 | Gerhard | May 1996 | A |
5520177 | Ogawa et al. | May 1996 | A |
5521851 | Wei et al. | May 1996 | A |
5522388 | Ishikawa et al. | Jun 1996 | A |
5524617 | Mannheimer | Jun 1996 | A |
5529064 | Rall et al. | Jun 1996 | A |
5533507 | Potratz et al. | Jul 1996 | A |
5551423 | Sugiura | Sep 1996 | A |
5551424 | Morrison et al. | Sep 1996 | A |
5553614 | Chance | Sep 1996 | A |
5553615 | Carim et al. | Sep 1996 | A |
5555882 | Richardson et al. | Sep 1996 | A |
5558096 | Palatnik | Sep 1996 | A |
5560355 | Merchant et al. | Oct 1996 | A |
5564417 | Chance | Oct 1996 | A |
5575284 | Athan et al. | Nov 1996 | A |
5575285 | Takanashi et al. | Nov 1996 | A |
5577500 | Potratz | Nov 1996 | A |
5582169 | Oda et al. | Dec 1996 | A |
5584296 | Cui et al. | Dec 1996 | A |
5588425 | Sackner et al. | Dec 1996 | A |
5588427 | Tien | Dec 1996 | A |
5590652 | Inai | Jan 1997 | A |
5595176 | Yamaura | Jan 1997 | A |
5596986 | Goldfarb | Jan 1997 | A |
5611337 | Bukta | Mar 1997 | A |
5617852 | MacGregor | Apr 1997 | A |
5619991 | Sloane | Apr 1997 | A |
5619992 | Guthrie et al. | Apr 1997 | A |
5626140 | Feldman et al. | May 1997 | A |
5630413 | Thomas et al. | May 1997 | A |
5632272 | Diab et al. | May 1997 | A |
5632273 | Suzuki | May 1997 | A |
5634459 | Gardosi | Jun 1997 | A |
5638593 | Gerhardt et al. | Jun 1997 | A |
5638816 | Kiani-Azarbayjany et al. | Jun 1997 | A |
5638818 | Diab et al. | Jun 1997 | A |
5645060 | Yorkey et al. | Jul 1997 | A |
5645440 | Tobler et al. | Jul 1997 | A |
5660567 | Nierlich et al. | Aug 1997 | A |
5662105 | Tien | Sep 1997 | A |
5662106 | Swedlow et al. | Sep 1997 | A |
5664270 | Bell et al. | Sep 1997 | A |
5666952 | Fuse et al. | Sep 1997 | A |
5671529 | Nelson | Sep 1997 | A |
5673692 | Schulze et al. | Oct 1997 | A |
5673693 | Solenberger | Oct 1997 | A |
5676139 | Goldberger et al. | Oct 1997 | A |
5676141 | Hollub | Oct 1997 | A |
5678544 | DeLonzor et al. | Oct 1997 | A |
5680857 | Pelikan et al. | Oct 1997 | A |
5685299 | Diab et al. | Nov 1997 | A |
5685301 | Klomhaus | Nov 1997 | A |
5687719 | Sato et al. | Nov 1997 | A |
5687722 | Tien et al. | Nov 1997 | A |
5692503 | Kuenstner | Dec 1997 | A |
5692505 | Fouts | Dec 1997 | A |
5709205 | Bukta | Jan 1998 | A |
5713355 | Richardson et al. | Feb 1998 | A |
5724967 | Venkatachalam | Mar 1998 | A |
5727547 | Levinson et al. | Mar 1998 | A |
5730124 | Yamauchi | Mar 1998 | A |
5731582 | West | Mar 1998 | A |
D393830 | Tobler et al. | Apr 1998 | S |
5743260 | Chung et al. | Apr 1998 | A |
5743262 | Lepper, Jr. et al. | Apr 1998 | A |
5743263 | Baker, Jr. | Apr 1998 | A |
5746206 | Mannheimer | May 1998 | A |
5746697 | Swedlow et al. | May 1998 | A |
5752914 | DeLonzor et al. | May 1998 | A |
5755226 | Carim et al. | May 1998 | A |
5758644 | Diab et al. | Jun 1998 | A |
5760910 | Lepper, Jr. et al. | Jun 1998 | A |
5766125 | Aoyagi et al. | Jun 1998 | A |
5766127 | Pologe et al. | Jun 1998 | A |
5769785 | Diab et al. | Jun 1998 | A |
5772587 | Gratton et al. | Jun 1998 | A |
5774213 | Trebino et al. | Jun 1998 | A |
5776058 | Levinson et al. | Jul 1998 | A |
5776059 | Kaestle | Jul 1998 | A |
5779630 | Fein et al. | Jul 1998 | A |
5779631 | Chance | Jul 1998 | A |
5782237 | Casciani et al. | Jul 1998 | A |
5782756 | Mannheimer | Jul 1998 | A |
5782757 | Diab et al. | Jul 1998 | A |
5782758 | Ausec et al. | Jul 1998 | A |
5786592 | Hök | Jul 1998 | A |
5788634 | Suda et al. | Aug 1998 | A |
5790729 | Pologe et al. | Aug 1998 | A |
5792052 | Isaacson et al. | Aug 1998 | A |
5795292 | Lewis et al. | Aug 1998 | A |
5797841 | DeLonzor et al. | Aug 1998 | A |
5800348 | Kaestle | Sep 1998 | A |
5800349 | Isaacson et al. | Sep 1998 | A |
5803910 | Potratz | Sep 1998 | A |
5807246 | Sakaguchi et al. | Sep 1998 | A |
5807247 | Merchant et al. | Sep 1998 | A |
5807248 | Mills | Sep 1998 | A |
5810723 | Aldrich | Sep 1998 | A |
5810724 | Gronvall | Sep 1998 | A |
5813980 | Levinson et al. | Sep 1998 | A |
5817008 | Rafert et al. | Oct 1998 | A |
5817009 | Rosenheimer et al. | Oct 1998 | A |
5817010 | Hibl | Oct 1998 | A |
5818985 | Merchant et al. | Oct 1998 | A |
5820550 | Polson et al. | Oct 1998 | A |
5823950 | Diab et al. | Oct 1998 | A |
5823952 | Levinson et al. | Oct 1998 | A |
5827179 | Lichter et al. | Oct 1998 | A |
5827182 | Raley et al. | Oct 1998 | A |
5829439 | Yokosawa et al. | Nov 1998 | A |
5830135 | Bosque et al. | Nov 1998 | A |
5830136 | DeLonzor et al. | Nov 1998 | A |
5830137 | Scharf | Nov 1998 | A |
5839439 | Nierlich et al. | Nov 1998 | A |
RE36000 | Swedlow et al. | Dec 1998 | E |
5842979 | Jarman et al. | Dec 1998 | A |
5842981 | Larsen et al. | Dec 1998 | A |
5842982 | Mannheimer | Dec 1998 | A |
5846190 | Woehrle | Dec 1998 | A |
5851178 | Aronow | Dec 1998 | A |
5851179 | Ritson et al. | Dec 1998 | A |
5853364 | Baker, Jr. et al. | Dec 1998 | A |
5860919 | Kiani-Azarbayjany et al. | Jan 1999 | A |
5865736 | Baker, Jr. et al. | Feb 1999 | A |
5879294 | Anderson et al. | Mar 1999 | A |
5885213 | Richardson et al. | Mar 1999 | A |
5890929 | Mills et al. | Apr 1999 | A |
5891021 | Dillon et al. | Apr 1999 | A |
5891022 | Pologe | Apr 1999 | A |
5891024 | Jarman et al. | Apr 1999 | A |
5891025 | Buschmann et al. | Apr 1999 | A |
5891026 | Wang et al. | Apr 1999 | A |
5902235 | Lewis et al. | May 1999 | A |
5910108 | Solenberger | Jun 1999 | A |
5911690 | Rall | Jun 1999 | A |
5912656 | Tham et al. | Jun 1999 | A |
5913819 | Taylor et al. | Jun 1999 | A |
5916154 | Hobbs et al. | Jun 1999 | A |
5916155 | Levinson et al. | Jun 1999 | A |
5919133 | Taylor et al. | Jul 1999 | A |
5919134 | Diab | Jul 1999 | A |
5920263 | Huttenhoff et al. | Jul 1999 | A |
5921921 | Potratz et al. | Jul 1999 | A |
5922607 | Bernreuter | Jul 1999 | A |
5924979 | Swedlow et al. | Jul 1999 | A |
5924980 | Coetzee | Jul 1999 | A |
5924982 | Chin | Jul 1999 | A |
5924985 | Jones | Jul 1999 | A |
5934277 | Mortz | Aug 1999 | A |
5934925 | Tobler et al. | Aug 1999 | A |
5940182 | Lepper, Jr. et al. | Aug 1999 | A |
5954644 | Dettling et al. | Sep 1999 | A |
5957840 | Terasawa et al. | Sep 1999 | A |
5960610 | Levinson et al. | Oct 1999 | A |
5961450 | Merchant et al. | Oct 1999 | A |
5961452 | Chung et al. | Oct 1999 | A |
5964701 | Asada et al. | Oct 1999 | A |
5971930 | Elghazzawi | Oct 1999 | A |
5978691 | Mills | Nov 1999 | A |
5978693 | Hamilton et al. | Nov 1999 | A |
5983120 | Groner et al. | Nov 1999 | A |
5983122 | Jarman et al. | Nov 1999 | A |
5987343 | Kinast | Nov 1999 | A |
5991648 | Levin | Nov 1999 | A |
5995855 | Kiani et al. | Nov 1999 | A |
5995856 | Mannheimer et al. | Nov 1999 | A |
5995858 | Kinast | Nov 1999 | A |
5995859 | Takahashi | Nov 1999 | A |
5997343 | Mills et al. | Dec 1999 | A |
5999834 | Wang et al. | Dec 1999 | A |
6002952 | Diab et al. | Dec 1999 | A |
6005658 | Kaluza et al. | Dec 1999 | A |
6006120 | Levin | Dec 1999 | A |
6011985 | Athan et al. | Jan 2000 | A |
6011986 | Diab et al. | Jan 2000 | A |
6014576 | Raley et al. | Jan 2000 | A |
6018673 | Chin et al. | Jan 2000 | A |
6018674 | Aronow | Jan 2000 | A |
6022321 | Amano et al. | Feb 2000 | A |
6023541 | Merchant et al. | Feb 2000 | A |
6026312 | Shemwell et al. | Feb 2000 | A |
6026314 | Amerov et al. | Feb 2000 | A |
6031603 | Fine et al. | Feb 2000 | A |
6035223 | Baker, Jr. | Mar 2000 | A |
6036642 | Diab et al. | Mar 2000 | A |
6041247 | Weckstrom et al. | Mar 2000 | A |
6044283 | Fein et al. | Mar 2000 | A |
6047201 | Jackson, III | Apr 2000 | A |
6055447 | Well | Apr 2000 | A |
6058321 | Swayze et al. | May 2000 | A |
6061584 | Lovejoy et al. | May 2000 | A |
6064898 | Aldrich | May 2000 | A |
6064899 | Fein et al. | May 2000 | A |
6067462 | Diab et al. | May 2000 | A |
6073038 | Wang et al. | Jun 2000 | A |
6078829 | Uchida | Jun 2000 | A |
6078833 | Hueber | Jun 2000 | A |
6081735 | Diab et al. | Jun 2000 | A |
6083157 | Noller | Jul 2000 | A |
6083172 | Baker, Jr. et al. | Jul 2000 | A |
6088607 | Diab et al. | Jul 2000 | A |
6094592 | Yorkey et al. | Jul 2000 | A |
6095974 | Shemwell et al. | Aug 2000 | A |
6104938 | Huiku et al. | Aug 2000 | A |
6104939 | Groner | Aug 2000 | A |
6112107 | Hannula | Aug 2000 | A |
6113541 | Dias et al. | Sep 2000 | A |
6115621 | Chin | Sep 2000 | A |
6122535 | Kaestle et al. | Sep 2000 | A |
6133994 | Mathews et al. | Oct 2000 | A |
6135952 | Coetzee | Oct 2000 | A |
6144444 | Haworth et al. | Nov 2000 | A |
6144867 | Walker et al. | Nov 2000 | A |
6144868 | Parker | Nov 2000 | A |
6149481 | Wang et al. | Nov 2000 | A |
6151107 | Schöllerman et al. | Nov 2000 | A |
6151516 | Kiani-Azarbayjani et al. | Nov 2000 | A |
6151518 | Hayashi | Nov 2000 | A |
6152754 | Gerhardt et al. | Nov 2000 | A |
6154667 | Miura et al. | Nov 2000 | A |
6157850 | Diab et al. | Dec 2000 | A |
6159147 | Lichter | Dec 2000 | A |
6163175 | Larsen et al. | Dec 2000 | A |
6163715 | Larsen et al. | Dec 2000 | A |
6165005 | Mills et al. | Dec 2000 | A |
6173196 | Delonzor et al. | Jan 2001 | B1 |
6178343 | Bindszus et al. | Jan 2001 | B1 |
6179159 | Gurley | Jan 2001 | B1 |
6181958 | Steuer et al. | Jan 2001 | B1 |
6181959 | Schöllerman et al. | Jan 2001 | B1 |
6184521 | Coffin, IV et al. | Feb 2001 | B1 |
6188470 | Grace | Feb 2001 | B1 |
6192260 | Chance | Feb 2001 | B1 |
6195575 | Levinson | Feb 2001 | B1 |
6198951 | Kosuda et al. | Mar 2001 | B1 |
6206830 | Diab et al. | Mar 2001 | B1 |
6213952 | Finarov et al. | Apr 2001 | B1 |
6217523 | Amano et al. | Apr 2001 | B1 |
6222189 | Misner et al. | Apr 2001 | B1 |
6223064 | Lynn | Apr 2001 | B1 |
6226539 | Potratz | May 2001 | B1 |
6226540 | Bernreuter | May 2001 | B1 |
6229856 | Diab et al. | May 2001 | B1 |
6230035 | Aoyagi et al. | May 2001 | B1 |
6233470 | Tsuchiya | May 2001 | B1 |
6236871 | Tsuchiya | May 2001 | B1 |
6236872 | Diab et al. | May 2001 | B1 |
6240305 | Tsuchiya | May 2001 | B1 |
6253097 | Aronow et al. | Jun 2001 | B1 |
6253098 | Walker et al. | Jun 2001 | B1 |
6256523 | Diab et al. | Jul 2001 | B1 |
6256524 | Walker et al. | Jul 2001 | B1 |
6261236 | Grimblatov | Jul 2001 | B1 |
6263221 | Chance et al. | Jul 2001 | B1 |
6263222 | Diab et al. | Jul 2001 | B1 |
6263223 | Sheperd et al. | Jul 2001 | B1 |
6266546 | Steuer et al. | Jul 2001 | B1 |
6266547 | Walker et al. | Jul 2001 | B1 |
6272363 | Casciani et al. | Aug 2001 | B1 |
6278522 | Lepper, Jr. et al. | Aug 2001 | B1 |
6280213 | Tobler et al. | Aug 2001 | B1 |
6280381 | Malin et al. | Aug 2001 | B1 |
6285894 | Oppelt et al. | Sep 2001 | B1 |
6285895 | Ristolainen et al. | Sep 2001 | B1 |
6285896 | Tobler et al. | Sep 2001 | B1 |
6298252 | Kovach et al. | Oct 2001 | B1 |
6308089 | Von der Ruhr et al. | Oct 2001 | B1 |
6321100 | Parker | Nov 2001 | B1 |
6330468 | Scharf | Dec 2001 | B1 |
6334065 | Al-Ali et al. | Dec 2001 | B1 |
6339715 | Bahr et al. | Jan 2002 | B1 |
6342039 | Lynn | Jan 2002 | B1 |
6343223 | Chin et al. | Jan 2002 | B1 |
6343224 | Parker | Jan 2002 | B1 |
6349228 | Kiani et al. | Feb 2002 | B1 |
6351658 | Middleman et al. | Feb 2002 | B1 |
6353750 | Kimura | Mar 2002 | B1 |
6356774 | Bernstein et al. | Mar 2002 | B1 |
6360113 | Dettling | Mar 2002 | B1 |
6360114 | Diab et al. | Mar 2002 | B1 |
6361501 | Amano et al. | Mar 2002 | B1 |
6363269 | Hanna et al. | Mar 2002 | B1 |
D455834 | Donars et al. | Apr 2002 | S |
6370408 | Merchant et al. | Apr 2002 | B1 |
6370409 | Chung et al. | Apr 2002 | B1 |
6371921 | Caro | Apr 2002 | B1 |
6374129 | Chin et al. | Apr 2002 | B1 |
6377829 | Al-Ali et al. | Apr 2002 | B1 |
6381479 | Norris | Apr 2002 | B1 |
6381480 | Stoddar et al. | Apr 2002 | B1 |
6385471 | Mortz | May 2002 | B1 |
6385821 | Modgil et al. | May 2002 | B1 |
6388240 | Schulz et al. | May 2002 | B2 |
6393310 | Kuenstner | May 2002 | B1 |
6393311 | Edgar, Jr. et al. | May 2002 | B1 |
6397091 | Diab et al. | May 2002 | B2 |
6397092 | Norris et al. | May 2002 | B1 |
6397093 | Aldrich | May 2002 | B1 |
6398727 | Bui et al. | Jun 2002 | B1 |
6400971 | Finarov et al. | Jun 2002 | B1 |
6400972 | Fine | Jun 2002 | B1 |
6400973 | Winter | Jun 2002 | B1 |
6402690 | Rhee et al. | Jun 2002 | B1 |
6408198 | Hanna et al. | Jun 2002 | B1 |
6411832 | Guthermann | Jun 2002 | B1 |
6411833 | Baker, Jr. et al. | Jun 2002 | B1 |
6415166 | Van Hoy et al. | Jul 2002 | B1 |
6421549 | Jacques | Jul 2002 | B1 |
6430423 | DeLonzor et al. | Aug 2002 | B2 |
6430513 | Wang et al. | Aug 2002 | B1 |
6430525 | Weber et al. | Aug 2002 | B1 |
6434408 | Heckel et al. | Aug 2002 | B1 |
6438396 | Cook | Aug 2002 | B1 |
6438399 | Kurth | Aug 2002 | B1 |
6449501 | Reuss | Sep 2002 | B1 |
6453183 | Walker | Sep 2002 | B1 |
6453184 | Hyogo et al. | Sep 2002 | B1 |
6456862 | Benni | Sep 2002 | B2 |
6461305 | Schnall | Oct 2002 | B1 |
6463310 | Swedlow et al. | Oct 2002 | B1 |
6463311 | Diab | Oct 2002 | B1 |
6466808 | Chin et al. | Oct 2002 | B1 |
6466809 | Riley | Oct 2002 | B1 |
6470199 | Kopotic et al. | Oct 2002 | B1 |
6470200 | Walker et al. | Oct 2002 | B2 |
6480729 | Stone | Nov 2002 | B2 |
6490466 | Fein et al. | Dec 2002 | B1 |
6493568 | Bell | Dec 2002 | B1 |
6496711 | Athan et al. | Dec 2002 | B1 |
6498942 | Esenaliev et al. | Dec 2002 | B1 |
6501974 | Huiku | Dec 2002 | B2 |
6501975 | Diab et al. | Dec 2002 | B2 |
6505060 | Norris | Jan 2003 | B1 |
6505061 | Larson | Jan 2003 | B2 |
6505133 | Hanna et al. | Jan 2003 | B1 |
6510329 | Heckel | Jan 2003 | B2 |
6510331 | Williams et al. | Jan 2003 | B1 |
6512937 | Blank et al. | Jan 2003 | B2 |
6515273 | Al-Ali | Feb 2003 | B2 |
6519484 | Lovejoy et al. | Feb 2003 | B1 |
6519486 | Edgar, Jr. et al. | Feb 2003 | B1 |
6519487 | Parker | Feb 2003 | B1 |
6525386 | Mills et al. | Feb 2003 | B1 |
6526300 | Kiani et al. | Feb 2003 | B1 |
6526301 | Larsen et al. | Feb 2003 | B2 |
6541756 | Schulz et al. | Apr 2003 | B2 |
6542764 | Al-Ali et al. | Apr 2003 | B1 |
6546267 | Sugiura et al. | Apr 2003 | B1 |
6553241 | Mannheimer et al. | Apr 2003 | B2 |
6553242 | Sarussi | Apr 2003 | B1 |
6553243 | Gurley | Apr 2003 | B2 |
6554788 | Hunley | Apr 2003 | B1 |
6556852 | Schulze et al. | Apr 2003 | B1 |
6560470 | Pologe | May 2003 | B1 |
6564077 | Mortara | May 2003 | B2 |
6564088 | Soller et al. | May 2003 | B1 |
6571113 | Fein et al. | May 2003 | B1 |
6571114 | Koike et al. | May 2003 | B1 |
6574491 | Elghazzawi | Jun 2003 | B2 |
6579242 | Bui et al. | Jun 2003 | B2 |
6580086 | Schulz et al. | Jun 2003 | B1 |
6584336 | Ali et al. | Jun 2003 | B1 |
6587703 | Cheng et al. | Jul 2003 | B2 |
6587704 | Fine et al. | Jul 2003 | B1 |
6589172 | Williams et al. | Jul 2003 | B2 |
6591122 | Schmitt | Jul 2003 | B2 |
6591123 | Fein et al. | Jul 2003 | B2 |
6594511 | Stone et al. | Jul 2003 | B2 |
6594512 | Huang | Jul 2003 | B2 |
6594513 | Jobsis et al. | Jul 2003 | B1 |
6597931 | Cheng et al. | Jul 2003 | B1 |
6600940 | Fein et al. | Jul 2003 | B1 |
6606510 | Swedlow et al. | Aug 2003 | B2 |
6606511 | Ali et al. | Aug 2003 | B1 |
6606512 | Muz et al. | Aug 2003 | B2 |
6608562 | Kimura et al. | Aug 2003 | B1 |
6609016 | Lynn | Aug 2003 | B1 |
6615064 | Aldrich | Sep 2003 | B1 |
6615065 | Barrett et al. | Sep 2003 | B1 |
6618602 | Levin et al. | Sep 2003 | B2 |
6622034 | Gorski et al. | Sep 2003 | B1 |
6628975 | Fein et al. | Sep 2003 | B1 |
6631281 | Kästle | Oct 2003 | B1 |
6632181 | Flaherty | Oct 2003 | B2 |
6640116 | Diab | Oct 2003 | B2 |
6643530 | Diab et al. | Nov 2003 | B2 |
6643531 | Katarow | Nov 2003 | B1 |
6647279 | Pologe | Nov 2003 | B2 |
6647280 | Bahr et al. | Nov 2003 | B2 |
6650916 | Cook | Nov 2003 | B2 |
6650917 | Diab et al. | Nov 2003 | B2 |
6650918 | Terry | Nov 2003 | B2 |
6654621 | Palatnik et al. | Nov 2003 | B2 |
6654622 | Eberhard et al. | Nov 2003 | B1 |
6654623 | Kästle | Nov 2003 | B1 |
6654624 | Diab et al. | Nov 2003 | B2 |
6658276 | Kianl et al. | Dec 2003 | B2 |
6658277 | Wasserman | Dec 2003 | B2 |
6662033 | Casciani et al. | Dec 2003 | B2 |
6665551 | Suzuki | Dec 2003 | B1 |
6668182 | Hubelbank | Dec 2003 | B2 |
6668183 | Hicks et al. | Dec 2003 | B2 |
6671526 | Aoyagi et al. | Dec 2003 | B1 |
6671528 | Steuer et al. | Dec 2003 | B2 |
6671530 | Chung et al. | Dec 2003 | B2 |
6671531 | Al-Ali et al. | Dec 2003 | B2 |
6671532 | Fudge et al. | Dec 2003 | B1 |
6675031 | Porges et al. | Jan 2004 | B1 |
6678543 | Diab et al. | Jan 2004 | B2 |
6681126 | Solenberger | Jan 2004 | B2 |
6681128 | Steuer et al. | Jan 2004 | B2 |
6681454 | Modgil et al. | Jan 2004 | B2 |
6684090 | Ali et al. | Jan 2004 | B2 |
6684091 | Parker | Jan 2004 | B2 |
6694160 | Chin | Feb 2004 | B2 |
6697653 | Hanna | Feb 2004 | B2 |
6697655 | Sueppel et al. | Feb 2004 | B2 |
6697656 | Al-Ali | Feb 2004 | B1 |
6697658 | Al-Ali | Feb 2004 | B2 |
RE38476 | Diab et al. | Mar 2004 | E |
6699194 | Diab et al. | Mar 2004 | B1 |
6699199 | Asada et al. | Mar 2004 | B2 |
6701170 | Stetson | Mar 2004 | B2 |
6702752 | Dekker | Mar 2004 | B2 |
6707257 | Norris | Mar 2004 | B2 |
6708049 | Berson et al. | Mar 2004 | B1 |
6709402 | Dekker | Mar 2004 | B2 |
6711424 | Fine et al. | Mar 2004 | B1 |
6711425 | Reuss | Mar 2004 | B1 |
6712762 | Lichter | Mar 2004 | B1 |
6714803 | Mortz | Mar 2004 | B1 |
6714804 | Al-Ali et al. | Mar 2004 | B2 |
6714805 | Jeon et al. | Mar 2004 | B2 |
RE38492 | Diab et al. | Apr 2004 | E |
6719686 | Coakley et al. | Apr 2004 | B2 |
6719705 | Mills | Apr 2004 | B2 |
6720734 | Norris | Apr 2004 | B2 |
6721584 | Baker, Jr. et al. | Apr 2004 | B2 |
6721585 | Parker | Apr 2004 | B1 |
6725074 | Kästle | Apr 2004 | B1 |
6725075 | Al-Ali | Apr 2004 | B2 |
6731962 | Katarow | May 2004 | B1 |
6731963 | Finarov et al. | May 2004 | B2 |
6731967 | Turcott | May 2004 | B1 |
6735459 | Parker | May 2004 | B2 |
6745060 | Diab et al. | Jun 2004 | B2 |
6745061 | Hicks et al. | Jun 2004 | B1 |
6748253 | Norris et al. | Jun 2004 | B2 |
6748254 | O'Neill et al. | Jun 2004 | B2 |
6754515 | Pologe | Jun 2004 | B1 |
6754516 | Mannheimer | Jun 2004 | B2 |
6760607 | Al-All | Jul 2004 | B2 |
6760609 | Jacques | Jul 2004 | B2 |
6760610 | Tscupp et al. | Jul 2004 | B2 |
6763255 | DeLonzor et al. | Jul 2004 | B2 |
6763256 | Kimball et al. | Jul 2004 | B2 |
6770028 | Ali et al. | Aug 2004 | B1 |
6771994 | Kiani et al. | Aug 2004 | B2 |
6773397 | Kelly | Aug 2004 | B2 |
6778923 | Norris et al. | Aug 2004 | B2 |
6780158 | Yarita | Aug 2004 | B2 |
6791689 | Weckstrom | Sep 2004 | B1 |
6792300 | Diab et al. | Sep 2004 | B1 |
6801797 | Mannheimer et al. | Oct 2004 | B2 |
6801798 | Geddes et al. | Oct 2004 | B2 |
6801799 | Mendelson | Oct 2004 | B2 |
6801802 | Sitzman et al. | Oct 2004 | B2 |
6802812 | Walker et al. | Oct 2004 | B1 |
6805673 | Dekker | Oct 2004 | B2 |
6810277 | Edgar, Jr. et al. | Oct 2004 | B2 |
6813511 | Diab et al. | Nov 2004 | B2 |
6816741 | Diab | Nov 2004 | B2 |
6819950 | Mills | Nov 2004 | B2 |
6822564 | Al-Ali | Nov 2004 | B2 |
6825619 | Norris | Nov 2004 | B2 |
6826419 | Diab et al. | Nov 2004 | B2 |
6829496 | Nagai et al. | Dec 2004 | B2 |
6830549 | Bui et al. | Dec 2004 | B2 |
6830711 | Mills et al. | Dec 2004 | B2 |
6836679 | Baker, Jr. et al. | Dec 2004 | B2 |
6839579 | Chin | Jan 2005 | B1 |
6839580 | Zonios et al. | Jan 2005 | B2 |
6839582 | Heckel | Jan 2005 | B2 |
6839659 | Tarassenko et al. | Jan 2005 | B2 |
6842635 | Parker | Jan 2005 | B1 |
6845256 | Chin et al. | Jan 2005 | B2 |
6850787 | Weber et al. | Feb 2005 | B2 |
6850788 | Al-Ali | Feb 2005 | B2 |
6850789 | Schweitzer, Jr. et al. | Feb 2005 | B2 |
6861639 | Al-Ali | Mar 2005 | B2 |
6863652 | Huang et al. | Mar 2005 | B2 |
6865407 | Kimball et al. | Mar 2005 | B2 |
6879850 | Kimball | Apr 2005 | B2 |
6882874 | Huiku | Apr 2005 | B2 |
6898452 | Al-Ali et al. | May 2005 | B2 |
6909912 | Melker et al. | Jun 2005 | B2 |
6912413 | Rantala et al. | Jun 2005 | B2 |
6920345 | Al-Ali et al. | Jul 2005 | B2 |
6931269 | Terry | Aug 2005 | B2 |
6934570 | Kiani et al. | Aug 2005 | B2 |
6941162 | Fudge et al. | Sep 2005 | B2 |
6947781 | Asada et al. | Sep 2005 | B2 |
6950687 | Al-Ali | Sep 2005 | B2 |
6954664 | Sweitzer | Oct 2005 | B2 |
6968221 | Rosenthal | Nov 2005 | B2 |
6979812 | Al-Ali | Dec 2005 | B2 |
6983178 | Fine et al. | Jan 2006 | B2 |
6985762 | Brashears et al. | Jan 2006 | B2 |
6985763 | Boas et al. | Jan 2006 | B2 |
6985764 | Mason et al. | Jan 2006 | B2 |
6987994 | Mortz | Jan 2006 | B1 |
6990426 | Yoon et al. | Jan 2006 | B2 |
6992751 | Okita et al. | Jan 2006 | B2 |
6992772 | Block | Jan 2006 | B2 |
6993371 | Kiani et al. | Jan 2006 | B2 |
6993372 | Fine et al. | Jan 2006 | B2 |
6996427 | Ali et al. | Feb 2006 | B2 |
7003338 | Weber et al. | Feb 2006 | B2 |
7003339 | Diab et al. | Feb 2006 | B2 |
7006855 | Sarussi | Feb 2006 | B1 |
7006856 | Baker, Jr. et al. | Feb 2006 | B2 |
7016715 | Stetson | Mar 2006 | B2 |
7020507 | Scharf et al. | Mar 2006 | B2 |
7024233 | Ali et al. | Apr 2006 | B2 |
7024235 | Melker et al. | Apr 2006 | B2 |
7025728 | Ito et al. | Apr 2006 | B2 |
7027849 | Al-Ali | Apr 2006 | B2 |
7027850 | Wasserman | Apr 2006 | B2 |
7039449 | Al-Ali | May 2006 | B2 |
7039538 | Baker | May 2006 | B2 |
7043289 | Fine et al. | May 2006 | B2 |
7047055 | Boas et al. | May 2006 | B2 |
7060035 | Wasserman | Jun 2006 | B2 |
7062307 | Norris et al. | Jun 2006 | B2 |
7067893 | Mills et al. | Jun 2006 | B2 |
7072701 | Chen et al. | Jul 2006 | B2 |
7072702 | Edgar, Jr. et al. | Jul 2006 | B2 |
7079880 | Stetson | Jul 2006 | B2 |
7085597 | Fein et al. | Aug 2006 | B2 |
7096052 | Mason et al. | Aug 2006 | B2 |
7096054 | Abdul-Hafiz et al. | Aug 2006 | B2 |
7107088 | Aceti | Sep 2006 | B2 |
7113815 | O'Neil et al. | Sep 2006 | B2 |
7123950 | Mannheimer | Oct 2006 | B2 |
7127278 | Melker et al. | Oct 2006 | B2 |
7130671 | Baker, Jr. et al. | Oct 2006 | B2 |
7132641 | Schulz et al. | Nov 2006 | B2 |
7133711 | Chernoguz et al. | Nov 2006 | B2 |
7139559 | Kenagy et al. | Nov 2006 | B2 |
7142901 | Kiani et al. | Nov 2006 | B2 |
7162288 | Nordstrom et al. | Jan 2007 | B2 |
7187960 | Abreu | Mar 2007 | B2 |
7190987 | Kindekugel et al. | Mar 2007 | B2 |
7194293 | Baker | Mar 2007 | B2 |
7198778 | Achilefu et al. | Apr 2007 | B2 |
7209774 | Baker | Apr 2007 | B2 |
7215984 | Diab et al. | May 2007 | B2 |
7225006 | Al-Ali et al. | May 2007 | B2 |
7228161 | Chin | Jun 2007 | B2 |
7236881 | Schmitt et al. | Jun 2007 | B2 |
7248910 | Li et al. | Jul 2007 | B2 |
7254433 | Diab et al. | Aug 2007 | B2 |
7254434 | Schulz et al. | Aug 2007 | B2 |
7280858 | Al-Ali et al. | Oct 2007 | B2 |
7295866 | Al-Ali | Nov 2007 | B2 |
7305262 | Brodnick et al. | Dec 2007 | B2 |
7315753 | Baker, Jr. et al. | Jan 2008 | B2 |
7392075 | Baker | Jun 2008 | B2 |
7471969 | Diab et al. | Dec 2008 | B2 |
7474907 | Baker | Jan 2009 | B2 |
7500950 | Al-Ali et al. | Mar 2009 | B2 |
8078247 | Mannheimer et al. | Dec 2011 | B2 |
20020016537 | Muz et al. | Feb 2002 | A1 |
20020026109 | Diab et al. | Feb 2002 | A1 |
20020028990 | Sheperd et al. | Mar 2002 | A1 |
20020038078 | Ito | Mar 2002 | A1 |
20020042558 | Mendelson | Apr 2002 | A1 |
20020068859 | Knopp | Jun 2002 | A1 |
20020072681 | Schnall | Jun 2002 | A1 |
20020103423 | Chin et al. | Aug 2002 | A1 |
20020116797 | Modgil et al. | Aug 2002 | A1 |
20020128544 | Diab et al. | Sep 2002 | A1 |
20020133067 | Jackson, III | Sep 2002 | A1 |
20020156354 | Larson | Oct 2002 | A1 |
20020173706 | Takatani | Nov 2002 | A1 |
20020190863 | Lynn | Dec 2002 | A1 |
20030018243 | Gerhardt et al. | Jan 2003 | A1 |
20030036690 | Geddes et al. | Feb 2003 | A1 |
20030045785 | Diab et al. | Mar 2003 | A1 |
20030073889 | Keilbach et al. | Apr 2003 | A1 |
20030073890 | Hanna | Apr 2003 | A1 |
20030100840 | Sugiura et al. | May 2003 | A1 |
20030187337 | Tarassenko et al. | Oct 2003 | A1 |
20030197679 | Ali et al. | Oct 2003 | A1 |
20030212316 | Leiden et al. | Nov 2003 | A1 |
20030225323 | Kiani et al. | Dec 2003 | A1 |
20040006261 | Swedlow et al. | Jan 2004 | A1 |
20040024326 | Yeo et al. | Feb 2004 | A1 |
20040039272 | Abdul-Hafiz et al. | Feb 2004 | A1 |
20040039273 | Terry | Feb 2004 | A1 |
20040054291 | Schulz et al. | Mar 2004 | A1 |
20040068164 | Diab et al. | Apr 2004 | A1 |
20040092805 | Yarita | May 2004 | A1 |
20040097797 | Porges et al. | May 2004 | A1 |
20040097837 | Brandon et al. | May 2004 | A1 |
20040098009 | Boecker et al. | May 2004 | A1 |
20040117891 | Hannula et al. | Jun 2004 | A1 |
20040147824 | Diab et al. | Jul 2004 | A1 |
20040158134 | Diab et al. | Aug 2004 | A1 |
20040162472 | Berson et al. | Aug 2004 | A1 |
20040167381 | Lichter | Aug 2004 | A1 |
20040186358 | Chernow et al. | Sep 2004 | A1 |
20040204637 | Diab et al. | Oct 2004 | A1 |
20040204638 | Diab et al. | Oct 2004 | A1 |
20040204639 | Casciani et al. | Oct 2004 | A1 |
20040204865 | Lee et al. | Oct 2004 | A1 |
20040210146 | Diab et al. | Oct 2004 | A1 |
20040215085 | Schnall | Oct 2004 | A1 |
20040236196 | Diab et al. | Nov 2004 | A1 |
20050004479 | Townsend et al. | Jan 2005 | A1 |
20050014999 | Rahe-Meyer | Jan 2005 | A1 |
20050020887 | Goldberg | Jan 2005 | A1 |
20050027206 | Ariav | Feb 2005 | A1 |
20050033131 | Chen | Feb 2005 | A1 |
20050043599 | O'Mara | Feb 2005 | A1 |
20050043600 | Diab et al. | Feb 2005 | A1 |
20050049468 | Carlson | Mar 2005 | A1 |
20050070773 | Chin | Mar 2005 | A1 |
20050075546 | Samsoondar | Apr 2005 | A1 |
20050075548 | Al-Ali et al. | Apr 2005 | A1 |
20050075550 | Lindekugel | Apr 2005 | A1 |
20050085704 | Schulz | Apr 2005 | A1 |
20050090720 | Wu | Apr 2005 | A1 |
20050197548 | Dietiker | Sep 2005 | A1 |
20050197579 | Baker | Sep 2005 | A1 |
20050197793 | Baker | Sep 2005 | A1 |
20050228248 | Dietiker | Oct 2005 | A1 |
20050250998 | Huiku | Nov 2005 | A1 |
20050256386 | Chan | Nov 2005 | A1 |
20050272986 | Smith | Dec 2005 | A1 |
20050277819 | Kiani et al. | Dec 2005 | A1 |
20060020179 | Anderson | Jan 2006 | A1 |
20060030764 | Porges | Feb 2006 | A1 |
20060058594 | Ishizuka et al. | Mar 2006 | A1 |
20060074280 | Martis | Apr 2006 | A1 |
20060084852 | Mason et al. | Apr 2006 | A1 |
20060084878 | Banet | Apr 2006 | A1 |
20060089547 | Sarussi | Apr 2006 | A1 |
20060106294 | Maser et al. | May 2006 | A1 |
20060122476 | Van Slyke | Jun 2006 | A1 |
20060122517 | Banet | Jun 2006 | A1 |
20060129039 | Lindner et al. | Jun 2006 | A1 |
20060155198 | Schmid | Jul 2006 | A1 |
20060173257 | Nagai | Aug 2006 | A1 |
20060195280 | Baker | Aug 2006 | A1 |
20060211925 | Lamego et al. | Sep 2006 | A1 |
20060211932 | Al-Ali et al. | Sep 2006 | A1 |
20060217604 | Fein et al. | Sep 2006 | A1 |
20060217605 | Fein et al. | Sep 2006 | A1 |
20060217606 | Fein et al. | Sep 2006 | A1 |
20060217607 | Fein et al. | Sep 2006 | A1 |
20060217608 | Fein et al. | Sep 2006 | A1 |
20060220881 | Al-Ali et al. | Oct 2006 | A1 |
20060224059 | Swedlow et al. | Oct 2006 | A1 |
20060226992 | Al-Ali et al. | Oct 2006 | A1 |
20060229510 | Fein et al. | Oct 2006 | A1 |
20060229511 | Fein et al. | Oct 2006 | A1 |
20060238358 | Al-Ali et al. | Oct 2006 | A1 |
20070027376 | Todokoro et al. | Feb 2007 | A1 |
20070032710 | Raridan et al. | Feb 2007 | A1 |
20070032712 | Raridan et al. | Feb 2007 | A1 |
20070032715 | Eghbal et al. | Feb 2007 | A1 |
20070043269 | Mannheimer et al. | Feb 2007 | A1 |
20070043270 | Mannheimer et al. | Feb 2007 | A1 |
20070043271 | Mannheimer et al. | Feb 2007 | A1 |
20070043272 | Mannheimer et al. | Feb 2007 | A1 |
20070043273 | Mannheimer et al. | Feb 2007 | A1 |
20070043274 | Mannheimer et al. | Feb 2007 | A1 |
20070043275 | Manheimer et al. | Feb 2007 | A1 |
20070043276 | Mannheimer et al. | Feb 2007 | A1 |
20070043277 | Mannheimer et al. | Feb 2007 | A1 |
20070043278 | Mannheimer et al. | Feb 2007 | A1 |
20070043279 | Mannheimer et al. | Feb 2007 | A1 |
20070043280 | Mannheimer et al. | Feb 2007 | A1 |
20070043282 | Mannheimer et al. | Feb 2007 | A1 |
20070049810 | Mannheimer et al. | Mar 2007 | A1 |
20070060808 | Hoarau | Mar 2007 | A1 |
20070073117 | Raridan | Mar 2007 | A1 |
20070073121 | Hoarau et al. | Mar 2007 | A1 |
20070073122 | Hoarau | Mar 2007 | A1 |
20070073123 | Raridan | Mar 2007 | A1 |
20070073125 | Hoarau et al. | Mar 2007 | A1 |
20070073126 | Raridan | Mar 2007 | A1 |
20070073128 | Hoarau | Mar 2007 | A1 |
20070078315 | Kling et al. | Apr 2007 | A1 |
20070078316 | Hoarau | Apr 2007 | A1 |
20070088207 | Mannheimer et al. | Apr 2007 | A1 |
20070100220 | Baker et al. | May 2007 | A1 |
20070106137 | Baker et al. | May 2007 | A1 |
20070129616 | Rantala | Jun 2007 | A1 |
20070208240 | Nordstrom et al. | Sep 2007 | A1 |
20070260129 | Chin | Nov 2007 | A1 |
20070260130 | Chin | Nov 2007 | A1 |
20070260131 | Chin | Nov 2007 | A1 |
20070282478 | Al-Ali et al. | Dec 2007 | A1 |
20070299328 | Chin et al. | Dec 2007 | A1 |
20080081974 | Pav | Apr 2008 | A1 |
20080088467 | Al-Ali | Apr 2008 | A1 |
20080097175 | Boyce et al. | Apr 2008 | A1 |
20080103375 | Kiani | May 2008 | A1 |
20080108884 | Kiani | May 2008 | A1 |
20080183057 | Taube | Jul 2008 | A1 |
20080188733 | Al-Ali et al. | Aug 2008 | A1 |
20080221418 | Al-Ali et al. | Sep 2008 | A1 |
20080255436 | Baker | Oct 2008 | A1 |
20080262326 | Hete | Oct 2008 | A1 |
20080262328 | Adams | Oct 2008 | A1 |
20080287757 | Berson et al. | Nov 2008 | A1 |
Number | Date | Country |
---|---|---|
3405444 | Aug 1985 | DE |
3516338 | Nov 1986 | DE |
3703458 | Aug 1988 | DE |
3938759 | May 1991 | DE |
4210102 | Sep 1993 | DE |
4423597 | Aug 1995 | DE |
19632361 | Feb 1997 | DE |
69123448 | May 1997 | DE |
19703220 | Jul 1997 | DE |
19640807 | Sep 1997 | DE |
19647877 | Apr 1998 | DE |
10030862 | Jan 2002 | DE |
20318882 | Apr 2004 | DE |
0127947 | May 1984 | EP |
00194105 | Sep 1986 | EP |
00204459 | Dec 1986 | EP |
0262779 | Apr 1988 | EP |
0315040 | Oct 1988 | EP |
0314331 | May 1989 | EP |
00352923 | Jan 1990 | EP |
0360977 | Apr 1990 | EP |
00430340 | Jun 1991 | EP |
0435500 | Jul 1991 | EP |
0572684 | May 1992 | EP |
00497021 | Aug 1992 | EP |
0529412 | Aug 1992 | EP |
0531631 | Sep 1992 | EP |
0566354 | Apr 1993 | EP |
0587009 | Aug 1993 | EP |
00630203 | Sep 1993 | EP |
0572684 | Dec 1993 | EP |
00615723 | Sep 1994 | EP |
00702931 | Mar 1996 | EP |
00724860 | Aug 1996 | EP |
00793942 | Sep 1997 | EP |
0864293 | Sep 1998 | EP |
01006863 | Oct 1998 | EP |
01006864 | Oct 1998 | EP |
0875199 | Nov 1998 | EP |
00998214 | Dec 1998 | EP |
0898933 | Mar 1999 | EP |
0898933 | Mar 1999 | EP |
01332713 | Aug 2003 | EP |
01469773 | Aug 2003 | EP |
1502529 | Jul 2004 | EP |
01491135 | Dec 2004 | EP |
1807001 | Jul 2007 | EP |
2685865 | Jan 1992 | FR |
2259545 | Mar 1993 | GB |
63275325 | Nov 1988 | JP |
2013450 | Jan 1990 | JP |
2111343 | Apr 1990 | JP |
02191434 | Jul 1990 | JP |
2237544 | Sep 1990 | JP |
03173536 | Jul 1991 | JP |
3170866 | Jul 1991 | JP |
3245042 | Oct 1991 | JP |
4174648 | Jun 1992 | JP |
4191642 | Jul 1992 | JP |
4332536 | Nov 1992 | JP |
3124073 | Mar 1993 | JP |
5049624 | Mar 1993 | JP |
5049625 | Mar 1993 | JP |
3115374 | Apr 1993 | JP |
05200031 | Aug 1993 | JP |
2005200031 | Aug 1993 | JP |
5212016 | Aug 1993 | JP |
06014906 | Jan 1994 | JP |
06014906 | Jan 1994 | JP |
6016774 | Mar 1994 | JP |
3116255 | Apr 1994 | JP |
6029504 | Apr 1994 | JP |
6098881 | Apr 1994 | JP |
06154177 | Jun 1994 | JP |
6269430 | Sep 1994 | JP |
6285048 | Oct 1994 | JP |
7001273 | Jan 1995 | JP |
7124138 | May 1995 | JP |
7136150 | May 1995 | JP |
3116259 | Jun 1995 | JP |
3116260 | Jun 1995 | JP |
7155311 | Jun 1995 | JP |
7155313 | Jun 1995 | JP |
3238813 | Jul 1995 | JP |
7171139 | Jul 1995 | JP |
3134144 | Sep 1995 | JP |
7236625 | Sep 1995 | JP |
7246191 | Sep 1995 | JP |
8256996 | Oct 1996 | JP |
9192120 | Jul 1997 | JP |
10216113 | Aug 1998 | JP |
10216114 | Aug 1998 | JP |
10216115 | Aug 1998 | JP |
10337282 | Dec 1998 | JP |
11019074 | Jan 1999 | JP |
11155841 | Jun 1999 | JP |
11188019 | Jul 1999 | JP |
11244268 | Sep 1999 | JP |
20107157 | Apr 2000 | JP |
20237170 | Sep 2000 | JP |
21245871 | Sep 2001 | JP |
22224088 | Aug 2002 | JP |
22282242 | Oct 2002 | JP |
23153881 | May 2003 | JP |
23153882 | May 2003 | JP |
23169791 | Jun 2003 | JP |
23194714 | Jul 2003 | JP |
23210438 | Jul 2003 | JP |
23275192 | Sep 2003 | JP |
23339678 | Dec 2003 | JP |
24008572 | Jan 2004 | JP |
24089546 | Mar 2004 | JP |
24113353 | Apr 2004 | JP |
24135854 | May 2004 | JP |
24148069 | May 2004 | JP |
24148070 | May 2004 | JP |
24159810 | Jun 2004 | JP |
24166775 | Jun 2004 | JP |
24194908 | Jul 2004 | JP |
24202190 | Jul 2004 | JP |
24248819 | Sep 2004 | JP |
24248820 | Sep 2004 | JP |
24261364 | Sep 2004 | JP |
24290412 | Oct 2004 | JP |
24290544 | Oct 2004 | JP |
24290545 | Oct 2004 | JP |
24329406 | Nov 2004 | JP |
24329607 | Nov 2004 | JP |
24329928 | Nov 2004 | JP |
24337605 | Dec 2004 | JP |
24344367 | Dec 2004 | JP |
24351107 | Dec 2004 | JP |
25034472 | Feb 2005 | JP |
WO 8909566 | Oct 1989 | WO |
WO 9001293 | Feb 1990 | WO |
WO9001293 | Feb 1990 | WO |
WO 9004352 | May 1990 | WO |
WO 9101678 | Feb 1991 | WO |
WO 9111137 | Aug 1991 | WO |
WO 9200513 | Jan 1992 | WO |
WO 9221281 | Dec 1992 | WO |
WO 9309711 | May 1993 | WO |
WO 9313706 | Jul 1993 | WO |
WO 9316629 | Sep 1993 | WO |
WO 9403102 | Feb 1994 | WO |
WO 9423643 | Oct 1994 | WO |
WO 9502358 | Jan 1995 | WO |
WO 9512349 | May 1995 | WO |
WO 9516970 | Jun 1995 | WO |
WO 9613208 | May 1996 | WO |
WO 9639927 | Dec 1996 | WO |
WO 9736536 | Oct 1997 | WO |
WO 9736538 | Oct 1997 | WO |
WO 9749330 | Dec 1997 | WO |
WO 9817174 | Apr 1998 | WO |
WO 9818382 | May 1998 | WO |
WO 9843071 | Oct 1998 | WO |
WO 9851212 | Nov 1998 | WO |
WO 9857577 | Dec 1998 | WO |
WO 9900053 | Jan 1999 | WO |
WO 9932030 | Jul 1999 | WO |
WO 9947039 | Sep 1999 | WO |
WO 9963884 | Dec 1999 | WO |
WO 0021438 | Apr 2000 | WO |
WO 0028888 | May 2000 | WO |
WO 0059374 | Oct 2000 | WO |
WO 0113790 | Mar 2001 | WO |
WO 0116577 | Mar 2001 | WO |
WO 0117421 | Mar 2001 | WO |
WO 0147426 | Mar 2001 | WO |
WO 0140776 | Jun 2001 | WO |
WO 0176461 | Oct 2001 | WO |
WO 0214793 | Feb 2002 | WO |
WO 0235999 | May 2002 | WO |
WO 02062213 | Aug 2002 | WO |
WO 02074162 | Sep 2002 | WO |
WO 03000125 | Jan 2003 | WO |
WO 0301180 | Jan 2003 | WO |
WO 03009750 | Feb 2003 | WO |
WO 03011127 | Feb 2003 | WO |
WO 03039326 | May 2003 | WO |
WO 03063697 | Aug 2003 | WO |
WO 03073924 | Sep 2003 | WO |
WO 04000114 | Dec 2003 | WO |
WO 2004006748 | Jan 2004 | WO |
WO 2004075746 | Sep 2004 | WO |
WO 2005002434 | Jan 2005 | WO |
WO 2005009221 | Feb 2005 | WO |
WO 2005010567 | Feb 2005 | WO |
WO 2005010568 | Feb 2005 | WO |
WO 2005020120 | Mar 2005 | WO |
WO 2005065540 | Jul 2005 | WO |
Number | Date | Country | |
---|---|---|---|
20090163787 A1 | Jun 2009 | US |