This document relates to medical procedures such as transseptal perforation. More specifically, this document relates to sheaths for use in medical procedures, and related systems and methods.
The following summary is intended to introduce the reader to various aspects of the detailed description, but not to define or delimit any invention.
Medical sheaths are disclosed. According to some aspects, a medical sheath includes an elongate member having a proximal portion defining a proximal end and a distal portion defining a distal end. A first lumen extends through the elongate member and is open at the proximal and the distal end for passage of a medical device through the lumen. An anchoring mechanism is deployable from the elongate member and includes an anchor that is removably securable to an anatomical feature to secure the elongate member to the anatomical feature, and a connector securing the anchor to the elongate member.
In some examples, the medical sheath further includes a second lumen that extends through the elongate member and is open at the distal portion. The anchor can be movable between a storage position in which the anchor is housed within the second lumen and a deployed position in which the anchor is outside of the second lumen. The sheath can further include a first actuator that is actuatable to move the anchor between the storage position and the deployed position. When in the deployed position, the anchor can be spaced radially from the elongate member.
In some examples, the anchor is movable between a lock configuration for securing to the anatomical feature and a release configuration for releasing the anatomical feature. The sheath can include a second actuator that is actuatable to move the anchor between the lock configuration and the release configuration. The anchor can include a clamp for clamping onto the anatomical feature. In the lock configuration, the clamp can be closed, and in the release configuration, the clamp can be open.
In some examples, the anchoring mechanism further includes a perforating tip for perforating the anatomical feature. The anchor can include an expandable structure, and the expandable structure can be expanded when the anchor is in the lock configuration and can be retracted when the anchor is in the release configuration
In some examples, the sheath includes a handle secured to the proximal portion of the elongate member. The connector can include a wire secured at a first end to the handle and at a second end to the anchor.
Methods for carrying out medical procedures are also disclosed. According to some aspects, a method for carrying out a medical procedure includes a. intravenously advancing a sheath toward a target region in a patient's body; b. securing an anchor of the sheath to an anatomical feature proximate the target region; c. advancing a medical device through a first lumen of the sheath towards the target region; and d. with the anchor of the sheath secured to the anatomical feature, performing a medical procedure on the target region using the medical device.
In some examples, the target region is a fossa ovalis of the patient's heart and the anatomical feature is a limbus of the fossa ovalis.
In some examples, the medical device is a perforation device, and step d. includes perforating the fossa ovalis.
In some examples, between steps a. and b., the method further includes deploying the anchor from a second lumen of the sheath.
In some examples, step b. includes clamping the anchor onto the anatomical feature.
In some examples after step d., the method further includes releasing the anchor from the anatomical feature and retracting the anchor into the sheath.
In some examples, step b. includes creating a perforation in the anatomical feature, passing the anchor through the perforation, and expanding the anchor. Step b. can include using a radiofrequency perforation electrode to create a perforation in the anatomical feature. After step d., the method can include retracting the anchor and withdrawing the anchor from the perforation.
Transseptal perforation systems are also disclosed. According to some aspects, a transseptal perforation system includes a sheath. The sheath includes an elongate member having a proximal portion defining a proximal end and an opposed distal portion defining a distal end. A first lumen extends through the elongate member and is open at the proximal end and the distal end. An anchoring mechanism is deployable from the elongate member and includes an anchor that is removably securable to an anatomical feature to secure the elongate member to the anatomical feature, and a connector securing the anchor to the elongate member. The system further includes a dilator advanceable through the lumen from the proximal end to the distal end and having a dilating tip. The system further includes a perforation device advanceable through the dilator towards the dilating tip and having a perforating tip.
The accompanying drawings are for illustrating examples of articles, methods, and apparatuses of the present disclosure and are not intended to be limiting. In the drawings:
Various apparatuses or processes or compositions will be described below to provide an example of an embodiment of the claimed subject matter. No example described below limits any claim and any claim may cover processes or apparatuses or compositions that differ from those described below. The claims are not limited to apparatuses or processes or compositions having all of the features of any one apparatus or process or composition described below or to features common to multiple or all of the apparatuses or processes or compositions described below. It is possible that an apparatus or process or composition described below is not an embodiment of any exclusive right granted by issuance of this patent application. Any subject matter described below and for which an exclusive right is not granted by issuance of this patent application may be the subject matter of another protective instrument, for example, a continuing patent application, and the applicants, inventors or owners do not intend to abandon, disclaim or dedicate to the public any such subject matter by its disclosure in this document.
Generally disclosed herein are sheaths that can be used in medical procedures, such as cardiac procedures. For example, the sheaths can be used in transseptal perforation procedures, in which the sheath is advanced to the right atrium of a patient's heart via the femoral vein, and a perforation device (e.g. a radiofrequency (RF) perforation device or a mechanical perforation device) and dilator are guided through the sheath, to the right atrium. When the sheath is adjacent a target region in the right atrium, for example the fossa ovalis of the atrial septum, the perforation device can be advanced out of the sheath and used to create a perforation in the target region, and the dilator can be advanced out of the sheath to dilate the perforation. Such procedures can be carried out, for example, as a medical treatment, or to gain access to the left atrium for a subsequent medical treatment.
The sheaths disclosed herein are configured to anchor to (i.e. be physically secured to) an anatomical feature proximate the target region. For example, in transseptal perforation procedures in which the target region for perforation is the fossa ovalis, the sheath can anchor to the limbus of the fossa ovalis. Anchoring to an anatomical feature can physically stabilize the sheath, which can prevent unintended movement of the sheath, and can in turn facilitate precise positioning of the sheath. For example, in transseptal perforation procedures, depending on the purpose of the procedure, it can be desired to perforate the fossa ovalis at different locations. Referring to
Referring now to
In use, the sheath 102 can be advanced intravenously via the femoral vein towards the right atrium of the patient's heart. The dilator 104 and perforation device 106 can both be advanced towards the patient's heart via the sheath 102. The RF perforation device 106 can be connected to a radiofrequency generator 110, which can in turn be connected to one or more grounding pads (not shown). When in the desired position in the patient's heart, for example adjacent the fossa ovalis, the RF perforation device 106 can be activated to perforate the fossa ovalis.
Referring to
Referring still to
Referring still to
Referring to
Referring still to
Referring back to
Referring now to
Various alternative configurations of the anchor are possible. For example, the anchor can include a perforating tip (in such examples, the perforating tip of the perforation device can be referred to as a first perforating tip, and the perforating tip of the anchor can be referred to as a second perforation tip). for perforating the anatomical feature (e.g. the limbus of the fossa ovalis), and an expandable structure that can be passed through the perforation and expanded to prevent the anchor from being withdrawn back through the perforation. The perforating tip can include a mechanical perforating tip, or a radiofrequency perforation electrode. Examples of such anchors are shown in
Referring back to
A method for carrying out a medical procedure, and specifically for transseptal perforation, will now be described with reference to
As a first step (not shown), a guidewire can be advanced via the femoral vein towards the heart, and “parked” in the superior vena cava (SVC). The dilator 104 can then be inserted into the sheath 102, with the tip of the dilator 104 shrouded within the sheath 102. With the anchor 128 in the storage position, the sheath 102 and dilator 104 can then be intravenously advanced towards the SVC, over the guidewire. The guidewire can then be removed.
As a second step (not shown), the perforation device 106 can be advanced through the first lumen 126 of the sheath, via the dilator 104, until the perforating tip 108 is just shy of the distal end of the dilator 104.
Referring to
Referring to
In alternative examples (e.g. examples using the devices of
Referring back to
Once the fossa ovalis 1504 has been perforated, the anchoring mechanism 128 can be released from the limbus 1506. In the example shown, the anchoring mechanism 128 can be released from the limbus 1506 by actuating the second actuator 144 (not shown in
Referring to
While the above description provides examples of one or more processes or apparatuses or compositions, it will be appreciated that other processes or apparatuses or compositions may be within the scope of the accompanying claims.
To the extent any amendments, characterizations, or other assertions previously made (in this or in any related patent applications or patents, including any parent, sibling, or child) with respect to any art, prior or otherwise, could be construed as a disclaimer of any subject matter supported by the present disclosure of this application, Applicant hereby rescinds and retracts such disclaimer. Applicant also respectfully submits that any prior art previously considered in any related patent applications or patents, including any parent, sibling, or child, may need to be re-visited.
Number | Name | Date | Kind |
---|---|---|---|
3448739 | Stark et al. | Jun 1969 | A |
3595239 | Petersen | Jul 1971 | A |
4129129 | Amrine | Dec 1978 | A |
4244362 | Anderson | Jan 1981 | A |
4401124 | Guess et al. | Aug 1983 | A |
4639252 | Kelly et al. | Jan 1987 | A |
4641649 | Walinsky et al. | Feb 1987 | A |
4669467 | Willett et al. | Jun 1987 | A |
4682596 | Bales et al. | Jul 1987 | A |
4790311 | Ruiz | Dec 1988 | A |
4790809 | Kuntz | Dec 1988 | A |
4793350 | Mar et al. | Dec 1988 | A |
4807620 | Strul et al. | Feb 1989 | A |
4832048 | Cohen | May 1989 | A |
4840622 | Hardy | Jun 1989 | A |
4863441 | Lindsay et al. | Sep 1989 | A |
4884567 | Elliott et al. | Dec 1989 | A |
4892104 | Ito et al. | Jan 1990 | A |
4896671 | Cunningham et al. | Jan 1990 | A |
4928693 | Goodin et al. | May 1990 | A |
4936281 | Stasz | Jun 1990 | A |
4960410 | Pinchuk | Oct 1990 | A |
4977897 | Hurwitz | Dec 1990 | A |
4998933 | Eggers et al. | Mar 1991 | A |
5006119 | Acker et al. | Apr 1991 | A |
5019076 | Yamanashi et al. | May 1991 | A |
5047026 | Rydell | Sep 1991 | A |
5081997 | Bosley et al. | Jan 1992 | A |
5098431 | Rydell | Mar 1992 | A |
5112048 | Kienle | May 1992 | A |
5154724 | Andrews | Oct 1992 | A |
5201756 | Horzewski et al. | Apr 1993 | A |
5209741 | Spaeth | May 1993 | A |
5211183 | Wilson | May 1993 | A |
5221256 | Mahurkar | Jun 1993 | A |
5230349 | Langberg | Jul 1993 | A |
5281216 | Klicek | Jan 1994 | A |
5300068 | Rosar et al. | Apr 1994 | A |
5300069 | Hunsberger et al. | Apr 1994 | A |
5314418 | Takano et al. | May 1994 | A |
5318525 | West et al. | Jun 1994 | A |
5327905 | Avitall | Jul 1994 | A |
5364393 | Auth et al. | Nov 1994 | A |
5372596 | Klicek et al. | Dec 1994 | A |
5380304 | Parker | Jan 1995 | A |
5397304 | Truckai | Mar 1995 | A |
5403338 | Milo | Apr 1995 | A |
5423809 | Klicek | Jun 1995 | A |
5425382 | Golden et al. | Jun 1995 | A |
5490859 | Mische et al. | Feb 1996 | A |
5497774 | Swartz et al. | Mar 1996 | A |
5507751 | Goode et al. | Apr 1996 | A |
5509411 | Littmann et al. | Apr 1996 | A |
5540681 | Strul et al. | Jul 1996 | A |
5545200 | West et al. | Aug 1996 | A |
5555618 | Winkler | Sep 1996 | A |
5571088 | Lennox et al. | Nov 1996 | A |
5575766 | Swartz et al. | Nov 1996 | A |
5575772 | Lennox | Nov 1996 | A |
5599347 | Hart et al. | Feb 1997 | A |
5605162 | Mirzaee et al. | Feb 1997 | A |
5617878 | Taheri | Apr 1997 | A |
5622169 | Golden et al. | Apr 1997 | A |
5624430 | Eton et al. | Apr 1997 | A |
5667488 | Lundquist et al. | Sep 1997 | A |
5673695 | McGee et al. | Oct 1997 | A |
5674208 | Berg et al. | Oct 1997 | A |
5683366 | Eggers et al. | Nov 1997 | A |
5720744 | Eggleston et al. | Feb 1998 | A |
5741249 | Moss et al. | Apr 1998 | A |
5766135 | Terwilliger | Jun 1998 | A |
5779688 | Imran et al. | Jul 1998 | A |
5810764 | Eggers et al. | Sep 1998 | A |
5814028 | Swartz et al. | Sep 1998 | A |
5830214 | Flom et al. | Nov 1998 | A |
5836875 | Webster, Jr. | Nov 1998 | A |
5849011 | Jones et al. | Dec 1998 | A |
5851210 | Torossian | Dec 1998 | A |
5885227 | Finlayson | Mar 1999 | A |
5888201 | Stinson et al. | Mar 1999 | A |
5893848 | Negus et al. | Apr 1999 | A |
5893885 | Webster, Jr. | Apr 1999 | A |
5904679 | Clayman | May 1999 | A |
5916210 | Winston | Jun 1999 | A |
5921957 | Killion et al. | Jul 1999 | A |
5931818 | Werp et al. | Aug 1999 | A |
5944023 | Johnson et al. | Aug 1999 | A |
5951482 | Winston et al. | Sep 1999 | A |
5957842 | Littmann et al. | Sep 1999 | A |
5964757 | Ponzi | Oct 1999 | A |
5967976 | Larsen et al. | Oct 1999 | A |
5989276 | Houser et al. | Nov 1999 | A |
6007555 | Devine | Dec 1999 | A |
6009877 | Edwards | Jan 2000 | A |
6013072 | Ivinston et al. | Jan 2000 | A |
6017340 | Cassidy et al. | Jan 2000 | A |
6018676 | Davis et al. | Jan 2000 | A |
6030380 | Auth et al. | Feb 2000 | A |
6032674 | Eggers et al. | Mar 2000 | A |
6048349 | Winston et al. | Apr 2000 | A |
6053870 | Fulton, III | Apr 2000 | A |
6053904 | Scribner et al. | Apr 2000 | A |
6056747 | Saadat et al. | May 2000 | A |
6063093 | Winston et al. | May 2000 | A |
6093185 | Ellis et al. | Jul 2000 | A |
6106515 | Winston et al. | Aug 2000 | A |
6106520 | Laufer et al. | Aug 2000 | A |
6117131 | Taylor | Sep 2000 | A |
6142992 | Cheng et al. | Nov 2000 | A |
6146380 | Racz et al. | Nov 2000 | A |
6155264 | Ressemann et al. | Dec 2000 | A |
6156031 | Aita et al. | Dec 2000 | A |
6171305 | Sherman | Jan 2001 | B1 |
6179824 | Eggers et al. | Jan 2001 | B1 |
6193676 | Winston et al. | Feb 2001 | B1 |
6193715 | Wrublewski et al. | Feb 2001 | B1 |
6210408 | Chandrasekaran et al. | Apr 2001 | B1 |
6217575 | Devore et al. | Apr 2001 | B1 |
6221061 | Engelson et al. | Apr 2001 | B1 |
6228076 | Winston et al. | May 2001 | B1 |
6245054 | Fuimaono et al. | Jun 2001 | B1 |
6267758 | Daw et al. | Jul 2001 | B1 |
6283983 | Makower et al. | Sep 2001 | B1 |
6292678 | Hall et al. | Sep 2001 | B1 |
6293945 | Parins et al. | Sep 2001 | B1 |
6296615 | Brockway et al. | Oct 2001 | B1 |
6296636 | Cheng et al. | Oct 2001 | B1 |
6302898 | Edwards et al. | Oct 2001 | B1 |
6304769 | Arenson et al. | Oct 2001 | B1 |
6315777 | Comben | Nov 2001 | B1 |
6328699 | Eigler et al. | Dec 2001 | B1 |
6360128 | Kordis et al. | Mar 2002 | B2 |
6364877 | Goble et al. | Apr 2002 | B1 |
6385472 | Hall et al. | May 2002 | B1 |
6394976 | Winston et al. | May 2002 | B1 |
6395002 | Ellman et al. | May 2002 | B1 |
6419674 | Bowser et al. | Jul 2002 | B1 |
6428551 | Hall et al. | Aug 2002 | B1 |
6450989 | Dubrul et al. | Sep 2002 | B2 |
6475214 | Moaddeb | Nov 2002 | B1 |
6485485 | Winston et al. | Nov 2002 | B1 |
6508754 | Liprie et al. | Jan 2003 | B1 |
6524303 | Garibaldi | Feb 2003 | B1 |
6530923 | Dubrul et al. | Mar 2003 | B1 |
6554827 | Chandrasekaran et al. | Apr 2003 | B2 |
6562031 | Chandrasekaran et al. | May 2003 | B2 |
6562049 | Norlander et al. | May 2003 | B1 |
6565562 | Shah et al. | May 2003 | B1 |
6607529 | Jones et al. | Aug 2003 | B1 |
6632222 | Edwards et al. | Oct 2003 | B1 |
6639999 | Cookingham et al. | Oct 2003 | B1 |
6650923 | Lesh et al. | Nov 2003 | B1 |
6651672 | Roth | Nov 2003 | B2 |
6662034 | Segner et al. | Dec 2003 | B2 |
6663621 | Winston et al. | Dec 2003 | B1 |
6702811 | Stewart et al. | Mar 2004 | B2 |
6709444 | Makower | Mar 2004 | B1 |
6723052 | Mills | Apr 2004 | B2 |
6733511 | Hall et al. | May 2004 | B2 |
6740103 | Hall et al. | May 2004 | B2 |
6752800 | Winston et al. | Jun 2004 | B1 |
6755816 | Ritter et al. | Jun 2004 | B2 |
6811544 | Schaer | Nov 2004 | B2 |
6814733 | Schwartz et al. | Nov 2004 | B2 |
6820614 | Bonutti | Nov 2004 | B2 |
6834201 | Gillies et al. | Dec 2004 | B2 |
6842639 | Winston et al. | Jan 2005 | B1 |
6852109 | Winston et al. | Feb 2005 | B2 |
6855143 | Davison et al. | Feb 2005 | B2 |
6860856 | Ward et al. | Mar 2005 | B2 |
6869431 | Maguire et al. | Mar 2005 | B2 |
6911026 | Hall et al. | Jun 2005 | B1 |
6951554 | Johansen et al. | Oct 2005 | B2 |
6951555 | Suresh et al. | Oct 2005 | B1 |
6955675 | Jain | Oct 2005 | B2 |
6970732 | Winston et al. | Nov 2005 | B2 |
6980843 | Eng et al. | Dec 2005 | B2 |
7029470 | Francischelli et al. | Apr 2006 | B2 |
7056294 | Khairkhahan et al. | Jun 2006 | B2 |
7083566 | Tornes et al. | Aug 2006 | B2 |
7112197 | Hartley et al. | Sep 2006 | B2 |
7335197 | Sage et al. | Feb 2008 | B2 |
7618430 | Scheib | Nov 2009 | B2 |
7651492 | Wham | Jan 2010 | B2 |
7666203 | Chanduszko et al. | Feb 2010 | B2 |
7678081 | Whiting et al. | Mar 2010 | B2 |
7682360 | Guerra | Mar 2010 | B2 |
7828796 | Wong et al. | Nov 2010 | B2 |
8192425 | Mirza et al. | Jun 2012 | B2 |
8257323 | Joseph et al. | Sep 2012 | B2 |
8388549 | Paul et al. | Mar 2013 | B2 |
8500697 | Kurth et al. | Aug 2013 | B2 |
11339579 | Stearns | May 2022 | B1 |
20010012934 | Chandrasekaran et al. | Aug 2001 | A1 |
20010021867 | Kordis et al. | Sep 2001 | A1 |
20020019644 | Hastings et al. | Feb 2002 | A1 |
20020022781 | McLntire et al. | Feb 2002 | A1 |
20020022836 | Goble et al. | Feb 2002 | A1 |
20020035361 | Houser et al. | Mar 2002 | A1 |
20020087153 | Roschak et al. | Jul 2002 | A1 |
20020087156 | Maguire et al. | Jul 2002 | A1 |
20020111618 | Stewart et al. | Aug 2002 | A1 |
20020123749 | Jain | Sep 2002 | A1 |
20020147485 | Mamo et al. | Oct 2002 | A1 |
20020169377 | Khairkhahan et al. | Nov 2002 | A1 |
20020188302 | Berg et al. | Dec 2002 | A1 |
20020198521 | Maguire | Dec 2002 | A1 |
20030032929 | McGuckin | Feb 2003 | A1 |
20030040742 | Underwood et al. | Feb 2003 | A1 |
20030144658 | Schwartz et al. | Jul 2003 | A1 |
20030158480 | Tornes et al. | Aug 2003 | A1 |
20030163153 | Scheib | Aug 2003 | A1 |
20030225392 | McMichael et al. | Dec 2003 | A1 |
20040015162 | McGaffigan | Jan 2004 | A1 |
20040024396 | Eggers | Feb 2004 | A1 |
20040030328 | Eggers et al. | Feb 2004 | A1 |
20040044350 | Martin et al. | Mar 2004 | A1 |
20040073243 | Sepetka et al. | Apr 2004 | A1 |
20040077948 | Violante et al. | Apr 2004 | A1 |
20040116851 | Johansen et al. | Jun 2004 | A1 |
20040127963 | Uchida et al. | Jul 2004 | A1 |
20040133113 | Krishnan | Jul 2004 | A1 |
20040133130 | Ferry et al. | Jul 2004 | A1 |
20040143256 | Bednarek | Jul 2004 | A1 |
20040147950 | Mueller et al. | Jul 2004 | A1 |
20040181213 | Gondo | Sep 2004 | A1 |
20040230188 | Cioanta et al. | Nov 2004 | A1 |
20050004585 | Hall et al. | Jan 2005 | A1 |
20050010208 | Winston et al. | Jan 2005 | A1 |
20050049628 | Schweikert et al. | Mar 2005 | A1 |
20050059966 | McClurken et al. | Mar 2005 | A1 |
20050065507 | Hartley et al. | Mar 2005 | A1 |
20050085806 | Auge et al. | Apr 2005 | A1 |
20050096529 | Cooper et al. | May 2005 | A1 |
20050101984 | Chanduszko et al. | May 2005 | A1 |
20050119556 | Gillies et al. | Jun 2005 | A1 |
20050137527 | Kunin | Jun 2005 | A1 |
20050149012 | Penny et al. | Jul 2005 | A1 |
20050203504 | Wham et al. | Sep 2005 | A1 |
20050203507 | Truckai et al. | Sep 2005 | A1 |
20050261607 | Johansen et al. | Nov 2005 | A1 |
20050288631 | Lewis et al. | Dec 2005 | A1 |
20060041253 | Newton et al. | Feb 2006 | A1 |
20060074398 | Whiting et al. | Apr 2006 | A1 |
20060079769 | Whiting et al. | Apr 2006 | A1 |
20060079787 | Whiting et al. | Apr 2006 | A1 |
20060079884 | Manzo et al. | Apr 2006 | A1 |
20060085054 | Zikorus et al. | Apr 2006 | A1 |
20060089638 | Carmel et al. | Apr 2006 | A1 |
20060106375 | Werneth et al. | May 2006 | A1 |
20060135962 | Kick et al. | Jun 2006 | A1 |
20060142756 | Davies et al. | Jun 2006 | A1 |
20060189972 | Grossman | Aug 2006 | A1 |
20060241586 | Wilk | Oct 2006 | A1 |
20060247672 | Vidlund et al. | Nov 2006 | A1 |
20060264927 | Ryan | Nov 2006 | A1 |
20060276710 | Krishnan | Dec 2006 | A1 |
20070060879 | Weitzner et al. | Mar 2007 | A1 |
20070066975 | Wong et al. | Mar 2007 | A1 |
20070118099 | Trout, III. | May 2007 | A1 |
20070123964 | Davies et al. | May 2007 | A1 |
20070167775 | Kochavi et al. | Jul 2007 | A1 |
20070208256 | Marilla | Sep 2007 | A1 |
20070225681 | House | Sep 2007 | A1 |
20070270791 | Wang et al. | Nov 2007 | A1 |
20080039865 | Shaher et al. | Feb 2008 | A1 |
20080042360 | Veikley | Feb 2008 | A1 |
20080086120 | Mirza et al. | Apr 2008 | A1 |
20080097213 | Carlson et al. | Apr 2008 | A1 |
20080108987 | Bruszewski et al. | May 2008 | A1 |
20080146918 | Magnin et al. | Jun 2008 | A1 |
20080171934 | Greenan et al. | Jul 2008 | A1 |
20080208121 | Youssef et al. | Aug 2008 | A1 |
20080228223 | Alkhatib | Sep 2008 | A1 |
20080275439 | Francischelli et al. | Nov 2008 | A1 |
20090105742 | Kurth et al. | Apr 2009 | A1 |
20090138009 | Viswanathan et al. | May 2009 | A1 |
20090163850 | Betts et al. | Jun 2009 | A1 |
20090177114 | Chin et al. | Jul 2009 | A1 |
20090264977 | Bruszewski et al. | Oct 2009 | A1 |
20100087789 | Leeflang et al. | Apr 2010 | A1 |
20100125282 | Machek et al. | May 2010 | A1 |
20100168684 | Ryan | Jul 2010 | A1 |
20100179632 | Bruszewski et al. | Jul 2010 | A1 |
20100191142 | Paul et al. | Jul 2010 | A1 |
20100194047 | Sauerwine | Aug 2010 | A1 |
20110046619 | Ducharme | Feb 2011 | A1 |
20110137394 | Lunsford | Jun 2011 | A1 |
20110152716 | Chudzik et al. | Jun 2011 | A1 |
20110160592 | Mitchell | Jun 2011 | A1 |
20110190763 | Urban et al. | Aug 2011 | A1 |
20120232546 | Mirza et al. | Sep 2012 | A1 |
20120265055 | Melsheimer et al. | Oct 2012 | A1 |
20120330156 | Brown et al. | Dec 2012 | A1 |
20130184551 | Paganelli et al. | Jul 2013 | A1 |
20130184735 | Fischell et al. | Jul 2013 | A1 |
20130282084 | Mathur et al. | Oct 2013 | A1 |
20140206987 | Urbanski et al. | Jul 2014 | A1 |
20140296769 | Hyde et al. | Oct 2014 | A1 |
20160220741 | Garrison et al. | Aug 2016 | A1 |
20180028790 | Bar-Cohen | Feb 2018 | A1 |
20180242978 | Chou | Aug 2018 | A1 |
20190021763 | Zhou et al. | Jan 2019 | A1 |
20190247035 | Gittard et al. | Aug 2019 | A1 |
Number | Date | Country | |
---|---|---|---|
20210290268 A1 | Sep 2021 | US |