The present invention is related generally to medical technology, and more particularly to a medical system and to a medical method both employing a drug delivery assembly operatively connectable to a patient for controllably delivering at least one drug to the patient.
Known medical systems having drug delivery assemblies for controllably delivering at least one drug to the patient include sedation systems such as conscious sedation systems. A known conscious sedation system is disclosed in United States Patent Application Publication No. 2002/0017299. In that system, a controller generated a request for a predetermined response from a patient. The request was in the form of an auditory command which was received by a patient through an earphone in the ear of the patient or was in the form of a vibration signal which was received by the patient through a vibrator in a handpiece which was attached to the hand of the patient. The predetermined response to the request was the pushing of a button on the handpiece by the patient which closed a switch sending a signal to the controller. The controller analyzed medical information from the patient (such as blood pressure and other information) and analyzed the time delay between the request and the response to determine a level of sedation of the patient. When the time delay between the request and the response increased, the controller determined that the patient was in a deeper level of sedation and caused the drug delivery assembly of the conscious sedation system to decrease the flow of a conscious sedation drug to the patient.
Still, scientists and engineers continue to seek improved medical systems having a drug delivery assembly operatively connectable to a patient for controllably delivering at least one drug to the patient.
A first expression of an embodiment of the invention is for a medical system including a muscular-tension-measuring device and a drug delivery assembly. The muscular-tension-measuring device is operatively connectable to a patient and includes a device output having a device output signal which varies with involuntary changes in muscular tension of the patient when the device is operatively connected to the patient. The drug delivery assembly is operatively connectable to the patient for controllably delivering at least one drug to the patient. In one implementation, the device output signal varies with involuntary changes in muscular tension of the patient caused by pain experienced by the patient. In the same or a different implementation, the device output signal varies with involuntary changes in muscular tension of the patient in reaction to anxiety experienced by the patient.
A second expression of an embodiment of the invention is for a medical system including a muscular-tension-measuring device, a monitor, and a drug delivery assembly. The muscular-tension-measuring device is operatively connectable to a patient and includes a device output having a device output signal which varies with involuntary changes in muscular tension of the patient caused by pain experienced by the patient when the device is operatively connected to the patient. The monitor is connectable to the device output for providing a representation of the device output signal. The drug delivery assembly is operatively connectable to the patient for controllably delivering at least one drug to the patient. The drug delivery assembly is adapted to allow a user to vary the delivery of the at-least-one drug to the patient.
A third expression of an embodiment of the invention is for a medical system including a muscular-tension-measuring device, a drug delivery assembly, and a controller. The muscular-tension-measuring device is operatively connectable to a patient and includes a device output having a device output signal which varies with involuntary changes in muscular tension of the patient caused by pain experienced by the patient when the device is operatively connected to the patient. The drug delivery assembly is operatively connectable to the patient for controllably delivering at least one drug to the patient. The controller has a controller input operatively connectable to the device output and has a controller output operatively connectable to the assembly. The controller varies the delivering by the drug delivery assembly of the at-least-one drug to the patient based at least on variations in the device output signal.
A method of the invention is for consciously sedating a patient. The method includes measuring muscular tension of the patient and includes varying delivery of a conscious sedation drug to the patient based at least on variations in the measured muscular tension of the patient.
Several benefits and advantages are obtained from one or more of the expressions of the embodiment and the method of the invention. In one example, when the medical apparatus is used in a conscious sedation procedure such as a colonoscopy, a patient's combined level of pain and anxiety evident as muscular tension is measured for purposes of controlling the delivery of conscious sedation and analgesic drugs without requesting any response from the patient. This is of benefit to a patient who would have difficulty sensing requests and/or performing responses used in prior art response testing to determine the level of sedation of the patient.
Before explaining the expressions of an embodiment of the invention in detail, it should be noted that each is not limited in its application or use to the details of construction and arrangement of parts, instructions, and steps illustrated in the accompanying drawings and description. The illustrative embodiment of the invention may be implemented or incorporated in other embodiments, variations, and modifications, and may be practiced or carried out in various ways. Furthermore, unless otherwise indicated, the terminology employed herein has been chosen for the purpose of describing the illustrative expressions of the embodiment of the present invention for the convenience of the reader and are not for the purpose of limiting the invention.
It is further understood that any one or more of the following-described expressions of a medical system, implementations, etc. can be combined with any one or more of the other following-described expressions of a medical system, implementations, etc.
An embodiment of the invention is shown in
In one arrangement of the first expression of the embodiment of
In one implementation of the first expression of the embodiment of
In one enablement of the first expression of the embodiment of
In the same or a different enablement, the medical system 10 also includes a monitor 30 connectable to the device output 18 for providing a representation of the device output signal 20. In one variation, the monitor 30 provides a visual representation of the device output signal 20. In one example, the visual representation is similar to that of
In one application of the first expression of the embodiment of
In one arrangement of the first expression of the embodiment of
In one employment of the first expression of the embodiment of
A second expression of the embodiment of
In one example of the second expression of the embodiment of
A third expression of the embodiment of
It is noted that the examples, arrangements, etc. of the second expression and the arrangements, applications, etc. of the first expression of the embodiment of
A method of the invention is for consciously sedating a patient 16. The method includes measuring muscular tension of the patient 16 and includes varying delivery of a conscious sedation drug to the patient 16 based at least on variations in the measured muscular tension of the patient 16. It is noted that the examples, etc. of the first, second, and third expressions of the embodiment of
Several benefits and advantages are obtained from one or more of the expressions of the embodiment and the method of the invention. In one example, when the medical apparatus is used in a conscious sedation procedure such as a colonoscopy, a patient's combined level of pain and anxiety evident as muscular tension is measured for purposes of controlling the delivery of conscious sedation and analgesic drugs without requesting any response from the patient. This is of benefit to a patient who would have difficulty sensing requests and/or performing responses used in prior art response testing to determine the level of sedation of the patient.
While the present invention has been illustrated by several expressions of a method, an embodiment, and enablements, applications, etc. thereof, it is not the intention of the applicant to restrict or limit the spirit and scope of the appended claims to such detail. Numerous other variations, changes, and substitutions will occur to those skilled in the art without departing from the scope of the invention. It will be understood that the foregoing description is provided by way of example, and that other modifications may occur to those skilled in the art without departing from the scope and spirit of the appended Claims.