Medical system for treating a left atrial appendage

Information

  • Patent Grant
  • 11903589
  • Patent Number
    11,903,589
  • Date Filed
    Tuesday, March 23, 2021
    3 years ago
  • Date Issued
    Tuesday, February 20, 2024
    9 months ago
Abstract
A medical system may include a left atrial appendage closure device including an expandable framework and a proximal hub centered on a central longitudinal axis of the framework. An insert may be disposed within the proximal hub and include a collar configured to engage the proximal hub, a recess extending into the insert from a proximal end, and a post member disposed within the recess. The post member may be radially spaced apart from the collar and may extend proximally from a distal end of the recess to a proximal surface. The insert may include a first connection structure disposed distal of the proximal surface. The medical system may include a delivery catheter having a second connection structure configured to engage the first connection structure in a delivery configuration. The distal end of the delivery catheter includes a hollow portion configured to receive the post member in the delivery configuration.
Description
TECHNICAL FIELD

The disclosure relates generally to medical devices and more particularly to medical devices that are adapted for use in percutaneous medical procedures including implantation into the left atrial appendage (LAA) of a heart.


BACKGROUND

The left atrial appendage is a small organ attached to the left atrium of the heart. During normal heart function, as the left atrium constricts and forces blood into the left ventricle, the left atrial appendage constricts and forces blood into the left atrium. The ability of the left atrial appendage to contract assists with improved filling of the left ventricle, thereby playing a role in maintaining cardiac output. However, in patients suffering from atrial fibrillation, the left atrial appendage may not properly contract or empty, causing stagnant blood to pool within its interior, which can lead to the undesirable formation of thrombi within the left atrial appendage.


Thrombi forming in the left atrial appendage may break loose from this area and enter the blood stream. Thrombi that migrate through the blood vessels may eventually plug a smaller vessel downstream and thereby contribute to stroke or heart attack. Clinical studies have shown that the majority of blood clots in patients with atrial fibrillation originate in the left atrial appendage. As a treatment, medical devices have been developed which are deployed to close off the left atrial appendage. Of the known medical devices and methods, each has certain advantages and disadvantages. There is an ongoing need to provide alternative medical devices and introducers as well as alternative methods for manufacturing and using medical devices and introducers.


SUMMARY

In a first aspect, a medical system may comprise a left atrial appendage closure device including an expandable framework and a proximal hub centered on a central longitudinal axis of the expandable framework. An insert may be disposed within the proximal hub, the insert including a collar configured to engage the proximal hub, a recess extending into the insert from a proximal end of the insert, and a post member disposed within the recess. The post member may be radially spaced apart from the collar to define a gap between the post member and the collar, and the post member may extend proximally from a distal end of the recess to a proximal surface. The insert may include a first connection structure disposed distal of the proximal surface. The medical system may comprise a delivery catheter having a second connection structure proximate a distal end of the delivery catheter, the second connection structure being configured to engage the first connection structure in a delivery configuration of the medical system. The distal end of the delivery catheter includes a hollow portion configured to receive the post member in the delivery configuration.


In addition or alternatively to any aspect described herein, a sensor is disposed within the post member.


In addition or alternatively to any aspect described herein, the sensor is a pressure sensor and the proximal surface is a diaphragm extending across a proximal end of the post member, the diaphragm being configured to transmit a pressure within a left atrium to the pressure sensor when the expandable framework is disposed within an ostium of the left atrial appendage.


In addition or alternatively to any aspect described herein, the delivery catheter includes at least one aperture extending through a side wall of the delivery catheter proximate the distal end of the delivery catheter.


In addition or alternatively to any aspect described herein, the left atrial appendage closure device includes a gap seal configured to extend across a proximal end of the gap when the medical system is disposed in a released configuration in which the delivery catheter is disengaged from the left atrial appendage closure device.


In addition or alternatively to any aspect described herein, the gap seal is configured to deflect into the recess when the medical system is in the delivery configuration.


In addition or alternatively to any aspect described herein, the first connection structure includes a first threaded portion disposed on an outside surface of the post member or an inside surface of the collar.


In addition or alternatively to any aspect described herein, the second connection structure includes a second threaded portion disposed proximate the distal end of the delivery catheter, the second threaded portion being configured to threadably mate with the first threaded portion when the medical system is in the delivery configuration.


In addition or alternatively to any aspect described herein, the first connection structure includes at least one groove formed in an outside surface of the post member or to an inside surface of the collar, wherein the at least one groove includes a longitudinal portion and a circumferential portion extending from a distal end of the longitudinal portion.


In addition or alternatively to any aspect described herein, the second connection structure includes at least one radially extending projection proximate the distal end of the delivery catheter, the at least one radially extending projection being configured to engage the at least one groove when the medical system is in the delivery configuration.


In addition or alternatively to any aspect described herein, the first connection structure includes at least one projection extending radially outward from the post member.


In addition or alternatively to any aspect described herein, the second connection structure includes two or more movable jaws configured to engage the at least one projection to clamp the post member between the two or more movable jaws when the medical system is in the delivery configuration.


In addition or alternatively to any aspect described herein, the first connection structure includes a channel formed in an outside surface of the post member and extending circumferentially around the post member distal of the proximal surface.


In addition or alternatively to any aspect described herein, the second connection structure includes: a distal cap member disposed at the distal end of the delivery catheter and configured to span the proximal surface of the post member, wherein the distal cap member includes at least one aperture formed in a laterally extending surface of the distal cap member; and a tether extending longitudinally alongside the delivery catheter, through the at least one aperture, and around the post member within the channel when the medical system is in the delivery configuration.


In addition or alternatively to any aspect described herein, a medical system may comprise a left atrial appendage closure device including an expandable framework and a proximal hub centered on a central longitudinal axis of the expandable framework. An insert may be disposed within the proximal hub, the insert including a collar defining a circumferential wall of the insert configured to engage the proximal hub, a recess extending axially into the insert from a proximal end of the insert, and a post member disposed within the recess. The post member may be radially spaced apart from the collar to define an annular gap between the post member and the collar, and the post member may extend proximally from a distal end of the recess to a proximal surface disposed proximate the proximal end of the insert. The insert may include a first connection structure disposed distal of the proximal surface. A pressure sensor may be disposed within the post member and in communication with the proximal surface of the post member for sensing a fluid pressure proximal of the left atrial appendage closure device. The medical system may comprise a delivery catheter having a second connection structure proximate a distal end of the delivery catheter, the second connection structure being configured to engage the first connection structure in a delivery configuration of the medical system. The distal end of the delivery catheter may include a hollow portion configured to extend over the post member and within the circumferential wall in the delivery configuration such that the distal end of the delivery catheter is disposed distal of the proximal end of the insert.


In addition or alternatively to any aspect described herein, a medical system may comprise a left atrial appendage closure device including a self-expanding framework and a proximal hub centered on a central longitudinal axis of the expandable framework. An insert may be disposed within the proximal hub, the insert including a collar defining a circumferential wall of the insert configured to engage the proximal hub, a recess extending axially into the insert from a proximal end of the insert, and a post member disposed within the recess radially inward of the circumferential wall. The post member may extend proximally from a distal end of the recess to a proximal surface. A sensor, a capacitor, and a communication coil may be disposed within the insert. The medical system may comprise a delivery catheter including a hollow portion disposable within the insert radially inward of the circumferential wall and radially outward of the post member in a delivery configuration of the medical system.


In addition or alternatively to any aspect described herein, the insert includes a first connection structure disposed distal of the proximal surface of the post member and the delivery catheter includes a second connection structure configured to engage the first connection structure in the delivery configuration of the medical system.


In addition or alternatively to any aspect described herein, in the delivery configuration of the medical system, the delivery catheter does not contact the proximal surface of the post member.


In addition or alternatively to any aspect described herein, the left atrial appendage closure device includes an occlusive element disposed over at least a portion of the expandable framework. The expandable framework is configured to shift between a collapsed configuration and a deployed configuration. The occlusive element is configured to prevent thrombi from exiting a left atrial appendage when the expandable framework is disposed within an ostium of the left atrial appendage in the deployed configuration.


In addition or alternatively to any aspect described herein, the expandable framework includes a plurality of interconnected struts joined together at the proximal hub.


The above summary of some embodiments, aspects, and/or examples is not intended to describe each embodiment or every implementation of the present disclosure. The figures and the detailed description which follows more particularly exemplify these embodiments.





BRIEF DESCRIPTION OF THE DRAWINGS

The disclosure may be more completely understood in consideration of the following detailed description of various embodiments in connection with the accompanying drawings, in which:



FIGS. 1-2 are side views of an example medical system;



FIGS. 3-4 illustrate aspects of a left atrial appendage closure device;



FIG. 5 is an exploded view illustrating aspects of an insert associated with the left atrial appendage closure device;



FIG. 6 illustrates aspects of a first connection structure and a second connection structure;



FIG. 7 illustrates aspects of a first connection structure and a second connection structure;



FIG. 8 illustrates aspects of the insert associated with the left atrial appendage closure device;



FIG. 9 is a partial cross-sectional view of FIG. 8 taken along the line 9-9;



FIG. 10 illustrates aspects of the medical system in a delivery configuration and/or a deployed configuration;



FIG. 11 illustrates aspects of a first connection structure and a second connection structure;



FIG. 12 illustrates aspects of a first connection structure and a second connection structure;



FIG. 13 illustrates aspects of a first connection structure and a second connection structure;



FIG. 14 illustrates aspects of a first connection structure and a second connection structure;



FIG. 15 illustrates aspects of a first connection structure and a second connection structure;



FIG. 16 illustrates aspects of a first connection structure and a second connection structure; and



FIG. 17 illustrates aspects of the medical system in the delivery configuration and/or the deployed configuration.





While aspects of the disclosure are amenable to various modifications and alternative forms, specifics thereof have been shown by way of example in the drawings and will be described in detail. It should be understood, however, that the intention is not to limit aspects of the disclosure to the particular embodiments described. On the contrary, the intention is to cover all modifications, equivalents, and alternatives falling within the spirit and scope of the disclosure.


DETAILED DESCRIPTION

The following description should be read with reference to the drawings, which are not necessarily to scale, wherein like reference numerals indicate like elements throughout the several views. The detailed description and drawings are intended to illustrate but not limit the claimed invention. Those skilled in the art will recognize that the various elements described and/or shown may be arranged in various combinations and configurations without departing from the scope of the disclosure. The detailed description and drawings illustrate example embodiments of the claimed invention. However, in the interest of clarity and ease of understanding, while every feature and/or element may not be shown in each drawing, the feature(s) and/or element(s) may be understood to be present regardless, unless otherwise specified.


For the following defined terms, these definitions shall be applied, unless a different definition is given in the claims or elsewhere in this specification.


All numeric values are herein assumed to be modified by the term “about,” whether or not explicitly indicated. The term “about”, in the context of numeric values, generally refers to a range of numbers that one of skill in the art would consider equivalent to the recited value (e.g., having the same function or result). In many instances, the term “about” may include numbers that are rounded to the nearest significant figure. Other uses of the term “about” (e.g., in a context other than numeric values) may be assumed to have their ordinary and customary definition(s), as understood from and consistent with the context of the specification, unless otherwise specified.


The recitation of numerical ranges by endpoints includes all numbers within that range, including the endpoints (e.g., 1 to 5 includes 1, 1.5, 2, 2.75, 3, 3.80, 4, and 5).


Although some suitable dimensions, ranges, and/or values pertaining to various components, features and/or specifications are disclosed, one of skill in the art, incited by the present disclosure, would understand desired dimensions, ranges, and/or values may deviate from those expressly disclosed.


As used in this specification and the appended claims, the singular forms “a”, “an”, and “the” include plural referents unless the content clearly dictates otherwise. As used in this specification and the appended claims, the term “or” is generally employed in its sense including “and/or” unless the content clearly dictates otherwise. It is to be noted that in order to facilitate understanding, certain features of the disclosure may be described in the singular, even though those features may be plural or recurring within the disclosed embodiment(s). Each instance of the features may include and/or be encompassed by the singular disclosure(s), unless expressly stated to the contrary. For simplicity and clarity purposes, not all elements of the disclosed invention are necessarily shown in each figure or discussed in detail below. However, it will be understood that the following discussion may apply equally to any and/or all of the components for which there are more than one, unless explicitly stated to the contrary. Additionally, not all instances of some elements or features may be shown in each figure for clarity.


Relative terms such as “proximal”, “distal”, “advance”, “retract”, variants thereof, and the like, may be generally considered with respect to the positioning, direction, and/or operation of various elements relative to a user/operator/manipulator of the device, wherein “proximal” and “retract” indicate or refer to closer to or toward the user and “distal” and “advance” indicate or refer to farther from or away from the user. In some instances, the terms “proximal” and “distal” may be arbitrarily assigned in an effort to facilitate understanding of the disclosure, and such instances will be readily apparent to the skilled artisan. Other relative terms, such as “upstream”, “downstream”, “inflow”, and “outflow” refer to a direction of fluid flow within a lumen, such as a body lumen, a blood vessel, or within a device.


The term “extent” may be understood to mean a greatest measurement of a stated or identified dimension, unless the extent or dimension in question is preceded by or identified as a “minimum”, which may be understood to mean a smallest measurement of the stated or identified dimension. For example, “outer extent” may be understood to mean an outer dimension, “radial extent” may be understood to mean a radial dimension, “longitudinal extent” may be understood to mean a longitudinal dimension, etc. Each instance of an “extent” may be different (e.g., axial, longitudinal, lateral, radial, circumferential, etc.) and will be apparent to the skilled person from the context of the individual usage. Generally, an “extent” may be considered a greatest possible dimension measured according to the intended usage, while a “minimum extent” may be considered a smallest possible dimension measured according to the intended usage. In some instances, an “extent” may generally be measured orthogonally within a plane and/or cross-section, but may be, as will be apparent from the particular context, measured differently—such as, but not limited to, angularly, radially, circumferentially (e.g., along an arc), etc.


The terms “monolithic” and “unitary” shall generally refer to an element or elements made from or consisting of a single structure or base unit/element. A monolithic and/or unitary element shall exclude structure and/or features made by assembling or otherwise joining multiple discrete elements together.


It is noted that references in the specification to “an embodiment”, “some embodiments”, “other embodiments”, etc., indicate that the embodiment(s) described may include a particular feature, structure, or characteristic, but every embodiment may not necessarily include the particular feature, structure, or characteristic. Moreover, such phrases are not necessarily referring to the same embodiment. Further, when a particular feature, structure, or characteristic is described in connection with an embodiment, it would be within the knowledge of one skilled in the art to effect the particular feature, structure, or characteristic in connection with other embodiments, whether or not explicitly described, unless clearly stated to the contrary. That is, the various individual elements described below, even if not explicitly shown in a particular combination, are nevertheless contemplated as being combinable or arrangeable with each other to form other additional embodiments or to complement and/or enrich the described embodiment(s), as would be understood by one of ordinary skill in the art.


For the purpose of clarity, certain identifying numerical nomenclature (e.g., first, second, third, fourth, etc.) may be used throughout the description and/or claims to name and/or differentiate between various described and/or claimed features. It is to be understood that the numerical nomenclature is not intended to be limiting and is exemplary only. In some embodiments, alterations of and deviations from previously used numerical nomenclature may be made in the interest of brevity and clarity. That is, a feature identified as a “first” element may later be referred to as a “second” element, a “third” element, etc. or may be omitted entirely, and/or a different feature may be referred to as the “first” element. The meaning and/or designation in each instance will be apparent to the skilled practitioner.


The following figures illustrate selected components and/or arrangements of an implant for occluding the left atrial appendage, a medical system for occluding the left atrial appendage, and/or methods of using the implant and/or the medical system. It should be noted that in any given figure, some features may not be shown, or may be shown schematically, for simplicity. Additional details regarding some of the components of the implant and/or the system may be illustrated in other figures in greater detail. While discussed in the context of occluding the left atrial appendage, the implant and/or the system may also be used for other interventions and/or percutaneous medical procedures within a patient. Similarly, the devices and methods described herein with respect to percutaneous deployment may be used in other types of surgical procedures, as appropriate. For example, in some examples, the devices may be used in a non-percutaneous procedure. Devices and methods in accordance with the disclosure may also be adapted and configured for other uses within the anatomy.


Turning now to the figures, FIGS. 1-2 illustrate a medical system 10 including an outer sheath 40 having a lumen 42 extending from a proximal opening to a distal opening, a delivery catheter 30 slidably disposed within the lumen 42, and a left atrial appendage closure device 100 having an expandable framework 110 configured to shift between a collapsed configuration (e.g., FIG. 1), wherein the left atrial appendage closure device 100 is disposed within the lumen 42 proximate the distal opening in the collapsed configuration, and a deployed configuration (e.g., FIG. 2). The left atrial appendage closure device 100 and/or the expandable framework 110 may be configured to shift between the collapsed configuration and the deployed configuration when the left atrial appendage closure device 100 is disposed distal of the distal opening of the lumen 42 and/or the outer sheath 40, and/or when the left atrial appendage closure device 100 is unconstrained by the outer sheath 40. The left atrial appendage closure device 100 may be disposed at and/or releasably connected to a distal portion of the delivery catheter 30. The delivery catheter 30 may be slidably and/or rotatably disposed within the lumen 42 of the outer sheath 40. In some embodiments, a proximal end of the delivery catheter 30 may extend proximally of a proximal end of the outer sheath 40 and/or the proximal opening of the lumen 42 for manual manipulation by a clinician or practitioner. In some embodiments, the example left atrial appendage closure device 100 may be removably attached, joined, or otherwise connected to the distal end of the delivery catheter 30. Some suitable, but non-limiting, examples of materials for the medical system 10, the delivery catheter 30, the outer sheath 40, and/or the left atrial appendage closure device 100, etc. are discussed below. It is contemplated that any and/or all example occlusive implants disclosed herein may be used in accordance with and/or be associated with the example medical system 10 described above.



FIGS. 3-4 illustrate an example configuration of the left atrial appendage closure device 100 comprising the expandable framework 110 configured to shift between the collapsed configuration and the expanded configuration. In some embodiments, the left atrial appendage closure device 100 may include a proximal hub 130 centered on a central longitudinal axis of the expandable framework 110. For example, the proximal hub 130 may be coaxial with the central longitudinal axis of the expandable framework 110. In some embodiments, the expandable framework 110 may include a plurality of interconnected struts joined together at the proximal hub 130. In some embodiments, the proximal hub 130 may be integrally formed with and/or may be monolithically formed with the expandable framework 110 and/or the plurality of interconnected struts. In some embodiments, the left atrial appendage closure device 100 may include, and/or the expandable framework 110 may be, a self-expanding framework.


The expandable framework 110 may be compliant and substantially conform to and/or be in sealing engagement with the shape and/or geometry of a lateral wall and/or an ostium of a left atrial appendage in the expanded configuration. In some embodiments, the left atrial appendage closure device 100 may expand to a size, extent, or shape less than or different from a maximum unconstrained extent, as determined by the surrounding tissue and/or lateral wall of the left atrial appendage. Reducing a thickness of various elements of the expandable framework 110 may increase the flexibility and compliance of the expandable framework 110 and/or the left atrial appendage closure device 100, thereby permitting the expandable framework 110 and/or the left atrial appendage closure device 100 to conform to the tissue around it, rather than forcing the tissue to conform to the expandable framework 110 and/or the left atrial appendage closure device 100.


In some embodiments, the left atrial appendage closure device 100 may optionally include an occlusive element 120 (e.g., a mesh, a fabric, a membrane, and/or other surface treatment) disposed on, disposed over, disposed about, or covering at least a portion of the expandable framework 110, as seen in FIG. 3. In some embodiments, the occlusive element 120 may be disposed on, disposed over, disposed about or cover at least a portion of an outer (or outwardly facing) surface of the expandable framework 110. In some embodiments, the occlusive element 120 may be secured to and/or may extend radially outward from the proximal hub 130.


In some embodiments, the expandable framework 110 may include a plurality of anchor members 112 disposed about a periphery of the expandable framework 110 in the expanded configuration. The plurality of anchor members 112 may extend radially outward from the expandable framework 110. In some embodiments, at least some of the plurality of anchor members 112 may each have and/or include a body portion, a tip portion, and a barb projecting circumferentially therefrom. In some embodiments, some and/or each of the plurality of anchor members 112 have at least one barb projecting circumferentially therefrom. Some suitable, but non-limiting, examples of materials for the expandable framework 110, the plurality of anchor members 112, etc. are discussed below.


In some embodiments, the plurality of anchor members 112 may provide an anchoring mechanism to aid in retaining the left atrial appendage closure device 100 at a target site within a patient's anatomy (i.e., the left atrial appendage, for example) in the expanded configuration. However, the barb(s) may be configured, positioned, and/or arranged such that engagement of the barb(s) with surrounding tissue at the target site is minimized or avoided. For example, the barb(s) may not puncture, pierce, and/or extend into the surrounding tissue in the expanded configuration. Additionally, in some embodiments, the plurality of anchor members 112 may provide an attachment mechanism for securing the occlusive element 120 to the expandable framework 110.


In some embodiments, the occlusive element 120 may extend distally past at least some of the plurality of anchor members 112. In some embodiments, the occlusive element 120 may extend distally past each and/or all of the plurality of anchor members 112. In at least some embodiments, at least a distal portion of the occlusive element 120 may be attached to the expandable framework 110. In some embodiments, at least some of the plurality of anchor members 112 extend and/or project through the occlusive element 120. In some embodiments, each and/or all of the plurality of anchor members 112 extend and/or project through the occlusive element 120. In some embodiments, the membrane or occlusive element may be attached to the frame at some and/or each of the plurality of anchor members 112, for example, by passing some and/or each of the plurality of anchor members 112 through the occlusive element 120.


In some embodiments, the barb and/or the tip portion on some and/or each of the at least some of the plurality of anchor members 112 may be disposed radially outward of the occlusive element 120 and/or exterior of the occlusive element 120 while the base of its respective anchor member is disposed radially inward of and/or interior of the occlusive element 120. The barb may serve to retain the occlusive element 120 on the expandable framework 110, thereby preventing the occlusive element 120 from working loose and/or releasing from the expandable framework 110 as the expandable framework 110 is shifted between the collapsed configuration and the deployed configuration. In some embodiments, attachment of the distal portion of the occlusive element 120 to the expandable framework 110 is devoid of sutures and/or adhesives.


In one example, when the left atrial appendage closure device 100 and/or the expandable framework 110 is shifted to the collapsed configuration for delivery and/or disposal within the lumen 42 of the outer sheath 40, the occlusive element 120 may be placed in tension and/or stretched tight along the outer surface of the expandable framework 110 and/or result in a portion of the expandable framework 110 deforming and/or buckling under the tension of the occlusive element 120. The tension may be reduced by extending and/or increasing the length of the occlusive element 120 while keeping and/or maintaining the length of the expandable framework 110. To accommodate the changes in tension, the occlusive element 120 may be free to move axially along the body portion of the at least some of the plurality of anchor members 112 extending through the occlusive element 120. For example, the occlusive element 120 may be devoid of fixed attachment (e.g., may not be fixedly secured in place, such as with sutures or adhesives) to the plurality of anchor members 112 and/or the expandable framework 110. The barb(s) may prevent the occlusive element 120 from slipping off the at least some of the plurality of anchor members 112 extending through the occlusive element 120 when the left atrial appendage closure device 100 and/or the expandable framework 110 is shifted to the deployed configuration and the tension is released or reduced.


In some embodiments, the occlusive element 120 may be permeable, semi-permeable, or impermeable to blood and/or other fluids, such as water. In some embodiments, the occlusive element 120 may include a polymeric membrane, a metallic or polymeric mesh, a porous filter-like material, or other suitable construction. In some embodiments, the occlusive element 120 may be configured to prevent thrombi (i.e. blood clots, etc.) from passing through the occlusive element 120 and/or exiting the left atrial appendage into the blood stream when the left atrial appendage closure device 100 and/or the expandable framework 110 is disposed within an ostium of the left atrial appendage in the deployed configuration. In some embodiments, the occlusive element 120 may be configured to promote endothelization across the ostium of the left atrial appendage after implantation of the left atrial appendage closure device 100, thereby effectively removing the left atrial appendage from the patient's circulatory system. Some suitable, but non-limiting, examples of materials for the occlusive element 120 are discussed below.


In some embodiments, the proximal hub 130 of the expandable framework 110 may be configured to releasably attach, join, couple, engage, or otherwise connect to the distal end of the delivery catheter 30. In some embodiments, the left atrial appendage closure device 100 and/or the expandable framework 110 may include an insert 140 disposed within the proximal hub 130. In some embodiments, the insert 140 may be configured to and/or adapted to releasably couple with, join to, mate with, or otherwise engage the distal end of the delivery catheter 30, as discussed herein. In the interest of clarity, not all features of the insert 140 described herein are shown in FIGS. 3-4. Some of these features may be shown in more detail in other figures.


In some embodiments, the insert 140 may include a collar 142 defining a circumferential wall 144 of the insert 140 configured to engage the proximal hub 130, a recess 146 extending axially into the insert 140 from a proximal end of the insert 140, and a post member 150 disposed within the recess 146 radially inward of the circumferential wall 144. The recess 146 may extend distally into the insert 140 from a proximal end of the insert 140 to a distal surface within the recess 146 defining a distal end of the recess 146. The post member 150 may be radially spaced apart from the collar 142 and/or the circumferential wall 144 to define an annular gap 148 (e.g., FIGS. 6-8) between the post member 150 and the collar 142 and/or the circumferential wall 144. The post member 150 may extend proximally from a distal end of the recess 146 and/or the distal surface within the recess 146 to a proximal surface 152 of the post member 150 disposed proximate the proximal end of the insert 140. In some embodiments, the proximal surface 152 of the post member 150 may be disposed distal of the proximal end of the insert 140. In some embodiments, the proximal surface 152 of the post member 150 may be disposed proximal of the proximal end of the insert 140. In some embodiments, the proximal surface 152 of the post member 150 may be disposed substantially flush with the proximal end of the insert 140.


As shown in FIG. 4, the insert 140 may extend distally into an interior of the left atrial appendage closure device 100 and/or the expandable framework 110. In some embodiments, the insert 140 may have a substantially cylindrical outer surface. In some embodiments, the insert 140 may be hollow and/or may include an interior space distal of the distal end of the recess 146 and/or the distal surface within the recess 146. An overall length of the insert 140 may vary depending on the construction of the insert 140 and/or components disposed within the interior space of the insert 140.


In one example configuration, as shown in FIG. 5, the insert 140 may include one or more internal components disposed within the interior space. In some embodiments, the insert may be devoid of any internal components. As such, any and/or all of the internal components may be considered optional in any particular example. The exploded view of FIG. 5 is one exemplary and non-limiting configuration of the insert 140. For example, the insert 140 may include a sensor 160 disposed within the insert 140 and/or the post member 150, the sensor 160 being in communication with the proximal surface 152 of the post member 150. In some embodiments, the sensor 160 may be a pressure sensor, the proximal surface 152 of the post member 150 may include a diaphragm extending across the proximal end of the post member 150, and a pressure transfer fluid may be disposed within the post member 150 between the sensor 160 and the proximal surface 152 (e.g., the diaphragm). The proximal surface 152 (e.g., the diaphragm) and/or the pressure transfer fluid may cooperate to sense and/or transmit a fluid pressure in a space proximal of the post member 150 (e.g., a left atrium) and/or adjacent the proximal surface 152 to the sensor 160 when the expandable framework 110 is disposed within an ostium of the left atrial appendage in the delivery configuration. In some embodiments, the sensor 160 may be configured to sense and/or detect temperature, flow rate, heart rate, electrical signals in the heart, heart rhythm, or other characteristics.


In some embodiments, the insert 140 may include an integrated circuit board 162 for controlling the sensor 160 and/or other internal components of the insert 140. In some embodiments, the insert 140 may include a communication coil 166 disposed within the interior space. In some embodiments, the communication coil 166 may be configured for bi-directional wireless communication and/or energy transfer. In some embodiments, the insert 140 may optionally include a battery 168. In some embodiments, the insert 140 may be powered “on-demand” via an inductive link. In some embodiments, the communication coil 166 may be and/or may form a part of the inductive link. In some embodiments, the insert 140 may include a capacitor 164 disposed within the interior space configured to act as a temporary power source for the sensor 160 and/or other internal components of the insert 140 (during “on-demand” energy transfer to the left atrial appendage closure device 100, for example). In some embodiments, the communication coil 166 may be wrapped around the battery 168, as shown in FIG. 5. In some embodiments, the communication coil 166 may be wrapped around the capacitor 164. In some embodiments, the communication coil 166 may be a stand-alone feature and/or may be wrapped around an inert and/or non-functional structure to maintain shape and/or form. Other configurations are also contemplated.


In some embodiments utilizing the battery 168, the battery 168 may be rechargeable. While a direct connection may be used to recharge the battery 168, such a configuration may be rather invasive to the patient. Accordingly, a wireless (e.g., inductive) recharging capability may be more desirable and far less invasive to the patient. In some embodiments, utilizing the battery 168, the battery 168 may not be rechargeable. When using a non-rechargeable battery 168, it is desirable to use a battery having a lifetime at least as long as the expected remaining lifetime of the patient to avoid needing to replace the battery 168 during a patient's later years when surgical procedures may be more challenging.


The insert 140 may include a first connection structure 180 disposed distal of the proximal surface 152. The delivery catheter 30 may include a second connection structure 190 proximate the distal end of the delivery catheter 30. The second connection structure 190 may be configured to engage the first connection structure 180 in the delivery configuration of the medical system 10. In some embodiments, the distal end of the delivery catheter 30 may include a hollow portion 32 configured to receive the post member 150 in the delivery configuration of the medical system 10, as shown in FIG. 6 for example. For the purpose of illustration, FIG. 6 shows aspects of the medical system 10 in a released configuration with the delivery catheter 30 disengaged from the left atrial appendage closure device 100.


In some embodiments, the first connection structure 180 may include a first threaded portion 182 disposed on an inside surface of the insert 140 (e.g., internal threads), as seen in FIG. 6. In the example of FIG. 6, the second connection structure 190 may include a second threaded portion 192 disposed proximate the distal end of the delivery catheter 30. The second threaded portion 192 may be disposed on an outside surface of the distal end of the delivery catheter 30 (e.g., external threads). The second threaded portion 192 may be configured to threadably mate with the first threaded portion 182 when the medical system 10 is in the delivery configuration (e.g., FIG. 10). In use, as the distal end of the delivery catheter 30 is inserted into the recess 146, the second connection structure 190 and/or the second threaded portion 192 may engage with and be rotated relative to the first connection structure 180 and/or the first threaded portion 182 to further engage the second threaded portion 192 with the first threaded portion 182 distal of the proximal surface 152 of the post member 150 such that the distal end of the delivery catheter 30 is translated axially and/or distally into the recess 146 of the insert 140. In the delivery configuration of the medical system 10, the first threaded portion 182 and the second threaded portion 192 may prevent relative axial movement between the left atrial appendage closure device 100 and the delivery catheter 30. The hollow portion 32 of the delivery catheter 30 may extend over and/or around the post member 150 such that the proximal surface 152 of the post member 150 may be protected from contact and/or damage during handling and/or implantation. In the delivery configuration of the medical system 10, the delivery catheter 30 may not contact the proximal surface 152 of the post member 150.


In some embodiments, the first connection structure 180 may include a first threaded portion 183 disposed on the outside surface of the post member 150 (e.g., external threads), as seen in FIG. 7. In the example of FIG. 7, the second connection structure 190 may include a second threaded portion 193 disposed proximate the distal end of the delivery catheter 30. The second threaded portion 193 may be disposed on an inside surface of the distal end of the delivery catheter 30 (e.g., internal threads). For example, the second threaded portion 193 may be disposed on an inside surface of the hollow portion 32. The second threaded portion 193 may be configured to threadably mate with the first threaded portion 183 when the medical system 10 is in the delivery configuration. In use, as the distal end of the delivery catheter 30 is inserted into the recess 146, the second connection structure 190 and/or the second threaded portion 193 may engage with and be rotated relative to the first connection structure 180 and/or the first threaded portion 183 to further engage the second threaded portion 193 with the first threaded portion 183 distal of the proximal surface 152 of the post member 150 such that the distal end of the delivery catheter 30 is translated axially and/or distally into the recess 146 of the insert 140. In the delivery configuration of the medical system 10, the first threaded portion 183 and the second threaded portion 193 may prevent relative axial movement between the left atrial appendage closure device 100 and the delivery catheter 30. The hollow portion 32 of the delivery catheter 30 may extend over and/or around the post member 150 such that the proximal surface 152 of the post member 150 may be protected from contact and/or damage during handling and/or implantation. In the delivery configuration of the medical system 10, the delivery catheter 30 may not contact the proximal surface 152 of the post member 150.



FIGS. 8-10 illustrate selected aspects of medical system 10 and the insert 140 in more detail. As shown in FIG. 8 and as described herein, the insert 140 may include the collar 142 defining the circumferential wall 144 of the insert 140 configured to engage the proximal hub 130, the recess 146 extending axially into the insert 140 from the proximal end of the insert 140, and the post member 150 disposed within the recess 146 radially inward of the circumferential wall 144. The post member 150 may be radially spaced apart from the collar 142 and/or the circumferential wall 144 to define the annular gap 148 between the post member 150 and the collar 142 and/or the circumferential wall 144. For the purpose of illustration only, the insert 140 of FIGS. 8-10 is shown with aspects of the insert 140 in accordance with FIG. 7. However, any of the embodiments described herein may include and/or may be combined with aspects shown in FIGS. 8-10.


In at least some embodiments, the insert 140 may further include a gap seal 154 disposed in and/or extending across a proximal end of the annular gap 148 when the medical system 10 is disposed in the released configuration in which the delivery catheter 30 is disengaged from the left atrial appendage closure device 100 and/or the insert 140. In some embodiments, the gap seal 154 may be deflectable between a first position (e.g., FIG. 9) and a second position (e.g., FIG. 10). When the medical system 10 is in the released configuration, the gap seal 154 may be disposed in the first position. In the first position, the gap seal 154 may extend from the circumferential wall 144 to the post member 150. In the first position, the gap seal 154 may be in contact with both the circumferential wall 144 and the post member 150. In the first position, the gap seal 154 may be configured to seal off the annular gap 148 and/or the recess 146 from the circulatory system and/or the left atrium of the patient, thereby reducing the chance of developing thrombus therein. Additionally, in some embodiments, the gap seal 154 may include a coating or therapeutic agent configured to promote endothelization when exposed to the circulatory system and/or the left atrium of the patient.


When the medical system 10 is in the delivery configuration and/or the deployed configuration, the gap seal 154 may be disposed in the second position. In the second position, the gap seal 154 may be in contact with only one of the circumferential wall 144 and the post member 150. The gap seal 154 may be configured to deflect into the recess 146 to the second position by engagement with the distal end of the delivery catheter 30 and/or by engagement with the second connection structure 190 when the medical system 10 is in the delivery configuration. In the second position, the gap seal 154 may form a sealing engagement with an inner surface or an outer surface of the delivery catheter 30.


In some embodiments, the gap seal 154 may be fixedly attached to the circumferential wall 144 or the post member 150. The gap seal 154 may be configured to deflect radially away from the first connection structure 180, as shown in FIG. 10. While illustrated in FIG. 10 as being fixedly attached to the circumferential wall 144, it is contemplated that the gap seal 154 could be fixedly attached to the post member 150 (in the configuration of FIG. 6, for example). As shown in FIG. 10, in the delivery configuration of the medical system 10, the distal end of the delivery catheter 30 includes the hollow portion 32 configured to extend over the post member 150 and within the circumferential wall 144. For example, the hollow portion 32 may be disposable within the insert 140 radially inward of the circumferential wall 144 and radially outward of the post member 150 in the delivery configuration of the medical system 10. The distal end of the delivery catheter 30 may be disposed distal of the proximal end of the insert 140 and/or the proximal surface 152 of the post member 150. Some suitable, but non-limiting, examples of materials for the gap seal 154 are discussed below.


In some embodiments, the first connection structure 180 may include at least one groove 184 formed in the outside surface of the post member 150, as seen in FIG. 11. In some embodiments, the at least one groove 184 may include two grooves, three grooves, four grooves, or more grooves as needed or desired to achieve desired operational characteristics. The at least one groove 184 may each include a longitudinal portion 184A and a circumferential portion 184B extending from a distal end of the longitudinal portion 184A. In some embodiments, the longitudinal portion 184A of the at least one groove 184 may include a proximally widening taper 184C at a proximal end, as shown in FIG. 12. In the examples of FIGS. 11-12, the second connection structure 190 may include at least one radially extending projection 194 disposed proximate the distal end of the delivery catheter 30. In some embodiments, the second connection structure 190 may include at least one radially extending projection for each groove of the first connection structure 180, such that there is a corresponding and/or equal number of grooves and radially extending projections. The at least one radially extending projection 194 may be configured to engage the at least one groove 184 when the medical system 10 is in the delivery configuration. In use, as the distal end of the delivery catheter 30 is inserted into the recess 146, the second connection structure 190 and/or the at least one radially extending projection 194 may engage with the first connection structure 180 and/or the at least one groove 184 as the delivery catheter 30 is advanced distally. Upon reaching the distal end of the longitudinal portion 184A of the at least one groove 184, the delivery catheter 30 may be rotated relative to left atrial appendage closure device 100, the insert 140, and/or the post member 150 such that the at least one radially extending projection 194 is translated circumferentially within the circumferential portion 184B of the at least one groove 184 distal of the proximal surface 152 of the post member 150 to lock the delivery catheter 30 to the insert 140 and/or the left atrial appendage closure device 100 and prevent relative axial movement therebetween when the medical system 10 is in the delivery configuration. The hollow portion 32 of the delivery catheter 30 may extend over and/or around the post member 150 such that the proximal surface 152 of the post member 150 may be protected from contact and/or damage during handling and/or implantation. In the delivery configuration of the medical system 10, the delivery catheter 30 may not contact the proximal surface 152 of the post member 150.


In some embodiments, the first connection structure 180 may include at least one detent 186 extending radially inward from the outside surface of the post member 150, as seen in FIG. 13. In some embodiments, the at least one detent 186 may include two detents, three detents, four detents, or more detents as needed or desired to achieve desired operational characteristics. In the example of FIG. 13, the second connection structure 190 may include at least one prong 196 disposed proximate the distal end of the delivery catheter 30. In some embodiments, the at least one prong 196 may extend distally from the distal end of the delivery catheter 30. The at least one prong 196 may be configured to engage the at least one detent 186 when the medical system 10 is in the delivery configuration. In some embodiments, the second connection structure 190 may include at least one prong for each detent of the first connection structure 180, such that there is a corresponding and/or equal number of prongs and detents. In use, as the distal end of the delivery catheter 30 is inserted into the recess 146, the second connection structure 190 and/or the at least one prong 196 may engage with the first connection structure 180 and/or the at least one detent 186. The at least one prong 196 may extend into the at least one detent 186 to lock the delivery catheter 30 to the insert 140 and/or the left atrial appendage closure device 100 and prevent relative axial movement therebetween when the medical system 10 is in the delivery configuration. In some embodiments, the hollow portion 32 of the delivery catheter 30 may extend over and/or around the post member 150 such that the proximal surface 152 of the post member 150 may be protected from contact and/or damage during handling and/or implantation. In the delivery configuration of the medical system 10, the delivery catheter 30 may not contact the proximal surface 152 of the post member 150.


In some embodiments, the first connection structure 180 may include at least one projection 188 extending radially outward from the outside surface of the post member 150, as seen in FIG. 14. In some embodiments, the at least one projection 188 may include two projections, three projections, four projections, or more projections as needed or desired to achieve desired operational characteristics. In the example of FIG. 14, the second connection structure 190 may include two or more movable jaws 198 disposed proximate the distal end of the delivery catheter 30. In some embodiments, the two or more movable jaws 198 may extend distally from the distal end of the delivery catheter 30. The two or more movable jaws 198 may be configured to engage the at least one projection 188 when the medical system 10 is in the delivery configuration. In use, as the distal end of the delivery catheter 30 is inserted into the recess 146, the second connection structure 190 and/or the two or more movable jaws 198 may engage with the first connection structure 180 and/or the at least one projection 188. The two or more movable jaws 198 may be actuatable to clamp the post member 150 between the two or more movable jaws 198 distal of the proximal surface 152 of the post member 150 to lock the delivery catheter 30 to the insert 140 and/or the left atrial appendage closure device 100 and prevent relative axial movement therebetween when the medical system 10 is in the delivery configuration. In the delivery configuration of the medical system 10, the delivery catheter 30 may not contact the proximal surface 152 of the post member 150.


In some embodiments, the first connection structure 180 may include a channel 200 formed in and/or extending radially into the outside surface of the post member 150 and extending circumferentially around the post member 150 distal of the proximal surface 152, as seen in FIG. 15. The channel 200 may open radially outward from the central longitudinal axis of the insert 140 and/or the left atrial appendage closure device 100. In some embodiments, the channel 200 may be continuous or discontinuous around the post member 150 as needed or desired to achieve desired operational characteristics. The channel 200 may define a narrowed neck of the post member 150, wherein the proximal surface 152 is disposed on a head of the post member 150 proximal of the neck, the head having a greater outer diameter than the neck. In at least some embodiments, the head may include a notch 208 extending radially inward from an outer perimeter of the head to the narrowed neck.


In the example of FIG. 15, the second connection structure 190 may include a distal cap member 202 having the hollow portion 32 formed therein disposed proximate and/or at the distal end of the delivery catheter 30 and configured to span the proximal surface 152 of the post member 150. In some embodiments, the distal cap member 202 may include at least one aperture 204 formed in and/or through a laterally and/or radially extending surface of the distal cap member 202. The second connection structure 190 may further include a tether 206 extending longitudinally through the lumen 42 of the outer sheath 40 and/or alongside the delivery catheter 30, through the at least one aperture 204, and around the post member 150 in the delivery configuration of the medical system 10. In some embodiments, the tether 206 may extend into and/or through the hollow portion 32.


In use, the tether 206 may extend through the notch 208 and around the post member 150 in the channel 200 to secure the left atrial appendage closure device 100 to and/or against the distal cap member 202 of the delivery catheter 30 and prevent relative axial movement therebetween when the medical system 10 is in the delivery configuration. In some embodiments, the hollow portion 32 of the delivery catheter 30 and/or the distal cap member 202 may extend over and/or around the post member 150 such that the proximal surface 152 of the post member 150 may be protected from contact and/or damage during handling and/or implantation. In the delivery configuration of the medical system 10, the delivery catheter 30 may not contact the proximal surface 152 of the post member 150. Having the tether 206 extend through the notch 208 may permit a reduced tolerance and/or spacing between the hollow portion 32 and the head of the post member 150 in the delivery configuration.


In some embodiments, the first connection structure 180 may include a channel 200 formed in and/or extending radially into the outside surface of the post member 150 and extending circumferentially around the post member 150 distal of the proximal surface 152, as seen in FIG. 16. The channel 210 may open radially outward from the central longitudinal axis of the insert 140 and/or the left atrial appendage closure device 100. In some embodiments, the channel 210 may be continuous or discontinuous around the post member 150 as needed or desired to achieve desired operational characteristics. The channel 210 may define a narrowed neck of the post member 150, wherein the proximal surface 152 is disposed on a head of the post member 150 proximal of the neck, the head having a greater outer diameter than the neck. In at least some embodiments, the head may include two notches 212 extending radially inward from an outer perimeter of the head to the narrowed neck.


In some embodiments, and as illustrated in FIG. 16, the insert 140 may be devoid of the collar 142 and/or the circumferential wall 144. For example, the post member 150 may extend proximally from the insert 140 without any surrounding feature(s). Other configurations are also contemplated, and the first connection structure 180 and the second connection structure 190 of FIG. 16 may be used in conjunction with the insert 140, the collar 142, and/or the circumferential wall 144 shown in other examples.


In the example of FIG. 16, the second connection structure 190 may include two movable jaws 216 disposed proximate the distal end of the delivery catheter 30. In some embodiments, the two movable jaws 216 may extend within and distally from the distal end of the delivery catheter 30. In some embodiments, the medical system 10 may be devoid of the delivery catheter 30 and the second connection structure 190 may be slidably disposed directly within the outer sheath 40. In some embodiments, the second connection structure 190 may include an elongate shaft portion 230 extending proximally from the two movable jaws 216 within the outer sheath 40. Each of the two movable jaws 216 may include an engagement element 214 extending radially inward from its jaw 216 that is curved, arced, and/or semi-circular in shape. In some embodiments, the two movable jaws 216 may be movably and/or pivotably joined together at a hinge point 218 proximal of the engagement element(s) 214, to permit relative movement of the engagement elements 214 in radially opposite directions. The elongate shaft portion 230 may extend proximally from the hinge point 218 and/or the hinge point 218 may distinguish the two movable jaws 216 from the elongate shaft portion 230.


The two movable jaws 216 and the engagement element(s) 214 may be configured to engage the channel 210 and the two notches 212 when the medical system 10 is in the delivery configuration. Each of the two notches 212 may correspond to and/or may be configured to engage one of the two movable jaws 216, and engagement of the two movable jaws 216 with the two notches 212 may prevent relative rotation between the first connection structure 180 and the second connection structure 190.


The two movable jaws 216 may be actuatable to clamp the post member 150 between the two movable jaws 216 distal of the proximal surface 152 of the post member 150 (e.g., within the channel 210) to lock the elongate shaft 230 to the insert 140 and/or the left atrial appendage closure device 100 and prevent relative axial movement therebetween when the medical system 10 is in the delivery configuration. In the delivery configuration of the medical system 10, the elongate shaft 230, the two movable jaws 216, and/or the engagement element(s) 214 may not contact the proximal surface 152 of the post member 150.


Other means of releasably coupling and/or engaging the expandable framework 110 to the distal end of the delivery catheter 30 are also contemplated.


In addition or alternatively to any configuration described herein, the delivery catheter 30 may include at least one aperture 34 extending through a side wall of the delivery catheter 30 into the hollow portion 32 proximate the distal end of the delivery catheter 30, as shown in FIG. 17. In the delivery configuration, the at least one aperture 34 may be disposed proximal of the insert 140 and/or the proximal surface 152 of the post member 150. The at least one aperture 34 may permit fluid communication between an exterior of the delivery catheter 30 and the proximal surface 152 of the post member 150 when the medical system 10 is in the delivery configuration. This may be useful when the practitioner wants to detect and/or measure left atrial pressure and/or other characteristics with the sensor 160 prior to releasing the left atrial appendage closure device 100.


The materials that can be used for the various components of the medical system 10 and/or the left atrial appendage closure device 100 and the various elements thereof disclosed herein may include those commonly associated with medical devices. For simplicity purposes, the following discussion refers to the medical system 10 and/or the left atrial appendage closure device 100. However, this is not intended to limit the devices and methods described herein, as the discussion may be applied to other elements, members, components, or devices disclosed herein, such as, but not limited to, the delivery catheter 30, the outer sheath 40, the expandable framework 110, the plurality of anchor members 112, the occlusive element 120, the insert 140, and/or elements or components thereof.


In some embodiments, the medical system 10 and/or the left atrial appendage closure device 100, and/or components thereof, may be made from a metal, metal alloy, polymer (some examples of which are disclosed below), a metal-polymer composite, ceramics, combinations thereof, and the like, or other suitable material.


Some examples of suitable polymers may include polytetrafluoroethylene (PTFE), ethylene tetrafluoroethylene (ETFE), fluorinated ethylene propylene (FEP), polyoxymethylene (POM, for example, DELRIN® available from DuPont), polyether block ester, polyurethane (for example, Polyurethane 85A), polypropylene (PP), polyvinylchloride (PVC), polyether-ester (for example, ARNITEL® available from DSM Engineering Plastics), ether or ester based copolymers (for example, butylene/poly(alkylene ether) phthalate and/or other polyester elastomers such as HYTREL® available from DuPont), polyamide (for example, DURETHAN® available from Bayer or CRISTAMID® available from Elf Atochem), elastomeric polyamides, block polyamide/ethers, polyether block amide (PEBA, for example available under the trade name PEBAX®), ethylene vinyl acetate copolymers (EVA), silicones, polyethylene (PE), MARLEX® high-density polyethylene, MARLEX® low-density polyethylene, linear low density polyethylene (for example REXELL®), polyester, polybutylene terephthalate (PBT), polyethylene terephthalate (PET), polytrimethylene terephthalate, polyethylene naphthalate (PEN), polyetheretherketone (PEEK), polyimide (PI), polyetherimide (PEI), polyphenylene sulfide (PPS), polyphenylene oxide (PPO), poly paraphenylene terephthalamide (for example, KEVLAR®), polysulfone, nylon, nylon-12 (such as GRILAMID® available from EMS American Grilon), perfluoro(propyl vinyl ether) (PFA), ethylene vinyl alcohol, polyolefin, polystyrene, epoxy, polyvinylidene chloride (PVdC), poly(styrene-b-isobutylene-b-styrene) (for example, SIBS and/or SIBS 50A), polycarbonates, polyurethane silicone copolymers (for example, ElastEon® from Aortech Biomaterials or ChronoSil® from AdvanSource Biomaterials), biocompatible polymers, other suitable materials, or mixtures, combinations, copolymers thereof, polymer/metal composites, and the like. In some embodiments the sheath can be blended with a liquid crystal polymer (LCP). For example, the mixture can contain up to about 6 percent LCP.


Some examples of suitable metals and metal alloys include stainless steel, such as 304V, 304L, and 316LV stainless steel; mild steel; nickel-titanium alloy such as linear-elastic and/or super-elastic nitinol; other nickel alloys such as nickel-chromium-molybdenum alloys (e.g., UNS: N06625 such as INCONEL® 625, UNS: N06022 such as HASTELLOY® C-22®, UNS: N10276 such as HASTELLOY® C276®, other HASTELLOY® alloys, and the like), nickel-copper alloys (e.g., UNS: N04400 such as MONEL® 400, NICKELVAC® 400, NICORROS® 400, and the like), nickel-cobalt-chromium-molybdenum alloys (e.g., UNS: R30035 such as MP35-N® and the like), nickel-molybdenum alloys (e.g., UNS: N10665 such as HASTELLOY® ALLOY B2®), other nickel-chromium alloys, other nickel-molybdenum alloys, other nickel-cobalt alloys, other nickel-iron alloys, other nickel-copper alloys, other nickel-tungsten or tungsten alloys, and the like; cobalt-chromium alloys; cobalt-chromium-molybdenum alloys (e.g., UNS: R30003 such as ELGILOY®, PHYNOX®, and the like); platinum enriched stainless steel; titanium; platinum; palladium; gold; combinations thereof; or any other suitable material.


As alluded to herein, within the family of commercially available nickel-titanium or nitinol alloys, is a category designated “linear elastic” or “non-super-elastic” which, although may be similar in chemistry to conventional shape memory and super elastic varieties, may exhibit distinct and useful mechanical properties. Linear elastic and/or non-super-elastic nitinol may be distinguished from super elastic nitinol in that the linear elastic and/or non-super-elastic nitinol does not display a substantial “superelastic plateau” or “flag region” in its stress/strain curve like super elastic nitinol does. Instead, in the linear elastic and/or non-super-elastic nitinol, as recoverable strain increases, the stress continues to increase in a substantially linear, or a somewhat, but not necessarily entirely linear relationship until plastic deformation begins or at least in a relationship that is more linear than the super elastic plateau and/or flag region that may be seen with super elastic nitinol. Thus, for the purposes of this disclosure linear elastic and/or non-super-elastic nitinol may also be termed “substantially” linear elastic and/or non-super-elastic nitinol.


In some cases, linear elastic and/or non-super-elastic nitinol may also be distinguishable from super elastic nitinol in that linear elastic and/or non-super-elastic nitinol may accept up to about 2-5% strain while remaining substantially elastic (e.g., before plastically deforming) whereas super elastic nitinol may accept up to about 8% strain before plastically deforming. Both materials can be distinguished from other linear elastic materials such as stainless steel (that can also be distinguished based on its composition), which may accept only about 0.2 to 0.44 percent strain before plastically deforming.


In some embodiments, the linear elastic and/or non-super-elastic nickel-titanium alloy is an alloy that does not show any martensite/austenite phase changes that are detectable by differential scanning calorimetry (DSC) and dynamic metal thermal analysis (DMTA) analysis over a large temperature range. For example, in some embodiments, there may be no martensite/austenite phase changes detectable by DSC and DMTA analysis in the range of about −60 degrees Celsius (° C.) to about 120° C. in the linear elastic and/or non-super-elastic nickel-titanium alloy. The mechanical bending properties of such material may therefore be generally inert to the effect of temperature over this very broad range of temperature. In some embodiments, the mechanical bending properties of the linear elastic and/or non-super-elastic nickel-titanium alloy at ambient or room temperature are substantially the same as the mechanical properties at body temperature, for example, in that they do not display a super-elastic plateau and/or flag region. In other words, across a broad temperature range, the linear elastic and/or non-super-elastic nickel-titanium alloy maintains its linear elastic and/or non-super-elastic characteristics and/or properties.


In some embodiments, the linear elastic and/or non-super-elastic nickel-titanium alloy may be in the range of about 50 to about 60 weight percent nickel, with the remainder being essentially titanium. In some embodiments, the composition is in the range of about 54 to about 57 weight percent nickel. One example of a suitable nickel-titanium alloy is FHP-NT alloy commercially available from Furukawa Techno Material Co. of Kanagawa, Japan. Other suitable materials may include ULTANIUM™ (available from Neo-Metrics) and GUM METAL™ (available from Toyota). In some other embodiments, a superelastic alloy, for example a superelastic nitinol can be used to achieve desired properties.


In at least some embodiments, portions or all of the medical system 10 and/or the left atrial appendage closure device 100, and/or components thereof, may also be doped with, made of, or otherwise include a radiopaque material. Radiopaque materials are understood to be materials capable of producing a relatively bright image on a fluoroscopy screen or another imaging technique during a medical procedure. This relatively bright image aids the user of the medical system 10 and/or the left atrial appendage closure device 100 in determining its location. Some examples of radiopaque materials can include, but are not limited to, gold, platinum, palladium, tantalum, tungsten alloy, polymer material loaded with a radiopaque filler, and the like. Additionally, other radiopaque marker bands and/or coils may also be incorporated into the design of the medical system 10 and/or the left atrial appendage closure device 100 to achieve the same result.


In some embodiments, a degree of Magnetic Resonance Imaging (MRI) compatibility is imparted into the medical system 10 and/or the left atrial appendage closure device 100 and/or other elements disclosed herein. For example, the medical system 10 and/or the left atrial appendage closure device 100, and/or components or portions thereof, may be made of a material that does not substantially distort the image and create substantial artifacts (i.e., gaps in the image). Certain ferromagnetic materials, for example, may not be suitable because they may create artifacts in an MRI image. The medical system 10 and/or the left atrial appendage closure device 100, or portions thereof, may also be made from a material that the MRI machine can image. Some materials that exhibit these characteristics include, for example, tungsten, cobalt-chromium-molybdenum alloys (e.g., UNS: R30003 such as ELGILOY®, PHYNOX®, and the like), nickel-cobalt-chromium-molybdenum alloys (e.g., UNS: R30035 such as MP35-N® and the like), nitinol, and the like, and others.


In some embodiments, the medical system 10 and/or the left atrial appendage closure device 100 and/or other elements disclosed herein may include a fabric material disposed over or within the structure. The fabric material may be composed of a biocompatible material, such a polymeric material or biomaterial, adapted to promote tissue ingrowth. In some embodiments, the fabric material may include a bioabsorbable material. Some examples of suitable fabric materials include, but are not limited to, polyethylene glycol (PEG), nylon, polytetrafluoroethylene (PTFE, ePTFE), a polyolefinic material such as a polyethylene, a polypropylene, polyester, polyurethane, and/or blends or combinations thereof.


In some embodiments, the medical system 10 and/or the left atrial appendage closure device 100 and/or other elements disclosed herein may include and/or be formed from a textile material. Some examples of suitable textile materials may include synthetic yarns that may be flat, shaped, twisted, textured, pre-shrunk or un-shrunk. Synthetic biocompatible yarns suitable for use in the present invention include, but are not limited to, polyesters, including polyethylene terephthalate (PET) polyesters, polypropylenes, polyethylenes, polyurethanes, polyolefins, polyvinyls, polymethylacetates, polyamides, naphthalene dicarboxylene derivatives, natural silk, and polytetrafluoroethylenes. Moreover, at least one of the synthetic yarns may be a metallic yarn or a glass or ceramic yarn or fiber. Useful metallic yarns include those yarns made from or containing stainless steel, platinum, gold, titanium, tantalum or a Ni—Co—Cr-based alloy. The yarns may further include carbon, glass or ceramic fibers. Desirably, the yarns are made from thermoplastic materials including, but not limited to, polyesters, polypropylenes, polyethylenes, polyurethanes, polynaphthalenes, polytetrafluoroethylenes, and the like. The yarns may be of the multifilament, monofilament, or spun-types. The type and denier of the yarn chosen may be selected in a manner which forms a biocompatible and implantable prosthesis and, more particularly, a vascular structure having desirable properties.


In some embodiments, the medical system 10 and/or the left atrial appendage closure device 100 and/or other elements disclosed herein may include and/or be treated with a suitable therapeutic agent. Some examples of suitable therapeutic agents may include anti-thrombogenic agents (such as heparin, heparin derivatives, urokinase, and PPack (dextrophenylalanine proline arginine chloromethylketone)); anti-proliferative agents (such as enoxaparin, angiopeptin, monoclonal antibodies capable of blocking smooth muscle cell proliferation, hirudin, and acetylsalicylic acid); anti-inflammatory agents (such as dexamethasone, prednisolone, corticosterone, budesonide, estrogen, sulfasalazine, and mesalamine); antineoplastic/antiproliferative/anti-mitotic agents (such as paclitaxel, 5-fluorouracil, cisplatin, vinblastine, vincristine, epothilones, endostatin, angiostatin and thymidine kinase inhibitors); anesthetic agents (such as lidocaine, bupivacaine, and ropivacaine); anti-coagulants (such as D-Phe-Pro-Arg chloromethyl keton, an RGD peptide-containing compound, heparin, anti-thrombin compounds, platelet receptor antagonists, anti-thrombin antibodies, anti-platelet receptor antibodies, aspirin, prostaglandin inhibitors, platelet inhibitors, and tick antiplatelet peptides); vascular cell growth promoters (such as growth factor inhibitors, growth factor receptor antagonists, transcriptional activators, and translational promoters); vascular cell growth inhibitors (such as growth factor inhibitors, growth factor receptor antagonists, transcriptional repressors, translational repressors, replication inhibitors, inhibitory antibodies, antibodies directed against growth factors, bifunctional molecules consisting of a growth factor and a cytotoxin, bifunctional molecules consisting of an antibody and a cytotoxin); cholesterol-lowering agents; vasodilating agents; and agents which interfere with endogenous vasoactive mechanisms.


It should be understood that this disclosure is, in many respects, only illustrative. Changes may be made in details, particularly in matters of shape, size, and arrangement of steps without exceeding the scope of the invention. This may include, to the extent that it is appropriate, the use of any of the features of one example embodiment being used in other embodiments. The invention's scope is, of course, defined in the language in which the appended claims are expressed.

Claims
  • 1. A medical system, comprising: a left atrial appendage closure device including an expandable framework and a proximal hub centered on a central longitudinal axis of the expandable framework;wherein an insert is disposed within the proximal hub, the insert including a circumferential wall and a collar configured to engage the proximal hub, a recess extending into the insert from a proximal end of the insert, and a post member disposed within the recess;wherein the post member is radially spaced apart from the circumferential wall to define a gap between the post member and the circumferential wall, and the post member extends proximally from a distal end of the recess to a proximal surface of the post member;wherein the insert includes a first connection structure disposed within the recess;anda delivery catheter having a second connection structure proximate a distal end of the delivery catheter, the second connection structure being configured to engage the first connection structure in a delivery configuration of the medical system;wherein the insert includes a gap seal extending radially across the gap and covering a proximal end of the gap when the medical system is disposed in a released configuration in which the delivery catheter is disengaged from the left atrial appendage closure device;wherein the distal end of the delivery catheter includes a hollow portion configured to receive the post member in the delivery configuration;wherein the gap seal is fixedly attached to only one of the circumferential wall or the post member and extends across the proximal end of the gap to engage the other of the circumferential wall or the post member when the medical system is disposed in the released configuration.
  • 2. The medical system of claim 1, wherein a sensor is disposed within the post member.
  • 3. The medical system of claim 2, wherein the sensor is a pressure sensor and the proximal surface is a diaphragm extending across a proximal end of the post member, the diaphragm being configured to transmit a pressure within a left atrium to the pressure sensor when the expandable framework is disposed within an ostium of the left atrial appendage.
  • 4. The medical system of claim 3, wherein the delivery catheter includes at least one aperture extending through a side wall of the delivery catheter proximate the distal end of the delivery catheter.
  • 5. The medical system of claim 1, wherein the gap seal is configured to deflect into the recess when the medical system is in the delivery configuration.
  • 6. The medical system of claim 1, wherein the first connection structure includes a first threaded portion disposed on an outside surface of the post member or an inside surface of the collar.
  • 7. The medical system of claim 6, wherein the second connection structure includes a second threaded portion disposed proximate the distal end of the delivery catheter, the second threaded portion being configured to threadably mate with the first threaded portion when the medical system is in the delivery configuration.
  • 8. The medical system of claim 1, wherein the first connection structure includes at least one groove formed in an outside surface of the post member or an inside surface of the collar, wherein the at least one groove includes a longitudinal portion and a circumferential portion extending from a distal end of the longitudinal portion.
  • 9. The medical system of claim 8, wherein the second connection structure includes at least one radially extending projection proximate the distal end of the delivery catheter, the at least one radially extending projection being configured to engage the at least one groove when the medical system is in the delivery configuration.
  • 10. The medical system of claim 1, wherein the first connection structure includes at least one projection extending radially outward from the post member.
  • 11. The medical system of claim 10, wherein the second connection structure includes two or more movable jaws configured to engage the at least one projection to clamp the post member between the two or more movable jaws when the medical system is in the delivery configuration.
  • 12. The medical system of claim 1, wherein the first connection structure includes a channel formed in an outside surface of the post member and extending circumferentially around the post member distal of the proximal surface.
  • 13. The medical system of claim 12, wherein the second connection structure includes: a distal cap member disposed at the distal end of the delivery catheter and configured to span the proximal surface of the post member, wherein the distal cap member includes at least one aperture formed in a laterally extending surface of the distal cap member; anda tether extending longitudinally alongside the delivery catheter, through the at least one aperture, and around the post member within the channel when the medical system is in the delivery configuration.
  • 14. A medical system, comprising: a left atrial appendage closure device including an expandable framework and a proximal hub centered on a central longitudinal axis of the expandable framework;wherein an insert is disposed within the proximal hub, the insert including a collar defining a circumferential wall of the insert configured to engage the proximal hub, a recess extending axially into the insert from a proximal end of the insert, and a post member disposed within the recess;wherein the post member is radially spaced apart from the circumferential wall to define an annular gap between the post member and the circumferential wall, and the post member extends proximally from a distal end of the recess to a proximal surface of the post member;wherein the insert includes a first connection structure disposed within the recess distal of the proximal surface of the post member;wherein a pressure sensor is disposed within the post member and in communication with the proximal surface of the post member for sensing a fluid pressure proximal of the left atrial appendage closure device;anda delivery catheter having a second connection structure proximate a distal end of the delivery catheter, the second connection structure being configured to engage the first connection structure in a delivery configuration of the medical system;wherein the insert includes a gap seal extending radially across the annular gap and covering a proximal end of the annular gap when the medical system is disposed in a released configuration in which the delivery catheter is disengaged from the left atrial appendage closure device;wherein the distal end of the delivery catheter includes a hollow portion configured to extend over the post member and within the circumferential wall in the delivery configuration such that the distal end of the delivery catheter is disposed distal of the proximal end of the insert;wherein the gap seal is fixedly attached to only one of the circumferential wall or the post member and extends across the proximal end of the annular gap to engage the other of the circumferential wall or the post member when the medical system is disposed in the released configuration.
  • 15. A medical system, comprising: a left atrial appendage closure device including a self-expanding framework and a proximal hub centered on a central longitudinal axis of the expandable framework;wherein an insert is disposed within the proximal hub, the insert including a collar defining a circumferential wall of the insert configured to engage the proximal hub, a recess extending axially into the insert from a proximal end of the insert, and a post member disposed within the recess and spaced apart radially inward from the circumferential wall by a gap;wherein the post member extends proximally from a distal end of the recess to a proximal surface of the post member;wherein a sensor, a capacitor, and a communication coil are disposed within the insert;anda delivery catheter including a hollow portion disposable within the insert radially inward of the circumferential wall and radially outward of the post member in a delivery configuration of the medical system;wherein the insert includes a gap seal extending radially across the gap and covering a proximal end of the gap when the medical system is disposed in a released configuration in which the delivery catheter is disengaged from the left atrial appendage closure device;wherein the gap seal is fixedly attached to only one of the circumferential wall or the post member and extends across the proximal end of the gap to engage the other of the circumferential wall or the post member when the medical system is disposed in the released configuration.
  • 16. The medical system of claim 15, wherein the insert includes a first connection structure disposed distal of the proximal surface of the post member and the delivery catheter includes a second connection structure configured to engage the first connection structure in the delivery configuration of the medical system.
  • 17. The medical system of claim 15, wherein in the delivery configuration of the medical system, the delivery catheter does not contact the proximal surface of the post member.
  • 18. The medical system of claim 15, wherein the left atrial appendage closure device includes an occlusive element disposed over at least a portion of the expandable framework; wherein the expandable framework is configured to shift between a collapsed configuration and a deployed configuration;wherein the occlusive element is configured to prevent thrombi from exiting a left atrial appendage when the expandable framework is disposed within an ostium of the left atrial appendage in the deployed configuration.
  • 19. The medical system of claim 18, wherein the expandable framework includes a plurality of interconnected struts joined together at the proximal hub.
CROSS-REFERENCE TO RELATED APPLICATIONS

This application claims the benefit of priority of U.S. Provisional Application No. 62/993,796 filed Mar. 24, 2020, the entire disclosure of which is hereby incorporated by reference.

US Referenced Citations (595)
Number Name Date Kind
178283 French Jun 1876 A
1967318 Monahan Jul 1934 A
3402710 Paleschuck Sep 1968 A
3540431 Mobin-Uddin Nov 1970 A
3557794 Van Patten Jan 1971 A
3638652 Kelley Feb 1972 A
3811449 Gravlee et al. May 1974 A
3844302 Klein Oct 1974 A
3874388 King et al. Apr 1975 A
4007743 Blake Feb 1977 A
4108420 West et al. Aug 1978 A
4175545 Termanini Nov 1979 A
4309776 Berguer Jan 1982 A
4341218 Ue Jul 1982 A
4364392 Strother et al. Dec 1982 A
4425908 Simon Jan 1984 A
4545367 Tucci Oct 1985 A
4585000 Hershenson Apr 1986 A
4603693 Conta et al. Aug 1986 A
4611594 Grayhack et al. Sep 1986 A
4619246 Molgaard-Nielsen et al. Oct 1986 A
4638803 Rand et al. Jan 1987 A
4665906 Jervis May 1987 A
4681588 Ketharanathan et al. Jul 1987 A
4710192 Liotta et al. Dec 1987 A
4718417 Kittrell et al. Jan 1988 A
4759348 Cawood et al. Jul 1988 A
4781177 Lebigot Nov 1988 A
4793348 Palmaz Dec 1988 A
4827907 Tashiro May 1989 A
4832055 Palestrant May 1989 A
4873978 Ginsburg Oct 1989 A
4917089 Sideris Apr 1990 A
4921484 Hillstead May 1990 A
4960412 Fink Oct 1990 A
4966150 Etienne et al. Oct 1990 A
4998972 Chin et al. Mar 1991 A
5037810 Saliba, Jr. Aug 1991 A
5041090 Scheglov et al. Aug 1991 A
5041093 Chu Aug 1991 A
5042707 Taheri Aug 1991 A
5053009 Herzberg Oct 1991 A
5064435 Porter Nov 1991 A
5071407 Termin et al. Dec 1991 A
5078736 Behl Jan 1992 A
5098440 Hillstead Mar 1992 A
5108418 Lefebvre Apr 1992 A
5108420 Marks Apr 1992 A
5108474 Riedy et al. Apr 1992 A
5116360 Pinchuk et al. May 1992 A
5122136 Guglielmi et al. Jun 1992 A
5171259 Inoue Dec 1992 A
5171383 Sagaye et al. Dec 1992 A
5176692 Wilk et al. Jan 1993 A
5192301 Kamiya et al. Mar 1993 A
5211658 Clouse May 1993 A
5234458 Metais Aug 1993 A
5256146 Ensminger et al. Oct 1993 A
5258000 Gianturco Nov 1993 A
5258042 Mehta Nov 1993 A
5279539 Bohan et al. Jan 1994 A
5284488 Sideris Feb 1994 A
5304184 Hathaway et al. Apr 1994 A
5306234 Johnson Apr 1994 A
5312341 Turi May 1994 A
5329942 Gunther et al. Jul 1994 A
5334217 Das Aug 1994 A
5344439 Otten Sep 1994 A
5350398 Pavcnik et al. Sep 1994 A
5350399 Erlebacher et al. Sep 1994 A
5353784 Nady-Mohamed Oct 1994 A
5366460 Eberbach Nov 1994 A
5366504 Andersen et al. Nov 1994 A
5370657 Irie Dec 1994 A
5375612 Cottenceau et al. Dec 1994 A
5397331 Himpens et al. Mar 1995 A
5397355 Marin et al. Mar 1995 A
5409444 Kensey et al. Apr 1995 A
5417699 Klein et al. May 1995 A
5421832 Lefebvre Jun 1995 A
5425744 Fagan et al. Jun 1995 A
5427119 Swartz et al. Jun 1995 A
5433727 Sideris Jul 1995 A
5443454 Tanabe et al. Aug 1995 A
5443478 Purdy et al. Aug 1995 A
5451235 Lock et al. Sep 1995 A
5454365 Bonutti Oct 1995 A
5464408 Duc Nov 1995 A
5469867 Schmitt Nov 1995 A
5490856 Person et al. Feb 1996 A
5497774 Swartz et al. Mar 1996 A
5499975 Cope et al. Mar 1996 A
5499995 Teirstein Mar 1996 A
5522790 Moll et al. Jun 1996 A
5522822 Phelps et al. Jun 1996 A
5522836 Palermo Jun 1996 A
5527322 Klein et al. Jun 1996 A
5527338 Purdy Jun 1996 A
5558093 Pomeranz et al. Sep 1996 A
5558652 Henke Sep 1996 A
5569204 Cramer et al. Oct 1996 A
5591196 Marin et al. Jan 1997 A
5614204 Cochrum Mar 1997 A
5634936 Linden et al. Jun 1997 A
5634942 Chevillon et al. Jun 1997 A
5637097 Yoon Jun 1997 A
5643282 Kieturakis Jul 1997 A
5643292 Hart Jul 1997 A
5649953 Lefebvre Jul 1997 A
5653690 Booth et al. Aug 1997 A
5662671 Barbut et al. Sep 1997 A
5669933 Simon et al. Sep 1997 A
5681345 Euteneuer Oct 1997 A
5681347 Cathcart et al. Oct 1997 A
5683411 Kavteladze et al. Nov 1997 A
5690671 McGurk et al. Nov 1997 A
5693067 Purdy Dec 1997 A
5695525 Mulhauser et al. Dec 1997 A
5700285 Myers et al. Dec 1997 A
5702421 Schneidt Dec 1997 A
5704910 Humes Jan 1998 A
5709224 Behl et al. Jan 1998 A
5709704 Nott et al. Jan 1998 A
5709707 Lock et al. Jan 1998 A
5722400 Ockuly et al. Mar 1998 A
5724975 Negus et al. Mar 1998 A
5725512 Swartz et al. Mar 1998 A
5725552 Kotula et al. Mar 1998 A
5725568 Hastings Mar 1998 A
5733294 Forber et al. Mar 1998 A
5733302 Myler et al. Mar 1998 A
5735290 Sterman et al. Apr 1998 A
5749880 Banas et al. May 1998 A
5749883 Halpern May 1998 A
5749894 Engelson May 1998 A
5766219 Horton Jun 1998 A
5766246 Mulhauser et al. Jun 1998 A
5769816 Barbut et al. Jun 1998 A
5776097 Massoud Jul 1998 A
5776162 Kleshinski Jul 1998 A
5782860 Epstein et al. Jul 1998 A
5785679 Abolfathi et al. Jul 1998 A
5800454 Jacobsen et al. Sep 1998 A
5800457 Gelbfish Sep 1998 A
5800512 Letnz et al. Sep 1998 A
5807261 Benaron et al. Sep 1998 A
5810874 Lefebvre Sep 1998 A
5814028 Swartz et al. Sep 1998 A
5814029 Hassett Sep 1998 A
5814064 Daniel Sep 1998 A
5820591 Thompson et al. Oct 1998 A
5823198 Jones et al. Oct 1998 A
5830228 Knapp et al. Nov 1998 A
5833673 Ockuly et al. Nov 1998 A
5836913 Orth et al. Nov 1998 A
5836968 Simon et al. Nov 1998 A
5840027 Swartz et al. Nov 1998 A
5843118 Sepetka et al. Dec 1998 A
5846260 Maahs Dec 1998 A
5846261 Kotula et al. Dec 1998 A
5848969 Panescu et al. Dec 1998 A
5849005 Garrison et al. Dec 1998 A
5851232 Lois Dec 1998 A
5853422 Huebsch et al. Dec 1998 A
5855597 Jayaraman Jan 1999 A
5865791 Whayne et al. Feb 1999 A
5865802 Yoon et al. Feb 1999 A
5868702 Stevens et al. Feb 1999 A
5868708 Hart et al. Feb 1999 A
5876367 Kaganov et al. Mar 1999 A
5879296 Ockuly et al. Mar 1999 A
5879366 Shaw et al. Mar 1999 A
5882340 Yoon Mar 1999 A
5885258 Sachdeva et al. Mar 1999 A
5891558 Bell et al. Apr 1999 A
5895399 Barbut et al. Apr 1999 A
5902289 Swartz et al. May 1999 A
5904680 Kordis et al. May 1999 A
5904703 Gilson May 1999 A
5906207 Shen May 1999 A
5910154 Tsugita et al. Jun 1999 A
5911734 Tsugita et al. Jun 1999 A
5916236 Muij Van de Moer et al. Jun 1999 A
5925060 Forber Jul 1999 A
5925063 Khosravi Jul 1999 A
5925074 Gingras et al. Jul 1999 A
5925075 Myers et al. Jul 1999 A
5928192 Maahs Jul 1999 A
5928260 Chin et al. Jul 1999 A
5931818 Werp et al. Aug 1999 A
5935145 Villar et al. Aug 1999 A
5935147 Kensey et al. Aug 1999 A
5935148 Villar et al. Aug 1999 A
5941249 Maynard Aug 1999 A
5941896 Kerr Aug 1999 A
5944738 Amplatz et al. Aug 1999 A
5947997 Pavcnik et al. Sep 1999 A
5951589 Epstein et al. Sep 1999 A
5951599 McCrory Sep 1999 A
5954694 Sunseri Sep 1999 A
5954767 Pajotin et al. Sep 1999 A
5957940 Tanner et al. Sep 1999 A
5961545 Lentz et al. Oct 1999 A
5976174 Ruiz Nov 1999 A
5980514 Kupiecki et al. Nov 1999 A
5980555 Barbut et al. Nov 1999 A
5989281 Barbut et al. Nov 1999 A
5993469 McKenzie et al. Nov 1999 A
5993483 Gianotti Nov 1999 A
5997557 Barbut et al. Dec 1999 A
6004280 Buck et al. Dec 1999 A
6004348 Banas et al. Dec 1999 A
6007523 Mangosong Dec 1999 A
6007557 Ambrisco et al. Dec 1999 A
6010517 Baccaro Jan 2000 A
6010522 Barbut et al. Jan 2000 A
6013093 Nott et al. Jan 2000 A
6024751 Lovato et al. Feb 2000 A
6024754 Engelson Feb 2000 A
6024755 Addis Feb 2000 A
6024756 Huebsch et al. Feb 2000 A
6027520 Tsugita et al. Feb 2000 A
6033420 Hahnen Mar 2000 A
6036720 Abrams et al. Mar 2000 A
6042598 Tsugita et al. Mar 2000 A
6048331 Tsugita et al. Apr 2000 A
6051014 Jang Apr 2000 A
6051015 Maahs Apr 2000 A
6056720 Morse May 2000 A
6063070 Eder May 2000 A
6063113 Kavteladze et al. May 2000 A
6066126 Li et al. May 2000 A
6068621 Balceta et al. May 2000 A
6074357 Kaganov et al. Jun 2000 A
6076012 Swanson et al. Jun 2000 A
6079414 Roth Jun 2000 A
6080182 Shaw et al. Jun 2000 A
6080183 Tsugita et al. Jun 2000 A
6083239 Addis Jul 2000 A
6090084 Hassett et al. Jul 2000 A
6096052 Callister et al. Aug 2000 A
6096053 Bates et al. Aug 2000 A
6110243 Wnenchak et al. Aug 2000 A
6123715 Amplatz Sep 2000 A
6124523 Banas et al. Sep 2000 A
6132438 Fleischman et al. Oct 2000 A
6135991 Muni et al. Oct 2000 A
6136016 Barbut et al. Oct 2000 A
6139527 Laufer et al. Oct 2000 A
6139573 Sogard et al. Oct 2000 A
6152144 Lesh et al. Nov 2000 A
6152946 Broome et al. Nov 2000 A
6156055 Ravenscroft Dec 2000 A
6159195 Ha et al. Dec 2000 A
6161543 Cox et al. Dec 2000 A
6168615 Ken et al. Jan 2001 B1
6171329 Shaw et al. Jan 2001 B1
6179859 Bates et al. Jan 2001 B1
6193739 Chevillon et al. Feb 2001 B1
6203531 Ockuly et al. Mar 2001 B1
6206907 Marino et al. Mar 2001 B1
6214029 Thill et al. Apr 2001 B1
6221092 Koike et al. Apr 2001 B1
6231561 Frazier et al. May 2001 B1
6231589 Wessman et al. May 2001 B1
6235045 Barbut et al. May 2001 B1
6245012 Kleshinski Jun 2001 B1
6251122 Tsukernik Jun 2001 B1
6258115 Dubrul Jul 2001 B1
6267772 Mulhauser et al. Jul 2001 B1
6267776 O'Connell Jul 2001 B1
6270490 Hahnen Aug 2001 B1
6270530 Eldridge et al. Aug 2001 B1
6270902 Tedeschi et al. Aug 2001 B1
6277138 Levinson et al. Aug 2001 B1
6285898 Ben-Haim Sep 2001 B1
6290674 Roue et al. Sep 2001 B1
6290708 Kugel et al. Sep 2001 B1
6312407 Zadno-Azizi et al. Nov 2001 B1
6319251 Tu et al. Nov 2001 B1
6328727 Frazier et al. Dec 2001 B1
6328755 Marshall Dec 2001 B1
6342062 Suon et al. Jan 2002 B1
6346116 Brooks et al. Feb 2002 B1
6346895 Lee et al. Feb 2002 B1
6361545 Macoviak et al. Mar 2002 B1
6364895 Greenhalgh Apr 2002 B1
6368338 Kónya et al. Apr 2002 B1
6371971 Tsugita et al. Apr 2002 B1
6375670 Greenhalgh Apr 2002 B1
6391044 Yadav et al. May 2002 B1
6398803 Layne et al. Jun 2002 B1
6402746 Whayne et al. Jun 2002 B1
6402771 Palmer et al. Jun 2002 B1
6402779 Colone et al. Jun 2002 B1
6419669 Frazier et al. Jul 2002 B1
6440152 Gainor et al. Aug 2002 B1
6443972 Bosma et al. Sep 2002 B1
6447530 Ostrovsky et al. Sep 2002 B1
6454775 Demarais et al. Sep 2002 B1
6458145 Ravenscroft et al. Oct 2002 B1
6464712 Epstein et al. Oct 2002 B1
6468291 Bates et al. Oct 2002 B2
6468301 Amplatz et al. Oct 2002 B1
6485501 Green Nov 2002 B1
6488689 Kaplan et al. Dec 2002 B1
6511496 Huter et al. Jan 2003 B1
6514280 Gilson Feb 2003 B1
6517573 Pollock et al. Feb 2003 B1
6533782 Howell et al. Mar 2003 B2
6547760 Samson et al. Apr 2003 B1
6547815 Myers Apr 2003 B2
6551303 Van Tassel et al. Apr 2003 B1
6551344 Thill Apr 2003 B2
6558401 Azizi May 2003 B1
6558405 McInnes May 2003 B1
6558414 Layne May 2003 B2
6562058 Seguin et al. May 2003 B2
6569184 Huter May 2003 B2
6569214 Williams et al. May 2003 B2
6589214 McGuckin et al. Jul 2003 B2
6589251 Yee et al. Jul 2003 B2
6599308 Amplatz Jul 2003 B2
6602271 Adams et al. Aug 2003 B2
6623508 Shaw et al. Sep 2003 B2
6641564 Kraus Nov 2003 B1
6650923 Lesh et al. Nov 2003 B1
6652555 VanTassel et al. Nov 2003 B1
6652556 VanTassel et al. Nov 2003 B1
6666861 Grabek Dec 2003 B1
6689150 Vantassel et al. Feb 2004 B1
6699260 Dubrul et al. Mar 2004 B2
6699276 Sogard et al. Mar 2004 B2
6702825 Frazier et al. Mar 2004 B2
6712836 Berg et al. Mar 2004 B1
6726701 Gilson et al. Apr 2004 B2
6730108 Van Tassel et al. May 2004 B2
6755812 Peterson et al. Jun 2004 B2
6827737 Hill et al. Dec 2004 B2
6837901 Rabkin et al. Jan 2005 B2
6855153 Saadat Feb 2005 B2
6911037 Gainor et al. Jun 2005 B2
6932838 Schwartz et al. Aug 2005 B2
6942653 Quinn Sep 2005 B2
6949113 Van Tassel et al. Sep 2005 B2
6958061 Truckai et al. Oct 2005 B2
6994092 van der Burg et al. Feb 2006 B2
7011671 Welch Mar 2006 B2
7014645 Greene, Jr. et al. Mar 2006 B2
7037321 Sachdeva et al. May 2006 B2
7044134 Khairkhahan et al. May 2006 B2
7097651 Harrison et al. Aug 2006 B2
7128073 van der Burg et al. Oct 2006 B1
7137953 Eigler et al. Nov 2006 B2
7152605 Khairkhahan et al. Dec 2006 B2
7169164 Borillo et al. Jan 2007 B2
7179275 McGuckin, Jr. et al. Feb 2007 B2
7226466 Opolski Jun 2007 B2
7303526 Sharkey et al. Dec 2007 B2
7317951 Schneider et al. Jan 2008 B2
7323002 Johnson et al. Jan 2008 B2
7597704 Frazier et al. Oct 2009 B2
7678123 Chanduszko Mar 2010 B2
7695425 Schweich et al. Apr 2010 B2
7713282 Frazier et al. May 2010 B2
7722641 van der Burg et al. May 2010 B2
7727189 VanTassel et al. Jun 2010 B2
7735493 van der Burg et al. Jun 2010 B2
7780694 Palmer et al. Aug 2010 B2
7799049 Ostrovsky et al. Sep 2010 B2
7811300 Feller, III et al. Oct 2010 B2
7811314 Fierens et al. Oct 2010 B2
7862500 Khairkhahan et al. Jan 2011 B2
7927365 Fierens et al. Apr 2011 B2
7972359 Kreidler Jul 2011 B2
8025495 Hardert et al. Sep 2011 B2
8043329 Khairkhahan et al. Oct 2011 B2
8052715 Quinn et al. Nov 2011 B2
8062282 Kolb Nov 2011 B2
8080032 van der Burg et al. Dec 2011 B2
8097015 Devellian Jan 2012 B2
8100938 Figulla et al. Jan 2012 B2
8221384 Frazier et al. Jul 2012 B2
8221445 van Tassel et al. Jul 2012 B2
8287563 Khairkhahan et al. Oct 2012 B2
8323309 Khairkhahan et al. Dec 2012 B2
8388672 Khairkhahan et al. Mar 2013 B2
8491623 Vogel et al. Jul 2013 B2
8523897 van der Burg et al. Sep 2013 B2
8535343 van der Burg et al. Sep 2013 B2
8562509 Bates Oct 2013 B2
8663273 Khairkhahan et al. Mar 2014 B2
8685055 VanTassel et al. Apr 2014 B2
8728117 Janardhan et al. May 2014 B1
8758389 Glimsdale Jun 2014 B2
8828051 Javois et al. Sep 2014 B2
8834519 van der Burg et al. Sep 2014 B2
8845711 Miles et al. Sep 2014 B2
9034006 Quinn et al. May 2015 B2
9132000 VanTassel et al. Sep 2015 B2
9168043 van der Burg et al. Oct 2015 B2
9211124 Campbell et al. Dec 2015 B2
9295472 Ottma Mar 2016 B2
9351716 Miles et al. May 2016 B2
9445895 Kreidler Sep 2016 B2
9554804 Erzbeger Jan 2017 B2
9554806 Larsen et al. Jan 2017 B2
9561037 Fogarty et al. Feb 2017 B2
9561097 Kim et al. Feb 2017 B1
9592058 Erzbeger et al. Mar 2017 B2
9597088 Ottma Mar 2017 B2
9629636 Fogarty et al. Apr 2017 B2
9730701 Tischler et al. Aug 2017 B2
9743932 Amplatz et al. Aug 2017 B2
9750505 Miles et al. Sep 2017 B2
9763666 Wu et al. Sep 2017 B2
9795387 Miles et al. Oct 2017 B2
9808253 Li et al. Nov 2017 B2
9883936 Sutton et al. Feb 2018 B2
9913652 Bridgeman et al. Mar 2018 B2
9943299 Khairkhahan et al. Apr 2018 B2
9943315 Kaplan et al. Apr 2018 B2
10071181 Penegor et al. Sep 2018 B1
10076335 Zaver et al. Sep 2018 B2
10143458 Kreidler Dec 2018 B2
10201337 Glimsdale Feb 2019 B2
10231737 Amplatz et al. Mar 2019 B2
20010000797 Mazzocchi May 2001 A1
20010020181 Layne Sep 2001 A1
20010034537 Shaw et al. Oct 2001 A1
20010037141 Yee et al. Nov 2001 A1
20020022860 Borillo et al. Feb 2002 A1
20020035374 Borillo et al. Mar 2002 A1
20020045931 Sogard et al. Apr 2002 A1
20020062133 Gilson et al. May 2002 A1
20020082638 Porter et al. Jun 2002 A1
20020082675 Myers Jun 2002 A1
20020099439 Schwartz et al. Jul 2002 A1
20020111647 Khairkhahan et al. Aug 2002 A1
20020138094 Borillo et al. Sep 2002 A1
20020138097 Ostrovsky et al. Sep 2002 A1
20020169475 Gainor et al. Nov 2002 A1
20020177855 Greene, Jr. et al. Nov 2002 A1
20030017775 Dong et al. Jan 2003 A1
20030023262 Welch Jan 2003 A1
20030023266 Borillo et al. Jan 2003 A1
20030057156 Peterson et al. Mar 2003 A1
20030060871 Hill et al. Mar 2003 A1
20030120337 Van Tassel et al. Jun 2003 A1
20030181942 Sutton et al. Sep 2003 A1
20030191526 Van Tassel et al. Oct 2003 A1
20030195555 Khairkhahan et al. Oct 2003 A1
20030199923 Khairkhahan et al. Oct 2003 A1
20030204203 Khairkhahan et al. Oct 2003 A1
20030208214 Loshakove et al. Nov 2003 A1
20030212432 Khairkhahan et al. Nov 2003 A1
20030220667 van der Burg et al. Nov 2003 A1
20040034366 van der Burg et al. Feb 2004 A1
20040044361 Frazier et al. Mar 2004 A1
20040049210 VanTassel et al. Mar 2004 A1
20040093012 Cully et al. May 2004 A1
20040098031 van der Burg et al. May 2004 A1
20040122467 VanTassel et al. Jun 2004 A1
20040127935 VanTassel et al. Jul 2004 A1
20040158274 WasDyke Aug 2004 A1
20040186486 Roue et al. Sep 2004 A1
20040215230 Frazier et al. Oct 2004 A1
20040220610 Kreidler et al. Nov 2004 A1
20040220682 Levine et al. Nov 2004 A1
20040230222 van der Burg et al. Nov 2004 A1
20050004641 Pappu Jan 2005 A1
20050004652 van der Burg et al. Jan 2005 A1
20050015109 Lichtenstein Jan 2005 A1
20050038470 van der Burg et al. Feb 2005 A1
20050049573 Van Tassel et al. Mar 2005 A1
20050070952 Devellian Mar 2005 A1
20050113861 Corcoran et al. May 2005 A1
20050125020 Meade et al. Jun 2005 A1
20050177182 van der Burg et al. Aug 2005 A1
20050203568 Burg et al. Sep 2005 A1
20050283186 Berrada et al. Dec 2005 A1
20050288704 Cartier et al. Dec 2005 A1
20060015136 Besselink Jan 2006 A1
20060030877 Martinez et al. Feb 2006 A1
20060052816 Bates et al. Mar 2006 A1
20060100658 Obana et al. May 2006 A1
20060155323 Porter et al. Jul 2006 A1
20060247680 Amplatz et al. Nov 2006 A1
20070066993 Kreidler Mar 2007 A1
20070083227 van der Burg et al. Apr 2007 A1
20070083230 Javois Apr 2007 A1
20070112380 Figulla et al. May 2007 A1
20070150041 Evans et al. Jun 2007 A1
20070156123 Moll et al. Jul 2007 A1
20070162048 Quinn et al. Jul 2007 A1
20070185471 Johnson Aug 2007 A1
20080275536 Zarins et al. Nov 2008 A1
20090005803 Batiste Jan 2009 A1
20090062841 Amplatz et al. Mar 2009 A1
20090099647 Glimsdale et al. Apr 2009 A1
20090105747 Chanduszko et al. Apr 2009 A1
20090112249 Miles et al. Apr 2009 A1
20090254195 Khairkhan et al. Oct 2009 A1
20090318948 Linder et al. Dec 2009 A1
20100004726 Hancock et al. Jan 2010 A1
20100049238 Simpson Feb 2010 A1
20100106178 Obermiller et al. Apr 2010 A1
20100324585 Miles et al. Dec 2010 A1
20110054515 Bridgeman et al. Mar 2011 A1
20110082495 Ruiz Apr 2011 A1
20110098525 Kermode et al. Apr 2011 A1
20110218566 van der Burg et al. Sep 2011 A1
20110301630 Hendriksen et al. Dec 2011 A1
20120029553 Quinn et al. Feb 2012 A1
20120035643 Khairkhahan et al. Feb 2012 A1
20120065662 van der Burg et al. Mar 2012 A1
20120125619 Wood et al. May 2012 A1
20120172654 Bates Jul 2012 A1
20120172927 Campbell et al. Jul 2012 A1
20120239077 Zaver et al. Sep 2012 A1
20120239083 Kreidler Sep 2012 A1
20120245619 Guest Sep 2012 A1
20120271337 Figulla et al. Oct 2012 A1
20120283585 Werneth et al. Nov 2012 A1
20120283773 Van Tassel et al. Nov 2012 A1
20120323267 Ren Dec 2012 A1
20130006343 Kassab et al. Jan 2013 A1
20130012982 Khairkhahan et al. Jan 2013 A1
20130018413 Oral et al. Jan 2013 A1
20130110154 van der Burg et al. May 2013 A1
20130131717 Glimsdale May 2013 A1
20130165735 Khairkhahan et al. Jun 2013 A1
20130211492 Schneider et al. Aug 2013 A1
20130296912 Ottma Nov 2013 A1
20130331884 Van der Burg et al. Dec 2013 A1
20130338686 Ruiz Dec 2013 A1
20140005714 Quick et al. Jan 2014 A1
20140018841 Peiffer et al. Jan 2014 A1
20140039536 Cully et al. Feb 2014 A1
20140046360 van der Burg et al. Feb 2014 A1
20140081314 Zaver et al. Mar 2014 A1
20140100596 Rudman et al. Apr 2014 A1
20140142612 Li et al. May 2014 A1
20140148842 Khairkhahan et al. May 2014 A1
20140163605 VanTassel et al. Jun 2014 A1
20140188157 Clark Jul 2014 A1
20140214077 Glimsdale Jul 2014 A1
20140296908 Ottma et al. Oct 2014 A1
20140303719 Cox et al. Oct 2014 A1
20140336612 Frydlewski et al. Nov 2014 A1
20140336699 van der Burg et al. Nov 2014 A1
20140364941 Edmiston et al. Dec 2014 A1
20150005810 Center et al. Jan 2015 A1
20150039021 Khairkhahan et al. Feb 2015 A1
20150080903 Dillard et al. Mar 2015 A1
20150196300 Tischler et al. Jul 2015 A1
20150230909 Zaver et al. Aug 2015 A1
20150238197 Quinn et al. Aug 2015 A1
20150305727 Karimov et al. Oct 2015 A1
20150313604 Roue et al. Nov 2015 A1
20150313605 Griffin Nov 2015 A1
20150327979 Quinn et al. Nov 2015 A1
20150374491 Kreidler Dec 2015 A1
20160015397 Figulla et al. Jan 2016 A1
20160051358 Sutton et al. Feb 2016 A1
20160058539 VanTassel et al. Mar 2016 A1
20160066922 Bridgeman et al. Mar 2016 A1
20160106437 van der Burg et al. Apr 2016 A1
20160192942 Strauss et al. Jul 2016 A1
20160287259 Hanson et al. Oct 2016 A1
20160331382 Center et al. Nov 2016 A1
20160374657 Kreidler Dec 2016 A1
20170007262 Amplatz et al. Jan 2017 A1
20170027552 Turkington et al. Feb 2017 A1
20170042550 Chakraborty et al. Feb 2017 A1
20170056166 Ratz et al. Mar 2017 A1
20170100112 van der Burg et al. Apr 2017 A1
20170119400 Amplatz et al. May 2017 A1
20170181751 Larsen et al. Jun 2017 A1
20170340336 Osypka Nov 2017 A1
20170354421 Maguire et al. Dec 2017 A1
20180064446 Figulla et al. Mar 2018 A1
20180070950 Zaver et al. Mar 2018 A1
20180110468 Goldshtein Apr 2018 A1
20180140412 Sutton et al. May 2018 A1
20180140413 Quinn et al. May 2018 A1
20180250014 Melanson et al. Sep 2018 A1
20180369594 Werneth et al. Dec 2018 A1
20190133563 Glimsdale May 2019 A1
20190175185 Amplatz et al. Jun 2019 A1
20190223883 Anderson et al. Jul 2019 A1
20190247053 Inouye Aug 2019 A1
20190336135 Inouye et al. Nov 2019 A1
20200229957 Bardsley Jul 2020 A1
20210228216 Brinkmann Jul 2021 A1
Foreign Referenced Citations (77)
Number Date Country
1399571 Feb 2003 CN
202143640 Feb 2012 CN
104352261 Feb 2015 CN
106859722 Jun 2017 CN
10964173 Mar 2019 CN
10201004476 Mar 2012 DE
1523957 Apr 2005 EP
1595504 Nov 2005 EP
2074953 Jan 2009 EP
2481381 Aug 2012 EP
2928420 Oct 2015 EP
3072461 Sep 2016 EP
3372173 Sep 2018 EP
3398523 Nov 2018 EP
104287804 Jan 2015 IN
2003532457 Nov 2003 JP
2005324019 Nov 2005 JP
2007513684 May 2007 JP
2009160402 Jul 2009 JP
2012501793 Jan 2012 JP
9313712 Jul 1993 WO
9504132 Feb 1995 WO
9522359 Aug 1995 WO
9601591 Jan 1996 WO
9640356 Dec 1996 WO
9721402 Jun 1997 WO
9726939 Jul 1997 WO
9728749 Aug 1997 WO
9735522 Oct 1997 WO
9802100 Jan 1998 WO
9817187 Apr 1998 WO
9822026 May 1998 WO
9823322 Jun 1998 WO
9827868 Jul 1998 WO
9905977 Feb 1999 WO
9907289 Feb 1999 WO
9908607 Feb 1999 WO
9923976 May 1999 WO
9925252 May 1999 WO
9930640 Jun 1999 WO
9944510 Sep 1999 WO
9959479 Nov 1999 WO
0001308 Jan 2000 WO
0016705 Mar 2000 WO
0027292 May 2000 WO
0035352 Jun 2000 WO
0053120 Sep 2000 WO
0067669 Nov 2000 WO
0108743 Feb 2001 WO
0115629 Mar 2001 WO
0121247 Mar 2001 WO
0126726 Apr 2001 WO
0130266 May 2001 WO
0130267 May 2001 WO
0130268 May 2001 WO
0170119 Sep 2001 WO
0215793 Feb 2002 WO
0224106 Mar 2002 WO
02071977 Sep 2002 WO
03007825 Jan 2003 WO
03008030 Jan 2003 WO
03032818 Apr 2003 WO
2004012629 Feb 2004 WO
2007044536 Apr 2007 WO
2010024801 Mar 2010 WO
2010081033 Jul 2010 WO
2013060855 May 2013 WO
2013159065 Oct 2013 WO
2014011865 Jan 2014 WO
2014018907 Jan 2014 WO
2014089129 Jun 2014 WO
201406239 Jul 2014 WO
2015164836 Oct 2015 WO
2016087145 Jun 2016 WO
2018017935 Jan 2018 WO
2018187732 Oct 2018 WO
2019084358 May 2019 WO
Non-Patent Literature Citations (36)
Entry
International Search Report and Written Opinion dated Oct. 13, 2020 for International Application No. PCT/US2020/048437.
International Search Report and Written Opinion dated Jul. 15, 2021 for International Application No. PCT/US2021/023687.
International Search Report and Written Opinion dated Aug. 3, 2004 for International Application No. PCT/US2004/008109.
International Search Report and Written Opinion dated Feb. 15, 2000 for International Application No. PCT/US99/26325.
International Search Report dated May 20, 2003 for International Application No. PCT/US02/33808.
Written Opinion dated Nov. 17, 2003 for International Application No. PCT/US/02/33808.
International Search Report and Written Opinion dated Aug. 21, 2018 for International Application No. PCT/US2018/029684.
Cragg et al., “A New Percutaneous Vena Cava Filter,” American Journal of Radiology, Sep. 1983, pp. 601-604, vol. 141.
Cragg et al., “Nonsurgical Placement of Arterial Endoprostheses: A New Technique Using Nitinol Wire,” Radiology, Apr. 1983, pp. 261-263, vol. 147, No. 1.
Lock et al., “Transcatheter Closure of Atrial Septal Defects.” Circulation, May 1989, pp. 1091-1099, vol. 79, No. 5.
Lock et al., “Transcatheter Umbrella Closure of Congenital Heart Defects,” Circulation, Mar. 1987, pp. 593-599, vol. 75, No. 3.
Rashkind et al., “Nonsurgical closure of patent ductus arteriosus: clinical application of the Rashkind PDA Occluder System,” Circulation, Mar. 1987, pp. 583-592, vol. 75, No. 3.
Rosengart et al., “Percutaneous and Minimally Invasive Valve Procedures,” Circulation, Apr. 1, 2008, pp. 1750-1767, vol. 117.
Ruttenberg, “Nonsurgical Therapy of Cardiac Disorders,” Pediatric Consult, 1986, Pages not numbered, vol. 5, No. 2.
Sugita et al., “Nonsurgical Implantations of a Vascular Ring Prosthesis Using Thermal Shape Memory Ti/Ni Alloy (Nitinol Wire),” Trans. Am. Soc. Artif. Intern. Organs, 1986, pp. 30-34, vol. XXXII.
Wessel et al., “Outpatient Closure of the Patent Ductus Arteriousus,” Circulation, 1988, pp. 1068-1071, vol. 77, No. 5.
Tung et al., U.S. Appl. No. 61/559,941, filed Nov. 15, 2011.
Yue Yu et al., U.S. Appl. No. 61/557,880, filed Dec. 20, 2011.
Cline, “File: Fish hooks.jpg,” Wikipedia foundation , Inc., San Francisco, CA, Jun. 2007; p. 1 of 4; available online at http://en.wikipedia.org/wiki/File:Fish_hooks.jpg; last accessed Oct. 5, 2012.
International Search Report and Written Opinion dated Apr. 22, 2014 for International Application No. PCT/US2013/078454.
Aryana et al., “Incomplete Closure of the Left Atrial Appendage: Implication and Management.” Curr Cardiol Rep., 18(9):82, 2016.
Delurgio, “Device-Associated Thrombus and Peri-Device Leak Following Left Atrial Appendage Closure with the Amplatzer Cardiac Plug.” JACC: Cardiovascular Interventions, 10(4): 400-402, 2017.
University of Minnesota. Atlas of Human Cardiac Anatomy, Left Atrium. Retrieved from http://www.vhlab.umn.edu/atlas/left-atrium/left-atrial-appendage/index.shtml. Accessed 2017. Downloaded 2019.
Saw et al., “Incidence and Clinical Impact of Device-Associated Thrombus and Peri-Device Leak following Left Atrial Appendage Closure with the Amplatzer Cardiac Plug.” JACC: Cardiovascular Intervention. 10(4): 391-399, 2017.
Romero et al., “Left Atrial Appendage Closure Devices,” Clinical Medicine Insights: Cardiology, vol. 8, pp. 45-52, 2014.
Invitation To Pay Additional Fees And, Where Applicable, Protest Fee, dated Oct. 13, 2016.
International Search Report and Written Opinion dated Oct. 14, 2019 for International Application No. PCT/US2019/047452.
International Search Report and Written Opinion dated Oct. 27, 2017 for International Application No. PCT/US2017/048150.
International Search Report and Written Opinion dated Jan. 21, 2019 for International Application No. PCT/US2018/051953.
International Search Report and Written Opinion dated Oct. 13, 2016 for International Application No. PCT/US2016/043363.
International Search Report and Written Opinion dated Mar. 17, 2020, for International Application No. PCT/US2019/065243.
International Search Report and Written Opinion dated Sep. 9, 2019 for International Application No. PCT/US2019/033698.
Blackshear et al; “Appendage Obliteration to Reduce Stroke in Cardiac Surgical Patients with Atrial Fibrillation”, Ann. Thoracic Surgery, pp. 755-759, 1996.
Lindsay, “Obliteration of the Left Atrial Appendage: A Concept Worth Testing”, Ann. Thoracic Surgery, 1996.
Invitation To Pay Additional Fees dated Feb. 22, 2019 for International Application No. PCT/US2018/066163.
International Search Report and Written Opinion dated Oct. 23, 2020 for International Application No. PCT/US2020/042192.
Related Publications (1)
Number Date Country
20210298763 A1 Sep 2021 US
Provisional Applications (1)
Number Date Country
62993796 Mar 2020 US