The disclosure relates generally to medical devices and more particularly to medical devices that are adapted for use in percutaneous medical procedures including implantation into the left atrial appendage (LAA) of a heart.
The left atrial appendage is a small organ attached to the left atrium of the heart. During normal heart function, as the left atrium constricts and forces blood into the left ventricle, the left atrial appendage constricts and forces blood into the left atrium. The ability of the left atrial appendage to contract assists with improved filling of the left ventricle, thereby playing a role in maintaining cardiac output. However, in patients suffering from atrial fibrillation, the left atrial appendage may not properly contract or empty, causing stagnant blood to pool within its interior, which can lead to the undesirable formation of thrombi within the left atrial appendage.
Thrombi forming in the left atrial appendage may break loose from this area and enter the blood stream. Thrombi that migrate through the blood vessels may eventually plug a smaller vessel downstream and thereby contribute to stroke or heart attack. Clinical studies have shown that the majority of blood clots in patients with atrial fibrillation originate in the left atrial appendage. As a treatment, medical devices have been developed which are deployed to close off the left atrial appendage. Of the known medical devices and methods, each has certain advantages and disadvantages. There is an ongoing need to provide alternative medical devices and introducers as well as alternative methods for manufacturing and using medical devices and introducers.
In a first aspect, a medical system may comprise a left atrial appendage closure device including an expandable framework and a proximal hub centered on a central longitudinal axis of the expandable framework. An insert may be disposed within the proximal hub, the insert including a collar configured to engage the proximal hub, a recess extending into the insert from a proximal end of the insert, and a post member disposed within the recess. The post member may be radially spaced apart from the collar to define a gap between the post member and the collar, and the post member may extend proximally from a distal end of the recess to a proximal surface. The insert may include a first connection structure disposed distal of the proximal surface. The medical system may comprise a delivery catheter having a second connection structure proximate a distal end of the delivery catheter, the second connection structure being configured to engage the first connection structure in a delivery configuration of the medical system. The distal end of the delivery catheter includes a hollow portion configured to receive the post member in the delivery configuration.
In addition or alternatively to any aspect described herein, a sensor is disposed within the post member.
In addition or alternatively to any aspect described herein, the sensor is a pressure sensor and the proximal surface is a diaphragm extending across a proximal end of the post member, the diaphragm being configured to transmit a pressure within a left atrium to the pressure sensor when the expandable framework is disposed within an ostium of the left atrial appendage.
In addition or alternatively to any aspect described herein, the delivery catheter includes at least one aperture extending through a side wall of the delivery catheter proximate the distal end of the delivery catheter.
In addition or alternatively to any aspect described herein, the left atrial appendage closure device includes a gap seal configured to extend across a proximal end of the gap when the medical system is disposed in a released configuration in which the delivery catheter is disengaged from the left atrial appendage closure device.
In addition or alternatively to any aspect described herein, the gap seal is configured to deflect into the recess when the medical system is in the delivery configuration.
In addition or alternatively to any aspect described herein, the first connection structure includes a first threaded portion disposed on an outside surface of the post member or an inside surface of the collar.
In addition or alternatively to any aspect described herein, the second connection structure includes a second threaded portion disposed proximate the distal end of the delivery catheter, the second threaded portion being configured to threadably mate with the first threaded portion when the medical system is in the delivery configuration.
In addition or alternatively to any aspect described herein, the first connection structure includes at least one groove formed in an outside surface of the post member or to an inside surface of the collar, wherein the at least one groove includes a longitudinal portion and a circumferential portion extending from a distal end of the longitudinal portion.
In addition or alternatively to any aspect described herein, the second connection structure includes at least one radially extending projection proximate the distal end of the delivery catheter, the at least one radially extending projection being configured to engage the at least one groove when the medical system is in the delivery configuration.
In addition or alternatively to any aspect described herein, the first connection structure includes at least one projection extending radially outward from the post member.
In addition or alternatively to any aspect described herein, the second connection structure includes two or more movable jaws configured to engage the at least one projection to clamp the post member between the two or more movable jaws when the medical system is in the delivery configuration.
In addition or alternatively to any aspect described herein, the first connection structure includes a channel formed in an outside surface of the post member and extending circumferentially around the post member distal of the proximal surface.
In addition or alternatively to any aspect described herein, the second connection structure includes: a distal cap member disposed at the distal end of the delivery catheter and configured to span the proximal surface of the post member, wherein the distal cap member includes at least one aperture formed in a laterally extending surface of the distal cap member; and a tether extending longitudinally alongside the delivery catheter, through the at least one aperture, and around the post member within the channel when the medical system is in the delivery configuration.
In addition or alternatively to any aspect described herein, a medical system may comprise a left atrial appendage closure device including an expandable framework and a proximal hub centered on a central longitudinal axis of the expandable framework. An insert may be disposed within the proximal hub, the insert including a collar defining a circumferential wall of the insert configured to engage the proximal hub, a recess extending axially into the insert from a proximal end of the insert, and a post member disposed within the recess. The post member may be radially spaced apart from the collar to define an annular gap between the post member and the collar, and the post member may extend proximally from a distal end of the recess to a proximal surface disposed proximate the proximal end of the insert. The insert may include a first connection structure disposed distal of the proximal surface. A pressure sensor may be disposed within the post member and in communication with the proximal surface of the post member for sensing a fluid pressure proximal of the left atrial appendage closure device. The medical system may comprise a delivery catheter having a second connection structure proximate a distal end of the delivery catheter, the second connection structure being configured to engage the first connection structure in a delivery configuration of the medical system. The distal end of the delivery catheter may include a hollow portion configured to extend over the post member and within the circumferential wall in the delivery configuration such that the distal end of the delivery catheter is disposed distal of the proximal end of the insert.
In addition or alternatively to any aspect described herein, a medical system may comprise a left atrial appendage closure device including a self-expanding framework and a proximal hub centered on a central longitudinal axis of the expandable framework. An insert may be disposed within the proximal hub, the insert including a collar defining a circumferential wall of the insert configured to engage the proximal hub, a recess extending axially into the insert from a proximal end of the insert, and a post member disposed within the recess radially inward of the circumferential wall. The post member may extend proximally from a distal end of the recess to a proximal surface. A sensor, a capacitor, and a communication coil may be disposed within the insert. The medical system may comprise a delivery catheter including a hollow portion disposable within the insert radially inward of the circumferential wall and radially outward of the post member in a delivery configuration of the medical system.
In addition or alternatively to any aspect described herein, the insert includes a first connection structure disposed distal of the proximal surface of the post member and the delivery catheter includes a second connection structure configured to engage the first connection structure in the delivery configuration of the medical system.
In addition or alternatively to any aspect described herein, in the delivery configuration of the medical system, the delivery catheter does not contact the proximal surface of the post member.
In addition or alternatively to any aspect described herein, the left atrial appendage closure device includes an occlusive element disposed over at least a portion of the expandable framework. The expandable framework is configured to shift between a collapsed configuration and a deployed configuration. The occlusive element is configured to prevent thrombi from exiting a left atrial appendage when the expandable framework is disposed within an ostium of the left atrial appendage in the deployed configuration.
In addition or alternatively to any aspect described herein, the expandable framework includes a plurality of interconnected struts joined together at the proximal hub.
The above summary of some embodiments, aspects, and/or examples is not intended to describe each embodiment or every implementation of the present disclosure. The figures and the detailed description which follows more particularly exemplify these embodiments.
The disclosure may be more completely understood in consideration of the following detailed description of various embodiments in connection with the accompanying drawings, in which:
While aspects of the disclosure are amenable to various modifications and alternative forms, specifics thereof have been shown by way of example in the drawings and will be described in detail. It should be understood, however, that the intention is not to limit aspects of the disclosure to the particular embodiments described. On the contrary, the intention is to cover all modifications, equivalents, and alternatives falling within the spirit and scope of the disclosure.
The following description should be read with reference to the drawings, which are not necessarily to scale, wherein like reference numerals indicate like elements throughout the several views. The detailed description and drawings are intended to illustrate but not limit the claimed invention. Those skilled in the art will recognize that the various elements described and/or shown may be arranged in various combinations and configurations without departing from the scope of the disclosure. The detailed description and drawings illustrate example embodiments of the claimed invention. However, in the interest of clarity and ease of understanding, while every feature and/or element may not be shown in each drawing, the feature(s) and/or element(s) may be understood to be present regardless, unless otherwise specified.
For the following defined terms, these definitions shall be applied, unless a different definition is given in the claims or elsewhere in this specification.
All numeric values are herein assumed to be modified by the term “about,” whether or not explicitly indicated. The term “about”, in the context of numeric values, generally refers to a range of numbers that one of skill in the art would consider equivalent to the recited value (e.g., having the same function or result). In many instances, the term “about” may include numbers that are rounded to the nearest significant figure. Other uses of the term “about” (e.g., in a context other than numeric values) may be assumed to have their ordinary and customary definition(s), as understood from and consistent with the context of the specification, unless otherwise specified.
The recitation of numerical ranges by endpoints includes all numbers within that range, including the endpoints (e.g., 1 to 5 includes 1, 1.5, 2, 2.75, 3, 3.80, 4, and 5).
Although some suitable dimensions, ranges, and/or values pertaining to various components, features and/or specifications are disclosed, one of skill in the art, incited by the present disclosure, would understand desired dimensions, ranges, and/or values may deviate from those expressly disclosed.
As used in this specification and the appended claims, the singular forms “a”, “an”, and “the” include plural referents unless the content clearly dictates otherwise. As used in this specification and the appended claims, the term “or” is generally employed in its sense including “and/or” unless the content clearly dictates otherwise. It is to be noted that in order to facilitate understanding, certain features of the disclosure may be described in the singular, even though those features may be plural or recurring within the disclosed embodiment(s). Each instance of the features may include and/or be encompassed by the singular disclosure(s), unless expressly stated to the contrary. For simplicity and clarity purposes, not all elements of the disclosed invention are necessarily shown in each figure or discussed in detail below. However, it will be understood that the following discussion may apply equally to any and/or all of the components for which there are more than one, unless explicitly stated to the contrary. Additionally, not all instances of some elements or features may be shown in each figure for clarity.
Relative terms such as “proximal”, “distal”, “advance”, “retract”, variants thereof, and the like, may be generally considered with respect to the positioning, direction, and/or operation of various elements relative to a user/operator/manipulator of the device, wherein “proximal” and “retract” indicate or refer to closer to or toward the user and “distal” and “advance” indicate or refer to farther from or away from the user. In some instances, the terms “proximal” and “distal” may be arbitrarily assigned in an effort to facilitate understanding of the disclosure, and such instances will be readily apparent to the skilled artisan. Other relative terms, such as “upstream”, “downstream”, “inflow”, and “outflow” refer to a direction of fluid flow within a lumen, such as a body lumen, a blood vessel, or within a device.
The term “extent” may be understood to mean a greatest measurement of a stated or identified dimension, unless the extent or dimension in question is preceded by or identified as a “minimum”, which may be understood to mean a smallest measurement of the stated or identified dimension. For example, “outer extent” may be understood to mean an outer dimension, “radial extent” may be understood to mean a radial dimension, “longitudinal extent” may be understood to mean a longitudinal dimension, etc. Each instance of an “extent” may be different (e.g., axial, longitudinal, lateral, radial, circumferential, etc.) and will be apparent to the skilled person from the context of the individual usage. Generally, an “extent” may be considered a greatest possible dimension measured according to the intended usage, while a “minimum extent” may be considered a smallest possible dimension measured according to the intended usage. In some instances, an “extent” may generally be measured orthogonally within a plane and/or cross-section, but may be, as will be apparent from the particular context, measured differently—such as, but not limited to, angularly, radially, circumferentially (e.g., along an arc), etc.
The terms “monolithic” and “unitary” shall generally refer to an element or elements made from or consisting of a single structure or base unit/element. A monolithic and/or unitary element shall exclude structure and/or features made by assembling or otherwise joining multiple discrete elements together.
It is noted that references in the specification to “an embodiment”, “some embodiments”, “other embodiments”, etc., indicate that the embodiment(s) described may include a particular feature, structure, or characteristic, but every embodiment may not necessarily include the particular feature, structure, or characteristic. Moreover, such phrases are not necessarily referring to the same embodiment. Further, when a particular feature, structure, or characteristic is described in connection with an embodiment, it would be within the knowledge of one skilled in the art to effect the particular feature, structure, or characteristic in connection with other embodiments, whether or not explicitly described, unless clearly stated to the contrary. That is, the various individual elements described below, even if not explicitly shown in a particular combination, are nevertheless contemplated as being combinable or arrangeable with each other to form other additional embodiments or to complement and/or enrich the described embodiment(s), as would be understood by one of ordinary skill in the art.
For the purpose of clarity, certain identifying numerical nomenclature (e.g., first, second, third, fourth, etc.) may be used throughout the description and/or claims to name and/or differentiate between various described and/or claimed features. It is to be understood that the numerical nomenclature is not intended to be limiting and is exemplary only. In some embodiments, alterations of and deviations from previously used numerical nomenclature may be made in the interest of brevity and clarity. That is, a feature identified as a “first” element may later be referred to as a “second” element, a “third” element, etc. or may be omitted entirely, and/or a different feature may be referred to as the “first” element. The meaning and/or designation in each instance will be apparent to the skilled practitioner.
The following figures illustrate selected components and/or arrangements of an implant for occluding the left atrial appendage, a medical system for occluding the left atrial appendage, and/or methods of using the implant and/or the medical system. It should be noted that in any given figure, some features may not be shown, or may be shown schematically, for simplicity. Additional details regarding some of the components of the implant and/or the system may be illustrated in other figures in greater detail. While discussed in the context of occluding the left atrial appendage, the implant and/or the system may also be used for other interventions and/or percutaneous medical procedures within a patient. Similarly, the devices and methods described herein with respect to percutaneous deployment may be used in other types of surgical procedures, as appropriate. For example, in some examples, the devices may be used in a non-percutaneous procedure. Devices and methods in accordance with the disclosure may also be adapted and configured for other uses within the anatomy.
Turning now to the figures,
The expandable framework 110 may be compliant and substantially conform to and/or be in sealing engagement with the shape and/or geometry of a lateral wall and/or an ostium of a left atrial appendage in the expanded configuration. In some embodiments, the left atrial appendage closure device 100 may expand to a size, extent, or shape less than or different from a maximum unconstrained extent, as determined by the surrounding tissue and/or lateral wall of the left atrial appendage. Reducing a thickness of various elements of the expandable framework 110 may increase the flexibility and compliance of the expandable framework 110 and/or the left atrial appendage closure device 100, thereby permitting the expandable framework 110 and/or the left atrial appendage closure device 100 to conform to the tissue around it, rather than forcing the tissue to conform to the expandable framework 110 and/or the left atrial appendage closure device 100.
In some embodiments, the left atrial appendage closure device 100 may optionally include an occlusive element 120 (e.g., a mesh, a fabric, a membrane, and/or other surface treatment) disposed on, disposed over, disposed about, or covering at least a portion of the expandable framework 110, as seen in
In some embodiments, the expandable framework 110 may include a plurality of anchor members 112 disposed about a periphery of the expandable framework 110 in the expanded configuration. The plurality of anchor members 112 may extend radially outward from the expandable framework 110. In some embodiments, at least some of the plurality of anchor members 112 may each have and/or include a body portion, a tip portion, and a barb projecting circumferentially therefrom. In some embodiments, some and/or each of the plurality of anchor members 112 have at least one barb projecting circumferentially therefrom. Some suitable, but non-limiting, examples of materials for the expandable framework 110, the plurality of anchor members 112, etc. are discussed below.
In some embodiments, the plurality of anchor members 112 may provide an anchoring mechanism to aid in retaining the left atrial appendage closure device 100 at a target site within a patient's anatomy (i.e., the left atrial appendage, for example) in the expanded configuration. However, the barb(s) may be configured, positioned, and/or arranged such that engagement of the barb(s) with surrounding tissue at the target site is minimized or avoided. For example, the barb(s) may not puncture, pierce, and/or extend into the surrounding tissue in the expanded configuration. Additionally, in some embodiments, the plurality of anchor members 112 may provide an attachment mechanism for securing the occlusive element 120 to the expandable framework 110.
In some embodiments, the occlusive element 120 may extend distally past at least some of the plurality of anchor members 112. In some embodiments, the occlusive element 120 may extend distally past each and/or all of the plurality of anchor members 112. In at least some embodiments, at least a distal portion of the occlusive element 120 may be attached to the expandable framework 110. In some embodiments, at least some of the plurality of anchor members 112 extend and/or project through the occlusive element 120. In some embodiments, each and/or all of the plurality of anchor members 112 extend and/or project through the occlusive element 120. In some embodiments, the membrane or occlusive element may be attached to the frame at some and/or each of the plurality of anchor members 112, for example, by passing some and/or each of the plurality of anchor members 112 through the occlusive element 120.
In some embodiments, the barb and/or the tip portion on some and/or each of the at least some of the plurality of anchor members 112 may be disposed radially outward of the occlusive element 120 and/or exterior of the occlusive element 120 while the base of its respective anchor member is disposed radially inward of and/or interior of the occlusive element 120. The barb may serve to retain the occlusive element 120 on the expandable framework 110, thereby preventing the occlusive element 120 from working loose and/or releasing from the expandable framework 110 as the expandable framework 110 is shifted between the collapsed configuration and the deployed configuration. In some embodiments, attachment of the distal portion of the occlusive element 120 to the expandable framework 110 is devoid of sutures and/or adhesives.
In one example, when the left atrial appendage closure device 100 and/or the expandable framework 110 is shifted to the collapsed configuration for delivery and/or disposal within the lumen 42 of the outer sheath 40, the occlusive element 120 may be placed in tension and/or stretched tight along the outer surface of the expandable framework 110 and/or result in a portion of the expandable framework 110 deforming and/or buckling under the tension of the occlusive element 120. The tension may be reduced by extending and/or increasing the length of the occlusive element 120 while keeping and/or maintaining the length of the expandable framework 110. To accommodate the changes in tension, the occlusive element 120 may be free to move axially along the body portion of the at least some of the plurality of anchor members 112 extending through the occlusive element 120. For example, the occlusive element 120 may be devoid of fixed attachment (e.g., may not be fixedly secured in place, such as with sutures or adhesives) to the plurality of anchor members 112 and/or the expandable framework 110. The barb(s) may prevent the occlusive element 120 from slipping off the at least some of the plurality of anchor members 112 extending through the occlusive element 120 when the left atrial appendage closure device 100 and/or the expandable framework 110 is shifted to the deployed configuration and the tension is released or reduced.
In some embodiments, the occlusive element 120 may be permeable, semi-permeable, or impermeable to blood and/or other fluids, such as water. In some embodiments, the occlusive element 120 may include a polymeric membrane, a metallic or polymeric mesh, a porous filter-like material, or other suitable construction. In some embodiments, the occlusive element 120 may be configured to prevent thrombi (i.e. blood clots, etc.) from passing through the occlusive element 120 and/or exiting the left atrial appendage into the blood stream when the left atrial appendage closure device 100 and/or the expandable framework 110 is disposed within an ostium of the left atrial appendage in the deployed configuration. In some embodiments, the occlusive element 120 may be configured to promote endothelization across the ostium of the left atrial appendage after implantation of the left atrial appendage closure device 100, thereby effectively removing the left atrial appendage from the patient's circulatory system. Some suitable, but non-limiting, examples of materials for the occlusive element 120 are discussed below.
In some embodiments, the proximal hub 130 of the expandable framework 110 may be configured to releasably attach, join, couple, engage, or otherwise connect to the distal end of the delivery catheter 30. In some embodiments, the left atrial appendage closure device 100 and/or the expandable framework 110 may include an insert 140 disposed within the proximal hub 130. In some embodiments, the insert 140 may be configured to and/or adapted to releasably couple with, join to, mate with, or otherwise engage the distal end of the delivery catheter 30, as discussed herein. In the interest of clarity, not all features of the insert 140 described herein are shown in
In some embodiments, the insert 140 may include a collar 142 defining a circumferential wall 144 of the insert 140 configured to engage the proximal hub 130, a recess 146 extending axially into the insert 140 from a proximal end of the insert 140, and a post member 150 disposed within the recess 146 radially inward of the circumferential wall 144. The recess 146 may extend distally into the insert 140 from a proximal end of the insert 140 to a distal surface within the recess 146 defining a distal end of the recess 146. The post member 150 may be radially spaced apart from the collar 142 and/or the circumferential wall 144 to define an annular gap 148 (e.g.,
As shown in
In one example configuration, as shown in
In some embodiments, the insert 140 may include an integrated circuit board 162 for controlling the sensor 160 and/or other internal components of the insert 140. In some embodiments, the insert 140 may include a communication coil 166 disposed within the interior space. In some embodiments, the communication coil 166 may be configured for bi-directional wireless communication and/or energy transfer. In some embodiments, the insert 140 may optionally include a battery 168. In some embodiments, the insert 140 may be powered “on-demand” via an inductive link. In some embodiments, the communication coil 166 may be and/or may form a part of the inductive link. In some embodiments, the insert 140 may include a capacitor 164 disposed within the interior space configured to act as a temporary power source for the sensor 160 and/or other internal components of the insert 140 (during “on-demand” energy transfer to the left atrial appendage closure device 100, for example). In some embodiments, the communication coil 166 may be wrapped around the battery 168, as shown in
In some embodiments utilizing the battery 168, the battery 168 may be rechargeable. While a direct connection may be used to recharge the battery 168, such a configuration may be rather invasive to the patient. Accordingly, a wireless (e.g., inductive) recharging capability may be more desirable and far less invasive to the patient. In some embodiments, utilizing the battery 168, the battery 168 may not be rechargeable. When using a non-rechargeable battery 168, it is desirable to use a battery having a lifetime at least as long as the expected remaining lifetime of the patient to avoid needing to replace the battery 168 during a patient's later years when surgical procedures may be more challenging.
The insert 140 may include a first connection structure 180 disposed distal of the proximal surface 152. The delivery catheter 30 may include a second connection structure 190 proximate the distal end of the delivery catheter 30. The second connection structure 190 may be configured to engage the first connection structure 180 in the delivery configuration of the medical system 10. In some embodiments, the distal end of the delivery catheter 30 may include a hollow portion 32 configured to receive the post member 150 in the delivery configuration of the medical system 10, as shown in
In some embodiments, the first connection structure 180 may include a first threaded portion 182 disposed on an inside surface of the insert 140 (e.g., internal threads), as seen in
In some embodiments, the first connection structure 180 may include a first threaded portion 183 disposed on the outside surface of the post member 150 (e.g., external threads), as seen in
In at least some embodiments, the insert 140 may further include a gap seal 154 disposed in and/or extending across a proximal end of the annular gap 148 when the medical system 10 is disposed in the released configuration in which the delivery catheter 30 is disengaged from the left atrial appendage closure device 100 and/or the insert 140. In some embodiments, the gap seal 154 may be deflectable between a first position (e.g.,
When the medical system 10 is in the delivery configuration and/or the deployed configuration, the gap seal 154 may be disposed in the second position. In the second position, the gap seal 154 may be in contact with only one of the circumferential wall 144 and the post member 150. The gap seal 154 may be configured to deflect into the recess 146 to the second position by engagement with the distal end of the delivery catheter 30 and/or by engagement with the second connection structure 190 when the medical system 10 is in the delivery configuration. In the second position, the gap seal 154 may form a sealing engagement with an inner surface or an outer surface of the delivery catheter 30.
In some embodiments, the gap seal 154 may be fixedly attached to the circumferential wall 144 or the post member 150. The gap seal 154 may be configured to deflect radially away from the first connection structure 180, as shown in
In some embodiments, the first connection structure 180 may include at least one groove 184 formed in the outside surface of the post member 150, as seen in
In some embodiments, the first connection structure 180 may include at least one detent 186 extending radially inward from the outside surface of the post member 150, as seen in
In some embodiments, the first connection structure 180 may include at least one projection 188 extending radially outward from the outside surface of the post member 150, as seen in
In some embodiments, the first connection structure 180 may include a channel 200 formed in and/or extending radially into the outside surface of the post member 150 and extending circumferentially around the post member 150 distal of the proximal surface 152, as seen in
In the example of
In use, the tether 206 may extend through the notch 208 and around the post member 150 in the channel 200 to secure the left atrial appendage closure device 100 to and/or against the distal cap member 202 of the delivery catheter 30 and prevent relative axial movement therebetween when the medical system 10 is in the delivery configuration. In some embodiments, the hollow portion 32 of the delivery catheter 30 and/or the distal cap member 202 may extend over and/or around the post member 150 such that the proximal surface 152 of the post member 150 may be protected from contact and/or damage during handling and/or implantation. In the delivery configuration of the medical system 10, the delivery catheter 30 may not contact the proximal surface 152 of the post member 150. Having the tether 206 extend through the notch 208 may permit a reduced tolerance and/or spacing between the hollow portion 32 and the head of the post member 150 in the delivery configuration.
In some embodiments, the first connection structure 180 may include a channel 200 formed in and/or extending radially into the outside surface of the post member 150 and extending circumferentially around the post member 150 distal of the proximal surface 152, as seen in
In some embodiments, and as illustrated in
In the example of
The two movable jaws 216 and the engagement element(s) 214 may be configured to engage the channel 210 and the two notches 212 when the medical system 10 is in the delivery configuration. Each of the two notches 212 may correspond to and/or may be configured to engage one of the two movable jaws 216, and engagement of the two movable jaws 216 with the two notches 212 may prevent relative rotation between the first connection structure 180 and the second connection structure 190.
The two movable jaws 216 may be actuatable to clamp the post member 150 between the two movable jaws 216 distal of the proximal surface 152 of the post member 150 (e.g., within the channel 210) to lock the elongate shaft 230 to the insert 140 and/or the left atrial appendage closure device 100 and prevent relative axial movement therebetween when the medical system 10 is in the delivery configuration. In the delivery configuration of the medical system 10, the elongate shaft 230, the two movable jaws 216, and/or the engagement element(s) 214 may not contact the proximal surface 152 of the post member 150.
Other means of releasably coupling and/or engaging the expandable framework 110 to the distal end of the delivery catheter 30 are also contemplated.
In addition or alternatively to any configuration described herein, the delivery catheter 30 may include at least one aperture 34 extending through a side wall of the delivery catheter 30 into the hollow portion 32 proximate the distal end of the delivery catheter 30, as shown in
The materials that can be used for the various components of the medical system 10 and/or the left atrial appendage closure device 100 and the various elements thereof disclosed herein may include those commonly associated with medical devices. For simplicity purposes, the following discussion refers to the medical system 10 and/or the left atrial appendage closure device 100. However, this is not intended to limit the devices and methods described herein, as the discussion may be applied to other elements, members, components, or devices disclosed herein, such as, but not limited to, the delivery catheter 30, the outer sheath 40, the expandable framework 110, the plurality of anchor members 112, the occlusive element 120, the insert 140, and/or elements or components thereof.
In some embodiments, the medical system 10 and/or the left atrial appendage closure device 100, and/or components thereof, may be made from a metal, metal alloy, polymer (some examples of which are disclosed below), a metal-polymer composite, ceramics, combinations thereof, and the like, or other suitable material.
Some examples of suitable polymers may include polytetrafluoroethylene (PTFE), ethylene tetrafluoroethylene (ETFE), fluorinated ethylene propylene (FEP), polyoxymethylene (POM, for example, DELRIN® available from DuPont), polyether block ester, polyurethane (for example, Polyurethane 85A), polypropylene (PP), polyvinylchloride (PVC), polyether-ester (for example, ARNITEL® available from DSM Engineering Plastics), ether or ester based copolymers (for example, butylene/poly(alkylene ether) phthalate and/or other polyester elastomers such as HYTREL® available from DuPont), polyamide (for example, DURETHAN® available from Bayer or CRISTAMID® available from Elf Atochem), elastomeric polyamides, block polyamide/ethers, polyether block amide (PEBA, for example available under the trade name PEBAX®), ethylene vinyl acetate copolymers (EVA), silicones, polyethylene (PE), MARLEX® high-density polyethylene, MARLEX® low-density polyethylene, linear low density polyethylene (for example REXELL®), polyester, polybutylene terephthalate (PBT), polyethylene terephthalate (PET), polytrimethylene terephthalate, polyethylene naphthalate (PEN), polyetheretherketone (PEEK), polyimide (PI), polyetherimide (PEI), polyphenylene sulfide (PPS), polyphenylene oxide (PPO), poly paraphenylene terephthalamide (for example, KEVLAR®), polysulfone, nylon, nylon-12 (such as GRILAMID® available from EMS American Grilon), perfluoro(propyl vinyl ether) (PFA), ethylene vinyl alcohol, polyolefin, polystyrene, epoxy, polyvinylidene chloride (PVdC), poly(styrene-b-isobutylene-b-styrene) (for example, SIBS and/or SIBS 50A), polycarbonates, polyurethane silicone copolymers (for example, ElastEon® from Aortech Biomaterials or ChronoSil® from AdvanSource Biomaterials), biocompatible polymers, other suitable materials, or mixtures, combinations, copolymers thereof, polymer/metal composites, and the like. In some embodiments the sheath can be blended with a liquid crystal polymer (LCP). For example, the mixture can contain up to about 6 percent LCP.
Some examples of suitable metals and metal alloys include stainless steel, such as 304V, 304L, and 316LV stainless steel; mild steel; nickel-titanium alloy such as linear-elastic and/or super-elastic nitinol; other nickel alloys such as nickel-chromium-molybdenum alloys (e.g., UNS: N06625 such as INCONEL® 625, UNS: N06022 such as HASTELLOY® C-22®, UNS: N10276 such as HASTELLOY® C276®, other HASTELLOY® alloys, and the like), nickel-copper alloys (e.g., UNS: N04400 such as MONEL® 400, NICKELVAC® 400, NICORROS® 400, and the like), nickel-cobalt-chromium-molybdenum alloys (e.g., UNS: R30035 such as MP35-N® and the like), nickel-molybdenum alloys (e.g., UNS: N10665 such as HASTELLOY® ALLOY B2®), other nickel-chromium alloys, other nickel-molybdenum alloys, other nickel-cobalt alloys, other nickel-iron alloys, other nickel-copper alloys, other nickel-tungsten or tungsten alloys, and the like; cobalt-chromium alloys; cobalt-chromium-molybdenum alloys (e.g., UNS: R30003 such as ELGILOY®, PHYNOX®, and the like); platinum enriched stainless steel; titanium; platinum; palladium; gold; combinations thereof; or any other suitable material.
As alluded to herein, within the family of commercially available nickel-titanium or nitinol alloys, is a category designated “linear elastic” or “non-super-elastic” which, although may be similar in chemistry to conventional shape memory and super elastic varieties, may exhibit distinct and useful mechanical properties. Linear elastic and/or non-super-elastic nitinol may be distinguished from super elastic nitinol in that the linear elastic and/or non-super-elastic nitinol does not display a substantial “superelastic plateau” or “flag region” in its stress/strain curve like super elastic nitinol does. Instead, in the linear elastic and/or non-super-elastic nitinol, as recoverable strain increases, the stress continues to increase in a substantially linear, or a somewhat, but not necessarily entirely linear relationship until plastic deformation begins or at least in a relationship that is more linear than the super elastic plateau and/or flag region that may be seen with super elastic nitinol. Thus, for the purposes of this disclosure linear elastic and/or non-super-elastic nitinol may also be termed “substantially” linear elastic and/or non-super-elastic nitinol.
In some cases, linear elastic and/or non-super-elastic nitinol may also be distinguishable from super elastic nitinol in that linear elastic and/or non-super-elastic nitinol may accept up to about 2-5% strain while remaining substantially elastic (e.g., before plastically deforming) whereas super elastic nitinol may accept up to about 8% strain before plastically deforming. Both materials can be distinguished from other linear elastic materials such as stainless steel (that can also be distinguished based on its composition), which may accept only about 0.2 to 0.44 percent strain before plastically deforming.
In some embodiments, the linear elastic and/or non-super-elastic nickel-titanium alloy is an alloy that does not show any martensite/austenite phase changes that are detectable by differential scanning calorimetry (DSC) and dynamic metal thermal analysis (DMTA) analysis over a large temperature range. For example, in some embodiments, there may be no martensite/austenite phase changes detectable by DSC and DMTA analysis in the range of about −60 degrees Celsius (° C.) to about 120° C. in the linear elastic and/or non-super-elastic nickel-titanium alloy. The mechanical bending properties of such material may therefore be generally inert to the effect of temperature over this very broad range of temperature. In some embodiments, the mechanical bending properties of the linear elastic and/or non-super-elastic nickel-titanium alloy at ambient or room temperature are substantially the same as the mechanical properties at body temperature, for example, in that they do not display a super-elastic plateau and/or flag region. In other words, across a broad temperature range, the linear elastic and/or non-super-elastic nickel-titanium alloy maintains its linear elastic and/or non-super-elastic characteristics and/or properties.
In some embodiments, the linear elastic and/or non-super-elastic nickel-titanium alloy may be in the range of about 50 to about 60 weight percent nickel, with the remainder being essentially titanium. In some embodiments, the composition is in the range of about 54 to about 57 weight percent nickel. One example of a suitable nickel-titanium alloy is FHP-NT alloy commercially available from Furukawa Techno Material Co. of Kanagawa, Japan. Other suitable materials may include ULTANIUM™ (available from Neo-Metrics) and GUM METAL™ (available from Toyota). In some other embodiments, a superelastic alloy, for example a superelastic nitinol can be used to achieve desired properties.
In at least some embodiments, portions or all of the medical system 10 and/or the left atrial appendage closure device 100, and/or components thereof, may also be doped with, made of, or otherwise include a radiopaque material. Radiopaque materials are understood to be materials capable of producing a relatively bright image on a fluoroscopy screen or another imaging technique during a medical procedure. This relatively bright image aids the user of the medical system 10 and/or the left atrial appendage closure device 100 in determining its location. Some examples of radiopaque materials can include, but are not limited to, gold, platinum, palladium, tantalum, tungsten alloy, polymer material loaded with a radiopaque filler, and the like. Additionally, other radiopaque marker bands and/or coils may also be incorporated into the design of the medical system 10 and/or the left atrial appendage closure device 100 to achieve the same result.
In some embodiments, a degree of Magnetic Resonance Imaging (MRI) compatibility is imparted into the medical system 10 and/or the left atrial appendage closure device 100 and/or other elements disclosed herein. For example, the medical system 10 and/or the left atrial appendage closure device 100, and/or components or portions thereof, may be made of a material that does not substantially distort the image and create substantial artifacts (i.e., gaps in the image). Certain ferromagnetic materials, for example, may not be suitable because they may create artifacts in an MRI image. The medical system 10 and/or the left atrial appendage closure device 100, or portions thereof, may also be made from a material that the MRI machine can image. Some materials that exhibit these characteristics include, for example, tungsten, cobalt-chromium-molybdenum alloys (e.g., UNS: R30003 such as ELGILOY®, PHYNOX®, and the like), nickel-cobalt-chromium-molybdenum alloys (e.g., UNS: R30035 such as MP35-N® and the like), nitinol, and the like, and others.
In some embodiments, the medical system 10 and/or the left atrial appendage closure device 100 and/or other elements disclosed herein may include a fabric material disposed over or within the structure. The fabric material may be composed of a biocompatible material, such a polymeric material or biomaterial, adapted to promote tissue ingrowth. In some embodiments, the fabric material may include a bioabsorbable material. Some examples of suitable fabric materials include, but are not limited to, polyethylene glycol (PEG), nylon, polytetrafluoroethylene (PTFE, ePTFE), a polyolefinic material such as a polyethylene, a polypropylene, polyester, polyurethane, and/or blends or combinations thereof.
In some embodiments, the medical system 10 and/or the left atrial appendage closure device 100 and/or other elements disclosed herein may include and/or be formed from a textile material. Some examples of suitable textile materials may include synthetic yarns that may be flat, shaped, twisted, textured, pre-shrunk or un-shrunk. Synthetic biocompatible yarns suitable for use in the present invention include, but are not limited to, polyesters, including polyethylene terephthalate (PET) polyesters, polypropylenes, polyethylenes, polyurethanes, polyolefins, polyvinyls, polymethylacetates, polyamides, naphthalene dicarboxylene derivatives, natural silk, and polytetrafluoroethylenes. Moreover, at least one of the synthetic yarns may be a metallic yarn or a glass or ceramic yarn or fiber. Useful metallic yarns include those yarns made from or containing stainless steel, platinum, gold, titanium, tantalum or a Ni—Co—Cr-based alloy. The yarns may further include carbon, glass or ceramic fibers. Desirably, the yarns are made from thermoplastic materials including, but not limited to, polyesters, polypropylenes, polyethylenes, polyurethanes, polynaphthalenes, polytetrafluoroethylenes, and the like. The yarns may be of the multifilament, monofilament, or spun-types. The type and denier of the yarn chosen may be selected in a manner which forms a biocompatible and implantable prosthesis and, more particularly, a vascular structure having desirable properties.
In some embodiments, the medical system 10 and/or the left atrial appendage closure device 100 and/or other elements disclosed herein may include and/or be treated with a suitable therapeutic agent. Some examples of suitable therapeutic agents may include anti-thrombogenic agents (such as heparin, heparin derivatives, urokinase, and PPack (dextrophenylalanine proline arginine chloromethylketone)); anti-proliferative agents (such as enoxaparin, angiopeptin, monoclonal antibodies capable of blocking smooth muscle cell proliferation, hirudin, and acetylsalicylic acid); anti-inflammatory agents (such as dexamethasone, prednisolone, corticosterone, budesonide, estrogen, sulfasalazine, and mesalamine); antineoplastic/antiproliferative/anti-mitotic agents (such as paclitaxel, 5-fluorouracil, cisplatin, vinblastine, vincristine, epothilones, endostatin, angiostatin and thymidine kinase inhibitors); anesthetic agents (such as lidocaine, bupivacaine, and ropivacaine); anti-coagulants (such as D-Phe-Pro-Arg chloromethyl keton, an RGD peptide-containing compound, heparin, anti-thrombin compounds, platelet receptor antagonists, anti-thrombin antibodies, anti-platelet receptor antibodies, aspirin, prostaglandin inhibitors, platelet inhibitors, and tick antiplatelet peptides); vascular cell growth promoters (such as growth factor inhibitors, growth factor receptor antagonists, transcriptional activators, and translational promoters); vascular cell growth inhibitors (such as growth factor inhibitors, growth factor receptor antagonists, transcriptional repressors, translational repressors, replication inhibitors, inhibitory antibodies, antibodies directed against growth factors, bifunctional molecules consisting of a growth factor and a cytotoxin, bifunctional molecules consisting of an antibody and a cytotoxin); cholesterol-lowering agents; vasodilating agents; and agents which interfere with endogenous vasoactive mechanisms.
It should be understood that this disclosure is, in many respects, only illustrative. Changes may be made in details, particularly in matters of shape, size, and arrangement of steps without exceeding the scope of the invention. This may include, to the extent that it is appropriate, the use of any of the features of one example embodiment being used in other embodiments. The invention's scope is, of course, defined in the language in which the appended claims are expressed.
This application claims the benefit of priority of U.S. Provisional Application No. 62/993,796 filed Mar. 24, 2020, the entire disclosure of which is hereby incorporated by reference.
Number | Name | Date | Kind |
---|---|---|---|
178283 | French | Jun 1876 | A |
1967318 | Monahan | Jul 1934 | A |
3402710 | Paleschuck | Sep 1968 | A |
3540431 | Mobin-Uddin | Nov 1970 | A |
3557794 | Van Patten | Jan 1971 | A |
3638652 | Kelley | Feb 1972 | A |
3811449 | Gravlee et al. | May 1974 | A |
3844302 | Klein | Oct 1974 | A |
3874388 | King et al. | Apr 1975 | A |
4007743 | Blake | Feb 1977 | A |
4108420 | West et al. | Aug 1978 | A |
4175545 | Termanini | Nov 1979 | A |
4309776 | Berguer | Jan 1982 | A |
4341218 | Ue | Jul 1982 | A |
4364392 | Strother et al. | Dec 1982 | A |
4425908 | Simon | Jan 1984 | A |
4545367 | Tucci | Oct 1985 | A |
4585000 | Hershenson | Apr 1986 | A |
4603693 | Conta et al. | Aug 1986 | A |
4611594 | Grayhack et al. | Sep 1986 | A |
4619246 | Molgaard-Nielsen et al. | Oct 1986 | A |
4638803 | Rand et al. | Jan 1987 | A |
4665906 | Jervis | May 1987 | A |
4681588 | Ketharanathan et al. | Jul 1987 | A |
4710192 | Liotta et al. | Dec 1987 | A |
4718417 | Kittrell et al. | Jan 1988 | A |
4759348 | Cawood et al. | Jul 1988 | A |
4781177 | Lebigot | Nov 1988 | A |
4793348 | Palmaz | Dec 1988 | A |
4827907 | Tashiro | May 1989 | A |
4832055 | Palestrant | May 1989 | A |
4873978 | Ginsburg | Oct 1989 | A |
4917089 | Sideris | Apr 1990 | A |
4921484 | Hillstead | May 1990 | A |
4960412 | Fink | Oct 1990 | A |
4966150 | Etienne et al. | Oct 1990 | A |
4998972 | Chin et al. | Mar 1991 | A |
5037810 | Saliba, Jr. | Aug 1991 | A |
5041090 | Scheglov et al. | Aug 1991 | A |
5041093 | Chu | Aug 1991 | A |
5042707 | Taheri | Aug 1991 | A |
5053009 | Herzberg | Oct 1991 | A |
5064435 | Porter | Nov 1991 | A |
5071407 | Termin et al. | Dec 1991 | A |
5078736 | Behl | Jan 1992 | A |
5098440 | Hillstead | Mar 1992 | A |
5108418 | Lefebvre | Apr 1992 | A |
5108420 | Marks | Apr 1992 | A |
5108474 | Riedy et al. | Apr 1992 | A |
5116360 | Pinchuk et al. | May 1992 | A |
5122136 | Guglielmi et al. | Jun 1992 | A |
5171259 | Inoue | Dec 1992 | A |
5171383 | Sagaye et al. | Dec 1992 | A |
5176692 | Wilk et al. | Jan 1993 | A |
5192301 | Kamiya et al. | Mar 1993 | A |
5211658 | Clouse | May 1993 | A |
5234458 | Metais | Aug 1993 | A |
5256146 | Ensminger et al. | Oct 1993 | A |
5258000 | Gianturco | Nov 1993 | A |
5258042 | Mehta | Nov 1993 | A |
5279539 | Bohan et al. | Jan 1994 | A |
5284488 | Sideris | Feb 1994 | A |
5304184 | Hathaway et al. | Apr 1994 | A |
5306234 | Johnson | Apr 1994 | A |
5312341 | Turi | May 1994 | A |
5329942 | Gunther et al. | Jul 1994 | A |
5334217 | Das | Aug 1994 | A |
5344439 | Otten | Sep 1994 | A |
5350398 | Pavcnik et al. | Sep 1994 | A |
5350399 | Erlebacher et al. | Sep 1994 | A |
5353784 | Nady-Mohamed | Oct 1994 | A |
5366460 | Eberbach | Nov 1994 | A |
5366504 | Andersen et al. | Nov 1994 | A |
5370657 | Irie | Dec 1994 | A |
5375612 | Cottenceau et al. | Dec 1994 | A |
5397331 | Himpens et al. | Mar 1995 | A |
5397355 | Marin et al. | Mar 1995 | A |
5409444 | Kensey et al. | Apr 1995 | A |
5417699 | Klein et al. | May 1995 | A |
5421832 | Lefebvre | Jun 1995 | A |
5425744 | Fagan et al. | Jun 1995 | A |
5427119 | Swartz et al. | Jun 1995 | A |
5433727 | Sideris | Jul 1995 | A |
5443454 | Tanabe et al. | Aug 1995 | A |
5443478 | Purdy et al. | Aug 1995 | A |
5451235 | Lock et al. | Sep 1995 | A |
5454365 | Bonutti | Oct 1995 | A |
5464408 | Duc | Nov 1995 | A |
5469867 | Schmitt | Nov 1995 | A |
5490856 | Person et al. | Feb 1996 | A |
5497774 | Swartz et al. | Mar 1996 | A |
5499975 | Cope et al. | Mar 1996 | A |
5499995 | Teirstein | Mar 1996 | A |
5522790 | Moll et al. | Jun 1996 | A |
5522822 | Phelps et al. | Jun 1996 | A |
5522836 | Palermo | Jun 1996 | A |
5527322 | Klein et al. | Jun 1996 | A |
5527338 | Purdy | Jun 1996 | A |
5558093 | Pomeranz et al. | Sep 1996 | A |
5558652 | Henke | Sep 1996 | A |
5569204 | Cramer et al. | Oct 1996 | A |
5591196 | Marin et al. | Jan 1997 | A |
5614204 | Cochrum | Mar 1997 | A |
5634936 | Linden et al. | Jun 1997 | A |
5634942 | Chevillon et al. | Jun 1997 | A |
5637097 | Yoon | Jun 1997 | A |
5643282 | Kieturakis | Jul 1997 | A |
5643292 | Hart | Jul 1997 | A |
5649953 | Lefebvre | Jul 1997 | A |
5653690 | Booth et al. | Aug 1997 | A |
5662671 | Barbut et al. | Sep 1997 | A |
5669933 | Simon et al. | Sep 1997 | A |
5681345 | Euteneuer | Oct 1997 | A |
5681347 | Cathcart et al. | Oct 1997 | A |
5683411 | Kavteladze et al. | Nov 1997 | A |
5690671 | McGurk et al. | Nov 1997 | A |
5693067 | Purdy | Dec 1997 | A |
5695525 | Mulhauser et al. | Dec 1997 | A |
5700285 | Myers et al. | Dec 1997 | A |
5702421 | Schneidt | Dec 1997 | A |
5704910 | Humes | Jan 1998 | A |
5709224 | Behl et al. | Jan 1998 | A |
5709704 | Nott et al. | Jan 1998 | A |
5709707 | Lock et al. | Jan 1998 | A |
5722400 | Ockuly et al. | Mar 1998 | A |
5724975 | Negus et al. | Mar 1998 | A |
5725512 | Swartz et al. | Mar 1998 | A |
5725552 | Kotula et al. | Mar 1998 | A |
5725568 | Hastings | Mar 1998 | A |
5733294 | Forber et al. | Mar 1998 | A |
5733302 | Myler et al. | Mar 1998 | A |
5735290 | Sterman et al. | Apr 1998 | A |
5749880 | Banas et al. | May 1998 | A |
5749883 | Halpern | May 1998 | A |
5749894 | Engelson | May 1998 | A |
5766219 | Horton | Jun 1998 | A |
5766246 | Mulhauser et al. | Jun 1998 | A |
5769816 | Barbut et al. | Jun 1998 | A |
5776097 | Massoud | Jul 1998 | A |
5776162 | Kleshinski | Jul 1998 | A |
5782860 | Epstein et al. | Jul 1998 | A |
5785679 | Abolfathi et al. | Jul 1998 | A |
5800454 | Jacobsen et al. | Sep 1998 | A |
5800457 | Gelbfish | Sep 1998 | A |
5800512 | Letnz et al. | Sep 1998 | A |
5807261 | Benaron et al. | Sep 1998 | A |
5810874 | Lefebvre | Sep 1998 | A |
5814028 | Swartz et al. | Sep 1998 | A |
5814029 | Hassett | Sep 1998 | A |
5814064 | Daniel | Sep 1998 | A |
5820591 | Thompson et al. | Oct 1998 | A |
5823198 | Jones et al. | Oct 1998 | A |
5830228 | Knapp et al. | Nov 1998 | A |
5833673 | Ockuly et al. | Nov 1998 | A |
5836913 | Orth et al. | Nov 1998 | A |
5836968 | Simon et al. | Nov 1998 | A |
5840027 | Swartz et al. | Nov 1998 | A |
5843118 | Sepetka et al. | Dec 1998 | A |
5846260 | Maahs | Dec 1998 | A |
5846261 | Kotula et al. | Dec 1998 | A |
5848969 | Panescu et al. | Dec 1998 | A |
5849005 | Garrison et al. | Dec 1998 | A |
5851232 | Lois | Dec 1998 | A |
5853422 | Huebsch et al. | Dec 1998 | A |
5855597 | Jayaraman | Jan 1999 | A |
5865791 | Whayne et al. | Feb 1999 | A |
5865802 | Yoon et al. | Feb 1999 | A |
5868702 | Stevens et al. | Feb 1999 | A |
5868708 | Hart et al. | Feb 1999 | A |
5876367 | Kaganov et al. | Mar 1999 | A |
5879296 | Ockuly et al. | Mar 1999 | A |
5879366 | Shaw et al. | Mar 1999 | A |
5882340 | Yoon | Mar 1999 | A |
5885258 | Sachdeva et al. | Mar 1999 | A |
5891558 | Bell et al. | Apr 1999 | A |
5895399 | Barbut et al. | Apr 1999 | A |
5902289 | Swartz et al. | May 1999 | A |
5904680 | Kordis et al. | May 1999 | A |
5904703 | Gilson | May 1999 | A |
5906207 | Shen | May 1999 | A |
5910154 | Tsugita et al. | Jun 1999 | A |
5911734 | Tsugita et al. | Jun 1999 | A |
5916236 | Muij Van de Moer et al. | Jun 1999 | A |
5925060 | Forber | Jul 1999 | A |
5925063 | Khosravi | Jul 1999 | A |
5925074 | Gingras et al. | Jul 1999 | A |
5925075 | Myers et al. | Jul 1999 | A |
5928192 | Maahs | Jul 1999 | A |
5928260 | Chin et al. | Jul 1999 | A |
5931818 | Werp et al. | Aug 1999 | A |
5935145 | Villar et al. | Aug 1999 | A |
5935147 | Kensey et al. | Aug 1999 | A |
5935148 | Villar et al. | Aug 1999 | A |
5941249 | Maynard | Aug 1999 | A |
5941896 | Kerr | Aug 1999 | A |
5944738 | Amplatz et al. | Aug 1999 | A |
5947997 | Pavcnik et al. | Sep 1999 | A |
5951589 | Epstein et al. | Sep 1999 | A |
5951599 | McCrory | Sep 1999 | A |
5954694 | Sunseri | Sep 1999 | A |
5954767 | Pajotin et al. | Sep 1999 | A |
5957940 | Tanner et al. | Sep 1999 | A |
5961545 | Lentz et al. | Oct 1999 | A |
5976174 | Ruiz | Nov 1999 | A |
5980514 | Kupiecki et al. | Nov 1999 | A |
5980555 | Barbut et al. | Nov 1999 | A |
5989281 | Barbut et al. | Nov 1999 | A |
5993469 | McKenzie et al. | Nov 1999 | A |
5993483 | Gianotti | Nov 1999 | A |
5997557 | Barbut et al. | Dec 1999 | A |
6004280 | Buck et al. | Dec 1999 | A |
6004348 | Banas et al. | Dec 1999 | A |
6007523 | Mangosong | Dec 1999 | A |
6007557 | Ambrisco et al. | Dec 1999 | A |
6010517 | Baccaro | Jan 2000 | A |
6010522 | Barbut et al. | Jan 2000 | A |
6013093 | Nott et al. | Jan 2000 | A |
6024751 | Lovato et al. | Feb 2000 | A |
6024754 | Engelson | Feb 2000 | A |
6024755 | Addis | Feb 2000 | A |
6024756 | Huebsch et al. | Feb 2000 | A |
6027520 | Tsugita et al. | Feb 2000 | A |
6033420 | Hahnen | Mar 2000 | A |
6036720 | Abrams et al. | Mar 2000 | A |
6042598 | Tsugita et al. | Mar 2000 | A |
6048331 | Tsugita et al. | Apr 2000 | A |
6051014 | Jang | Apr 2000 | A |
6051015 | Maahs | Apr 2000 | A |
6056720 | Morse | May 2000 | A |
6063070 | Eder | May 2000 | A |
6063113 | Kavteladze et al. | May 2000 | A |
6066126 | Li et al. | May 2000 | A |
6068621 | Balceta et al. | May 2000 | A |
6074357 | Kaganov et al. | Jun 2000 | A |
6076012 | Swanson et al. | Jun 2000 | A |
6079414 | Roth | Jun 2000 | A |
6080182 | Shaw et al. | Jun 2000 | A |
6080183 | Tsugita et al. | Jun 2000 | A |
6083239 | Addis | Jul 2000 | A |
6090084 | Hassett et al. | Jul 2000 | A |
6096052 | Callister et al. | Aug 2000 | A |
6096053 | Bates et al. | Aug 2000 | A |
6110243 | Wnenchak et al. | Aug 2000 | A |
6123715 | Amplatz | Sep 2000 | A |
6124523 | Banas et al. | Sep 2000 | A |
6132438 | Fleischman et al. | Oct 2000 | A |
6135991 | Muni et al. | Oct 2000 | A |
6136016 | Barbut et al. | Oct 2000 | A |
6139527 | Laufer et al. | Oct 2000 | A |
6139573 | Sogard et al. | Oct 2000 | A |
6152144 | Lesh et al. | Nov 2000 | A |
6152946 | Broome et al. | Nov 2000 | A |
6156055 | Ravenscroft | Dec 2000 | A |
6159195 | Ha et al. | Dec 2000 | A |
6161543 | Cox et al. | Dec 2000 | A |
6168615 | Ken et al. | Jan 2001 | B1 |
6171329 | Shaw et al. | Jan 2001 | B1 |
6179859 | Bates et al. | Jan 2001 | B1 |
6193739 | Chevillon et al. | Feb 2001 | B1 |
6203531 | Ockuly et al. | Mar 2001 | B1 |
6206907 | Marino et al. | Mar 2001 | B1 |
6214029 | Thill et al. | Apr 2001 | B1 |
6221092 | Koike et al. | Apr 2001 | B1 |
6231561 | Frazier et al. | May 2001 | B1 |
6231589 | Wessman et al. | May 2001 | B1 |
6235045 | Barbut et al. | May 2001 | B1 |
6245012 | Kleshinski | Jun 2001 | B1 |
6251122 | Tsukernik | Jun 2001 | B1 |
6258115 | Dubrul | Jul 2001 | B1 |
6267772 | Mulhauser et al. | Jul 2001 | B1 |
6267776 | O'Connell | Jul 2001 | B1 |
6270490 | Hahnen | Aug 2001 | B1 |
6270530 | Eldridge et al. | Aug 2001 | B1 |
6270902 | Tedeschi et al. | Aug 2001 | B1 |
6277138 | Levinson et al. | Aug 2001 | B1 |
6285898 | Ben-Haim | Sep 2001 | B1 |
6290674 | Roue et al. | Sep 2001 | B1 |
6290708 | Kugel et al. | Sep 2001 | B1 |
6312407 | Zadno-Azizi et al. | Nov 2001 | B1 |
6319251 | Tu et al. | Nov 2001 | B1 |
6328727 | Frazier et al. | Dec 2001 | B1 |
6328755 | Marshall | Dec 2001 | B1 |
6342062 | Suon et al. | Jan 2002 | B1 |
6346116 | Brooks et al. | Feb 2002 | B1 |
6346895 | Lee et al. | Feb 2002 | B1 |
6361545 | Macoviak et al. | Mar 2002 | B1 |
6364895 | Greenhalgh | Apr 2002 | B1 |
6368338 | Kónya et al. | Apr 2002 | B1 |
6371971 | Tsugita et al. | Apr 2002 | B1 |
6375670 | Greenhalgh | Apr 2002 | B1 |
6391044 | Yadav et al. | May 2002 | B1 |
6398803 | Layne et al. | Jun 2002 | B1 |
6402746 | Whayne et al. | Jun 2002 | B1 |
6402771 | Palmer et al. | Jun 2002 | B1 |
6402779 | Colone et al. | Jun 2002 | B1 |
6419669 | Frazier et al. | Jul 2002 | B1 |
6440152 | Gainor et al. | Aug 2002 | B1 |
6443972 | Bosma et al. | Sep 2002 | B1 |
6447530 | Ostrovsky et al. | Sep 2002 | B1 |
6454775 | Demarais et al. | Sep 2002 | B1 |
6458145 | Ravenscroft et al. | Oct 2002 | B1 |
6464712 | Epstein et al. | Oct 2002 | B1 |
6468291 | Bates et al. | Oct 2002 | B2 |
6468301 | Amplatz et al. | Oct 2002 | B1 |
6485501 | Green | Nov 2002 | B1 |
6488689 | Kaplan et al. | Dec 2002 | B1 |
6511496 | Huter et al. | Jan 2003 | B1 |
6514280 | Gilson | Feb 2003 | B1 |
6517573 | Pollock et al. | Feb 2003 | B1 |
6533782 | Howell et al. | Mar 2003 | B2 |
6547760 | Samson et al. | Apr 2003 | B1 |
6547815 | Myers | Apr 2003 | B2 |
6551303 | Van Tassel et al. | Apr 2003 | B1 |
6551344 | Thill | Apr 2003 | B2 |
6558401 | Azizi | May 2003 | B1 |
6558405 | McInnes | May 2003 | B1 |
6558414 | Layne | May 2003 | B2 |
6562058 | Seguin et al. | May 2003 | B2 |
6569184 | Huter | May 2003 | B2 |
6569214 | Williams et al. | May 2003 | B2 |
6589214 | McGuckin et al. | Jul 2003 | B2 |
6589251 | Yee et al. | Jul 2003 | B2 |
6599308 | Amplatz | Jul 2003 | B2 |
6602271 | Adams et al. | Aug 2003 | B2 |
6623508 | Shaw et al. | Sep 2003 | B2 |
6641564 | Kraus | Nov 2003 | B1 |
6650923 | Lesh et al. | Nov 2003 | B1 |
6652555 | VanTassel et al. | Nov 2003 | B1 |
6652556 | VanTassel et al. | Nov 2003 | B1 |
6666861 | Grabek | Dec 2003 | B1 |
6689150 | Vantassel et al. | Feb 2004 | B1 |
6699260 | Dubrul et al. | Mar 2004 | B2 |
6699276 | Sogard et al. | Mar 2004 | B2 |
6702825 | Frazier et al. | Mar 2004 | B2 |
6712836 | Berg et al. | Mar 2004 | B1 |
6726701 | Gilson et al. | Apr 2004 | B2 |
6730108 | Van Tassel et al. | May 2004 | B2 |
6755812 | Peterson et al. | Jun 2004 | B2 |
6827737 | Hill et al. | Dec 2004 | B2 |
6837901 | Rabkin et al. | Jan 2005 | B2 |
6855153 | Saadat | Feb 2005 | B2 |
6911037 | Gainor et al. | Jun 2005 | B2 |
6932838 | Schwartz et al. | Aug 2005 | B2 |
6942653 | Quinn | Sep 2005 | B2 |
6949113 | Van Tassel et al. | Sep 2005 | B2 |
6958061 | Truckai et al. | Oct 2005 | B2 |
6994092 | van der Burg et al. | Feb 2006 | B2 |
7011671 | Welch | Mar 2006 | B2 |
7014645 | Greene, Jr. et al. | Mar 2006 | B2 |
7037321 | Sachdeva et al. | May 2006 | B2 |
7044134 | Khairkhahan et al. | May 2006 | B2 |
7097651 | Harrison et al. | Aug 2006 | B2 |
7128073 | van der Burg et al. | Oct 2006 | B1 |
7137953 | Eigler et al. | Nov 2006 | B2 |
7152605 | Khairkhahan et al. | Dec 2006 | B2 |
7169164 | Borillo et al. | Jan 2007 | B2 |
7179275 | McGuckin, Jr. et al. | Feb 2007 | B2 |
7226466 | Opolski | Jun 2007 | B2 |
7303526 | Sharkey et al. | Dec 2007 | B2 |
7317951 | Schneider et al. | Jan 2008 | B2 |
7323002 | Johnson et al. | Jan 2008 | B2 |
7597704 | Frazier et al. | Oct 2009 | B2 |
7678123 | Chanduszko | Mar 2010 | B2 |
7695425 | Schweich et al. | Apr 2010 | B2 |
7713282 | Frazier et al. | May 2010 | B2 |
7722641 | van der Burg et al. | May 2010 | B2 |
7727189 | VanTassel et al. | Jun 2010 | B2 |
7735493 | van der Burg et al. | Jun 2010 | B2 |
7780694 | Palmer et al. | Aug 2010 | B2 |
7799049 | Ostrovsky et al. | Sep 2010 | B2 |
7811300 | Feller, III et al. | Oct 2010 | B2 |
7811314 | Fierens et al. | Oct 2010 | B2 |
7862500 | Khairkhahan et al. | Jan 2011 | B2 |
7927365 | Fierens et al. | Apr 2011 | B2 |
7972359 | Kreidler | Jul 2011 | B2 |
8025495 | Hardert et al. | Sep 2011 | B2 |
8043329 | Khairkhahan et al. | Oct 2011 | B2 |
8052715 | Quinn et al. | Nov 2011 | B2 |
8062282 | Kolb | Nov 2011 | B2 |
8080032 | van der Burg et al. | Dec 2011 | B2 |
8097015 | Devellian | Jan 2012 | B2 |
8100938 | Figulla et al. | Jan 2012 | B2 |
8221384 | Frazier et al. | Jul 2012 | B2 |
8221445 | van Tassel et al. | Jul 2012 | B2 |
8287563 | Khairkhahan et al. | Oct 2012 | B2 |
8323309 | Khairkhahan et al. | Dec 2012 | B2 |
8388672 | Khairkhahan et al. | Mar 2013 | B2 |
8491623 | Vogel et al. | Jul 2013 | B2 |
8523897 | van der Burg et al. | Sep 2013 | B2 |
8535343 | van der Burg et al. | Sep 2013 | B2 |
8562509 | Bates | Oct 2013 | B2 |
8663273 | Khairkhahan et al. | Mar 2014 | B2 |
8685055 | VanTassel et al. | Apr 2014 | B2 |
8728117 | Janardhan et al. | May 2014 | B1 |
8758389 | Glimsdale | Jun 2014 | B2 |
8828051 | Javois et al. | Sep 2014 | B2 |
8834519 | van der Burg et al. | Sep 2014 | B2 |
8845711 | Miles et al. | Sep 2014 | B2 |
9034006 | Quinn et al. | May 2015 | B2 |
9132000 | VanTassel et al. | Sep 2015 | B2 |
9168043 | van der Burg et al. | Oct 2015 | B2 |
9211124 | Campbell et al. | Dec 2015 | B2 |
9295472 | Ottma | Mar 2016 | B2 |
9351716 | Miles et al. | May 2016 | B2 |
9445895 | Kreidler | Sep 2016 | B2 |
9554804 | Erzbeger | Jan 2017 | B2 |
9554806 | Larsen et al. | Jan 2017 | B2 |
9561037 | Fogarty et al. | Feb 2017 | B2 |
9561097 | Kim et al. | Feb 2017 | B1 |
9592058 | Erzbeger et al. | Mar 2017 | B2 |
9597088 | Ottma | Mar 2017 | B2 |
9629636 | Fogarty et al. | Apr 2017 | B2 |
9730701 | Tischler et al. | Aug 2017 | B2 |
9743932 | Amplatz et al. | Aug 2017 | B2 |
9750505 | Miles et al. | Sep 2017 | B2 |
9763666 | Wu et al. | Sep 2017 | B2 |
9795387 | Miles et al. | Oct 2017 | B2 |
9808253 | Li et al. | Nov 2017 | B2 |
9883936 | Sutton et al. | Feb 2018 | B2 |
9913652 | Bridgeman et al. | Mar 2018 | B2 |
9943299 | Khairkhahan et al. | Apr 2018 | B2 |
9943315 | Kaplan et al. | Apr 2018 | B2 |
10071181 | Penegor et al. | Sep 2018 | B1 |
10076335 | Zaver et al. | Sep 2018 | B2 |
10143458 | Kreidler | Dec 2018 | B2 |
10201337 | Glimsdale | Feb 2019 | B2 |
10231737 | Amplatz et al. | Mar 2019 | B2 |
20010000797 | Mazzocchi | May 2001 | A1 |
20010020181 | Layne | Sep 2001 | A1 |
20010034537 | Shaw et al. | Oct 2001 | A1 |
20010037141 | Yee et al. | Nov 2001 | A1 |
20020022860 | Borillo et al. | Feb 2002 | A1 |
20020035374 | Borillo et al. | Mar 2002 | A1 |
20020045931 | Sogard et al. | Apr 2002 | A1 |
20020062133 | Gilson et al. | May 2002 | A1 |
20020082638 | Porter et al. | Jun 2002 | A1 |
20020082675 | Myers | Jun 2002 | A1 |
20020099439 | Schwartz et al. | Jul 2002 | A1 |
20020111647 | Khairkhahan et al. | Aug 2002 | A1 |
20020138094 | Borillo et al. | Sep 2002 | A1 |
20020138097 | Ostrovsky et al. | Sep 2002 | A1 |
20020169475 | Gainor et al. | Nov 2002 | A1 |
20020177855 | Greene, Jr. et al. | Nov 2002 | A1 |
20030017775 | Dong et al. | Jan 2003 | A1 |
20030023262 | Welch | Jan 2003 | A1 |
20030023266 | Borillo et al. | Jan 2003 | A1 |
20030057156 | Peterson et al. | Mar 2003 | A1 |
20030060871 | Hill et al. | Mar 2003 | A1 |
20030120337 | Van Tassel et al. | Jun 2003 | A1 |
20030181942 | Sutton et al. | Sep 2003 | A1 |
20030191526 | Van Tassel et al. | Oct 2003 | A1 |
20030195555 | Khairkhahan et al. | Oct 2003 | A1 |
20030199923 | Khairkhahan et al. | Oct 2003 | A1 |
20030204203 | Khairkhahan et al. | Oct 2003 | A1 |
20030208214 | Loshakove et al. | Nov 2003 | A1 |
20030212432 | Khairkhahan et al. | Nov 2003 | A1 |
20030220667 | van der Burg et al. | Nov 2003 | A1 |
20040034366 | van der Burg et al. | Feb 2004 | A1 |
20040044361 | Frazier et al. | Mar 2004 | A1 |
20040049210 | VanTassel et al. | Mar 2004 | A1 |
20040093012 | Cully et al. | May 2004 | A1 |
20040098031 | van der Burg et al. | May 2004 | A1 |
20040122467 | VanTassel et al. | Jun 2004 | A1 |
20040127935 | VanTassel et al. | Jul 2004 | A1 |
20040158274 | WasDyke | Aug 2004 | A1 |
20040186486 | Roue et al. | Sep 2004 | A1 |
20040215230 | Frazier et al. | Oct 2004 | A1 |
20040220610 | Kreidler et al. | Nov 2004 | A1 |
20040220682 | Levine et al. | Nov 2004 | A1 |
20040230222 | van der Burg et al. | Nov 2004 | A1 |
20050004641 | Pappu | Jan 2005 | A1 |
20050004652 | van der Burg et al. | Jan 2005 | A1 |
20050015109 | Lichtenstein | Jan 2005 | A1 |
20050038470 | van der Burg et al. | Feb 2005 | A1 |
20050049573 | Van Tassel et al. | Mar 2005 | A1 |
20050070952 | Devellian | Mar 2005 | A1 |
20050113861 | Corcoran et al. | May 2005 | A1 |
20050125020 | Meade et al. | Jun 2005 | A1 |
20050177182 | van der Burg et al. | Aug 2005 | A1 |
20050203568 | Burg et al. | Sep 2005 | A1 |
20050283186 | Berrada et al. | Dec 2005 | A1 |
20050288704 | Cartier et al. | Dec 2005 | A1 |
20060015136 | Besselink | Jan 2006 | A1 |
20060030877 | Martinez et al. | Feb 2006 | A1 |
20060052816 | Bates et al. | Mar 2006 | A1 |
20060100658 | Obana et al. | May 2006 | A1 |
20060155323 | Porter et al. | Jul 2006 | A1 |
20060247680 | Amplatz et al. | Nov 2006 | A1 |
20070066993 | Kreidler | Mar 2007 | A1 |
20070083227 | van der Burg et al. | Apr 2007 | A1 |
20070083230 | Javois | Apr 2007 | A1 |
20070112380 | Figulla et al. | May 2007 | A1 |
20070150041 | Evans et al. | Jun 2007 | A1 |
20070156123 | Moll et al. | Jul 2007 | A1 |
20070162048 | Quinn et al. | Jul 2007 | A1 |
20070185471 | Johnson | Aug 2007 | A1 |
20080275536 | Zarins et al. | Nov 2008 | A1 |
20090005803 | Batiste | Jan 2009 | A1 |
20090062841 | Amplatz et al. | Mar 2009 | A1 |
20090099647 | Glimsdale et al. | Apr 2009 | A1 |
20090105747 | Chanduszko et al. | Apr 2009 | A1 |
20090112249 | Miles et al. | Apr 2009 | A1 |
20090254195 | Khairkhan et al. | Oct 2009 | A1 |
20090318948 | Linder et al. | Dec 2009 | A1 |
20100004726 | Hancock et al. | Jan 2010 | A1 |
20100049238 | Simpson | Feb 2010 | A1 |
20100106178 | Obermiller et al. | Apr 2010 | A1 |
20100324585 | Miles et al. | Dec 2010 | A1 |
20110054515 | Bridgeman et al. | Mar 2011 | A1 |
20110082495 | Ruiz | Apr 2011 | A1 |
20110098525 | Kermode et al. | Apr 2011 | A1 |
20110218566 | van der Burg et al. | Sep 2011 | A1 |
20110301630 | Hendriksen et al. | Dec 2011 | A1 |
20120029553 | Quinn et al. | Feb 2012 | A1 |
20120035643 | Khairkhahan et al. | Feb 2012 | A1 |
20120065662 | van der Burg et al. | Mar 2012 | A1 |
20120125619 | Wood et al. | May 2012 | A1 |
20120172654 | Bates | Jul 2012 | A1 |
20120172927 | Campbell et al. | Jul 2012 | A1 |
20120239077 | Zaver et al. | Sep 2012 | A1 |
20120239083 | Kreidler | Sep 2012 | A1 |
20120245619 | Guest | Sep 2012 | A1 |
20120271337 | Figulla et al. | Oct 2012 | A1 |
20120283585 | Werneth et al. | Nov 2012 | A1 |
20120283773 | Van Tassel et al. | Nov 2012 | A1 |
20120323267 | Ren | Dec 2012 | A1 |
20130006343 | Kassab et al. | Jan 2013 | A1 |
20130012982 | Khairkhahan et al. | Jan 2013 | A1 |
20130018413 | Oral et al. | Jan 2013 | A1 |
20130110154 | van der Burg et al. | May 2013 | A1 |
20130131717 | Glimsdale | May 2013 | A1 |
20130165735 | Khairkhahan et al. | Jun 2013 | A1 |
20130211492 | Schneider et al. | Aug 2013 | A1 |
20130296912 | Ottma | Nov 2013 | A1 |
20130331884 | Van der Burg et al. | Dec 2013 | A1 |
20130338686 | Ruiz | Dec 2013 | A1 |
20140005714 | Quick et al. | Jan 2014 | A1 |
20140018841 | Peiffer et al. | Jan 2014 | A1 |
20140039536 | Cully et al. | Feb 2014 | A1 |
20140046360 | van der Burg et al. | Feb 2014 | A1 |
20140081314 | Zaver et al. | Mar 2014 | A1 |
20140100596 | Rudman et al. | Apr 2014 | A1 |
20140142612 | Li et al. | May 2014 | A1 |
20140148842 | Khairkhahan et al. | May 2014 | A1 |
20140163605 | VanTassel et al. | Jun 2014 | A1 |
20140188157 | Clark | Jul 2014 | A1 |
20140214077 | Glimsdale | Jul 2014 | A1 |
20140296908 | Ottma et al. | Oct 2014 | A1 |
20140303719 | Cox et al. | Oct 2014 | A1 |
20140336612 | Frydlewski et al. | Nov 2014 | A1 |
20140336699 | van der Burg et al. | Nov 2014 | A1 |
20140364941 | Edmiston et al. | Dec 2014 | A1 |
20150005810 | Center et al. | Jan 2015 | A1 |
20150039021 | Khairkhahan et al. | Feb 2015 | A1 |
20150080903 | Dillard et al. | Mar 2015 | A1 |
20150196300 | Tischler et al. | Jul 2015 | A1 |
20150230909 | Zaver et al. | Aug 2015 | A1 |
20150238197 | Quinn et al. | Aug 2015 | A1 |
20150305727 | Karimov et al. | Oct 2015 | A1 |
20150313604 | Roue et al. | Nov 2015 | A1 |
20150313605 | Griffin | Nov 2015 | A1 |
20150327979 | Quinn et al. | Nov 2015 | A1 |
20150374491 | Kreidler | Dec 2015 | A1 |
20160015397 | Figulla et al. | Jan 2016 | A1 |
20160051358 | Sutton et al. | Feb 2016 | A1 |
20160058539 | VanTassel et al. | Mar 2016 | A1 |
20160066922 | Bridgeman et al. | Mar 2016 | A1 |
20160106437 | van der Burg et al. | Apr 2016 | A1 |
20160192942 | Strauss et al. | Jul 2016 | A1 |
20160287259 | Hanson et al. | Oct 2016 | A1 |
20160331382 | Center et al. | Nov 2016 | A1 |
20160374657 | Kreidler | Dec 2016 | A1 |
20170007262 | Amplatz et al. | Jan 2017 | A1 |
20170027552 | Turkington et al. | Feb 2017 | A1 |
20170042550 | Chakraborty et al. | Feb 2017 | A1 |
20170056166 | Ratz et al. | Mar 2017 | A1 |
20170100112 | van der Burg et al. | Apr 2017 | A1 |
20170119400 | Amplatz et al. | May 2017 | A1 |
20170181751 | Larsen et al. | Jun 2017 | A1 |
20170340336 | Osypka | Nov 2017 | A1 |
20170354421 | Maguire et al. | Dec 2017 | A1 |
20180064446 | Figulla et al. | Mar 2018 | A1 |
20180070950 | Zaver et al. | Mar 2018 | A1 |
20180110468 | Goldshtein | Apr 2018 | A1 |
20180140412 | Sutton et al. | May 2018 | A1 |
20180140413 | Quinn et al. | May 2018 | A1 |
20180250014 | Melanson et al. | Sep 2018 | A1 |
20180369594 | Werneth et al. | Dec 2018 | A1 |
20190133563 | Glimsdale | May 2019 | A1 |
20190175185 | Amplatz et al. | Jun 2019 | A1 |
20190223883 | Anderson et al. | Jul 2019 | A1 |
20190247053 | Inouye | Aug 2019 | A1 |
20190336135 | Inouye et al. | Nov 2019 | A1 |
20200229957 | Bardsley | Jul 2020 | A1 |
20210228216 | Brinkmann | Jul 2021 | A1 |
Number | Date | Country |
---|---|---|
1399571 | Feb 2003 | CN |
202143640 | Feb 2012 | CN |
104352261 | Feb 2015 | CN |
106859722 | Jun 2017 | CN |
10964173 | Mar 2019 | CN |
10201004476 | Mar 2012 | DE |
1523957 | Apr 2005 | EP |
1595504 | Nov 2005 | EP |
2074953 | Jan 2009 | EP |
2481381 | Aug 2012 | EP |
2928420 | Oct 2015 | EP |
3072461 | Sep 2016 | EP |
3372173 | Sep 2018 | EP |
3398523 | Nov 2018 | EP |
104287804 | Jan 2015 | IN |
2003532457 | Nov 2003 | JP |
2005324019 | Nov 2005 | JP |
2007513684 | May 2007 | JP |
2009160402 | Jul 2009 | JP |
2012501793 | Jan 2012 | JP |
9313712 | Jul 1993 | WO |
9504132 | Feb 1995 | WO |
9522359 | Aug 1995 | WO |
9601591 | Jan 1996 | WO |
9640356 | Dec 1996 | WO |
9721402 | Jun 1997 | WO |
9726939 | Jul 1997 | WO |
9728749 | Aug 1997 | WO |
9735522 | Oct 1997 | WO |
9802100 | Jan 1998 | WO |
9817187 | Apr 1998 | WO |
9822026 | May 1998 | WO |
9823322 | Jun 1998 | WO |
9827868 | Jul 1998 | WO |
9905977 | Feb 1999 | WO |
9907289 | Feb 1999 | WO |
9908607 | Feb 1999 | WO |
9923976 | May 1999 | WO |
9925252 | May 1999 | WO |
9930640 | Jun 1999 | WO |
9944510 | Sep 1999 | WO |
9959479 | Nov 1999 | WO |
0001308 | Jan 2000 | WO |
0016705 | Mar 2000 | WO |
0027292 | May 2000 | WO |
0035352 | Jun 2000 | WO |
0053120 | Sep 2000 | WO |
0067669 | Nov 2000 | WO |
0108743 | Feb 2001 | WO |
0115629 | Mar 2001 | WO |
0121247 | Mar 2001 | WO |
0126726 | Apr 2001 | WO |
0130266 | May 2001 | WO |
0130267 | May 2001 | WO |
0130268 | May 2001 | WO |
0170119 | Sep 2001 | WO |
0215793 | Feb 2002 | WO |
0224106 | Mar 2002 | WO |
02071977 | Sep 2002 | WO |
03007825 | Jan 2003 | WO |
03008030 | Jan 2003 | WO |
03032818 | Apr 2003 | WO |
2004012629 | Feb 2004 | WO |
2007044536 | Apr 2007 | WO |
2010024801 | Mar 2010 | WO |
2010081033 | Jul 2010 | WO |
2013060855 | May 2013 | WO |
2013159065 | Oct 2013 | WO |
2014011865 | Jan 2014 | WO |
2014018907 | Jan 2014 | WO |
2014089129 | Jun 2014 | WO |
201406239 | Jul 2014 | WO |
2015164836 | Oct 2015 | WO |
2016087145 | Jun 2016 | WO |
2018017935 | Jan 2018 | WO |
2018187732 | Oct 2018 | WO |
2019084358 | May 2019 | WO |
Entry |
---|
International Search Report and Written Opinion dated Oct. 13, 2020 for International Application No. PCT/US2020/048437. |
International Search Report and Written Opinion dated Jul. 15, 2021 for International Application No. PCT/US2021/023687. |
International Search Report and Written Opinion dated Aug. 3, 2004 for International Application No. PCT/US2004/008109. |
International Search Report and Written Opinion dated Feb. 15, 2000 for International Application No. PCT/US99/26325. |
International Search Report dated May 20, 2003 for International Application No. PCT/US02/33808. |
Written Opinion dated Nov. 17, 2003 for International Application No. PCT/US/02/33808. |
International Search Report and Written Opinion dated Aug. 21, 2018 for International Application No. PCT/US2018/029684. |
Cragg et al., “A New Percutaneous Vena Cava Filter,” American Journal of Radiology, Sep. 1983, pp. 601-604, vol. 141. |
Cragg et al., “Nonsurgical Placement of Arterial Endoprostheses: A New Technique Using Nitinol Wire,” Radiology, Apr. 1983, pp. 261-263, vol. 147, No. 1. |
Lock et al., “Transcatheter Closure of Atrial Septal Defects.” Circulation, May 1989, pp. 1091-1099, vol. 79, No. 5. |
Lock et al., “Transcatheter Umbrella Closure of Congenital Heart Defects,” Circulation, Mar. 1987, pp. 593-599, vol. 75, No. 3. |
Rashkind et al., “Nonsurgical closure of patent ductus arteriosus: clinical application of the Rashkind PDA Occluder System,” Circulation, Mar. 1987, pp. 583-592, vol. 75, No. 3. |
Rosengart et al., “Percutaneous and Minimally Invasive Valve Procedures,” Circulation, Apr. 1, 2008, pp. 1750-1767, vol. 117. |
Ruttenberg, “Nonsurgical Therapy of Cardiac Disorders,” Pediatric Consult, 1986, Pages not numbered, vol. 5, No. 2. |
Sugita et al., “Nonsurgical Implantations of a Vascular Ring Prosthesis Using Thermal Shape Memory Ti/Ni Alloy (Nitinol Wire),” Trans. Am. Soc. Artif. Intern. Organs, 1986, pp. 30-34, vol. XXXII. |
Wessel et al., “Outpatient Closure of the Patent Ductus Arteriousus,” Circulation, 1988, pp. 1068-1071, vol. 77, No. 5. |
Tung et al., U.S. Appl. No. 61/559,941, filed Nov. 15, 2011. |
Yue Yu et al., U.S. Appl. No. 61/557,880, filed Dec. 20, 2011. |
Cline, “File: Fish hooks.jpg,” Wikipedia foundation , Inc., San Francisco, CA, Jun. 2007; p. 1 of 4; available online at http://en.wikipedia.org/wiki/File:Fish_hooks.jpg; last accessed Oct. 5, 2012. |
International Search Report and Written Opinion dated Apr. 22, 2014 for International Application No. PCT/US2013/078454. |
Aryana et al., “Incomplete Closure of the Left Atrial Appendage: Implication and Management.” Curr Cardiol Rep., 18(9):82, 2016. |
Delurgio, “Device-Associated Thrombus and Peri-Device Leak Following Left Atrial Appendage Closure with the Amplatzer Cardiac Plug.” JACC: Cardiovascular Interventions, 10(4): 400-402, 2017. |
University of Minnesota. Atlas of Human Cardiac Anatomy, Left Atrium. Retrieved from http://www.vhlab.umn.edu/atlas/left-atrium/left-atrial-appendage/index.shtml. Accessed 2017. Downloaded 2019. |
Saw et al., “Incidence and Clinical Impact of Device-Associated Thrombus and Peri-Device Leak following Left Atrial Appendage Closure with the Amplatzer Cardiac Plug.” JACC: Cardiovascular Intervention. 10(4): 391-399, 2017. |
Romero et al., “Left Atrial Appendage Closure Devices,” Clinical Medicine Insights: Cardiology, vol. 8, pp. 45-52, 2014. |
Invitation To Pay Additional Fees And, Where Applicable, Protest Fee, dated Oct. 13, 2016. |
International Search Report and Written Opinion dated Oct. 14, 2019 for International Application No. PCT/US2019/047452. |
International Search Report and Written Opinion dated Oct. 27, 2017 for International Application No. PCT/US2017/048150. |
International Search Report and Written Opinion dated Jan. 21, 2019 for International Application No. PCT/US2018/051953. |
International Search Report and Written Opinion dated Oct. 13, 2016 for International Application No. PCT/US2016/043363. |
International Search Report and Written Opinion dated Mar. 17, 2020, for International Application No. PCT/US2019/065243. |
International Search Report and Written Opinion dated Sep. 9, 2019 for International Application No. PCT/US2019/033698. |
Blackshear et al; “Appendage Obliteration to Reduce Stroke in Cardiac Surgical Patients with Atrial Fibrillation”, Ann. Thoracic Surgery, pp. 755-759, 1996. |
Lindsay, “Obliteration of the Left Atrial Appendage: A Concept Worth Testing”, Ann. Thoracic Surgery, 1996. |
Invitation To Pay Additional Fees dated Feb. 22, 2019 for International Application No. PCT/US2018/066163. |
International Search Report and Written Opinion dated Oct. 23, 2020 for International Application No. PCT/US2020/042192. |
Number | Date | Country | |
---|---|---|---|
20210298763 A1 | Sep 2021 | US |
Number | Date | Country | |
---|---|---|---|
62993796 | Mar 2020 | US |