The present invention is related generally to medical technology, and more particularly to a medical system which controls delivery of a drug.
Known medical systems include those which control delivery of a drug to a patient. One known example is a stand-alone IV (intravenous) pump programmed by a user to deliver a volume of a drug at a prescribed fixed flow rate and to alarm before the full volume is delivered. Conventional IV pumps include an IV pump which has an AC-rechargeable battery capable of operating the IV pump (without the IV pump being plugged into an AC power source) for a period of several hours and which is sized to fit into a storage compartment of a hiker's backpack.
Another known example of such a medical system is a preconfigured conscious sedation system having a bedside monitoring unit including a pulse oximeter which measures the pulse rate and the SpO2 (saturation of peripheral oxygen) level of the patient and including a blood pressure module which measures the systolic blood pressure level and the diastolic blood pressure level of the patient. The bedside monitoring unit travels with the patient from the preparation room to the procedure room. Then, the bedside monitoring unit is connected by a cable to a procedure room unit which has a wired display monitor, wherein the pulse rate, the SpO2 respiration rate, the systolic blood pressure level, and the diastolic blood pressure level (and other predetermined physiological parameters of the patient) measured by the preconfigured bedside monitoring unit are displayed on the display monitor.
The procedure room unit includes a controller which computes a flow rate to deliver a sedation drug intravenously to the patient for a predetermined medical procedure. The controller computes the flow rate based on all of the predetermined physiological parameters of the patient measured by the preconfigured bedside monitoring unit. The controller sends a flow-rate command to an IV pump assembly, wherein the flow-rate command changes with changes in the measured physiological parameters of the patient.
Still, scientists and engineers continue to seek improved medical systems.
An expression of a first embodiment of the invention is for a medical system including a medical-system controller. The controller is operatively connectable to a distributed plurality of predetermined patient monitors to receive at least one physiological parameter measured by each of the plurality of patient monitors. The controller is adapted to choose a first group of the patient monitors for a predetermined first medical procedure and a predetermined drug-delivering first medical effector. The controller is operatively connectable to the first medical effector and, when operatively connected, is adapted to control a flow rate of a drug from the first medical effector to a patient for the first medical procedure using at least the received measured physiological parameters from the chosen first group of the patient monitors, when the controller is operatively connected to the patient monitors, without using any other physiological parameter of the patient. The controller is adapted to choose a second group of the patient monitors different from the first group for a different predetermined second medical procedure and the first medical effector. The controller, when operatively connected to the first medical effector, is adapted to control a flow rate of a drug from the first medical effector to the patient for the second medical procedure using at least the received measured physiological parameters from the chosen second group of the patient monitors, when the controller is operatively connected to the patient monitors, without using any other physiological parameter of the patient.
An expression of a second embodiment of the invention is for a medical system including a medical-system controller. The controller is connectable to up to a distributed plurality P of patient monitors which are operatively connectable to a patient to each measure at least one physiological parameter of the patient. The controller is connectable to up to a distributed multiplicity M of drug-delivering medical effectors which are operatively connectable to the patient and which are adapted to identify themselves when queried. The controller is adapted to identify, by querying, connected ones of the M medical effectors and connected ones of the P patient monitors. The controller is adapted to control at least one of the identified connected ones of the M medical effectors using at least the physiological parameters supplied by at least some of the identified connected ones of the P patient monitors for a predetermined medical procedure.
Several benefits and advantages are obtained from one or more of the expressions of the embodiments of the invention. In one example of the first embodiment, a medical-system controller is provided which is connectable to a distributed plurality of predetermined patient monitors and which adapts its choice of patient monitors to use depending on the particular medical procedure to be performed. In one example of the second embodiment, a medical-system controller is provided which is connectable to a distributed plurality of patient monitors and a distributed multiplicity of drug-delivering medical effectors, which identifies connected one of the medical effectors and patient monitors, and which controls at least one of the connected ones of the medical effectors using at least some of the connected ones of the patient monitors for a predetermined medical procedure.
Before explaining the expressions of several embodiments of the invention in detail, it should be noted that each is not limited in its application or use to the details of construction and arrangement of parts, instructions, and steps illustrated in the accompanying drawings and description. The illustrative embodiments of the invention may be implemented or incorporated in other embodiments, variations, and modifications, and may be practiced or carried out in various ways. Furthermore, unless otherwise indicated, the terminology employed herein has been chosen for the purpose of describing the illustrative expressions of the embodiments of the present invention for the convenience of the reader and not for the purpose of limiting the invention.
It is further understood that any one or more of the following-described expressions of a medical system, implementations, etc. can be combined with any one or more of the other following-described expressions of a medical system, implementations, etc.
A first embodiment of the invention is shown in
Types of drug-delivering medical effectors include IV pump assemblies which deliver a drug intravenously to a patient, gas delivery pump assemblies which deliver a gaseous drug to a patient via an oral and/or nasal cannula, an electrical stimulator which delivers an electric current (considered a drug for the purposes of describing the embodiments of the invention) to a patient to sedate the patient, and a drug patch and drug-patch control unit wherein the drug patch contains a drug and wherein the drug-patch control unit controls the delivery of the drug to the patient by electrophoresis.
In one example of the first expression of the embodiment of
Another example of a patient monitor (not shown) is a CO2 (carbon dioxide) patient monitor. An additional example is a sedation level patient monitor which queries a patient for a response (e.g., which buzzes a handpiece at various power levels as a request for the patient to push a button) and which measures the response (e.g., the time delay for the patient to push the button for a particular power level which indicates the level of patient sedation). Other examples are left to those skilled in the medical arts.
It is within the ordinary level of skill of the artisan to obtain and have programmed a medical-system controller 112 which is adapted: to receive inputs from various predetermined patient monitors 114, 116, and 118; to choose a particular group of such patient monitors to use with a predetermined drug-delivering first medical effector 120 for a user-chosen one of a plurality of predetermined medical procedures, and to control the drug flow of a predetermined drug from the first medical effector 120 to the patient 124 using the chosen group of patient monitors without using non-chosen patient monitors.
In one implementation of the first expression of the embodiment of
In a first application of the first expression of the embodiment of
In one variation of the first application, the controller 112 is adapted to control the flow rate for the third medical procedure despite failure of at least one of the patient monitors of the third group of the patient monitors. In one extension of the first application, the medical system 110 includes the plurality of the patient monitors 114, 116, and 118, the first medical effector 120, and the second medical effector 128 wherein each is operatively connected to the controller 112.
In a second application of the first expression of the embodiment of
It is noted that the drugs 122, 126, 130 and 132 may be the same drug or different drugs. It is also noted that the fourth group may be the same or different from the first group. It is further noted that the fourth group may be the same or different from the second group. In one variation of the second application, the controller 112 is adapted to control the flow rate of the drug 122 of the first medical effector 120 for the first medical procedure despite failure of the second medical effector 128.
A second embodiment of the invention is shown in
Connections of the patient monitors and the medical effectors may be parallel connections, serial connections, or combinations of both and include wired and wireless connections. It is noted that unconnected ones 214 and 218 of the plurality P of patient monitors and unconnected ones 223 of the multiplicity M of medical effectors my be unconnected in the physical sense for wired connections (as shown in
In one extension of the first expression of the embodiment of
In one deployment of the first and/or second embodiment, each peripheral component (i.e. each patient monitor and each medical effector) may have a basic algorithm, wherein the medical system provides more complex behaviors. A peripheral component may serve as a signal repeater increasing the range of wireless peripheral components. A peripheral component may provide its own power through a battery or AC connection or receive power from a wire-connected peripheral component. A peripheral component may provide its own computation and alarm settings or leverage those from another peripheral component.
A third embodiment of the invention is shown in
It is noted that a backpack pouch is a pouch which can be carried by a person, either by being adapted with carrying straps or (as in the example of
In one implementation of the first expression of the embodiment of
A second expression of the embodiment of
The patient monitoring module 314 is held by the first panel 318 and includes an ECG (electrocardiogram) medical unit 328, an SpO2 (saturation of peripheral oxygen) medical unit 330, and a blood pressure (BP) medical unit 332 each operatively connectable to a patient. The patient gas-exchange module 322 is held by the first panel 318 and includes an oxygen-delivery (O2-delivery) medical unit 334 and a CO2 (carbon dioxide) monitoring medical unit 336 each operatively connectable to the patient. The first inter-module connecting cable 324 is affixed to the backpack pouch 312, has a plug 338 connected to the patient monitoring module 314, and has a plug 340 connected to the patient gas-exchange module 322. The battery unit 326 is held by the first panel 318 and is adapted to power the patient monitoring module 314 and the patient gas-exchange module 322.
The laptop computer 316 is held by the second panel 320. The laptop computer 316 is operatively connectable to the patient monitoring module 314 and is adapted to display data from the ECG, SpO2, and blood pressure medical units 328, 330, and 332, wherein the laptop computer 316 is operatively connectable to the patient gas-exchange module 322 through the patient monitoring module 314. The laptop computer 316 is adapted to display data from the CO2 monitoring medical unit 336 and to control the oxygen-delivery medical unit 334 to deliver oxygen to the patient. It is noted that the term “oxygen” includes oxygen-enriched air, that “oxygen” is considered to be a drug, and that an oxygen-delivery medical unit 334 is a medical unit capable of delivering oxygen. It is also noted that other gases (such as nitrous oxide) can be used instead of oxygen in the oxygen-delivery medical unit 334 for a particular medical procedure. It is further noted that an example of an SpO2 medical unit 330 is a pulse oximeter, and an example of a CO2 monitoring medical unit 336 is a capnometer.
In one implementation of the second expression of the embodiment of
In the same or a different implementation, the first panel 318 includes a pocket 350 on a back side of the first panel 318 for holding the battery unit 326. The first panel 318 includes a pocket 352 on a front side of the first panel 318 for holding the patient monitoring module 314. The first panel 318 includes a pocket 354 on the front side of the first panel 318 for holding the patient gas-exchange module 322. In one variation, the battery unit 326 includes a rechargeable battery 356 and a hand-crank battery recharger 358.
In a first enablement of the second expression of the embodiment of
In one application of the first enablement, the first panel 318 includes a pocket 370 on the front side of the first panel 318 for holding the patient drug delivery module 360. In the same or a different application, the drug 364 has at least one medical effect on the patient chosen from the group consisting of a sedative effect and an analgesic effect.
In one construction of the second expression of the embodiment of
Several benefits and advantages are obtained from one or more of the expressions of the embodiments of the invention. In one example of the first embodiment, a medical-system controller is provided which is connectable to a distributed plurality of predetermined patient monitors and which adapts its choice of patient monitors to use depending on the particular medical procedure to be performed. In one example of the second embodiment, a medical-system controller is provided which is connectable to a distributed plurality of patient monitors and a distributed multiplicity of drug-delivering medical effectors, which identifies connected one of the medical effectors and patient monitors, and which controls at least one of the connected ones of the medical effectors using at least some of the connected ones of the patient monitors for a predetermined medical procedure. In one example of the third embodiment, a medical system is provided which includes patient modules stored in a folding backpack pouch which can be carried by a person, either by being adapted with carrying straps or by being placed in a knapsack having carrying straps, allowing use of the medical system in the field.
While the present invention has been illustrated by expressions of several embodiments, and enablements, implementations, etc. thereof, it is not the intention of the applicants to restrict or limit the spirit and scope of the appended claims to such detail. Numerous other variations, changes, and substitutions will occur to those skilled in the art without departing from the scope of the invention. It will be understood that the foregoing description is provided by way of example, and that other modifications may occur to those skilled in the art without departing from the scope and spirit of the appended Claims.
This application claims the benefit of U.S. Provisional Application Ser. No. 61/196,708 filed on Jul. 10, 2008, the entire contents of which are hereby incorporated by reference.
Number | Date | Country | |
---|---|---|---|
61196708 | Jul 2008 | US |