Medical tele-robotic system with a master remote station with an arbitrator

Information

  • Patent Grant
  • 9849593
  • Patent Number
    9,849,593
  • Date Filed
    Friday, February 7, 2014
    10 years ago
  • Date Issued
    Tuesday, December 26, 2017
    7 years ago
Abstract
A robotic system that includes a mobile robot linked to a plurality of remote stations. One of the remote stations includes an arbitrator that controls access to the robot. Each remote station may be assigned a priority that is used by the arbitrator to determine which station has access to the robot. The arbitrator may include notification and call back mechanisms for sending messages relating to an access request and a granting of access for a remote station.
Description
BACKGROUND OF THE INVENTION

1. Field of the Invention


The subject matter disclosed generally relates to the field of robotics.


2. Background Information


There is a growing need to provide remote health care to patients that have a variety of ailments ranging from Alzheimers to stress disorders. To minimize costs it is desirable to provide home care for such patients. Home care typically requires a periodic visit by a health care provider such as a nurse or some type of assistant. Due to financial and/or staffing issues the health care provider may not be there when the patient needs some type of assistance. Additionally, existing staff must be continuously trained, which can create a burden on training personnel. It would be desirable to provide a system that would allow a health care provider to remotely care for a patient without being physically present.


Robots have been used in a variety of applications ranging from remote control of hazardous material to assisting in the performance of surgery. For example, U.S. Pat. No. 5,762,458 issued to Wang et al. discloses a system that allows a surgeon to perform minimally invasive medical procedures through the use of robotically controlled instruments. One of the robotic arms in the Wang system moves an endoscope which has a camera that allows a surgeon to view a surgical area of a patient.


Tele-robots such as hazardous waste handlers and bomb detectors may contain a camera that allows the operator to view the remote site. Canadian Pat. No. 2289697 issued to Treviranus, et al. discloses a teleconferencing platform that has both a camera and a monitor. The platform includes mechanisms to both pivot and raise the camera and monitor. The teleconferencing platform disclosed in the Canadian patent is stationary and cannot move about a building.


Publication Application No. US-2003-0050233-A1 discloses a remote robotic system wherein a plurality of remote stations can control a plurality of robotic arms used to perform a minimally invasive medical procedure. Each remote station can receive a video image provided by the endoscope inserted into the patient. The remote stations are linked to the robotic system by a dedicated communication link.


BRIEF SUMMARY OF THE INVENTION

A robotic system that includes a mobile robot coupled to a first remote station and a second remote station. The second remote station includes an arbitrator that controls access to the robot. The robot includes a camera and a monitor.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 is an illustration of a robotic system;



FIG. 2 is a schematic of an electrical system of a robot;



FIG. 3 is a further schematic of the electrical system of the robot;



FIG. 4 is side view of the robot;



FIG. 5 is a top perspective view of a holonomic platform of the robot;



FIG. 6 is a side perspective view of a roller assembly of the holonomic platform;



FIG. 7 is a bottom perspective view showing a pedestal assembly of the robot;



FIG. 8 is a sectional view showing an actuator of the pedestal assembly;



FIG. 9 is a schematic of a robotic system wherein multiple remote stations are coupled to the robot;



FIG. 10 is a flowchart showing an arbitration scheme for allowing access to the robot;



FIG. 11 is a side view of a robot head.





DETAILED DESCRIPTION

Disclosed is a robotic system that includes a mobile robot linked to a plurality of remote stations. One of the remote stations includes an arbitrator that controls access to the robot. Each remote station may be assigned a priority that is used by the arbitrator to determine which station has access to the robot. The arbitrator may include notification and call back mechanisms for sending messages relating to an access request and a granting of access for a remote station.


Referring to the drawings more particularly by reference numbers, FIG. 1 shows a robotic system 10. The robotic system 10 includes a robot 12, a base station 14 and a plurality of remote control stations 16. Each remote control station 16 may be coupled to the base station 14 through a network 18. By way of example, the network 18 may be either a packet switched network such as the Internet, or a circuit switched network such has a Public Switched Telephone Network (PSTN) or other broadband system. The base station 14 may be coupled to the network 18 by a modem 20 or other broadband network interface device.


Each remote control station 16 may include a computer 22 that has a monitor 24, a camera 26, a microphone 28 and a speaker 30. The computer 22 may also contain an input device 32 such as a joystick or a mouse. Each control station 16 is typically located in a place that is remote from the robot 12. Although only one robot 12 is shown, it is to be understood that the system 10 may have a plurality of robots 12. In general any number of robots 12 may be controlled by any number of remote stations. For example, one remote station 16 may be coupled to a plurality of robots 12, or one robot 12 may be coupled to a plurality of remote stations 16.


The robot 12 includes a movement platform 34 that is attached to a robot housing 36. Also attached to the robot housing 36 are a camera 38, a monitor 40, a microphone(s) 42 and a speaker 44. The microphone 42 and speaker 30 may create a stereophonic sound. The robot 12 may also have an antenna 45 that is wirelessly coupled to an antenna 46 of the base station 14. The system 10 allows a user at the remote control station 16 to move the robot 12 through the input device 32. The robot camera 38 is coupled to the remote monitor 24 so that a user at the remote station 16 can view a patient. Likewise, the robot monitor 40 is coupled to the remote camera 26 so that the patient can view the user. The microphones 28 and 42, and speakers 30 and 44, allow for audible communication between the patient and the user. The robot 12 may further have a handle 48 that can be rotated to a down position which allows someone to manually push or pull the robot 12.


Each remote station computer 22 may operate Microsoft OS software and WINDOWS XP or other operating systems such as LINUX. The remote computer 22 may also operate a video driver, a camera driver, an audio driver and a joystick driver. The video images may be transmitted and received with compression software such as MPEG CODEC.



FIGS. 2 and 3 show an embodiment of the robot 12. The robot 12 may include a high level control system 50 and a low level control system 52. The high level control system 50 may include a processor 54 that is connected to a bus 56. The bus is coupled to the camera 38 by an input/output (I/O) port 58, and to the monitor 40 by a serial output port 60 and a VGA driver 62. The monitor 40 may include a touchscreen function that allows the patient to enter input by touching the monitor screen.


The speaker 44 is coupled to the bus 56 by a digital to analog converter 64. The microphone 42 is coupled to the bus 56 by an analog to digital converter 66. The high level controller 50 may also contain random access memory (RAM) device 68, a non-volatile RAM device 70 and a mass storage device 72 that are all coupled to the bus 62. The mass storage device 72 may contain medical files of the patient that can be accessed by the user at the remote control station 16. For example, the mass storage device 72 may contain a picture of the patient. The user, particularly a health care provider, can recall the old picture and make a side by side comparison on the monitor 24 with a present video image of the patient provided by the camera 38. The robot antennae 45 may be coupled to a wireless transceiver 74. By way of example, the transceiver 74 may transmit and receive information in accordance with IEEE 802.11b.


The controller 54 may operate with a LINUX OS operating system. The controller 54 may also operate MS WINDOWS along with video, camera and audio drivers for communication with the remote control station 16. Video information may be transceived using MPEG CODEC compression techniques. The software may allow the user to send e-mail to the patient and vice versa, or allow the patient to access the Internet. In general the high level controller 50 operates to control the communication between the robot 12 and the remote control station 16.


The high level controller 50 may be linked to the low level controller 52 by serial ports 76 and 78. The low level controller 52 includes a processor 80 that is coupled to a RAM device 82 and non-volatile RAM device 84 by a bus 86. The robot 12 contains a plurality of motors 88 and motor encoders 90. The encoders 90 provide feedback information regarding the output of the motors 88. The motors 88 can be coupled to the bus 86 by a digital to analog converter 92 and a driver amplifier 94. The encoders 90 can be coupled to the bus 86 by a decoder 96. The robot 12 also has a number of proximity sensors 98 (see also FIG. 1). The position sensors 98 can be coupled to the bus 86 by a signal conditioning circuit 100 and an analog to digital converter 102.


The low level controller 52 runs software routines that mechanically actuate the robot 12. For example, the low level controller 52 provides instructions to actuate the movement platform to move the robot 12. The low level controller 52 may receive movement instructions from the high level controller 50. The movement instructions may be received as movement commands from the remote control station. Although two controllers are shown, it is to be understood that the robot 12 may have one controller controlling the high and low level functions.


The various electrical devices of the robot 12 may be powered by a battery(ies) 104. The battery 104 may be recharged by a battery recharger station 106 (see also FIG. 1). The low level controller 52 may include a battery control circuit 108 that senses the power level of the battery 104. The low level controller 52 can sense when the power falls below a threshold and then send a message to the high level controller 50. The high level controller 50 may include a power management software routine that causes the robot 12 to move so that the battery 104 is coupled to the recharger 106 when the battery power falls below a threshold value. Alternatively, the user can direct the robot 12 to the battery recharger 106. Additionally, the battery 104 may be replaced or the robot 12 may be coupled to a wall power outlet by an electrical cord (not shown).



FIG. 4 shows an embodiment of the robot 12. The robot 12 may include a holonomic platform 110 that is attached to a robot housing 112. The holonomic platform 110 provides three degrees of freedom to allow the robot 12 to move in any direction.


The robot 12 may have an pedestal assembly 114 that supports the camera 38 and the monitor 40. The pedestal assembly 114 may have two degrees of freedom so that the camera 26 and monitor 24 can be swiveled and pivoted as indicated by the arrows.


As shown in FIG. 5 the holonomic platform 110 may include three roller assemblies 120 that are mounted to a base plate 121. The roller assemblies 120 are typically equally spaced about the platform 110 and allow for movement in any direction, although it is to be understood that the assemblies may not be equally spaced.


The robot housing 112 may include a bumper 122. The bumper 122 may be coupled to optical position sensors 123 that detect when the bumper 122 has engaged an object. After engagement with the object the robot can determine the direction of contact and prevent further movement into the object.



FIG. 6 shows an embodiment of a roller assembly 120. Each assembly 120 may include a drive ball 124 that is driven by a pair of transmission rollers 126. The assembly 120 may include a retainer ring 128 and a plurality of bushings 130 that captures and allows the ball 124 to rotate in an x and y direction but prevents movement in a z direction. The assembly also holds the ball under the transmission rollers 126.


The transmission rollers 126 are coupled to a motor assembly 132. The assembly 132 corresponds to the motor 88 shown in FIG. 3. The motor assembly 132 includes an output pulley 134 attached to a motor 136. The output pulley 134 is coupled to a pair of ball pulleys 138 by a drive belt 140. The ball pulleys 138 are each attached to a transmission bracket 142. The transmission rollers 126 are attached to the transmission brackets 142.


Rotation of the output pulley 134 rotates the ball pulleys 138. Rotation of the ball pulleys 138 causes the transmission rollers 126 to rotate and spin the ball 124 through frictional forces. Spinning the ball 124 will move the robot 12. The transmission rollers 126 are constructed to always be in contact with the drive ball 124. The brackets 142 allow the transmission rollers 126 to freely spin and allow orthogonal directional passive movement of 124 when one of the other roller assemblies 120 is driving and moving the robot 12.


As shown in FIG. 7, the pedestal assembly 114 may include a motor 150 that is coupled to a gear 152 by a belt 154. The gear 152 is attached to a shaft 156. The shaft 156 is attached to an arm 158 that is coupled to the camera 38 and monitor 40 by a bracket 160. Activation of the motor 150 rotates the gear 152 and sleeve 156, and causes the camera 38 and monitor 40 to swivel (see also FIG. 4) as indicated by the arrows 4.


As shown in FIG. 8, the assembly 114 may further include a tilt motor 162 within the arm 158 that can cause the monitor 40 and camera 38 to pivot as indicated by the arrows 5. The tilt motor 162 may rotate a worm 164 that rotates a worm gear 166. The pin 168 is rigidly attached to both the worm gear 166 and the bracket 160 so that rotation of the gear 166 pivots the camera 38 and the monitor 40. The camera 38 may also include a zoom feature to provide yet another degree of freedom for the operator.


In operation, the robot 12 may be placed in a home or a facility where one or more patients are to be monitored and/or assisted. The facility may be a hospital or a residential care facility. By way of example, the robot 12 may be placed in a home where a health care provider may monitor and/or assist the patient. Likewise, a friend or family member may communicate with the patient. The cameras and monitors at both the robot and remote control stations allow for teleconferencing between the patient and the person at the remote station(s).


The robot 12 can be maneuvered through the home or facility by manipulating the input device 32 at a remote station 16.



FIG. 9 shows a plurality of remote stations 16A-C that can access a robot 12 through a network 18. One of the remote stations 12B can be designated a master station which contains an arbitrator 250. The remote stations 16 may be configured so that all messages, commands, etc. provided to the robot 12 are initially routed to the master remote station 16B. Each message packet may include a priority field that contains the priority number of the station 16A, 16B or 16C sending the message. The arbitrator 250 determines which station has priority and then forwards the message from that station 16A, 16B or 16C to the robot 12. The arbitrator 250 may also send a call back message to the other remote station(s) stating that the station(s) with lower priority does not have access to the robot 12. The arbitrator 250 can cut-off access to the robot from one station and provide access to another station with a higher priority number.


Alternatively, a remote station may route a message, command, etc. to the robot 12 which then forwards a message, command, etc. to the arbitrator 250 to determine whether the station should have access. The arbitrator 250 can then provide a reply message either granting or denying access to the robot.



FIG. 10 shows a flowchart describing a process for access the robot 12. A remote station 16A, 16B or 16C may generate a request message to access the robot in block 300. The message may include the priority number of the remote station. The arbitrator 250 determines whether the request includes a priority number higher than any existing priority number in decision block 302. If a remote station has the same priority number the station first in time maintains access to the robot.


If the request included the highest priority number the arbitrator allows access to the robot in block 304. If the request does not contain the highest priority number, then arbitrator 250 sends a call-back message in block 306. To establish priority, the users may be divided into classes that include the robot itself, a local user, a caregiver, a doctor, a family member, or a service provider. The robot 12 may override input commands that conflict with robot operation. For example, if the robot runs into a wall, the system may ignore all additional commands to continue in the direction of the wall. A local user is a person who is physically present with the robot. The robot could have an input device that allows local operation. For example, the robot may incorporate a voice recognition system that receives and interprets audible commands.


A caregiver is someone who remotely monitors the patient. A doctor is a medical professional who can remotely control the robot and also access medical files contained in the robot memory. The family and service users remotely access the robot. The service user may service the system such as by upgrading software, or setting operational parameters.


Message packets may be transmitted between a robot 12 and a remote station 16. The packets provide commands and feedback. Each packet may have multiple fields. By way of example, a packet may include an ID field a forward speed field, an angular speed field, a stop field, a bumper field, a sensor range field, a configuration field, a text field and a debug field.


The identification of remote users can be set in an ID field of the information that is transmitted from the remote control station 16 to the robot 12. For example, a user may enter a user ID into a setup table in the application software run by the remote control station 16. The user ID is then sent with each message transmitted to the robot.


The robot 12 may operate in one of two different modes; an exclusive mode, or a sharing mode. In the exclusive mode only one user has access control of the robot. The exclusive mode may have a priority assigned to each type of user. By way of example, the priority may be in order of local, doctor, caregiver, family and then service user. In the sharing mode two or more users may share access with the robot. For example, a caregiver may have access to the robot, the caregiver may then enter the sharing mode to allow a doctor to also access the robot. Both the caregiver and the doctor can conduct a simultaneous teleconference with the patient.


The arbitrator may have one of four mechanisms; notification, timeouts, queue and call back. The notification mechanism may inform either a present user or a requesting user that another user has, or wants, access to the robot. The timeout mechanism gives certain types of users a prescribed amount of time to finish access to the robot. The queue mechanism is an orderly waiting list for access to the robot. The call back mechanism informs a user that the robot can be accessed. By way of example, a family user may receive an e-mail message that the robot is free for usage. Tables 1 and 2, show how the mechanisms resolve access request from the various users.














TABLE I






Access
Medical
Command
Software/Debug
Set


User
Control
Record
Override
Access
Priority







Robot
No
No
Yes (1)
No
No


Local
No
No
Yes (2)
No
No


Caregiver
Yes
Yes
Yes (3)
No
No


Doctor
No
Yes
No
No
No


Family
No
No
No
No
No


Service
Yes
No
Yes
Yes
Yes
















TABLE II







Requesting User













Local
Caregiver
Doctor
Family
Service
















Current
Local
Not
Warn current user
Warn current user of
Warn current user of
Warn current user of


User

Allowed
of pending user
pending user
pending user
pending user





Notify requesting
Notify requesting user
Notify requesting user
Notify requesting





user that system is
that system is in use
that system is in use
user that system is in use





in use
Set timeout = 5 m
Set timeout = 5 m
No timeout





Set timeout

Call back
Call back



Caregiver
Warn current user
Not Allowed
Warn current user of
Warn current user of
Warn current user of




of pending user.

pending user
pending user
pending user




Notify requesting

Notify requesting user
Notify requesting user
Notify requesting




user that system is

that system is in use
that system is in use
user that system is in use




in use.

Set timeout = 5 m
Set timeout = 5 m
No timeout




Release control

Queue or callback

Callback



Doctor
Warn current user
Warn current user
Warn current user of
Notify requesting user
Warn current user of




of pending user
of pending user
pending user
that system is in use
pending user




Notify requesting
Notify requesting
Notify requesting user
No timeout
Notify requesting user




user that system is
user that system is
that system is in use
Queue or callback
that system is in use




in use
in use
No timeout

No timeout




Release control
Set timeout = 5 m
Callback

Callback



Family
Warn current user
Notify requesting
Warn current user of
Warn current user of
Warn current user of




of pending user
user that system is
pending user
pending user
pending user




Notify requesting
in use
Notify requesting user
Notify requesting user
Notify requesting user




user that system is
No timeout
that system is in use
that system is in use
that system is in use




in use
Put in queue or
Set timeout = 1 m
Set timeout = 5 m
No timeout




Release Control
callback

Queue or callback
Callback



Service
Warn current user
Notify requesting
Warn current user of
Warn current user of
Not Allowed




of pending user
user that system is
request
pending user





Notify requesting
in use
Notify requesting user
Notify requesting user





user that system is
No timeout
that system is in use
that system is in use





in use
Callback
No timeout
No timeout





No timeout

Callback
Queue or callback









The information transmitted between the station 16 and the robot 12 may be encrypted. Additionally, the user may have to enter a password to enter the system 10. A selected robot is then given an electronic key by the station 16. The robot 12 validates the key and returns another key to the station 16. The keys are used to encrypt information transmitted in the session.



FIG. 11 shows a robot head 350 that can both pivot and spin the camera 38 and the monitor 40. The robot head 350 can be similar to the robot 12 but without the platform 110. The robot head 350 may have the same mechanisms and parts to both pivot the camera 38 and monitor 40 about the pivot axis 4, and spin the camera 38 and monitor 40 about the spin axis 5. The pivot axis may intersect the spin axis. Having a robot head 350 that both pivots and spins provides a wide viewing area. The robot head 350 may be in the system either with or instead of the mobile robot 12.


While certain exemplary embodiments have been described and shown in the accompanying drawings, it is to be understood that such embodiments are merely illustrative of and not restrictive on the broad invention, and that this invention not be limited to the specific constructions and arrangements shown and described, since various other modifications may occur to those ordinarily skilled in the art.


For example, although the arbitrator is described and shown as being in one of the remote stations, the arbitrator could be within a server, robot or any device, that is connected to the network and in communication with both the remote stations and the robot.

Claims
  • 1. A robot system, comprising: a first mobile robot and a second mobile robot that each have a camera that can generate an image, a monitor, a speaker and a microphone that can generate audio;a first remote station that can access said first and second mobile robots, said first remote station including a camera, a monitor that can receive said image from said first or second mobile robots, a microphone and a speaker that can produce audio provided by said first or second mobile robots; and,a second remote station that can access said first and second mobile robots, said second remote station including a camera, a monitor that can receive said image from said first and second mobile robots, a microphone and a speaker that can produce audio provided by said first and second mobile robots; and,a server coupled to said first and second mobile robots and said first and second remote stations, said server allows exclusive access to said first mobile robot by said first remote station such that said image and audio from said first mobile robot is provided to said first remote station and said image and audio are not provided to said second remote station and even though said second remote station is prevented from accessing said first mobile robot said server allows said second remote station to access said second mobile robot.
  • 2. The system of claim 1, wherein said server includes a notification mechanism.
  • 3. The system of claim 1, wherein said arbitrator includes a timeout mechanism.
  • 4. The system of claim 1, wherein said arbitrator includes a queue mechanism.
  • 5. The system of claim 1, wherein said arbitrator includes a call back mechanism.
  • 6. The system of claim 1, wherein said second remote station can access said mobile robot, and said first and second remote stations each have a priority and said arbitrator provides robot access to said remote station with a highest priority.
  • 7. The system of claim 6, wherein said remote stations may be given priority as a local user, a doctor, a caregiver, a family member, a service user or another mobile robot.
  • 8. A method for controlling access to a remote controlled robot, comprising: providing a first mobile robot and a second mobile robot that each have a monitor, a camera that can generate an image, a speaker and a microphone that can generate audio;providing a plurality of remote stations, including a first remote station and a second remote station, each remote station including a camera, a monitor that can receive the image from the first or second mobile robots, a microphone and a speaker that can produce audio provided by the first or second mobile robots;transmitting a request to access the [a] first mobile robot from the [a] first remote station;allowing exclusive access to the first mobile robot by the first remote station such that the image and audio from the first mobile robot is provided to the first remote station and the image and audio are not provided to the second remote station;transmitting a request to access the second mobile robot from the second remote station; and,accessing the second mobile robot by the second remote station.
  • 9. The method of claim 8, further comprising requesting access to the first mobile robot from the second remote station and notifying the first remote station of the request.
  • 10. The method of claim 9, wherein the second remote station creates a time interval in which the first remote station must relinquish access to the mobile robot.
  • 11. The method of claim 9, wherein the request from the second remote station is placed in a waiting list queue.
  • 12. The method of claim 8, further comprising transmitting a call back message from the second remote station to the first remote station to indicate the granting of access to the mobile robot.
  • 13. The method of claim 12, wherein the mobile robot operates in either an exclusive mode or a sharing mode.
  • 14. The method of claim 12, wherein the access request is initially transmitted to the second remote station.
  • 15. The method of claim 12, wherein the access request is initially transmitted to the mobile robot.
  • 16. The method of claim 8, wherein the access request includes a priority that is evaluated by the second remote station to determine access to the mobile robot.
  • 17. The method of claim 16, wherein the remote stations may be given priority as a local user, a doctor, a caregiver, a family member, a service user or another mobile robot.
REFERENCE TO CROSS-RELATED APPLICATIONS

This application is a continuation of application Ser. No. 13/944,526, filed on Jul. 17, 2013, pending, which is a continuation of application Ser. No. 11/983,058, filed Nov. 5, 2007, now U.S. Pat. No. 8,515,577, which is a continuation of application Ser. No. 10/783,760, filed Feb. 2, 2004, abandoned, which is a continuation-in-part of application Ser. No. 10/206,457, filed on Jul. 25, 2002, now U.S. Pat. No. 6,925,357, and claims priority to Provisional Application No. 60/449,762, filed on Feb. 24, 2003.

US Referenced Citations (813)
Number Name Date Kind
3623013 Perkins Nov 1971 A
3821995 Aghnides Jul 1974 A
4107689 Jellinek Aug 1978 A
4213182 Eichelberger et al. Jul 1980 A
4413693 Derby Nov 1983 A
4471354 Smith Sep 1984 A
4519466 Shiraishi May 1985 A
4553309 Hess et al. Nov 1985 A
4572594 Schwartz Feb 1986 A
4625274 Schroeder Nov 1986 A
4638445 Mattaboni Jan 1987 A
4652204 Arnett Mar 1987 A
4669168 Tamura et al. Jun 1987 A
4679152 Perdue Jul 1987 A
4697278 Fleischer Sep 1987 A
4697472 Hiyane Oct 1987 A
4709265 Silverman et al. Nov 1987 A
4733737 Falamak Mar 1988 A
4751658 Kadonoff et al. Jun 1988 A
4766581 Korn Aug 1988 A
4777416 George, II et al. Oct 1988 A
4797557 Ohman Jan 1989 A
4803625 Fu et al. Feb 1989 A
4847764 Halvorson Jul 1989 A
4875172 Kanayama Oct 1989 A
4878501 Shue Nov 1989 A
4942512 Kohno Jul 1990 A
4942538 Yuan et al. Jul 1990 A
4953159 Hayden et al. Aug 1990 A
4974607 Miwa Dec 1990 A
4977971 Crane, III et al. Dec 1990 A
5006988 Borenstein et al. Apr 1991 A
5040116 Evans, Jr. et al. Aug 1991 A
5051906 Evans, Jr. et al. Sep 1991 A
5073749 Kanayama Dec 1991 A
5084828 Kaufman et al. Jan 1992 A
5130794 Ritchey Jul 1992 A
5148591 Pryor Sep 1992 A
5153833 Gordon et al. Oct 1992 A
5155684 Burke et al. Oct 1992 A
5157491 Kassatly Oct 1992 A
5182641 Diner et al. Jan 1993 A
5186270 West Feb 1993 A
5193143 Kaemmerer et al. Mar 1993 A
5217453 Wilk Jun 1993 A
5220263 Onishi et al. Jun 1993 A
5224157 Yamada et al. Jun 1993 A
5230023 Nakano Jul 1993 A
5231693 Backes et al. Jul 1993 A
5236432 Matsen, III et al. Aug 1993 A
5262944 Weisner et al. Nov 1993 A
5305427 Nagata Apr 1994 A
5315287 Sol May 1994 A
5319611 Korba Jun 1994 A
5341242 Gilboa et al. Aug 1994 A
5341459 Backes Aug 1994 A
5341854 Zezulka et al. Aug 1994 A
5347306 Nitta Sep 1994 A
5347457 Tanaka et al. Sep 1994 A
5350033 Kraft Sep 1994 A
5366896 Margrey et al. Nov 1994 A
5374879 Pin et al. Dec 1994 A
5375195 Johnston Dec 1994 A
5400068 Ishida et al. Mar 1995 A
5413693 Redepenning May 1995 A
5417210 Funda et al. May 1995 A
5419008 West May 1995 A
5436542 Petelin et al. Jul 1995 A
5441042 Putman Aug 1995 A
5441047 David et al. Aug 1995 A
5442728 Kaufman et al. Aug 1995 A
5462051 Oka et al. Oct 1995 A
5486853 Baxter et al. Jan 1996 A
5510832 Garcia Apr 1996 A
5511147 Abdel-Malek Apr 1996 A
5528289 Cortjens et al. Jun 1996 A
5532702 Mintz Jul 1996 A
5539741 Barraclough et al. Jul 1996 A
5544649 David et al. Aug 1996 A
5550577 Verbiest et al. Aug 1996 A
5553609 Chen et al. Sep 1996 A
5563998 Yaksich et al. Oct 1996 A
5572229 Fisher Nov 1996 A
5572999 Funda et al. Nov 1996 A
5594859 Palmer et al. Jan 1997 A
5600573 Hendricks et al. Feb 1997 A
5617539 Ludwig et al. Apr 1997 A
5619341 Auyeung et al. Apr 1997 A
5623679 Rivette et al. Apr 1997 A
5630566 Case May 1997 A
5636218 Ishikawa et al. Jun 1997 A
5652849 Conway et al. Jul 1997 A
5657246 Hogan et al. Aug 1997 A
5659779 Laird et al. Aug 1997 A
5673082 Wells et al. Sep 1997 A
5675229 Thorne Oct 1997 A
5682199 Lankford Oct 1997 A
5684695 Bauer Nov 1997 A
5701904 Simmons et al. Dec 1997 A
5734805 Isensee et al. Mar 1998 A
5739657 Takayama et al. Apr 1998 A
5748629 Caldara et al. May 1998 A
5749058 Hashimoto May 1998 A
5749362 Funda et al. May 1998 A
5754631 Cave May 1998 A
5758079 Ludwig et al. May 1998 A
5761736 Sharma Jun 1998 A
5762458 Wang et al. Jun 1998 A
5764731 Yablon Jun 1998 A
5767897 Howell Jun 1998 A
5786846 Hiroaki Jul 1998 A
5787545 Colens Aug 1998 A
5793365 Tang et al. Aug 1998 A
5801755 Echerer Sep 1998 A
5802494 Kuno Sep 1998 A
5836872 Kenet et al. Nov 1998 A
5838575 Lion Nov 1998 A
5844599 Hildin Dec 1998 A
5857534 DeVault et al. Jan 1999 A
5867494 Krishnaswamy et al. Feb 1999 A
5867653 Aras Feb 1999 A
5871451 Unger et al. Feb 1999 A
5872922 Hogan et al. Feb 1999 A
5876325 Mizuno et al. Mar 1999 A
5911036 Wright et al. Jun 1999 A
5917958 Nunally et al. Jun 1999 A
5927423 Wada et al. Jul 1999 A
5941363 Partyka Aug 1999 A
5949758 Kober Sep 1999 A
5954692 Smith et al. Sep 1999 A
5959423 Nakanishi et al. Sep 1999 A
5961446 Beller et al. Oct 1999 A
5966130 Benman, Jr. Oct 1999 A
5973724 Riddle Oct 1999 A
5974446 Sonnenreich et al. Oct 1999 A
5983263 Rothrock et al. Nov 1999 A
5995119 Cosatto et al. Nov 1999 A
5995884 Allen et al. Nov 1999 A
5999977 Riddle Dec 1999 A
6006946 Williams et al. Dec 1999 A
6031845 Walding Feb 2000 A
6036812 Williams et al. Mar 2000 A
6047259 Campbell et al. Apr 2000 A
6091219 Maruo et al. Jul 2000 A
6113343 Goldenberg et al. Sep 2000 A
6133944 Braun et al. Oct 2000 A
6135228 Asada et al. Oct 2000 A
6148100 Anderson et al. Nov 2000 A
6160582 Hill Dec 2000 A
6170929 Wilson et al. Jan 2001 B1
6175779 Barrett Jan 2001 B1
6189034 Riddle Feb 2001 B1
6201984 Funda et al. Mar 2001 B1
6211903 Bullister Apr 2001 B1
6219587 Ahlin et al. Apr 2001 B1
6232735 Baba et al. May 2001 B1
6233504 Das et al. May 2001 B1
6233735 Ebihara May 2001 B1
6250928 Poggio et al. Jun 2001 B1
6256556 Zenke Jul 2001 B1
6259806 Green Jul 2001 B1
6259956 Myers et al. Jul 2001 B1
6266162 Okamura et al. Jul 2001 B1
6266577 Popp et al. Jul 2001 B1
6289263 Mukherjee Sep 2001 B1
6292713 Jouppi Sep 2001 B1
6292714 Okabayashi Sep 2001 B1
6304050 Skaar et al. Oct 2001 B1
6313853 Lamontagne Nov 2001 B1
6314631 Pryor Nov 2001 B1
6317652 Osada Nov 2001 B1
6317953 Pryor Nov 2001 B1
6321137 De Smet Nov 2001 B1
6324184 Hou et al. Nov 2001 B1
6324443 Kurakake et al. Nov 2001 B1
6325756 Webb et al. Dec 2001 B1
6327516 Zenke Dec 2001 B1
6330486 Padula Dec 2001 B1
6330493 Takahashi et al. Dec 2001 B1
6346950 Jouppi Feb 2002 B1
6346962 Goodridge Feb 2002 B1
6369847 James Apr 2002 B1
6373855 Downing et al. Apr 2002 B1
6381515 Inoue et al. Apr 2002 B1
6389329 Colens May 2002 B1
6400378 Snook Jun 2002 B1
6408230 Wada Jun 2002 B2
6411055 Fujita et al. Jun 2002 B1
6430471 Kintou Aug 2002 B1
6430475 Okamoto et al. Aug 2002 B2
6438457 Yokoo et al. Aug 2002 B1
6445964 White et al. Sep 2002 B1
6449762 McElvain Sep 2002 B1
6452915 Jorgensen Sep 2002 B1
6457043 Kwak et al. Sep 2002 B1
6459955 Bartsch et al. Oct 2002 B1
6463352 Tadokoro et al. Oct 2002 B1
6463361 Wang et al. Oct 2002 B1
6466844 Ikeda et al. Oct 2002 B1
6468265 Evans et al. Oct 2002 B1
6470235 Kasuga et al. Oct 2002 B2
6474434 Bech Nov 2002 B1
6480762 Uchikubo et al. Nov 2002 B1
6491701 Tierney et al. Dec 2002 B2
6496099 Wang Dec 2002 B2
6496755 Wallach et al. Dec 2002 B2
6501740 Sun et al. Dec 2002 B1
6507773 Parker et al. Jan 2003 B2
6522906 Salisbury, Jr. et al. Feb 2003 B1
6523629 Buttz Feb 2003 B1
6526332 Sakamoto et al. Feb 2003 B2
6529620 Thompson Mar 2003 B2
6529765 Franck et al. Mar 2003 B1
6529802 Kawakita et al. Mar 2003 B1
6532404 Colens Mar 2003 B2
6535182 Stanton Mar 2003 B2
6535793 Allard Mar 2003 B2
6540039 Yu et al. Apr 2003 B1
6543899 Covannon et al. Apr 2003 B2
6549215 Jouppi Apr 2003 B2
6563533 Colby May 2003 B1
6567038 Granot et al. May 2003 B1
6580246 Jacobs Jun 2003 B2
6581798 Liff et al. Jun 2003 B2
6584376 Van Kommer Jun 2003 B1
6587750 Gerbi et al. Jul 2003 B2
6590604 Tucker et al. Jul 2003 B1
6594269 Polcyn Jul 2003 B1
6594552 Nowlin et al. Jul 2003 B1
6597392 Jenkins et al. Jul 2003 B1
6602469 Maus et al. Aug 2003 B1
6604019 Ahlin et al. Aug 2003 B2
6604021 Imai et al. Aug 2003 B2
6611120 Song et al. Aug 2003 B2
6643496 Shimoyama et al. Nov 2003 B1
6646677 Noro et al. Nov 2003 B2
6650748 Edwards et al. Nov 2003 B1
6666374 Green et al. Dec 2003 B1
6667592 Jacobs et al. Dec 2003 B2
6674259 Norman et al. Jan 2004 B1
6684129 Salisbury, Jr. et al. Jan 2004 B2
6691000 Nagai et al. Feb 2004 B2
6693585 MacLeod Feb 2004 B1
6710797 McNelley et al. Mar 2004 B1
6724823 Rovati et al. Apr 2004 B2
6728599 Wang et al. Apr 2004 B2
6763282 Glenn et al. Jul 2004 B2
6764373 Osawa et al. Jul 2004 B1
6769771 Trumbull Aug 2004 B2
6781606 Jouppi Aug 2004 B2
6784916 Smith Aug 2004 B2
6785589 Eggenberger et al. Aug 2004 B2
6791550 Goldhor et al. Sep 2004 B2
6798753 Doganata et al. Sep 2004 B1
6799065 Niemeyer Sep 2004 B1
6799088 Wang et al. Sep 2004 B2
6804580 Stoddard et al. Oct 2004 B1
6804656 Rosenfeld et al. Oct 2004 B1
6810411 Coughlin et al. Oct 2004 B1
6816192 Nishikawa Nov 2004 B1
6816754 Mukai et al. Nov 2004 B2
6836703 Wang et al. Dec 2004 B2
6839612 Sanchez et al. Jan 2005 B2
6840904 Goldberg Jan 2005 B2
6845297 Allard Jan 2005 B2
6852107 Wang Feb 2005 B2
6853878 Hirayama et al. Feb 2005 B2
6853880 Sakagami et al. Feb 2005 B2
6871117 Wang et al. Mar 2005 B2
6879879 Jouppi et al. Apr 2005 B2
6888333 Laby May 2005 B2
6892112 Wang et al. May 2005 B2
6893267 Yueh May 2005 B1
6895305 Lathan et al. May 2005 B2
6898484 Lemelson et al. May 2005 B2
6914622 Smith et al. Jul 2005 B1
6925357 Wang Aug 2005 B2
6951535 Ghodoussi et al. Oct 2005 B2
6952470 Tioe et al. Oct 2005 B1
6957712 Song et al. Oct 2005 B2
6958706 Chaco et al. Oct 2005 B2
6965394 Gutta et al. Nov 2005 B2
6990112 Brent et al. Jan 2006 B1
6995664 Darling Feb 2006 B1
7007235 Hussein et al. Feb 2006 B1
7011538 Chang Mar 2006 B2
7015934 Toyama et al. Mar 2006 B2
RE39080 Johnston Apr 2006 E
7030757 Matsuhira et al. Apr 2006 B2
7053578 Diehl et al. May 2006 B2
7055210 Keppler et al. Jun 2006 B2
7058689 Parker et al. Jun 2006 B2
7092001 Schulz Aug 2006 B2
7096090 Zweig Aug 2006 B1
7115102 Abbruscato Oct 2006 B2
7117067 McLurkin et al. Oct 2006 B2
7123285 Smith et al. Oct 2006 B2
7123974 Hamilton Oct 2006 B1
7123991 Graf et al. Oct 2006 B2
7127325 Nagata et al. Oct 2006 B2
7129970 James et al. Oct 2006 B2
7133062 Castles et al. Nov 2006 B2
7142945 Wang et al. Nov 2006 B2
7142947 Wang et al. Nov 2006 B2
7151982 Liff et al. Dec 2006 B2
7154526 Foote et al. Dec 2006 B2
7155306 Haitin et al. Dec 2006 B2
7156809 Quy Jan 2007 B2
7158859 Wang et al. Jan 2007 B2
7158860 Wang et al. Jan 2007 B2
7158861 Wang et al. Jan 2007 B2
7161322 Wang et al. Jan 2007 B2
7162338 Goncalves et al. Jan 2007 B2
7164969 Wang et al. Jan 2007 B2
7164970 Wang et al. Jan 2007 B2
7167448 Wookey et al. Jan 2007 B2
7171286 Wang et al. Jan 2007 B2
7174238 Zweig Feb 2007 B1
7181455 Wookey et al. Feb 2007 B2
7184559 Jouppi Feb 2007 B2
7188000 Chiappetta et al. Mar 2007 B2
7199790 Rosenberg et al. Apr 2007 B2
7202851 Cunningham et al. Apr 2007 B2
7206627 Abovitz et al. Apr 2007 B2
7215786 Nakadai et al. May 2007 B2
7219364 Bolle et al. May 2007 B2
7222000 Wang et al. May 2007 B2
7227334 Yang et al. Jun 2007 B2
7256708 Rosenfeld et al. Aug 2007 B2
7262573 Wang et al. Aug 2007 B2
7283153 Provost et al. Oct 2007 B2
7289883 Wang et al. Oct 2007 B2
7292257 Kang et al. Nov 2007 B2
7292912 Wang et al. Nov 2007 B2
7305114 Wolff et al. Dec 2007 B2
7317685 Flott et al. Jan 2008 B1
7321807 Laski Jan 2008 B2
7332890 Cohen et al. Feb 2008 B2
7333642 Green Feb 2008 B2
7346429 Goldenberg Mar 2008 B2
7352153 Yan Apr 2008 B2
7363121 Chen et al. Apr 2008 B1
7382399 McCall et al. Jun 2008 B1
7386730 Uchikubo Jun 2008 B2
7391432 Terada Jun 2008 B2
7400578 Guthrie et al. Jul 2008 B2
7404140 O'Rourke Jul 2008 B2
7421470 Ludwig et al. Sep 2008 B2
7430209 Porter Sep 2008 B2
7432949 Remy et al. Oct 2008 B2
7433921 Ludwig et al. Oct 2008 B2
7441953 Banks Oct 2008 B2
7467211 Herman et al. Dec 2008 B1
7483867 Ansari et al. Jan 2009 B2
7492731 Hagendorf Feb 2009 B2
7510428 Obata et al. Mar 2009 B2
7523069 Friedl et al. Apr 2009 B1
7525281 Koyanagi et al. Apr 2009 B2
7535486 Motomura et al. May 2009 B2
7557758 Rofougaran Jul 2009 B2
7587260 Bruemmer et al. Sep 2009 B2
7587512 Ta et al. Sep 2009 B2
7590060 Miceli Sep 2009 B2
7593030 Wang et al. Sep 2009 B2
7599290 Dos Remedios et al. Oct 2009 B2
7624166 Foote et al. Nov 2009 B2
7630314 Dos Remedios et al. Dec 2009 B2
7631833 Ghaleb et al. Dec 2009 B1
7643051 Sandberg et al. Jan 2010 B2
7647320 Mok et al. Jan 2010 B2
7657560 DiRienzo Feb 2010 B1
7680038 Gourlay Mar 2010 B1
7693757 Zimmerman Apr 2010 B2
7698432 Short et al. Apr 2010 B2
7703113 Dawson Apr 2010 B2
7719229 Kaneko et al. May 2010 B2
7737993 Kaasila et al. Jun 2010 B2
7739383 Short et al. Jun 2010 B1
7756614 Jouppi Jul 2010 B2
7761185 Wang et al. Jul 2010 B2
7769492 Wang et al. Aug 2010 B2
7769705 Luechtefeld Aug 2010 B1
7774158 Domingues et al. Aug 2010 B2
7813836 Wang et al. Oct 2010 B2
7831575 Trossell Nov 2010 B2
7835775 Sawayama et al. Nov 2010 B2
7860680 Arms et al. Dec 2010 B2
7861366 Hahm et al. Jan 2011 B2
7885822 Akers et al. Feb 2011 B2
7890382 Robb et al. Feb 2011 B2
7912583 Gutmann et al. Mar 2011 B2
RE42288 Degioanni Apr 2011 E
7924323 Walker et al. Apr 2011 B2
7949616 Levy et al. May 2011 B2
7956894 Akers et al. Jun 2011 B2
7957837 Ziegler et al. Jun 2011 B2
7982763 King Jul 2011 B2
7982769 Jenkins et al. Jul 2011 B2
7987069 Rodgers et al. Jul 2011 B2
8077963 Wang et al. Dec 2011 B2
8116910 Walters et al. Feb 2012 B2
8126960 Obradovich et al. Feb 2012 B2
8170241 Roe et al. May 2012 B2
8179418 Wright et al. May 2012 B2
8180486 Saito et al. May 2012 B2
8209051 Wang et al. Jun 2012 B2
8212533 Ota Jul 2012 B2
8265793 Cross et al. Sep 2012 B2
8287522 Moses et al. Oct 2012 B2
8292807 Perkins et al. Oct 2012 B2
8320534 Kim et al. Nov 2012 B2
8340654 Bratton et al. Dec 2012 B2
8340819 Mangaser et al. Dec 2012 B2
8348675 Dohrmann Jan 2013 B2
8374171 Cho et al. Feb 2013 B2
8400491 Panpaliya et al. Mar 2013 B1
8401275 Wang et al. Mar 2013 B2
8423284 O'Shea Apr 2013 B2
8451731 Lee et al. May 2013 B1
8463435 Herzog et al. Jun 2013 B2
8503340 Xu Aug 2013 B1
8515577 Wang et al. Aug 2013 B2
8527094 Kumar et al. Sep 2013 B2
8532860 Daly Sep 2013 B2
8610786 Ortiz Dec 2013 B2
8612051 Norman et al. Dec 2013 B2
8639797 Pan et al. Jan 2014 B1
8670017 Stuart et al. Mar 2014 B2
8682486 Wang et al. Mar 2014 B2
8726454 Gilbert, Jr. et al. May 2014 B2
8836751 Ballantyne et al. Sep 2014 B2
8849679 Wang et al. Sep 2014 B2
8849680 Wright et al. Sep 2014 B2
8861750 Roe et al. Oct 2014 B2
8897920 Wang et al. Nov 2014 B2
8902278 Pinter et al. Dec 2014 B2
20010002448 Wilson et al. May 2001 A1
20010010053 Ben-Shachar Jul 2001 A1
20010020200 Das et al. Sep 2001 A1
20010034475 Flach et al. Oct 2001 A1
20010034544 Mo Oct 2001 A1
20010037163 Allard Nov 2001 A1
20010048464 Barnett Dec 2001 A1
20010051881 Filler Dec 2001 A1
20010054071 Loeb Dec 2001 A1
20010055373 Yamashita Dec 2001 A1
20020015296 Howell et al. Feb 2002 A1
20020027597 Sachau Mar 2002 A1
20020027652 Paromtchik et al. Mar 2002 A1
20020033880 Sul et al. Mar 2002 A1
20020038168 Kasuga et al. Mar 2002 A1
20020044201 Alexander et al. Apr 2002 A1
20020049517 Ruffner Apr 2002 A1
20020055917 Muraca May 2002 A1
20020057279 Jouppi May 2002 A1
20020058929 Green May 2002 A1
20020059587 Cofano et al. May 2002 A1
20020062177 Hannaford May 2002 A1
20020063726 Jouppi May 2002 A1
20020073429 Beane et al. Jun 2002 A1
20020082498 Wendt et al. Jun 2002 A1
20020085030 Ghani Jul 2002 A1
20020095238 Ahlin et al. Jul 2002 A1
20020095239 Wallach et al. Jul 2002 A1
20020098879 Rheey Jul 2002 A1
20020104094 Alexander et al. Aug 2002 A1
20020106998 Presley et al. Aug 2002 A1
20020109770 Terada Aug 2002 A1
20020109775 White et al. Aug 2002 A1
20020111988 Sato Aug 2002 A1
20020120362 Lathan Aug 2002 A1
20020128985 Greenwald Sep 2002 A1
20020130950 James et al. Sep 2002 A1
20020133062 Arling et al. Sep 2002 A1
20020143923 Alexander Oct 2002 A1
20020177925 Onishi Nov 2002 A1
20020183894 Wang et al. Dec 2002 A1
20020184674 Xi et al. Dec 2002 A1
20020186243 Ellis et al. Dec 2002 A1
20020193908 Parker Dec 2002 A1
20030021107 Howell et al. Jan 2003 A1
20030030397 Simmons Feb 2003 A1
20030048481 Kobayashi et al. Mar 2003 A1
20030050733 Wang et al. Mar 2003 A1
20030050734 Lapham Mar 2003 A1
20030060808 Wilk Mar 2003 A1
20030063600 Noma et al. Apr 2003 A1
20030069752 Ledain et al. Apr 2003 A1
20030069828 Blazey Apr 2003 A1
20030080901 Piotrowski May 2003 A1
20030100892 Morley et al. May 2003 A1
20030104806 Ruef et al. Jun 2003 A1
20030112823 Collins et al. Jun 2003 A1
20030114962 Niemeyer et al. Jun 2003 A1
20030120714 Wolff et al. Jun 2003 A1
20030126361 Slater Jul 2003 A1
20030135097 Wiederhold et al. Jul 2003 A1
20030135203 Wang et al. Jul 2003 A1
20030144579 Buss Jul 2003 A1
20030144649 Ghodoussi et al. Jul 2003 A1
20030151658 Smith Aug 2003 A1
20030152145 Kawakita Aug 2003 A1
20030171710 Bassuk et al. Sep 2003 A1
20030174285 Trumbull Sep 2003 A1
20030180697 Kim et al. Sep 2003 A1
20030195662 Wang et al. Oct 2003 A1
20030199000 Valkirs et al. Oct 2003 A1
20030206242 Choi Nov 2003 A1
20030212472 McKee Nov 2003 A1
20030216833 Mukai et al. Nov 2003 A1
20030216834 Allard Nov 2003 A1
20030220541 Salisbury, Jr. et al. Nov 2003 A1
20030220715 Kneifel, II et al. Nov 2003 A1
20030231244 Bonilla et al. Dec 2003 A1
20030232649 Gizis et al. Dec 2003 A1
20030236590 Park et al. Dec 2003 A1
20040001197 Ko et al. Jan 2004 A1
20040001676 Colgan et al. Jan 2004 A1
20040008138 Hockley, Jr. et al. Jan 2004 A1
20040010344 Hiratsuka et al. Jan 2004 A1
20040012362 Tsurumi Jan 2004 A1
20040013295 Sabe et al. Jan 2004 A1
20040017475 Akers et al. Jan 2004 A1
20040019406 Wang et al. Jan 2004 A1
20040024490 McLurkin et al. Feb 2004 A1
20040041904 Lapalme et al. Mar 2004 A1
20040065073 Nash Apr 2004 A1
20040068657 Alexander et al. Apr 2004 A1
20040078219 Kaylor et al. Apr 2004 A1
20040080610 James et al. Apr 2004 A1
20040088077 Jouppi et al. May 2004 A1
20040088078 Jouppi et al. May 2004 A1
20040093409 Thompson et al. May 2004 A1
20040095516 Rohlicek May 2004 A1
20040098167 Yi et al. May 2004 A1
20040102167 Shim et al. May 2004 A1
20040107254 Ludwig et al. Jun 2004 A1
20040107255 Ludwig et al. Jun 2004 A1
20040117065 Wang et al. Jun 2004 A1
20040117067 Jouppi Jun 2004 A1
20040123158 Roskind Jun 2004 A1
20040135879 Stacy et al. Jul 2004 A1
20040138547 Wang et al. Jul 2004 A1
20040143421 Wang et al. Jul 2004 A1
20040148638 Weisman et al. Jul 2004 A1
20040150725 Taguchi Aug 2004 A1
20040153211 Kamoto et al. Aug 2004 A1
20040157612 Kim Aug 2004 A1
20040162637 Wang et al. Aug 2004 A1
20040167666 Wang et al. Aug 2004 A1
20040167668 Wang et al. Aug 2004 A1
20040168148 Goncalves et al. Aug 2004 A1
20040170300 Jouppi Sep 2004 A1
20040172301 Mihai et al. Sep 2004 A1
20040172306 Wohl et al. Sep 2004 A1
20040174129 Wang et al. Sep 2004 A1
20040175684 Kaasa et al. Sep 2004 A1
20040179714 Jouppi Sep 2004 A1
20040186623 Dooley et al. Sep 2004 A1
20040189700 Mandavilli et al. Sep 2004 A1
20040201602 Mody et al. Oct 2004 A1
20040205664 Prendergast Oct 2004 A1
20040215490 Duchon et al. Oct 2004 A1
20040218099 Washington Nov 2004 A1
20040222638 Bednyak Nov 2004 A1
20040224676 Iseki Nov 2004 A1
20040230340 Fukuchi et al. Nov 2004 A1
20040240981 Dothan Dec 2004 A1
20040241981 Doris et al. Dec 2004 A1
20040260790 Balloni et al. Dec 2004 A1
20050003330 Asgarinejad et al. Jan 2005 A1
20050004708 Goldenberg et al. Jan 2005 A1
20050007445 Foote et al. Jan 2005 A1
20050013149 Trossell Jan 2005 A1
20050021182 Wang et al. Jan 2005 A1
20050021183 Wang et al. Jan 2005 A1
20050021187 Wang et al. Jan 2005 A1
20050021309 Alexander et al. Jan 2005 A1
20050024485 Castles et al. Feb 2005 A1
20050027567 Taha Feb 2005 A1
20050027794 Decker Feb 2005 A1
20050028221 Liu et al. Feb 2005 A1
20050035862 Wildman et al. Feb 2005 A1
20050038416 Wang et al. Feb 2005 A1
20050038564 Burick Feb 2005 A1
20050049898 Hirakawa Mar 2005 A1
20050052527 Remy et al. Mar 2005 A1
20050060211 Xiao et al. Mar 2005 A1
20050065435 Rauch et al. Mar 2005 A1
20050065438 Miller Mar 2005 A1
20050065659 Tanaka et al. Mar 2005 A1
20050065813 Mishelevich et al. Mar 2005 A1
20050071046 Miyazaki et al. Mar 2005 A1
20050073575 Thacher et al. Apr 2005 A1
20050078816 Sekiguchi et al. Apr 2005 A1
20050083011 Yang et al. Apr 2005 A1
20050099493 Chew May 2005 A1
20050104964 Bovyrin et al. May 2005 A1
20050110867 Schulz May 2005 A1
20050122390 Wang et al. Jun 2005 A1
20050125083 Kiko Jun 2005 A1
20050125098 Wang et al. Jun 2005 A1
20050149364 Ombrellaro Jul 2005 A1
20050152447 Jouppi et al. Jul 2005 A1
20050152565 Jouppi et al. Jul 2005 A1
20050154265 Miro et al. Jul 2005 A1
20050168568 Jouppi Aug 2005 A1
20050182322 Grispo Aug 2005 A1
20050192721 Jouppi Sep 2005 A1
20050204438 Wang et al. Sep 2005 A1
20050212478 Takenaka Sep 2005 A1
20050219356 Smith et al. Oct 2005 A1
20050225634 Brunetti et al. Oct 2005 A1
20050231156 Yan Oct 2005 A1
20050231586 Rodman et al. Oct 2005 A1
20050232647 Takenaka Oct 2005 A1
20050234592 McGee et al. Oct 2005 A1
20050264649 Chang et al. Dec 2005 A1
20050267826 Levy et al. Dec 2005 A1
20050283414 Fernandes et al. Dec 2005 A1
20050286759 Zitnick et al. Dec 2005 A1
20060007943 Fellman Jan 2006 A1
20060010028 Sorensen Jan 2006 A1
20060013263 Fellman Jan 2006 A1
20060013469 Wang et al. Jan 2006 A1
20060013488 Inoue Jan 2006 A1
20060014388 Lur et al. Jan 2006 A1
20060020694 Nag et al. Jan 2006 A1
20060029065 Fellman Feb 2006 A1
20060047365 Ghodoussi et al. Mar 2006 A1
20060048286 Donato Mar 2006 A1
20060052676 Wang et al. Mar 2006 A1
20060052684 Takahashi et al. Mar 2006 A1
20060056655 Wen et al. Mar 2006 A1
20060056837 Vapaakoski Mar 2006 A1
20060064212 Thorne Mar 2006 A1
20060066609 Iodice et al. Mar 2006 A1
20060071797 Rosenfeld et al. Apr 2006 A1
20060074525 Close et al. Apr 2006 A1
20060074719 Horner Apr 2006 A1
20060082642 Wang et al. Apr 2006 A1
20060087746 Lipow Apr 2006 A1
20060095158 Lee May 2006 A1
20060095170 Yang et al. May 2006 A1
20060098573 Beer et al. May 2006 A1
20060103659 Karandikar et al. May 2006 A1
20060104279 Fellman et al. May 2006 A1
20060106493 Niemeyer et al. May 2006 A1
20060122482 Mariotti et al. Jun 2006 A1
20060125356 Meek, Jr. et al. Jun 2006 A1
20060142983 Sorensen et al. Jun 2006 A1
20060149418 Anvari Jul 2006 A1
20060161136 Anderson et al. Jul 2006 A1
20060161303 Wang et al. Jul 2006 A1
20060164546 Adachi Jul 2006 A1
20060171515 Hintermeister et al. Aug 2006 A1
20060173708 Vining et al. Aug 2006 A1
20060173712 Joubert Aug 2006 A1
20060178559 Kumar et al. Aug 2006 A1
20060178776 Feingold et al. Aug 2006 A1
20060178777 Park Aug 2006 A1
20060189393 Edery Aug 2006 A1
20060195569 Barker Aug 2006 A1
20060224781 Tsao et al. Oct 2006 A1
20060247045 Jeong et al. Nov 2006 A1
20060259193 Wang et al. Nov 2006 A1
20060268704 Ansari et al. Nov 2006 A1
20060271238 Choi Nov 2006 A1
20060271400 Clements et al. Nov 2006 A1
20060293788 Pogodin Dec 2006 A1
20070021871 Wang et al. Jan 2007 A1
20070025711 Marcus Feb 2007 A1
20070046237 Lakshmanan et al. Mar 2007 A1
20070050937 Song et al. Mar 2007 A1
20070061041 Zweig Mar 2007 A1
20070064092 Sandbeg et al. Mar 2007 A1
20070078566 Wang et al. Apr 2007 A1
20070093279 Janik Apr 2007 A1
20070112700 Den et al. May 2007 A1
20070116152 Thesling May 2007 A1
20070117516 Saidi et al. May 2007 A1
20070120965 Sandberg et al. May 2007 A1
20070122783 Habashi May 2007 A1
20070133407 Choi et al. Jun 2007 A1
20070135967 Jung et al. Jun 2007 A1
20070142964 Abramson Jun 2007 A1
20070170886 Plishner Jul 2007 A1
20070176060 White et al. Aug 2007 A1
20070192910 Vu et al. Aug 2007 A1
20070197896 Moll et al. Aug 2007 A1
20070198128 Ziegler et al. Aug 2007 A1
20070198130 Wang et al. Aug 2007 A1
20070199108 Angle et al. Aug 2007 A1
20070216347 Kaneko et al. Sep 2007 A1
20070226949 Hahm et al. Oct 2007 A1
20070250212 Halloran et al. Oct 2007 A1
20070255706 Iketani et al. Nov 2007 A1
20070262884 Goncalves et al. Nov 2007 A1
20070273751 Sachau Nov 2007 A1
20070290040 Wurman et al. Dec 2007 A1
20070291109 Wang et al. Dec 2007 A1
20070291128 Wang et al. Dec 2007 A1
20080009969 Bruemmer et al. Jan 2008 A1
20080011904 Cepollina et al. Jan 2008 A1
20080027591 Lenser et al. Jan 2008 A1
20080033641 Medalia Feb 2008 A1
20080045804 Williams Feb 2008 A1
20080051985 D'Andrea et al. Feb 2008 A1
20080065268 Wang et al. Mar 2008 A1
20080082211 Wang et al. Apr 2008 A1
20080086241 Phillips et al. Apr 2008 A1
20080091340 Milstein et al. Apr 2008 A1
20080126132 Warner et al. May 2008 A1
20080133052 Jones et al. Jun 2008 A1
20080161969 Lee et al. Jul 2008 A1
20080174570 Jobs et al. Jul 2008 A1
20080201016 Finlay Aug 2008 A1
20080201017 Wang et al. Aug 2008 A1
20080215987 Alexander et al. Sep 2008 A1
20080229531 Takida Sep 2008 A1
20080232763 Brady Sep 2008 A1
20080255703 Wang et al. Oct 2008 A1
20080263451 Portele et al. Oct 2008 A1
20080263628 Norman et al. Oct 2008 A1
20080267069 Thielman et al. Oct 2008 A1
20080269949 Norman Oct 2008 A1
20080281467 Pinter Nov 2008 A1
20080306375 Sayler et al. Dec 2008 A1
20090030552 Nakadai et al. Jan 2009 A1
20090044334 Parsell et al. Feb 2009 A1
20090049640 Lee et al. Feb 2009 A1
20090055023 Walters et al. Feb 2009 A1
20090070135 Parida et al. Mar 2009 A1
20090086013 Thapa Apr 2009 A1
20090102919 Zamierowski et al. Apr 2009 A1
20090105882 Wang et al. Apr 2009 A1
20090106679 Anzures et al. Apr 2009 A1
20090122699 Alperovitch et al. May 2009 A1
20090125147 Wang et al. May 2009 A1
20090144425 Marr et al. Jun 2009 A1
20090164255 Menschik et al. Jun 2009 A1
20090164657 Li et al. Jun 2009 A1
20090171170 Li et al. Jul 2009 A1
20090177323 Ziegler et al. Jul 2009 A1
20090177641 Raghavan Jul 2009 A1
20090237317 Rofougaran Sep 2009 A1
20090240371 Wang et al. Sep 2009 A1
20090248200 Root Oct 2009 A1
20090259339 Wright et al. Oct 2009 A1
20100010672 Wang et al. Jan 2010 A1
20100010673 Wang et al. Jan 2010 A1
20100017046 Cheung et al. Jan 2010 A1
20100019715 Roe et al. Jan 2010 A1
20100026239 Li et al. Feb 2010 A1
20100030578 Siddique et al. Feb 2010 A1
20100051596 Diedrick et al. Mar 2010 A1
20100063848 Kremer et al. Mar 2010 A1
20100066804 Shoemake et al. Mar 2010 A1
20100070079 Mangaser et al. Mar 2010 A1
20100073490 Wang et al. Mar 2010 A1
20100076600 Cross Mar 2010 A1
20100085874 Noy et al. Apr 2010 A1
20100088232 Gale Apr 2010 A1
20100115418 Wang et al. May 2010 A1
20100116566 Ohm et al. May 2010 A1
20100131103 Herzog et al. May 2010 A1
20100145479 Griffiths Jun 2010 A1
20100157825 Anderlind et al. Jun 2010 A1
20100171826 Hamilton et al. Jul 2010 A1
20100191375 Wright et al. Jul 2010 A1
20100228249 Mohr et al. Sep 2010 A1
20100268383 Wang et al. Oct 2010 A1
20100278086 Pochiraju et al. Nov 2010 A1
20100286905 Goncalves et al. Nov 2010 A1
20100301679 Murray et al. Dec 2010 A1
20100323783 Nonaka et al. Dec 2010 A1
20110022705 Yellamraju et al. Jan 2011 A1
20110050841 Wang et al. Mar 2011 A1
20110071675 Wells et al. Mar 2011 A1
20110071702 Wang et al. Mar 2011 A1
20110072114 Hoffert et al. Mar 2011 A1
20110153198 Kokkas et al. Jun 2011 A1
20110172822 Ziegler et al. Jul 2011 A1
20110187875 Sanchez et al. Aug 2011 A1
20110190930 Hanrahan et al. Aug 2011 A1
20110193949 Nambakam et al. Aug 2011 A1
20110195701 Cook et al. Aug 2011 A1
20110213210 Temby et al. Sep 2011 A1
20110218674 Stuart et al. Sep 2011 A1
20110245973 Wang et al. Oct 2011 A1
20110280551 Sammon Nov 2011 A1
20110292193 Wang et al. Dec 2011 A1
20110301759 Wang et al. Dec 2011 A1
20110306400 Nguyen Dec 2011 A1
20120023506 Maeckel et al. Jan 2012 A1
20120036484 Zhang et al. Feb 2012 A1
20120059946 Wang Mar 2012 A1
20120072023 Ota Mar 2012 A1
20120072024 Wang et al. Mar 2012 A1
20120092157 Tran Apr 2012 A1
20120095352 Tran Apr 2012 A1
20120113856 Krishnaswamy May 2012 A1
20120191246 Roe et al. Jul 2012 A1
20120191464 Stuart et al. Jul 2012 A1
20120203731 Nelson et al. Aug 2012 A1
20120291809 Kuhe et al. Nov 2012 A1
20130250938 Anandakumar et al. Sep 2013 A1
20140015914 Delaunay Jan 2014 A1
20140047022 Chan et al. Feb 2014 A1
20140085543 Hartley et al. Mar 2014 A1
20140135990 Stuart et al. May 2014 A1
20140139616 Pinter et al. May 2014 A1
20140155755 Pinter et al. Jun 2014 A1
Foreign Referenced Citations (130)
Number Date Country
1216200 May 2000 AU
2289697 Nov 1998 CA
1404695 Mar 2003 CN
1554193 Dec 2004 CN
1554985 Dec 2004 CN
1561923 Jan 2005 CN
1743144 Mar 2006 CN
101049017 Oct 2007 CN
101106939 Jan 2008 CN
101151614 Mar 2008 CN
100407729 Jul 2008 CN
101390098 Mar 2009 CN
101507260 Aug 2009 CN
101730894 Jun 2010 CN
101866396 Oct 2010 CN
101978365 Feb 2011 CN
102203759 Sep 2011 CN
101106939 Nov 2011 CN
466492 Jan 1992 EP
488673 Jun 1992 EP
981905 Jan 2002 EP
0981905 Jan 2002 EP
1262142 Dec 2002 EP
1304872 Apr 2003 EP
1536660 Jun 2005 EP
1573406 Sep 2005 EP
1594660 Nov 2005 EP
1763243 Mar 2007 EP
1791464 Jun 2007 EP
1800476 Jun 2007 EP
1819108 Aug 2007 EP
1856644 Nov 2007 EP
1536660 Apr 2008 EP
1928310 Jun 2008 EP
1232610 Jan 2009 EP
2027716 Feb 2009 EP
2145274 Jan 2010 EP
2214111 Aug 2010 EP
2263158 Dec 2010 EP
2300930 Mar 2011 EP
2342651 Jul 2011 EP
2431261 Apr 2007 GB
07-194609 Aug 1995 JP
7-213753 Aug 1995 JP
7-248823 Sep 1995 JP
7-257422 Oct 1995 JP
8-84328 Mar 1996 JP
8-320727 Dec 1996 JP
9-267276 Oct 1997 JP
10-79097 Mar 1998 JP
10-288689 Oct 1998 JP
11-220706 Aug 1999 JP
11220706 Aug 1999 JP
2000-32319 Jan 2000 JP
2000-49800 Feb 2000 JP
2000-79587 Mar 2000 JP
2000-196876 Jul 2000 JP
2001-125641 May 2001 JP
2001-147718 May 2001 JP
2001-179663 Jul 2001 JP
2001-188124 Jul 2001 JP
2001-198865 Jul 2001 JP
2001-198868 Jul 2001 JP
2001-199356 Jul 2001 JP
2002-000574 Jan 2002 JP
2002-46088 Feb 2002 JP
2002-101333 Apr 2002 JP
2002-112970 Apr 2002 JP
2002-235423 Aug 2002 JP
2002-305743 Oct 2002 JP
2002-321180 Nov 2002 JP
2002-355779 Dec 2002 JP
2004-181229 Jul 2004 JP
2004-524824 Aug 2004 JP
2004-261941 Sep 2004 JP
2004-289379 Oct 2004 JP
2005-028066 Feb 2005 JP
2005-059170 Mar 2005 JP
2005-111083 Apr 2005 JP
2006-508806 Mar 2006 JP
2006-109094 Apr 2006 JP
2006-224294 Aug 2006 JP
2006-246438 Sep 2006 JP
2007-7040 Jan 2007 JP
2007-81646 Mar 2007 JP
2007-232208 Sep 2007 JP
2007-316966 Dec 2007 JP
2009-125133 Jun 2009 JP
2010-064154 Mar 2010 JP
2010-532109 Sep 2010 JP
2010-246954 Nov 2010 JP
10-2006-0037979 May 2006 KR
10-2009-0012542 Feb 2009 KR
10-2010-0019479 Feb 2010 KR
10-2010-0139037 Dec 2010 KR
9306690 Apr 1993 WO
9742761 Nov 1997 WO
9851078 Nov 1998 WO
9967067 Dec 1999 WO
0025516 May 2000 WO
0033726 Jun 2000 WO
0131861 May 2001 WO
03077745 Sep 2003 WO
2004008738 Jan 2004 WO
2004012018 Feb 2004 WO
2004075456 Sep 2004 WO
2006012797 Feb 2006 WO
2006044847 Apr 2006 WO
2006078611 Jul 2006 WO
2007041295 Apr 2007 WO
2007041038 Jun 2007 WO
2008100272 Aug 2008 WO
2008100272 Oct 2008 WO
2009117274 Sep 2009 WO
2009128997 Oct 2009 WO
2009145958 Dec 2009 WO
2010006205 Jan 2010 WO
2010006211 Jan 2010 WO
2010033666 Mar 2010 WO
2010047881 Apr 2010 WO
2010062798 Jun 2010 WO
2010065257 Jun 2010 WO
2010120407 Oct 2010 WO
2011028589 Mar 2011 WO
2011028589 Apr 2011 WO
2011097130 Aug 2011 WO
2011097132 Aug 2011 WO
2011109336 Sep 2011 WO
2011097132 Dec 2011 WO
2011149902 Dec 2011 WO
Non-Patent Literature Citations (203)
Entry
Nomadic Technologies, Inc., “Nomad Scout User's Manual”, Software Version 2.7, Part No. DOC00004, Jul. 12, 1999, pp. 1-59.
ACM Digital Library Record, Autonomous Robots, vol. 11, No. 1, Table of Content, available at <http://dl.acm.org/citation.cfm?id=591550&picked=prox&cfid=360891374&cftoken=35225929>, Jul. 2001, 2 pages.
Brenner, Pablo, “A Technical Tutorial on the IEEE 802.11 Protocol”, BreezeCOM Wireless Communications, Jul. 18, 1996, pp. 1-24.
Library of Congress, “008-Fixed-Length Data Elements (NR)”, MARC 21 Format for Classification Data, available at <http://www.loc.gov/marc/classification/cd008.html>, retrieved on Jul. 22, 2014, pp. 1-14.
Paulos et al., “Personal Tele-Embodiment”, Chapter 9 in Goldberg et al., Ed., “Beyond Webcams”, MIT Press, Jan. 4, 2002, pp. 155-167.
Paulos et al., “Social Tele-Embodiment: Understanding Presence”, Autonomous Robots, vol. 11, No. 1, Kluwer Academic Publishers, Jul. 2001, pp. 87-95.
Paulos, Eric John, “Personal Tele-Embodiment”, Introductory and Cover Pages from 2001 Dissertation Including Contents table, together with E-mails Relating thereto from UC Berkeley Libraties, as Shelved at UC Berkeley Engineering Library (Northern Regional Library Facility), May 8, 2002, 25 pages (including 4 pages of e-mails).
Paulos, Eric John, “Personal Tele-Embodiment”, OskiCat Catalog Record, UCB Library Catalog, Results page and MARC Display, retrieved on Jun. 14, 2014, 3 Pages.
Oh et al., “Autonomous Battery Recharging for Indoor Mobile Robots”, Proceedings of Australian Conference on Robotics and Automation, 2000, pp. 1-6.
Ojha, Anand K., “An application of Virtual Reality in Rehabilitation”, Proceedings of the 1994 IEEE Southeastcon Creative Technology Transfer, A Global Affair, Apr. 1994, pp. 4-6.
Paulos et al., “A World Wide Web Telerobotic Remote Environment Browser”, available online at <http://www.w3.org/Conferences/WWW4/Papers/326/>, retrieved on Nov. 23, 2010, 1995, 15 pages.
Paulos et al., “Designing Personal Tele-Embodiment”, Proceedings of IEEE International Conference on Robotics and Automation, vol. 4, May 16-20, 1998, pp. 3173-3178.
Paulos et al., “PRoP: Personal Roving Presence”, ACM:CHI Proceedings of CHI, 1998, 8 pages.
Paulos et al., “Ubiquitous Tele-Embodiment: Applications and Implications”, International Journal of Human Computer Studies, vol. 46, No. 6, Jun. 1997, pp. 861-877.
Paulos et al., “Video of PRoP 2 at Richmond Field Station”, www.prop.org, Printout of Home Page of Website and Two-page Transcript of the Audio Portion of said PRoP Video, May 2001, 2 pages.
Paulos, Eric J., “Personal Tele-Embodiment”, Dissertation, Doctor of Philosophy in Computer Science in the Graduate Division of the University of California at Berkeley, 2001, 282 pages.
Picturetel Corporation, “Introducing PictureTel Live200 for Windows NT”, 1997, 63 pages.
Pin et al., “A New Family of Omnidirectional and Holonomic Wheeled Platforms for Mobile Robots”, IEEE Transactions on Robotics and Automation, vol. 10, No. 4, Aug. 1994, pp. 480-489.
Piquepaille, Roland, “How New Technologies are Modifying Our Way of Life”, Roland Piquepaille's Technology Trends, This Blog and its RSS Feed Are Moving, Oct. 31, 2004, 2 pages.
Radvision, “Making Sense of Bandwidth the NetSense Way”, Network Congestion in Unmanaged Networks Bandwidth Estimation and Adaptation Techniques, Radvision's Netsense Technology, 2010, 7 pages.
Roach, Adam, “Automatic Call Back Service in SIP”, Internet Engineering Task Force, Internet Draft, Category: Informational, Mar. 2000, 8 pages.
Rovetta et al., “A New Telerobotic Application: Remote Laparoscopic Surgery Using Satellites and Optical Fiber Networks for Data Exchange”, International Journal of Robotics Research, vol .15, No. 3, Jun. 1, 1996, pp. 267-279.
Roy et al., “Towards Personal Service Robots for the Elderly”, Workshop on Interactive Robots and Entertainment (WIRE 2000), vol. 25, Apr. 30-May 1, 2000, 7 page.
Salemi et al., “MILO: Personal Robot Platform”, IEEE/RSJ International Conference on Intelligent Robots and Systems, Aug. 2005, pp. 4089-4094.
Sandt et al., “Perceptions for a Transport Robot in Public Environments”, Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems, vol. 1, Sep. 7-11, 1997, pp. 360-365.
Sawyer, Robert J., “Inventing the Future: 2000 Years of Discovery”, Available online at <http://www.sfwriter.com/pritf.htm>, retrived on May 25, 2008, Jan. 2, 2000, 2 pages.
Schaeffer et al., “Care-O-Bot™: The Concept of a System for Assisting Elderly or Disabled Persons in Home Environments”, Proceedings of the 24th Annual Conference of the IEEE Industrial Electronics Society, vol. 4, 1998, pp. 2476-2481.
Schultz et al., “Web Interfaces for Mobile Robots in Public Places”, IEEE Robotics and Automation Magazine, vol. 7, No. 1, Mar. 2000, pp. 48-56.
Shimoga et al., “Touch and Force Reflection for Telepresence Surgery”, Proceedings of the 16th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Nov. 1994, pp. 1049-1050.
Siegwart et al., “Interacting Mobile Robots on the Web”, Proceedings of the IEEE International Conference on Robotics and Automation, May 1999, pp. 10-15.
Simmons et al., “Xavier: An Autonomous Mobile Robot on the Web”, IEEE Robotics and Automation Magazine, 1999, pp. 43-48.
Stephenson, Gary, “Dr. Robot Tested at Hopkins”, Johns Hopkins Medical institutions, available online at <http://www.hopkinsmedicine.org/press/2003/august/030805.htm>, Aug. 5, 2003, 2 pages.
Stoianovici et al., “Robotic Tools for Minimally Invasive Urologic Surgery”, Complications of Urologic Laparoscopic Surgery: Recognition, Management and Prevention, Dec. 2002, 17 pages.
Suplee, Carl, “Mastering the Robot”, available online at <http://www.cs.cmu.edu-nursebotlweb/press/wash/index.html>, retrieved on Nov. 23, 2010, Sep. 17, 2000, 5 pages.
Tahboub et al., “Dynamics Analysis and Control of a Holonomic Vehicle With Continously Variable Transmission”, Journal of Dynamic Systems, Measurement and Control ASME, vol. 124, Mar. 2002, pp. 118-126.
Telepresence Research, Inc., “Telepresence Mobile Robot System”, available online at <http://www.telepresence.com/telepresence-research/TELEROBOT/>, retrieved on Nov. 23, 2010, Feb. 20, 1995, 3 pages.
Tendick et al., “Human-Machine Interfaces for Minimally Invasive Surgery”, Proceedings of the 19th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, vol. 6, Oct. 30-Nov. 2, 1997, pp. 2771-2776.
Theodosiou et al., “MuLVAT: A Video Annotation Tool Based on XML-Dictionaries and Shot Clustering”, 19th International Conference, Artificial Neural Networks-ICANN, Sep. 14-17, 2009, pp. 913-922.
Thrun et al., “Probabilistic Algorithms and the Interactive Museum Tour-Guide Robot Minerva”, Journal of Robotics Research, vol. 19, 2000, pp. 1-35.
Time, Lists, “Office Coworker Robot”, Best Inventions of 2001, Available online at <http://content.time.com/time/specials/packages/article/0,28804,193616513 1936255—1936640,00.html>, Nov. 19, 2001, 2 pages.
Tyrrell et al., “Teleconsultation in Psychology: The Use of Videolinks for Interviewing and Assessing Elderly Patients”, British Geriatrics Society, Age and Ageing, vol. 30, No. 3, May 2001, pp. 191-195.
Tzafestas et al., “VR-based Teleoperation of a Mobile Robotic Assistant: Progress Report”, Technical Report DEMO 2000/13, Institute of Informatics and Telecommunications, National Center for Scientific Research “Demokritos”, Athens, Greece, Nov. 2000, pp. 1-23.
Urquhart, Kim, “InTouch's Robotic Companion ‘Beams Up’ Healthcare Experts”, Medical Device Daily, The Daily Medical Technology Newspaper, vol. 7, No. 39, Feb. 27, 2003, pp. 1-4.
Weaver et al., “Monitoring and Controling Using the Internet and Java”, Proceedings of the 25th Annual Conference of the IEEE Industrial Electronics Society, vol. 3, 1999, pp. 1152-1158.
Weiss et al., “Telework and Video-Mediated Communication: Importance of Real-Time, Interactive Communication for Workers with Disabilities”, Available online at <http://www.telbotics.com/research—3.htm>, retrieved on Nov. 23, 2010, 1999, 3 pages.
Weiss, et al., “PEBBLES: A Personal Technology for Meeting Education, Social and Emotional Needs of Hospitalised Children”, Personal and Ubiquitous Computing, vol. 5, No. 3, Aug. 2001, pp. 157-168.
West et al., “Design of Ball Wheel Mechanisms for Omnidirectional Vehicles with Full Mobility and Invariant Kinematics”, Journal of Mechanical Design, ASME, vol. 119, Jun. 1997, pp. 153-161.
Yamasaki et al., “Applying Personal Robots and Active Interface to Video Conference Systems”, 6th International Conference on Human Computer Interaction, vol. B, 1995, pp. 243-248.
Yamauchi, Brian, “PackBot: A Versatile Platform for Military Robotics”, Proceedings of SPIE for Military Robotics, 2004, pp. 228-237.
Yong et al., “Robot Task Execution with Telepresence Using Virtual Reality Technology”, International Conference on Mechatronic Technology, Nov. 30-Dec. 2, 1998, pp. 1-8.
Zambroski, James, “CMU, Pitt Developing ‘Nursebot’”, available online at <http://www.cs.cmu.edu/˜nursebot/web/press/tribunereview.html>, retrieved on Jun. 26, 2012, Oct. 27, 2000, 3 pages.
Zamrazil, Kristie, “Telemedicine in Texas: Public Policy Concerns”, Focus Report, House Research Organization, Texas House of Representatives, No. 76-22, May 5, 2000, pp. 1-16.
Zipperer, Lorri, “Robotic Dispensing System”, ISMP Medication Safety Alert, vol. 4, No. 17, Aug. 25, 1999, pp. 1-2.
Zorn, Benjamin G., “Ubiquitous Telepresence”, Department of Computer Science, University of Colorado, Mar. 18, 1996, 13 pages.
“Defendant VGo Communications, Inc.'s Invalidity Contentions Pursuant to the Feb. 27, 2012 Civil Minute Order”, U.S. District Court for the Central District of California, in Case No. CV11-9185 PA, May 2, 2012, 143 pages.
“Magne Charge”, Smart Power for Electirc Vehicles, General Motors Corporation, Serial No. 75189637, Registration No. 2114006, Filing Date: Oct. 29, 1996, Aug. 26, 1997, 2 pages.
“More Online Robots: Robots that Manipulate”, available online at <http://ford.ieor.berkeley.edu/ir/robots—a2.html>, retrieved on Nov. 23, 2010, Aug. 2001, 2 pages.
“PictureTel Adds New Features and Functionality to its Award-Winning Live200 Desktop Videoconferencing System”, PR Newswire Association, LLC, Gale, Cengage Learning, Jun. 13, 1997, 4 pages.
Office Action received for Chinese Patent Application No. 200680044698.0 dated Nov. 4, 2010. (9 pages of Official Copy and 17 pages of English Translation).
Wang et al., “A Healthcare Tele-robotic System with a Master Remote Station with an Arbitrator”, U.S. Appl. No. 60/449,762, filed Feb. 24, 2003, 28 pages.
Activmedia Robotics LLC, “Pioneer 2/PeopleBot™”, Operations Manual, Version 9, Oct. 2001, 78 pages.
Adams, Chris, “Simulation of Adaptive Behavior (SAB'02)—From Animals to Animats 7”, Mobile Robotics Research Group, The Seventh International Conference, available online at: <http://www.dai.ed.ac.uk/groups/mrg/MRG.html>, retrieved on Jan. 22, 2014, Aug. 4-11, 2002, 1 page.
Ando et al., “A Multimedia Self-Service Terminal with Conferencing Functions”, Proceedings of 4th IEEE International Workshop on Robot and Human Communication, RO-MAN'95, Jul. 5-7, 1995, pp. 357-362.
Android Amusement Corp., “Renting Robots from Android Amusement Corp!”, What Marketing Secret, (Advertisement), 1982, 1 page.
Applebome, “Planning Domesticated Robots for Tomorrow's Household”, New York Times, available online at <http://www.theoldrobots.com/images17/dc17.JPG>, Mar. 4, 1982, 1 page.
Bar-Cohen et al., “Virtual Reality Robotic Telesurgery Simulations Using MEMICA Haptic System”, Proceedings of SPIE's 8th Annual International Symposium on Smart Structures and Materials, Mar. 5-8, 2001, 8 pages.
Barrett, Rick, “Video Conferencing Business Soars as Companies Cut Travel; Some Travel Cuts are Permanent”, available online at <http://www.ivci.com/international—videoconferencing—news—videoconferencing—news—19.html>, May 13, 2002, 2 pages.
Bartholomew, “Pharmacy Apothecary of England”, BnF-Teaching Kit—Childhood in the Middle Ages, available online at <http://classes.bnf.fr/ema/grands/034.htm>, retrieved on Jul. 26, 2012, 2 pages.
Bauer et al., “Remote Telesurgical Mentoring: Feasibility and Efficacy”, IEEE, Proceedings of the 33rd Hawaii International Conference on System Sciences, 2000, pp. 1-9.
Bauer, Jeffrey C., “Service Robots in Health Care: The Evolution of Mechanical Solutions to Human Resource Problems”, BonSecours Health System, Inc., Technology Ealy Warning System, Jun. 2003, pp. 1-10.
Bischoff, Rainer, “Design Concept and Realization of the Humanoid Service Robot HERMES”, In A. Zelinsky (ed.): Field and Service Robotics, Springer, London, 1998, pp. 485-492.
Blackwell, Gerry, “Video: A Wireless LAN Killer App?”, Availabel online at <http://www.wi-fiplanet.com/columns/article.php/1010261/Video-A-Wireless-LAN-Killer>, retrieved on Nov. 22, 2010, Apr. 16, 2002, 4 pages.
Breslow et al., “Effect of a Multiple-Site Intensive Care Unit Telemedicine Program on Clinical and Economic Outcome an Alternative Paradigm for Intensivist Staffing”, Critical Care Med., vol. 32, No. 1, Jan. 2004, pp. 31-38.
Brooks, Rodney A., “A Robust Layered Control System for a Mobile Robot”, IEEE, Journal of Robotics and Automation, vol. 2, No. 1, Mar. 1986, pp. 14-23.
Brooks, Rodney Allen, “Flesh and Machines: How Robots Will Change Us”, available online at <http://dl.acm.org/citation.cfm?id=560264&preflayout=flat%25202%2520of>, retrieved on Nov. 23, 2010, Feb. 2002, 3 pages.
Celi et al., “The eICU: It's Not Just Telemedicine”, Critical Care Medicine, vol. 29, No. 8 (Supplement), Aug. 2001, pp. 183-189.
Cheetham et al., “Interface Development for a Child's Video Conferencing Robot”, Centre for Learning Technologies, Ryerson University, 2000, 4 pages.
Cleary et al., “State of the Art in Surgical Robotics: Clinical Applications and Technology Challenges”, Computer Aided Surgery, Nov. 2001, pp. 1-26.
CNN, “Floating ‘Droids’ to Roam Space Corridors of the Future”, available online at <http://edition.cnn.com/2000/TECH/space/01/12/psa/> retrieved on Nov. 11, 2010., Jan. 12, 2000, 3 pages.
CNN.com, “Paging Dr. Robot: Machine Helps Doctors with Patients”, available online at <http://edition.cnn.com/2003/TECH/ptech/09/29/doctor.robot.ap/index.html>, retrieved on Sep. 30, 2003, 3 pages.
Crowley, Susan L., “Hello to Our Future”, AARP Bulletin, available online at <http://www.cs.cmu.ed/-nursebot/web/press/aarp 99—14/millennium.html>, Jan. 2000, retrieved on Nov. 23, 2010, 12 pages.
Dalton, Barnaby, “Techniques for Web Telerobotics”, Ph. D Thesis for degree of Doctor of Philosophy, University of Western Australia, available online at <http://telerobot.mech.uwa.edu.au/information.html>, 2001, 243 pages.
Davies, Brian, “Robotics in Minimally Invasive Surgery”, Mechatronics in Medicine Lab, Dept. Mechanical Engineering, Imperial College, London SW7 2BX, The Institution of Electrical Engineers, IEE, Savoy Place, London WC2R OBL, UK, 1995, pp. 1-2.
Davis, Erik, “Telefriend, Meet iRobot, The Smartest Webcam on Wheels”, Wired Magazine, Issue 8.09, available online at <http://www.wired.com/wired/archive/8.09/irobot.html?pg=1&topic=&topic—set=>, retrieved on Jul. 7, 2012, Sep. 2000, 3 pages.
Dean et al., “1992 AAAI Robot Exhibition and Competition”, Articles, AI Magazine, vol. 14, No. 1, 1993, 15 pages.
Digiorgio, James, “Is Your Emergency Department of the 'Leading Edge?”, Chicago Hospital News, vol. 2, No. 12, Feb. 2005, 3 pages.
Dudenhoeffer et al., “Command and Control Architectures for Autonomous Micro- Robotic Forces”, FY00 Project Report, Idaho National Engineering and Environmental Laboratory, Human Systems Engineering and Sciences Department, Idaho Falls, Apr. 2001, 43 pages.
Elhajj et al., “Real-Time Haptic Feedback in Internet-Based Telerobotic Operation”, IEEE International Conference on Electro/Information Technology, Jun. 2000, 10 pages.
Elhajj et al., “Supermedia in Internet-Based Telerobotic Operations”, Lecture Notes in Computer Science, vol. 2216, 2001, pp. 359-372.
Elhajj et al., “Synchronization and Control of Supermedia Transmission Via the Internet”, Proceedings of 2001 International Symposium on Intelligent Multimedia Video and Speech Processing, Hong Kong, May 2-4, 2001, pp. 320-323.
Ellison et al., “Telerounding and Patient Satisfaction after Surgery”, American College of Surgeons, Elsevier, Inc., vol. 199, No. 4, Oct. 2004, pp. 523-530.
Evans et al., “HelpMate: The Trackless Robotic Courier”, PYXIS, available online at <http://www.pyxis.com/>, 3 pages.
Fels et al., “Developing a Video-Mediated Communication System for Hospitalized Children”, Telemedicine Journal, vol. 5, No. 2, 1999, 30 pages.
Fetterman, David M., “Videoconferencing Over the Internet”, Qualitative Health Journal, vol. 7, No. 1, May 1966. pp. 154-163.
Fiorini et al., “Health Care Robotics: A Progress Report”, IEEE International Conference on Robotics and Automation, vol. 2, Apr. 20-25, 1997, pp. 1271-1276.
Fong, Terrence, “Collaborative Control: A Robot-Centric Model for Vehicle Teleoperation”, The Robotics Institute Carnegie Mellon University, Nov. 2001, 197 pages.
Gaidioz et al., “Synchronizing Network Probes to Avoid Measurement Intrusiveness with the Network Weather Service”, High-Performance Distributed Computing, Proceedings of the Ninth International Symposium, 2000, pp. 147-154.
Garner et al., “The Application of Telepresence in Medicine”, BT Technology Journal, vol. 15, No. 4, Oct. 1, 1997, pp. 181-187.
Ghiasi et al., “A Generic Web-based Teleoperations Architecture: Details and Experience”, Proceedings of SPIE, Telemanipulator and Telepresence Technologies VI, vol. 3840, No. 234, Sep. 19, 1999, 14 pages.
Goldberg et al., “Collaborative Teleoperation via the Internet”, IEEE International Conference on Robotics and Automation (ICRA), vol. 2, San Francisco, California, 2000, pp. 2019-2024.
Goldberg et al., “Desktop Teleoperation via the World Wide Web”, Proceedings of IEEE International Conference on Robotics and Automation, vol. 1, May 21-27, 1995, pp. 654-659.
Goldenberg et al., “Telemedicine in Otolaryngology”, American Journal of Otolaryngology, vol. 23, No. 1, Jan. 2002, pp. 35-43.
Goldman, Lea, “Machine Dreams”, available online at <http://www.forbes.com/global/2002/0527/043.html>, retrieved on Nov. 23, 2010., May 27, 2002, 5 pages.
Gump, Michael D., “Robot Technology Improves VA Pharmacies”, U.S. Medicine Informational Central, Jul. 2001, 3 pages.
Hameed et al., “A Review of Telemedicine”, Journal of Telemedicine and Telecare, vol. 5, Supplement 1, 1999, pp. 103-106.
Han et al., “Construction of an Omnidirectional Mobile Robot Platform Based on Active Dual-Wheel Caster Mechanisms and Development of a Control Simulator”, Journal of Intelligent and Robotic Systems, Kluwer Acedemic Publishers, vol. 29, Nov. 2000, pp. 257-275.
Handley et al., “SDP: Session Description Protocol”, RFC 2327, available Online at <http://www.faqs.org/rfcs/rfc2327.html>, retrieved on Nov. 23, 2010, Apr. 1998, 22 pages.
Hanebeck et al., “Roman: A Mobile Robotic Assistant for Indoor Service Applications”, Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems, vol. 2, 1997, pp. 518-525.
Harmo et al., “Moving Eye—Interactive Telepresence over Internet with a Ball Shaped Mobile Robot”, Automation Technology Laboratory, Helsinki University of Technology, 2000, 6 pages.
Haule et al., “Control Scheme for Delayed Teleoperation Tasks”, Communications, Computers and Signal Processing, Proceedings of IEEE Pacific Rim Conference, May 17-19, 1995, pp. 157-160.
Hees, William P., “Communications Design for a Remote Presence Robot”, CSCI E-131B, Final Project, Jan. 14, 2002, 12 pages.
Herias et al., “Flexible Virtual and Remote Laboratory for Teaching Robotics”, FORMATEX 2006, Proceedings of Advance in Control Education Madrid, Spain, Jun. 2006, pp. 1959-1963.
Holmberg et al., “Development of a Holonomic Mobile Robot for Mobile Manipulation Tasks”, FSR'99 International Conference on Field and Service Robotics, Pittsburgh, PA, Aug. 1999, 6 pages.
Ishiguro et al., “Integrating a Perceptual Information Infrastructure with Robotic Avatars: A Framework for Tele-Existence”, Intelligent Robots and Systems, Proceedings of 1999 IEEE/RSJ International Conference, vol. 2, 1999, pp. 1032-1038.
Ishihara et al., “Intelligent Microrobot DDS (Drug Delivery System) Measured and Controlled by Ultrasonics”, Proceedings of IEEE/RSJ International Workshop on Intelligent Robots and Systems, vol. 2, Nov. 3-5, 1991, pp. 1145-1150.
Itu, “Call Completion Supplementary Services for H.323”, ITU-T, Telecommunication Standardization Sector of ITU, H.450.9, Series H: Audiovisual and Multimedia Systems, Nov. 2000, 63 pages.
Itu, “Call Intrusion Supplementary Service for H.323”, ITU-T, Telecommunication Standardization Sector of ITU, H.450.11, Series H: Audiovisual and Multimedia Systems, Mar. 2001, 59 pages.
Itu, “Packet-Based Multimedia Communications Systems”, ITU-T, Telecommunication Standardization Sector of ITU, H.323, Series H: Audiovisual and Multimedia Systems, Feb. 1998, 128 pages.
Itu, “A Far End Camera Control Protocol for Videoconferences Using H.224”, Transmission of Non-Telephone Signals, ITU-T, Telecommunication Standardization Sector of ITU, H.281, Nov. 1994, 12 pages.
Ivanova, Natali, “Internet Based Interface for Control of a Mobile Robot”, First Degree Programme in Mathematics and Computer Science, Master•s thesis, Department of Numerical Analysis and Computer Science, 2003, 59 pages.
Jacobs et al., “Applying Telemedicine to Outpatient Physical Therapy”, AMIA, Annual Symposium Proceedings, 2002, 1 page.
Jenkins et al., “Telehealth Advancing Nursing Practice”, Nursing Outlook, vol. 49, No. 2, Mar. 2001, pp. 100-105.
Johanson, Mathias, “Supporting Video-Mediated Communication over the Internet”, Thesis for the degree of Doctor of Philosophy, Department of Computer Engineering, Chalmers University of Technology, Gothenburg, Sweden, 2003, 222 pages.
Jouppi et al., “BiReality: Mutually-Immersive Telepresence”, Multimedia '04, Proceedings of the 12th Annual ACM International Conference on Multimedia, Oct. 10-16, 2004, pp. 860-867.
Jouppi et al., “First Steps Towards Mutually-Immersive Mobile Telepresence”, CSCW '02, Proceedings of the ACM conference on Computer Supported Cooperative Work, Nov. 16-20, 2002, pp. 354-363.
Kanehiro et al., “Virtual Humanoid Robot Platform to Develop Controllers of Real Humanoid Robots without Porting”, Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems, vol. 2, Oct. 29-Nov. 3, 2001, pp. 1093-1099.
Kaplan et al., “An Internet Accessible Telepresence”, Multimedia Systems Journal, vol. 5, 1996, 7 pages.
Keller et al., “An Interface for Raven”, The National Aviary's Teleconferencing Robot, Interaction and Visual Interface Design, School of Design, Carnegie Mellon University, 2001, 8 pages.
Khatib et al., “Robots in Human Environments”, Robotics Laboratory, Department of Computer Science, Stanford University, 1999, 15 pages.
Knight et al., “Active Visual Alignment of a Mobile Stereo Camera Platform”, Robotics and Automation, Proceedings of ICRA '00, IEEE International Conference, vol. 4, Apr. 24-28, 2000, pp. 3203-3208.
Kurlowicz et al., “The Mini Mental State Examination (MMSE)”, The Hartford Institute for Geriatric Nursing, Journal of Psychiatric Research, No. 3, Jan. 1999, 2 pages.
Kuzuoka et al., “Can the GestureCam be a Surrogate?”, Proceedings of the Fourth European Conference on Computer-Supported Cooperative Work, Sep. 10-14, 1995, pp. 181-196.
Lane, Earl, “Automated Aides”, available online at <http://www.cs.cum.edu/nursebot/web/press/nd4380.htm>, Reterieved on Nov. 23, 2010, Oct. 17, 2000, 4 pages.
Lee et al., “A Novel Method of Surgical Instruction: International Telementoring”, World Journal of Urology, vol. 16, No. 6, Dec. 1998, pp. 367-370.
Lemaire, Edward, “Using Communication Technology to Enhance Rehabilitation Services”, Terry Fox Mobile Clinic, The Rehabilitation Centre, Ottawa, Canada, Version 2.0, 1998-2001, 104 pages.
Lim et al., “Control to Realize Human-Like Walking of a Biped Humanoid Robot”, Systems, Man and Cybernetics, IEEE International Conference, vol. 5, 2000, pp. 3271-3276.
Linebarger et al., “Concurrency Control Mechanisms for Closely Coupled Collaboration in Multithreaded Virtual Environments”, Department of Computer Science and Engineering; Lehigh University, vol. 13, 2004, 40 pages.
Sachs et al., “Virtual Visit™: Improving Communication for Those Who Need it Most”, Studies in Health Technology and Informatics, vol. 94, Medicine Meets Virtual Reality 11, 2003, pp. 302-308.
Long, William F., “Robot Navigation Technology”, available online at <http://www.atp.nist.gov/eao/sp950-1/helpmate.htm>, retrieved on Nov. 23, 2010, Mar. 1999, 3 pages.
Luna, Nancy, “Robot a New Face on Geriatric Care”, ocregister.com, Aug. 6, 2003, 3 pages.
Mack, Michael J., “Minimally Invasive and Robotic Surgery”, The Journal of the American Medical Association, vol. 285, No. 5, Feb. 7, 2001, pp. 568-572.
Mair, G. M., “Telepresence—The Technology and its Economic and Social Implications”, Technology and Society, Technology and Society at a Time of Sweeping Change, Proceedings of International Symposium, Jun. 20-21, 1997, pp. 118-124.
Martin, Anya, “Brighter Days Ahead”, Assisted Living Today, vol. 9, Nov./Dec. 2002, pp. 19-22.
McCardle et al., “The Challenge of Utilizing New Technology in Design Education”, Loughborough University, IDATER, 2000, pp. 122-127.
Meng et al., “E-Service Robot in Home Healthcare”, Proceedings of the 2000 IEEE/RSJ, International Conference on Intelligent Robots and Systems, 2000, pp. 832-837.
Metz, Cade, “HP Labs”, available online at <http://www.pcmag.com/article2/0,2817,1130820,00.asp>, Jul. 1, 2003, 4 pages.
Michaud, Anne, “Introducing ‘Nursebot’”, available online at <http://www.cs.cmu.edu/˜nursebot/web/press/globe—3—01/index.html>, retrieved on May 5, 2008, Sep. 11, 2001, 4 pages.
Microsoft Corporation, Inc., “Microsoft NetMeeting 3 Features”, available online at <http://technet.microsoft.com/en-us/library/cc723477.aspx>, retrieved on Jun. 26, 2012, 2012, 6 pages.
Montemerlo, Mike, “Telepresence: Experiments in Next Generation Internet”, available Online at <http://www.ri.cmu.edu/creative/archives.htm>, retrieved on May 25, 2008, Oct. 20, 1998, 3 pages.
Murphy, Robin R., “Introduction to A1 Robotics”, A Bradford Book, The Massachusetts Institute of Technology Press, 2000, 487 pages.
Nakajima et al., “A Multimedia Teleteaching System using an Electronic Whiteboard for Two-Way Communication of Motion Videos and Chalkboards”, Robot and Human Communication, Proceedings of 2nd IEEE International Workshop, 1993, pp. 436-441.
Nakazato et al., “Group-Based Interface for Content-Based Image Retrieval”, Proceedings of the Working Conference on Advanced Visual Interfaces, 2002, pp. 187-194.
Nakazato et al., “Group-Oriented User Interface for Digital Image Management”, Journal of Visual Languages and Computing, vol. 14, No. 4, Aug. 2003, pp. 45-46.
Nersc, “Berkeley Lab's RAGE Telepresence Robot Captures R&D100 Award”, Available online at <https://www.nersc.gov/news-publications/news/nersc-center-news/2002/berkeley-lab-s-rage-telepresence-robot-captures-r-and-d100-award/>, Retrieved on Jan. 22, 2014, Jul. 2, 2002, 2 pages.
“Nomad XR4000 Hardware Manual”, Release 1.0, Nomadic Technologies, Inc., Mar. 1999, 34 pages.
North, Michael, “Telemedicine: Sample Script and Specifications for a Demonstration of Simple Medical Diagnosis and Treatment Using Live Two-Way Video on a Computer Network”, Greenstar Corporation, 1998, 5 pages.
Ogata et al., “Development of Emotional Communication Robot: WAMOEBA-2R- Experimental evaluation of the Emotional Communication between Robots and Humans”, Proceedings of the 2000 IEEE/RSJ International Conference on Intelligent Robots and Systems, vol. 1, 2000, pp. 175-180.
Ogata et al., “Emotional Communication Robot: WAMOEBA-2R-Emotion Model and Evaluation Experiments”, Proceedings of the International Conference on Humanoid Robots, 2000, pp. 1-16.
“Appeal from the U.S. District Court for the Central District of California in No. 11-CV-9185, Judge Percy Anderson”, May 9, 2014, pp. 1-48.
“Google translation of: Innovations Report”, From research project to television star: Care-O-bot in ZDF series, available online at <http://www.innovations-report.de/specials/printa.php?id=5157>, Sep. 28, 2001.
“MPEG File Format Summary”, downloaded from: <http://www.fileformat.info/format/mpeg/egff.htm>, Feb. 1, 2001, 8 pages.
“MPEG-4: a Powerful Standard for Use in Web and Television Environments”, by Rob Koenen (KPN Research), downloaded from <http://www.w3.org/Architecture/1998/06/Workshop/paper26>, Jul. 1, 1998, 4 pages.
CMU Course 16X62, “Robot user's manual”, (describing the Nomad Scout), Carnegie Mellon University, Feb. 1, 2001, 11 pages.
Panusopone et al., “Performance comparison of MPEG-4 and H.263+ for streaming video applications”, Circuits Systems Signal Processing, vol. 20, No. 3, 2001, pp. 293-309.
Schraft et al., “Care-O-botTM: The Concept of a System for Assisting Elderly or Disabled Persons in Home Environments”, IEEE Proceedings of the 24th Annual Conference of the Industrial Electronics Society, IECON '98, Aug. 31-Sep. 4, 1998, pp. 2476-2481.
“Robart I, II, III”, Spawar, Systems Center Pacific, Available online at <http://www.nosc.mil/robots/land/robart/robart.html>, retrieved on Nov. 22, 2010, 1998, 8 pages.
“Using your Infrared Cell Phone Camera”, Available on <http://www.catsdomain.com/xray/about.htm>, retrieved on Jan. 23, 2014, Courtesy of Internet Wayback Machine, Jan. 30, 2010, 4 pages.
Appeal from the U.S. District Court for the Central District of California in case No. 11-cv-9185, Judge Percy Anderson, Joint Appendix, vol. I of IV, Jun. 24, 2013, pp. A1-A6357.
Appeal from the U.S. District Court for the Central District of California in case No. 11-cv-9185, Judge Percy Anderson, Joint Appendix, vol. II of IV, Jun. 24, 2013, pp. A6849-A10634.
Appeal from the U.S. District Court for the Central District of California in case No. 11-cv-9185, Judge Percy Anderson, Joint Appendix, vol. III of IV, Jun. 24, 2013, pp. A10654-A15517.
Appeal from the U.S. District Court for the Central District of California in case No. 11-cv-9185, Judge Percy Anderson, Joint Appendix, vol. IV of IV, Jun. 24, 2013, pp. A15677-A18127.
Reply Brief for Defendant-Appellee VGO Communications, Inc., Appeal from the U.S. District Court for the Central District of California, in Case No. 2:11-cv-9185, Judge Percy Anderson, May 28, 2013, 75 pages.
Civil Minutes-General: Case No. CV 11-9185PA (AJWx), InTouch Tech., Inc. v. VGo Commons, Inc., U.S. District Court for the Central District of California, Judge Percy Anderson, Sep. 10, 2012, 7 pages.
Defendant-Counterclaimant VGo Communications, Inc.'s Supplemental Invalidity Contentions Pursuant to the Feb. 27, 2012 Civil Minute Order, U.S. District Court for the Central District of California, Case No. CV11-9185 PA, May 14, 2012, 228.
Opening Brief for Plaintiff-Appellant InTouch Technologies, Inc., Appeal from the U.S. District Court for the Central District of California in Case No. 11-cv-9185, Judge Percy Anderson, Apr. 12, 2013, 187 pages.
Reply Brief for Plaintiff-Appellant InTouch Technologies, Inc., Appeal from the U.S. District Court for the Central District of California in Case No. 11-cv-9185, Judge Percy Anderson, Jun. 14, 2013, 39 pages.
Active Media, Inc., “Saphira Software Manual”, Real World, Saphira Version 5.3, 1997, 105 pages.
Apple Inc., “I Phone”, iPhone Series, XP002696350, Sep. 21, 2012, pp. 1-29.
Blaer et al., “TopBot: Automated Network Topology Detection With a Mobile Robot”, IEEE, Proceedings of the 2003 International Conference on Robotics and Automation, Taipei, Taiwan, Sep. 14-19, 2003, pp. 1582-1587.
Bradner, S., “The Internet Standards Process—Revision 3”, Network Working Group, Request for Comments: 2026, BCP: 9, Obsoletes: 1602, Category: Best Current Practice, Oct. 1996, pp. 1-36.
Christensen et al., “BeeSoft User's Guide and Reference”, Robots for the Real World™, Real World Interface, Inc ., Sep. 26, 1997, 203 pages.
Chu et al., “Detection of Target Mobile Signal Strength”, Technical Development, Motorola Inc., Jan. 1999, pp. 205-206.
Dario et al., “A Robot Workstation for Diagnosis and Physical Therapy”, IEEE Catalog No. 88TH0234-5, Centro “E. Piaggio” University of Pisa, Italy, 1989, pp. 67-72.
Gostai “Gostai Jazz: Robotic Telepresence”, available online at <http://www.gostai.com>, 4 pages.
Leifer et al., “VIPRR: A Virtually in Person Rehabilitation Robot”, Proceedings of 1997 International Conference on Rehabilitation Robotics, Apr. 14-15, 1997, 4 pages.
Minsky, Marvin, “Telepresence”, OMNI Magazine, Jun. 1980, 6 pages.
Noritsugu et al., “Application of Rubber Artificial Muscle Manipulator as a Rehabilitation Robot”, Mechatronics, IEEE/ASME Transactions, vol. 2, No. 4, Dec. 1997, pp. 259-267.
Osborn et al., “Quality of Life Technology Center”, QoLT Research Overview: A National Science Foundation Engineering Research Center, Carnegie Mellon University of Pittsburgh, 2 pages.
Reynolds et al., “Review of Robotic Telemedicine Utilization in Intensive Care Units (ICUs)”, 11th Annual ATA Symposium, Tampa, Florida, 2011, 1 page.
Tipsuwan et al., “Gain Adaptation of Networked Mobile Robot to Compensate QoS Deterioration”, vol. 4, 28th Annual Conference of the Industrial Electronics Society, Nov. 5-8, 2002, pp. 3146-3151.
Tsui et al., “Exploring Use Cases for Telepresence Robots”, 6th ACM/IEEE International Conference on Human-Robot Interaction (HRI), Mar. 2011, 7 pages.
UMASS Lowell Robotics Lab, “Robotics Lab @ UMASS Lowell”, Department of Computer Science, Brochure, 2011, 2 pages.
Video Middleware Cookbook, “H.350 Directory Services for Multimedia”, 4 pages.
U.S. Appl. No. 10/783,760, filed Feb. 20, 2004, 48 pages.
International Search Report Received for International Patent Application No. PCT/US2005/037347, Apr. 17, 2006, 2 pages.
International Preliminary Report on Patentability and Written Opinion Received for International Patent Application No. PCT/US2005/037347, dated Apr. 17, 2006, 7 pages.
International Preliminary Report on Patentability and Written Opinion Received for International Patent Application No. PCT/US2006/037076, Apr. 1, 2008, 6 pages.
International Search Report and Written Opinion Received for International Application No. PCT/US2006/037076, dated May 11, 2007, 6 pages.
International Preliminary Report on Patentability and Written Opinion Received for International Patent Application No. PCT/US/200714099, dated Dec. 16, 2008, 5 pages.
International Search Report Received for International Patent Application No. PCT/US2007/14099, dated Jul. 30, 2008, 1 page.
Screenshot Showing Google Date for Lemaire Telehealth Manual, Screenshot Retrieved on Dec. 18, 2014, 1 page.
Nomadic Technologies, Inc., “Nomad Scout Language Reference Manual”, Software Version: 2.7, Part No. DOC00002, Jul. 12, 1999, 47 pages.
Fulbright et al., “SWAMI: An Autonomous Mobile Robot for Inspection of Nuclear Waste of Storage Facilities”, Autonomous Robots, vol. 2, 1995, pp. 225-235.
Related Publications (1)
Number Date Country
20140156069 A1 Jun 2014 US
Provisional Applications (1)
Number Date Country
60449762 Feb 2003 US
Continuations (3)
Number Date Country
Parent 13944526 Jul 2013 US
Child 14175988 US
Parent 11983058 Nov 2007 US
Child 13944526 US
Parent 10783760 Feb 2004 US
Child 11983058 US
Continuation in Parts (1)
Number Date Country
Parent 10206457 Jul 2002 US
Child 10783760 US