Technical Field
The present invention relates to a medical treatment system capable of controlling one or more treatment devices in accordance with a selected mode selected from a plurality of modes, and also relates to a control device that is provided in the medical treatment system.
Background Art
JP 2006-340839 A discloses a medical treatment device that includes a housing, a handle capable of opening and closing with respect to the housing, and an end effector with which treatment is given. In the medical treatment device, the handle is positioned near the base of a grip of the housing. Furthermore, a surface of a head of the housing (a portion near the head of the housing) is provided with a first operation button that is an operation member (a first input device), and a second operation button that is a selection member (a second input device). Inputting operation with the first operation button (pressing the first operation button) turns the first operation button into an ON state. This transmits ultrasonic vibration to the end effector (a treatment probe). With the second operation button, operation for switching the supply of high frequency energy to the end effector, or switching the intensity of electrical energy to be transmitted to an ultrasonic vibrator is performed. Thus, for example, when the supply of high frequency energy is switched with the second operation button and the first operation button is in the ON state, the medical treatment device can function in a first mode or a second mode; a first mode in which only ultrasonic vibration is transmitted to the end effector, and a second mode in which ultrasonic vibration is transmitted to the end effector and high frequency energy is also supplied to the end effector. When the first operation button (the operation member) is in the ON state, the first mode and the second mode are switched depending on the operating state input with the second operation button (the selection member).
When a medical treatment tool is provided with a handle near the base of the grip of the housing as described in JP 2006-340839 A, an operator holds using the operator's thumb put on the handle and the operator's middle finger, ring finger, and little finger put on the grip. Then, the operator rotates a rotating knob around the longitudinal axis and rotates the end effector around the longitudinal axis with the index finger while inputting operation with the operation member provided at a portion near the head of the housing using the index finger. When the housing is provided with the selection member in addition to the operation member at the portion near the head of the housing in the configuration described above, the operator needs to also use the index finger to input operation with the selection member. This reduces the operability of the operation member and selection member.
In light of the foregoing, an objective of the present invention is to provide a medical treatment system that switches the modes in which the medical treatment tool functions in accordance with the operating state input with a selection member, and ensures the operability for operating the operation member and the selection member, and also to provide a control device and a medical treatment tool that are provided in the medical treatment system.
To achieve the above objective, an aspect of the present invention is a medical treatment system comprising: one or more treatment devices, wherein the one or more treatment devices are configured to be controlled in one or more modes; a first input device configured to receive one of a plurality of inputs of a first type; a second input device configured to receive one of a plurality of inputs of a second type; a housing comprising: a distal portion; a proximal portion; and a grip, wherein the housing is configured to extend along a longitudinal axis extending from the distal portion to the proximal portion, wherein the grip is configured to extend along a direction crossing the longitudinal axis, wherein the first input device is arranged closer to the distal portion of the housing than the proximal portion of the housing, and wherein the second input device is arranged closer to the proximal portion of the housing than the first input device; and one or more processors configured to: select a selected mode from the one or more modes of the respective one or more treatment devices based on a combination of: the one of the plurality of inputs of the first type received by the first input device; and the one of the plurality of inputs of the second type received by the second input device; and control the one or more treatment devices in accordance with the selected mode.
Another aspect of the present invention is a control device for controlling a medical treatment tool, wherein the medical treatment tool comprises: one or more treatment devices, wherein the one or more treatment devices are configured to be controlled in one or more modes; a first input device configured to receive one of a plurality of inputs of a first type; and a second input device configured to receive one of a plurality of inputs of a second type; wherein the control device comprises: one or more processors configured to: receive a first signal indicating the one of the plurality of inputs of the first type received by the first input device; receive a second signal indicating the one of the plurality of inputs of the second type received by the second input device; select a selected mode from the one or more modes of the respective one or more treatment devices based on a combination of: the first signal indicating the one of the plurality of inputs of the first type received by the first input device; and the second signal the one of the plurality of inputs of the second type received by the second input device; and output a control signal for controlling the one or more treatment devices in accordance with the selected mode.
The first embodiment of the present invention will be described with reference to
The medical treatment tool 2 includes a housing 6 including a head and a base. The housing 6 includes a housing body 7 extending along the longitudinal axis C, and a grip (fixed handle) 8 extending from the housing body 7 in the direction crossing the longitudinal axis C. A first end of the cable 5 is connected to the base portion of the housing body 7. A handle (movable handle) 11 is rotatably attached to the housing 6. The handle 11 rotates around an attachment position at which the handle 11 is attached to the housing 6. This rotation allows the handle 11 to open and close with respect to the grip 8 of the housing 6 (displaces the handle 11). In the present embodiment, the handle 11 is positioned on a head side near the head of the grip 8 so that the handle 11 opens and closes with respect to the grip 8 (moves from and toward the grip 8) in roughly parallel to the longitudinal axis C.
A rotating knob 12 is coupled to the head side of the housing body 7. The rotating knob 12 is rotatable around the longitudinal axis C of the housing 6. A sheath 13 is coupled to the housing 6 while being inserted from the head side into the rotating knob 12 and housing body 7. An extension member (probe) 15 extends from the inside of the housing body 7 through the inside of the sheath 13 toward the head side. The head of the extension member 15 is provided with a first grasp unit (treatment probe) 16. The extension member 15 is inserted into and penetrates the sheath 13. The first grasp unit 16 protrudes from the head of the sheath 13 toward the head side. In the present embodiment, the extension member 15 is made of a material having high vibration transferability and thus capable of transferring ultrasonic vibration. A second grasp unit (jaw) 17 is rotatably attached to the head of the sheath 13.
The handle 11 opens or closes with respect to the grip 8. This moves a movable pipe (not illustrated) extending between the sheath 13 and the extension member 15 along the longitudinal axis C. This rotates the second grasp unit 17 so that the second grasp unit 17 opens or closes with respect to the first grasp unit 16. In the present embodiment, the first grasp unit 16 and the second grasp unit 17 form an end effector 18 that treats an object to be treated such as body tissue. The end effector 18 grasps the object to be treated between a pair of the grasp units 16 and 17 so as to treat the object to be treated.
The control device 3 includes one or more processors such as an energy source 25 that generates energy for treatment, and a control unit 26 that controls the energy source 25. The energy source 25 includes, for example, a drive circuit (not illustrated) that converts direct current power from a battery or electricity from an outlet into electrical energy used for treatment. The control unit 26 includes, for example, a processor or an integrated circuit including a Central Processing Unit (CPU) or an application specific integrated circuit (ASIC), and a storage medium such as a memory so as to control the whole medical treatment device 1. Note that, in the control unit 26, for example, a processor can work as a level setting unit 27 configured to set a level (energy level) on each type of energy output from the energy source 25, or can work as a measurement unit 28 (a measurement circuit) that can measure a predetermined parameter. The level setting unit 27 and measurement unit 28 perform some of processes that, for example, the processor performs. The control device 3 is provided also with an alarm 29 electrically connected to the control unit 26. The alarm 29 is, for example, a bell that warns by generating a sound, a lamp that warns by producing light, or a display screen that displays warning. In this example, the alarm 29 is not necessarily placed in the control device 3, and can be placed, for example, in the housing 6 of the medical treatment tool 2. Alternatively, warning can be displayed on the display screen of an endoscope (not illustrated) used together with the medical treatment device 1.
First ends of electrical lines 22A and 22B are connected to the vibration generation unit 21. The electrical lines (energy lines) 22A and 22B extend through the insides of the housing 6, cable 5, and control device 3. Second ends of the electrical lines 22A and 22B are connected to the energy source 25. The control by the control unit 26 outputs the electrical energy (alternating current power) that is to be converted into ultrasonic vibration from the energy source 25 through the electrical lines 22A and 22B, and the electrical energy output through the electrical lines 22A and 22B is supplied to the vibration generation unit 21. The supply of the electrical energy to the vibration generation unit 21 generates ultrasonic vibration. Then, the generated ultrasonic vibration is transmitted to the extension member 15. The ultrasonic vibration is transmitted from the base side to head side of the extension member 15. Subsequently, the ultrasonic vibration is transmitted to the first grasp unit 16 of the end effector 18.
First ends of energy lines 23A and 23B are also connected to the energy source 25. The energy line 23A extends through the insides of the control device 3, cable 5, and housing 6. A second end of the energy line 23A is connected to the first grasp unit 16. The energy line 23B extends through the insides of the cable 5, and housing 6. A second end of the energy line 23B is connected to the second grasp unit 17. The control by the control unit 26 outputs high frequency energy (high frequency electricity) from the energy source 25 through the energy lines 23A and 23B. Then, the high frequency energy is supplied through the energy line 23A to the first grasp unit 16 and through the energy line 23B to the second grasp unit 17. The supply of the high frequency energy to the end effector 18 (the first grasp unit 16 and second grasp unit 17) causes the first grasp unit 16 and second grasp unit 17 to function as electrodes of the high frequency energies with different electrical potentials each other.
As illustrated in
As illustrated in
Similarly, the switch 35B is connected to the control unit 26 through the detection signal lines (first detection signal lines) 36B1 and 36B2 so that the detection signal lines 36B1 and 36B2 transmit a detection signal (first detection signal) indicating whether the switch 35B opens or closes (namely, the operating state input with the operation button 31B) to the control unit 26. The control unit 26 detects the operating state input with the operation button 31B (namely, whether the operation button 31B is in the ON state or the OFF state) in accordance with the detection signal transmitted through the detection signal lines 36B1 and 36B2.
As illustrated in
As illustrated in
Note that an exemplary embodiment can be provided with a foot switch 34 as an operation input apparatus (third input device). In this example, the foot switch 34 is placed separately from the medical treatment tool 2 (the housing 6 and end effector 18). With the foot switch 34 working as the operation input apparatus, operation for causing the medical treatment device 1 to function is input. The input of operation with the foot switch 34 is detected by the control unit 26.
Next, the mechanisms and effects of the medical treatment tool 2, control device 3, and medical treatment device 1 according to the present embodiment will be described.
When the operation button 31A is switched to the ON state (step S102—Yes), the control unit 26 detects whether the selection button 41 is maintained to be in the OFF state (step S103), and detects whether a given period of time T0 has elapsed since the operation button 31A has been switched to the ON state (step S104). In other words, the control unit 26 detects whether the selection button 41 is maintained to be in the OFF state until a given period of time T0 has elapsed since the operation button 31A has been switched to the ON state in steps S103 and S104. In this example, the control unit 26 sets the given period of time T0, for example, within a range between 0.05 and 1 seconds. Note that, when the given period of time T0 has not elapsed since the operation button 31A has been switched to the ON state in step S104 (step S104—No), the process goes back to step S102.
When the selection button 41 is maintained to be in the OFF state (step S103—Yes and S104—Yes) during the given period of time T0 after the operation button 31A is switched to the ON state, the control unit 26 causes the medical treatment device 1 to function in the first mode (step S105). This causes the medical treatment device 1 to function in the first mode when the given period of time T0 has elapsed after the operation button 31A is switched from the OFF state to the ON state while the selection button 41 is in the OFF state. In other words, the control unit 26 causes the medical treatment device 1 to function in the first mode in accordance with the fact that the operation button 31A is in the ON state when the selection button 41 is in the OFF state. In the present embodiment, by causing the medical treatment device 1 to function in the first mode, the control unit 26 supplies the electrical energy (alternating current) from the energy source 25 to the vibration generation unit 21 so as to transmit the ultrasonic vibration (the first energy) generated by the vibration generation unit 21 to the first grasp unit 16 of the end effector 18.
The control unit 26 causes the medical treatment device 1 to function in the first mode (step S105) as long as the operation button 31A is maintained to be in the ON state (step S106—No). In such a case, the medical treatment device 1 is maintained to be in the first mode regardless of the operating state input with the operation button (second operation button) 31B. In other words, unless the operation button 31A is switched from the ON state to the OFF state, the medical treatment device 1 functions in the first mode even if the operation button 31B is switched from the OFF state to the ON state. When the operation button 31A is switched from the ON state to the OFF state (step S106—Yes), the control unit 26 stops the output of energy from the energy source 25 (step S107) and thus the electrical energy is not supplied to the vibration generation unit 21. The output of energy from the energy source 25 is stopped regardless of the operating state input with the operation button 31B (namely, whether the operation button 31B is in the ON state or the OFF state). This stops the transmission of the ultrasonic vibration to the end effector 18 and stops the medical treatment device 1 from functioning.
When the selection button 41 is switched to the ON state (step S103—No) before the given period of time T0 has elapsed since the operation button 31A has been switched to the ON state in step S102, the control unit 26 causes the alarm 29 to warn an error (step S108). Meanwhile, the control unit 26 maintains the state in which the output of energy from the energy source 25 stops (step S109). This maintains the state in which the medical treatment device 1 is stopped from functioning. For example, the operator recognizes from the error warning of the alarm 29 that operation is not properly input with the operation button 31A and the selection button 41.
When the selection button 41 is in the ON state in step S101 (step S101—No), the control unit 26 detects the operating state input with the operation button 31A in accordance with the detection signal transmitted through the detection signal lines (first detection signal lines) 36A1 and 36A2, and detects whether the operation button 31A is switched from the OFF state to the ON state (step S111). When the operation button 31A is maintained to be in the OFF state (step S101—No or step S111—No), the control unit 26 maintains the state in which the output of energy from the energy source 25 is stopped (step S110) regardless of the operating state input with the selection button 41 (in other words, whether the selection button 41 is in the ON state or the OFF state). This maintains the state in which the medical treatment device 1 is stopped from functioning in the process performed in accordance with the operating state input with the operation button 31A unless the operation button 31A is switched to the ON state. When the selection button 41 is in the OFF state and the operation button 31A is switched to the OFF state again before the given period of time T0 has elapsed since the operation button 31A has been switched to the ON state (step S104—No and S102—No), the control unit 26 maintains the state in which the output of energy from the energy source 25 is stopped (step S110).
When the selection button 41 is in the ON state and the operation button 31A is switched from the OFF state to the ON state (step S101—No and step S111—Yes), the control unit 26 causes the medical treatment device 1 to function in a second mode different from the first mode (step S112). Thus, when the selection button 41 is in the ON state and the operation button 31A is switched from the OFF state to the ON state, the medical treatment device 1 functions in the second mode. In other words, the control unit 26 causes the medical treatment device 1 to function in the second mode in accordance with the fact that the selection button 41 is in the ON state and the operation button 31A is in the ON state. In the present embodiment, by causing the medical treatment device 1 to function in the second mode, the control unit 26 supplies the electrical energy (alternating current) from the energy source 25 to the vibration generation unit 21 and transmits the ultrasonic vibration (first energy) generated by the vibration generation unit 21 to the first grasp unit 16 of the end effector 18, and transmits the high frequency energy (second energy) different from the ultrasonic vibration to the end effector 18.
As long as the operation button 31A is maintained to be in the ON state (step S113—No) and the selection button 41 is maintained to be in the ON state (step S114—No), the control unit 26 causes the medical treatment device 1 to function in the second mode (step S112). In such a case, the medical treatment device 1 is maintained to be in the second mode regardless of the operating state of the operation button (second operation button) 31B. In other words, as long as the operation button 31A is not switched from the ON state to the OFF state and the selection button 41 is not switched from the ON state to the OFF state, the medical treatment device 1 functions in the second mode even if the operation button 31B is switched from the OFF state to the ON state.
When the operation button 31A is switched from the ON state to the OFF state (step S113—Yes), or when the selection button 41 is switched from the ON state to the OFF state (step S114—Yes), the control unit 26 stops the output of energy from the energy source 25 (step S115). This stops the supply of the electrical energy to the vibration generation unit 21 and thus stops the transmission of the ultrasonic vibration to the end effector 18. This also stops the supply of the high frequency energy to the end effector 18. In such a case, the output of energy from the energy source 25 is stopped regardless of the operating state input with the operation button 31B (in other words, whether the operation button 31B is in the ON state or the OFF state). This stops the supply of energy to the end effector 18, and stops the medical treatment device 1 from functioning.
A process that the control unit 26 performs in accordance with the operating state input with the operation button (second operation button) 31B is performed in a similar manner to the process performed in accordance with the operating state on the operation button (first operation button) 31A (see
As long as the operation button 31B is in the ON state when the medical treatment device 1 functions in the third mode, the control unit 26 maintains the medical treatment device 1 in the third mode regardless of the operating state input with the operation button 31A. When the operation button 31B is switched to the OFF state, the control unit 26 stops the output of energy from the energy source 25 and stops the medical treatment device 1 from functioning regardless of the operation input with the operation button 31A (in other words, whether the operation button 31A is in the ON state or the OFF state). When the selection button 41 is in the OFF state and the operation button 31B is switched to the ON state and the selection button 41 is switched from the OFF state to the ON state before the given period of time T0 has elapsed since the operation button 31B has been switched to the ON state, the control unit 26 warns an error and maintains the state in which the medical treatment device 1 is stopped from functioning.
When the selection button 41 is in the ON state and the operation button 31B is switched from the OFF state to the ON state, the control unit 26 causes the medical treatment device 1 to function in a fourth mode different from the first to third modes. In other words, the control unit 26 causes the medical treatment device 1 to function in the fourth mode in accordance with the fact that the selection button 41 is in the ON state and the operation button 31B is in the ON state. In the present embodiment, by causing the medical treatment device 1 to function in the fourth mode, the control unit 26 supplies the same type of high frequency energy as the high frequency energy supplied in the third mode to the end effector 18 in a state in which the high frequency energy is supplied while at least one of the amount of the supplied high frequency energy, the length of time to supply the high frequency energy, and the frequency at which the high frequency energy is supplied is different from that in the third mode. At that time, the high frequency energy is supplied in an appropriate amount, for an appropriate length of time, at an appropriate frequency for sealing of a blood vessel.
When the medical treatment device 1 functions in the fourth mode, the control unit 26 maintains the medical treatment device 1 in the fourth mode regardless of the operating state input with the operation button 31A as long as the operation button 31B is maintained to be in the ON state and the selection button 41 is maintained to be in the ON state. When the operation button 31B is switched to the OFF state, or the selection button 41 is switched to OFF state, the control unit 26 stops the output of energy from the energy source 25 and stops the medical treatment device 1 from functioning regardless of the operating state input with the operation button 31A (in other words, whether the operation button 31A is the ON state or the OFF state).
As described above, when the operation button 31A is in the ON state, the detection signal (the first detection signal) indicating the operating state input with the operation button 31A is transmitted through the detection signal lines 36A1 and 36A2 to the control unit 26. This enables the control unit 26 to cause the medical treatment device 1 to function in a plurality of modes (in the first mode or the second mode). When the operation button 31A is the ON state, the detection signal (the second detection signal) indicating the operating state input with the selection button 41 (whether the selection button 41 is in the ON state or the OFF state) is transmitted through the detection signal lines 43A and 43B to the control unit 26. Then, the control unit 26 selects (determines) a mode in which the medical treatment device 1 functions (the first mode or the second mode) from the modes in accordance with the transmitted detection signal (the second detection signal). Similarly, when the operation button 31B is in the ON state, the detection signal (the first detection signal) indicating the operating state input with the operation button 31B is transmitted through the detection signal lines 36B1 and 36B2 to the control unit 26. This enables the control unit 26 to cause the medical treatment device 1 to function in a plurality of modes (the third mode or the fourth mode). When the operation button 31B is the ON state, the detection signal (the second detection signal) indicating the operating state input with the selection button 41 (whether the selection button 41 is in the ON state or the OFF state) is transmitted through the detection signal lines 43A and 43B to the control unit 26. Then, the control unit 26 selects (determines) a mode in which the medical treatment device 1 functions (the third mode or the fourth mode) from the modes in accordance with the transmitted detection signal (the second detection signal).
Thus, in the present embodiment, only providing a selection button (selection member) 41 enables the control unit 26 to cause the medical treatment device 1 to function in a plurality of modes when each of the operation buttons (the operation members) 31A and 31B is in the ON state by performing the process in accordance with the operating state input with the operation button 31A illustrated in
In the detection of the operating states input with the operation buttons 31A and 31B, and the selection button 41, for example, when the selection button 41 is switched from the OFF state to the ON state before the given period of time T0 has elapsed since the operation button (31A or 31B) has been switched to the ON state, it is sometimes difficult to determine whether the operation button (31A or 31B) and the selection button 41 are simultaneously in the ON state. In the present embodiment, the process in accordance with the operating state input with the operation button 31A illustrated in
To treat an object to be treated using the medical treatment device 1, the operator holds the housing 6 and the handle 11 and inserts the head of the sheath 13 and the end effector 18, for example, into an abdominal cavity. The operator opens or closes the handle 11 with respect to the grip 8 while inserting the sheath 13 and the end effector 18 in a body cavity in order to open or close the grasp units 16 and 17, rotate the rotating knob 12 around the longitudinal axis C in order to adjust the angle of the position of the end effector 18 around the longitudinal axis C.
In the present embodiment, the selection button (selection member) 41 is placed nearer to the base side of the housing 6 than the operation buttons 31A and 31B on the outer surface of the housing 6. This placement enables the operator to input operation with the selection button 41 (to press the selection button 41) using the thumb F1 while grasping the grip 8 between the thumb F1 and the palm P. Thus, the operator can switch the selection button 41 between ON state and OFF state using the thumb F1. Thus, the operator does not use the operator's index finger F2, middle finger F3, ring finger F4, and little finger F5, which are used for at least one of operations for opening and closing the handle 11, rotating the rotating knob 12, and inputting operation with the operation buttons 31A and 31B, in order to input operation with the selection button 41. Thus, the operator does not need to change the positions and postures of the operator's index finger F2, middle finger F3, ring finger F4 and little finger F5 in order to switch the selection button 41 between the ON state and the OFF state in treatment, and does not need also to hold the housing 6 and the handle 11 again with the operator's right hand H. This secures the operability for opening and closing the handle 11, rotating the rotating knob 12, and inputting operation with the operation buttons 31A and 31B, and secures also the operability for inputting operation with the selection button 41.
As described above, the present embodiment can provide the medical treatment device (1) that switches the modes in which the medical treatment device (1) functions in accordance with the operating state input with the selection member (41), and secures the operability of the operation members (31A and 31B), and the selection member (41).
Note that, when the operation button 31A is in the ON state in the first embodiment, the medical treatment device 1 can function in the mode in which ultrasonic vibration is transmitted to the end effector 18 (the first mode) and in the mode in which ultrasonic vibration is transmitted and the high frequency energy is also supplied to the end effector 18 (the second mode) in accordance with the operating state input with the selection button 41. However, the mode is not limited to the modes according to the first embodiment. Similarly, when the operation button 31B is in the ON state, the medical treatment device 1 can function in the mode in which high frequency energy is supplied to the end effector 18 in an amount appropriate for solidification (the third mode) and in the mode in which high frequency energy is supplied to the end effector 18 in an amount appropriate for sealing of a blood vessel (the fourth mode) in accordance with the operating state input with the selection button 41. However, the mode is not limited to the modes according to the first embodiment.
The first embodiment is provided with two operation buttons 31A and 31B. However, the number of the operation buttons can be one, or three or more. In other word, at least an operation button (31A or 31B) needs being provided. When one operation button is provided, the control unit 26 causes the medical treatment device 1 to function in one of the patterns X1 to X16, Xa1 to Xa6, Xa9, Xa11 to Xc11, and Xa12 to Xc12 illustrated in
Hereinafter, each of the patterns X1 to X16, Xa1 to Xa6, Xa9, Xa11 to Xc11, and Xa12 to Xc12 illustrated in
In the pattern Xa2, the medical treatment device 1 functions in a mode in which high frequency energy is transmitted to the end effector 18 in accordance with the fact the selection button 41 is in the OFF state and the operation button (31A or 31B) is in the ON state. The medical treatment device 1 functions in a mode in which heat is transmitted to the end effector 18 in accordance with the fact the selection button 41 is in the ON state and the operation button (31A or 31B) is in the ON state.
In the pattern X3, the medical treatment device 1 functions in a mode in which high frequency energy is transmitted to the end effector 18 in accordance with the fact the selection button 41 is in the OFF state and the operation button (31A or 31B) is in the ON state. The medical treatment device 1 functions in a mode in which ultrasonic vibration is transmitted to the end effector 18 and water is conveyed near the end effector 18 through a water convey path (not illustrated) in accordance with the fact the selection button 41 is in the ON state and the operation button (31A or 31B) is in the ON state. In this pattern, a water convey source (not illustrated) that supplies water (liquid) through the water convey path is provided, and the control unit 26 controls the operation, for example, of a water convey pump of the water convey source. In each mode described in the pattern Xa3, the function to supply high frequency energy to the end effector 18 is added to the functions of the mode corresponding to the pattern X3.
Alternatively, in the pattern X4, the medical treatment device 1 functions in a mode in which ultrasonic vibration is transmitted to the end effector 18 in accordance with the fact the selection button 41 is in the OFF state and the operation button (31A or 31B) is in the ON state. The medical treatment device 1 functions in a mode in which ultrasonic vibration is transmitted to the end effector 18 and suction is performed from the periphery of the end effector 18 through a suction path (not illustrated) in accordance with the fact the selection button 41 is in the ON state and the operation button (31A or 31B) is in the ON state. In this pattern, a suction source (not illustrated) that perform suction through the suction path, and the control unit 26 controls the operation, for example, of a suction pump of the suction source. In each mode in the pattern Xa4, the function to supply high frequency energy to the end effector 18 is added to the functions of the mode corresponding to the pattern X4.
Alternatively, in the pattern X5, the medical treatment device 1 functions in a mode in which ultrasonic vibration is transmitted to the end effector 18 in accordance with the fact the selection button 41 is in the OFF state and the operation button (31A or 31B) is in the ON state. The medical treatment device 1 functions in a mode in which a different type of high frequency energy (the second energy) from the ultrasonic vibration (the first energy) is transmitted to the end effector 18 in accordance with the fact the selection button 41 is in the ON state and the operation button (31A or 31B) is in the ON state. Instead of the supply of high frequency energy in the pattern X5, heat is transmitted to the end effector 18 in the mode in which the medical treatment device 1 functions when the selection button 41 is in the ON state in the pattern Xa5.
The mode in which the medical treatment device 1 functions when the selection button 41 is in the OFF state in the pattern X5 is switched to the mode in which the medical treatment device 1 functions when the selection button 41 is in the ON state in the pattern X6. The mode in which the medical treatment device 1 functions when the selection button 41 is in the ON state in the pattern X5 is switched to the mode in which the medical treatment device 1 functions when the selection button 41 is in the OFF state in the pattern X6. Similarly, the mode in which the medical treatment device 1 functions when the selection button 41 is in the OFF state in the pattern Xa5 is switched to the mode in which the medical treatment device 1 functions when the selection button 41 is in the ON state in the pattern Xa6. The mode in which the medical treatment device 1 functions when the selection button 41 is in the ON state in the pattern Xa5 is switched to the mode in which the medical treatment device 1 functions when the selection button 41 is in the OFF state in the pattern Xa6.
High frequency energy is supplied to the end effector 18 in each mode of the pattern X7 instead of the transmission of ultrasonic vibration in the mode corresponding to the pattern X3. Similarly, high frequency energy is supplied to the end effector 18 in each mode of the pattern X8 instead of the transmission of ultrasonic vibration in the mode corresponding to the pattern X4.
In a mode in which the medical treatment device 1 functions when the selection button 41 is in the OFF state in the pattern X9, the output of energy from the energy source 25 is maintained as long as operation is input with the operation button (31A or 31B). In other words, in a mode in which the medical treatment device 1 functions when the selection button 41 is in the OFF state, the supply of energy to the end effector 18 is maintained as long as the operation button (31A or 31B) is maintained to be in the ON state. When the mode is switched to a mode in which the medical treatment device 1 functions when the selection button 41 is in the ON state, the output of energy is automatically stopped in accordance with the fact that a predetermined period of time T′0 has elapsed since the start of the output of energy from the energy source 25. In other words, in a mode in which the medical treatment device 1 functions when the selection button 41 is in the ON state, the supply of energy to the end effector 18 is stopped when the predetermined period of time T′0 has elapsed since the start of the output of energy even while the operation button (31A or 31B) is maintained to be in the ON state. Even in such a case, however, the output of energy is started in accordance with the fact that the selection button 41 is in the ON state and the operation button (31A or 31B) is in the ON state. Note that, when ultrasonic vibration is transmitted as energy to the end effector 18 and the mode is switched to the mode in which the medical treatment device 1 functions when the selection button 41 is in the ON state, the output of energy can automatically be stopped in accordance with the fact that a predetermined period of time T′1 has elapsed since the start of a phase locked loop control (PLL control).
An incision is detected based on a sound impedance Z in a mode in which the medical treatment device 1 functions when the selection button 41 is in the ON state in the pattern Xa9 instead of stopping the output of energy after the predetermined period of time T′0 has elapsed in the pattern X9. In this pattern, ultrasonic vibration is transmitted as energy to the end effector 18 so that the object to be treated that is grasped between the grasp units 16 and 17 is sectioned with the ultrasonic vibration. The control unit 26 chronologically detects, in the vibration generation unit 21, the sound impedance Z of the electrical energy (alternating current power) supplied to the vibration generation unit 21. When the sound impedance Z exceeds a set threshold Zth, it is determined that the incision of the object to be treated is completed. When it is determined that the incision is completed, the control unit 26 notifies the operator of the completion of incision or the output of energy from the energy source 25 is automatically stopped. This prevents the ultrasonic vibration from wearing the end effector 18 after the completion of incision.
In the pattern X10, the detection of an incision described in the pattern Xa9 is performed both in a mode in which the medical treatment device 1 functions when the selection button 41 is in the OFF state and in a mode in which the medical treatment device 1 functions when the selection button 41 is in the ON state. However, in the pattern X10, the threshold Zth is set at a high value in the mode in which the medical treatment device 1 functions when the selection button 41 is in the OFF state, and the threshold Zth is set at a low value in the mode in which the medical treatment device 1 functions when the selection button 41 is in the ON state in comparison to the mode in which the medical treatment device 1 functions when the selection button 41 is in the OFF state.
In the pattern X11, energy (electrical energy) to be supplied from the energy source 25 to the vibration generation unit 21 at a normal level is output so that ultrasonic vibration is transmitted to the end effector 18 in a mode in which the medical treatment device 1 functions when the selection button 41 is in the OFF state. The level at which the energy is output is lowered in the mode in which the medical treatment device 1 functions when the selection button 41 is in the ON state in comparison with the mode in which the medical treatment device 1 functions when the selection button 41 is in the OFF state so that the amplitude of the ultrasonic vibration is reduced in the end effector 18. In each of the patterns Xa11 to Xc11, high frequency energy is output at a normal level from the energy source 25 in the mode in which the medical treatment device 1 functions when the selection button 41 is in the OFF state so that the high frequency energy is supplied to the end effector 18. In each of the patterns Xa11 to Xc11, the level at which the high frequency energy is output is lowered in the mode in which the medical treatment device 1 functions when the selection button 41 is in the ON state in comparison to the mode in which the medical treatment device 1 functions when the selection button 41 is in the OFF state. This causes the reduction in the high frequency electricity as the pattern Xa11, or the reduction in the maximum value (wave height) of the high frequency voltage as the pattern Xb11, or the reduction in the maximum value (wave height) of the high frequency current as the pattern Xc11.
In contrast to the pattern X11, the level at which the high frequency energy is output is increased in the mode in which the medical treatment device 1 functions when the selection button 41 is in the ON state in comparison to the mode in which the medical treatment device 1 functions when the selection button 41 is in the OFF state so that the amplitude of the ultrasonic vibration in the end effector 18 is increased in the pattern X12. In contrast to the patterns Xa11 to Xc11, the level at which the high frequency energy is output is increased in the mode in which the medical treatment device 1 functions when the selection button 41 is in the ON state in comparison to the mode in which the medical treatment device 1 functions when the selection button 41 is in the OFF state in each of the patterns Xa12 to Xc12. This causes the increase in the high frequency electricity as the pattern Xa12, the increase in the maximum value (wave height) of the high frequency voltage as the pattern Xb12, or the increase in the maximum value (wave height) of the high frequency current as the pattern Xc12.
In the pattern X13, energy (for example, high frequency energy, or the electrical energy to the vibration generation unit 21) is output from the energy source 25 at a level used for treatment in the mode in which the medical treatment device 1 functions when the selection button 41 is in the OFF state (the first mode) so that the energy to be used for treatment (for example, high frequency energy or ultrasonic vibration) is supplied to the end effector 18. In the mode in which the medical treatment device 1 functions when the selection button 41 is in the ON state (the second mode), the measurement unit 28 measures a predetermined parameter. When high frequency energy is supplied to the end effector 18, the predetermined parameter to be measured can be, for example, the phase difference between the high frequency current and the high frequency voltage, the value of the high frequency current, the value of the high frequency voltage, or the chronological variations thereof. When the ultrasonic vibration is transmitted to the end effector 18, the predetermined parameter to be measured can be, for example, the phase difference between the current and voltage of the electrical energy supplied to the vibration generation unit 21, the value of current, the value of voltage, or the chronological variations thereof. When high frequency energy is supplied to the end effector 18, an impedance Z′ of the object to be treated that is grasped between the grasp units 16 and 17 can be measured as the predetermined parameter. When the impedance Z′ of the object to be treated is measured as the predetermined parameter the object to be treated, the high frequency energy is output from the energy source 25 at a lower level than the level used for the treatment and the high frequency energy is supplied to the end effector 18.
In the first exemplary variation, the mode in which the medical treatment device 1 functions is switched as the illustrated pattern X14 in accordance with the operating state input with the selection button 41.
For example, in an exemplary embodiment illustrated in
In the exemplary embodiment illustrated in
When the mode is switched in the pattern X15 in an exemplary variation, energy (for example, high frequency energy or the electrical energy to the vibration generation unit 21) is output at a level used for treatment from the energy source 25 so that the energy used for treatment (for example, high frequency energy or ultrasonic vibration) is supplied to the end effector 18 in the mode in which the medical treatment device 1 functions when the selection button 41 is in the OFF state (the first mode). The energy is supplied to the end effector 18 in a similar manner to the mode in which the medical treatment device 1 functions when the selection button 41 is in the OFF state, and the handle 11 is electrically operated and closed in the mode in which the medical treatment device 1 functions when the selection button 41 is in the ON state (the second mode). In this example, the inside of the housing 6 is provided with an electric motor (not illustrated) so that electrical energy (drive electricity) is supplied from the energy source 25 to the electric motor. This electricity drives the electric motor. Driving the electric motor makes driving force act on the handle 11 so that the handle 11 is closed.
The process in accordance with the operating state input with the operation button (31A or 31B) is not limited to the process illustrated in
In an exemplary variation, as long as the control by the control unit 26 maintains the operation button (31A or 31B) in the ON state, the mode in which the medical treatment device 1 functions is not changed even when the operating state is switched with the selection button 41 (the selection button 41 is switched between the ON state and the OFF state). To switch the mode in which the medical treatment device 1 functions in this example, it is necessary to switch the operation button (31A or 31B) from the OFF state to the ON state after the operating state input with the selection button 41 is switched while the operation button (31A or 31B) is in the OFF state. In contrast, in another exemplary variation, the control by the control unit 26 switches the operating state input with the selection button 41 (switches the selection button 41 between the ON state and the OFF state). This switching changes the mode in which the medical treatment device 1 functions even while the operation button (31A or 31B) is in the ON state.
In the second exemplary variation, the mode in which the medical treatment device 1 functions is switched to the mode as the pattern X16 illustrated in
On the other hand, in the pattern X16, the medical treatment device 1 operates in accordance with the operation input with the operation button (the operation member) 31A or 31B in the mode in which the medical treatment device 1 functions when the selection button 41 is in the ON state (the second mode). In other words, when the selection button 41 is in the ON state, the medical treatment device 1 operates in accordance with the operation input with the operation button (31A or 31B) regardless of the operation input with the foot switch 34. For example, when operation is input with the operation button 31A, energy (for example, high frequency energy, or the electrical energy to the vibration generation unit 21) is output from the energy source 25 so that the energy used for treatment (for example, high frequency energy or ultrasonic vibration) is supplied to the end effector 18.
In the present exemplary variation, when both the operation button 31A and the selection button 41 are in the ON states, both the switches 35A and 42 are closed and thus the detection current flows through the detection signal lines 45A and 45C. The flow of the detection current through the detection signal lines 45A and 45C switches the mode to a mode in which the medical treatment device 1 operates in accordance with the operation input with the operation button 31A and, for example, energy used for treatment is transmitted to the end effector 18 in accordance with the operation input with the operation button 31A. When the selection button 41 is in the OFF state, the detection current does not flow through the detection signal lines 45A and 45C even when the operation button 31A is in the ON state. Thus, when the selection button 41 is in the OFF state, the medical treatment device 1 operates in accordance with the operation input with the foot switch 34 even when the operation button 31A in the ON state. Accordingly, when the operation button 31A and the selection button 41 are momentary ones, the medical treatment device 1 operates in accordance with the operation input with the foot switch 34 unless operation is simultaneously input with the operation button 31A and the selection button 41 (unless the operation button 31A and the selection button 41 are simultaneously pressed) even when the operation is input with the operation button 31A (the operation button 31A is pressed).
In the present exemplary variation, when both the operation button 31B and the selection button 41 are in the ON states, both the switches 35B and 42 are closed and thus the detection current flows through the detection signal lines 45B and 45C. The flow of the detection current through the detection signal lines 45B and 45C switches the mode to a mode in which the medical treatment device 1 operates in accordance with the operation input with the operation button 31B and, for example, energy used for treatment is transmitted to the end effector 18 in accordance with the operation input with the operation button 31B. When the selection button 41 is in the OFF state, the detection current does not flow through the detection signal lines 45B and 45C even when the operation button 31B is in the ON state. Thus, when the selection button 41 is in the OFF state, the medical treatment device 1 operates in accordance with the operation input with the foot switch 34 even when the operation button 31B is the ON state. Accordingly, when the operation button 31B and the selection button 41 are momentary ones, the medical treatment device 1 operates in in accordance with the operation input with the foot switch 34 unless the operation is simultaneously input with the operation button 31B and the selection button 41 (unless the operation button 31B and the selection button 41 are simultaneously pressed) even when operation is input with the operation button 31B (even when the operation button 31B is pressed).
In the present exemplary variation, when the operation button 31A is in the ON state and the operation button 31B is in the OFF state, the detection current flows through the detection signal lines 46A and 46B. When the operation button 31A is in the OFF state and the operation button 31B is in the ON state, the detection current flows through the detection signal lines 46B and 46C. When both the operation buttons 31A and 31B are in the ON states, the detection current flows through the detection signal lines 46A and 46B. Thus, both when the selection button 41 is in the OFF state and when the selection button 41 is in the ON state in the present exemplary variation, the medical treatment device 1 can function in three modes; a mode in which only the operation button 31A is in the ON state, a mode in which only the operation button 31B is in the ON state, and a mode in which both the operation buttons 31A and 31B are in the ON states. In other words, both when the selection button 41 is in the OFF state and when the selection button 41 is in the ON state, the medical treatment device 1 can function in a larger number of modes than the number of the operation buttons 31A and 31B that are the operation members.
In an exemplary embodiment, when the selection button 41 is in the ON state and only the operation button 31A is in the ON state, ultrasonic vibration is supplied to the end effector 18. Alternatively, when the selection button 41 is in the ON state and only the operation button 31B is in the ON state, high frequency energy is supplied to both the grasp units 16 and 17 of the end effector 18 so that a bipolar treatment by the high frequency energy is performed. Alternatively, when the selection button 41 is in the ON state and both the operation buttons 31A and 31B are in the ON states, high frequency energy is supplied to only one of the grasp units 16 and 17 of the end effector 18 so that a mono-polar treatment by the high frequency energy is performed.
In the embodiments, when the selection button 41 that is a selection member is an alternate button, the selection button 41 is maintained to be in both the ON state and the OFF state. However, the selection member is not limited to the alternate button. For example, the external surface of the housing 6 is provided with a selection lever 41A as the selection member in a fourth exemplary variation illustrated in
In the present exemplary variation, the selection lever 41A is also placed nearer to the base side of the housing 6 than the operation buttons 31A and 31B. Thus, the thumb F1 can input operation with the selection lever 41A (can rotate the selection button 41A) while the grip 8 is grasped between the thumb F1 and the palm P. The thumb F1 switches the selection lever 41A between the ON state and the OFF state.
In the present exemplary variation, the external surface of the housing 6 is provided with engagement protrusions 48A and 48B in the concavity 47. An engagement groove 49, which can be engaged with the engagement protrusions 48A and 48B, is formed on the selection lever 41A. The engagement of the engagement groove 49 with the engagement protrusion 48A fixes the selection lever 41A on the OFF state position with respect to the housing 6 so that the selection lever 41A that is the selection member is maintained to be in the OFF state. In other words, the engagement protrusion 48A and the engagement groove 49 work as a state maintenance mechanism that maintains the selection lever 41A in the OFF state. The engagement of the engagement groove 49 with the engagement protrusion 48B fixes the selection lever 41A on the ON state position with respect to the housing 6 so that the selection lever 41A that is the selection member is maintained to be in the ON state. In other words, the engagement protrusion 48B and the engagement groove 49 work as a state maintenance mechanism that maintains the selection lever 41A in the ON state.
In a fifth exemplary variation illustrated in
In the present exemplary variation, the selection slider 41B is placed nearer to the base side of the housing 6 than the operation buttons 31A and 31B. Thus, the thumb F1 can input operation with the selection slider 41B (can move the selection slider 41B) while the grip 8 is grasped between the thumb F1 and the palm P. The thumb F1 switches the selection slider 41B between the ON state and the OFF state.
In the present exemplary variation, the internal surface of the selection slider 41B is provided with a groove 58 and a pressure unit 59. As illustrated in
In the embodiments described above, the selection member (41, 41A, or 41B) is placed on the external surface of the housing 6. However, the placement is not limited to the embodiments. For example, in a sixth exemplary variation illustrated in
For example, when the selection switch 41C is a momentary one, closing the handle 11 with respect to the grip 8 causes the handle 11 to press the selection switch 41C so that the selection switch 41C is switched to the ON state. Opening the handle 11 with respect to the grip 8 prevents the handle 11 from having contact with the selection switch 41C so that the selection switch 41C is switched to in the OFF state. In the present exemplary variation, the control unit 26 also causes the medical treatment device 1 to function, for example, in one of the patterns X1 to X16, Xa1 to Xa6, Xa9, Xa11 to Xc11, and Xa12 to Xc12 illustrated in
In the present exemplary variation, the selection switch (the selection member) 41C is placed nearer to the base side of the housing 6 than the operation buttons 31A and 31B in the housing 6. Thus, opening or closing the handle 11 with respect to the housing 6 can vary the pressure from the handle 11 on the selection switch 41C. In other words, in the present exemplary variation, opening or closing the handle 11 simultaneously switches the selection switch 41C between the ON state and the OFF state. In the present exemplary variation, the housing 6 and the handle 11 are held as described in the first embodiment (see
In a seventh exemplary variation illustrated in
In the present exemplary variation, a movable tube 71 extends along the longitudinal axis C in the housing body 7. The movable tube 71 moves together with a movable pipe (not illustrated) along the longitudinal axis C in response to the opening or closing of the handle 11. A ring-shaped sliding member 72 is placed on the outer peripheral surface of the movable tube 71. The handle 11 is coupled with the sliding member 72 in the housing body 7. The sliding member 72 can move along the longitudinal axis C with respect to the movable tube 71. A tube-shaped elastic member (coil spring) 73 is also placed on the outer peripheral surface of the movable tube 71. A first end (the head) of the elastic member 73 is connected to the movable tube 71 and a second end (the base) of the elastic member 73 is connected to the sliding member 72.
In the present exemplary variation, closing the handle 11 with respect to the grip 8 when the selection switch 41C that is the selection member is in the OFF state moves the movable tube 71 and the movable pipe toward the head side so that the grasp units 16 and 17 are closed. Thus, the object to be treated is grasped between the grasp units 16 and 17 so that the object to be treated is compressed. When the object to be treated is compressed to some extent, the motion of the movable tube 71 and the movable pipe stops. Further closing the handle 11 from that state moves the sliding member 72 toward the head side with respect to the movable tube 71. This causes the elastic member 73 to contract. This contraction of the elastic member 73 increases the holding force between the grasp units 16 and 17.
In the present exemplary variation, the elastic member 73 contracts by a predetermined contraction amount (a predetermined stroke) or more. This contraction causes the handle 11 to press the selection switch 41C (the switch 42) and thus the selection switch 41C is switched from the OFF state to the ON state. Thus, even when the handle 11 is closed, the selection switch 41C is maintained to be in the OFF state unless the application of operation force in an amount more than or equal to a predetermined amount causes the elastic member 73 to contract by a predetermined contraction amount or more. Thus, in the present exemplary variation, the selection switch 41C is switched to the ON state only when the object to be treated is grasped between the grasp units 16 and 17 and the force application unit 33 applies the operation force more than or equal to a predetermined amount of force and the handle 11 is closed.
In an eighth exemplary variation illustrated in
In the present exemplary variation, closing the handle 11 with respect to the grip 8 when the selection switch 41C that is the selection member is in the OFF state causes the handle 11 to have contact with the stopper 75. Further closing the handle 11 from that state causes the handle 11 to warp on the contact position with the stopper 75 as a fulcrum.
In the present exemplary variation, the handle 11 warps by a predetermined warping amount or more after the handle 11 comes into contact with the stopper 75. This warping causes the handle 11 to press the selection switch 41C (the switch 42), and thus switches the selection switch 41C from the OFF state to the ON state. Thus, even when the handle 11 is closed, the selection switch 41C is maintained to be in the OFF state unless the application of operation force in an amount more than or equal to a predetermined amount causes the handle 11 to warp by a predetermined warping amount or more. Thus, similarly to the seventh exemplary variation, the selection switch 41C is switched to the ON state only when the object to be treated is grasped between the grasp units 16 and 17 and the force application unit 33 applies the operation force in an amount more than or equal to a predetermined amount and the handle 11 is closed in the present exemplary variation.
In a ninth exemplary variation illustrated in
In the present exemplary variation, closing the handle 11 with respect to the grip 8 when the selection switch 41C that is the selection member is in the OFF state causes the handle 11 to have contact with the elastic member 76. Further closing the handle 11 from that state causes the elastic member 76 to contract.
In the present exemplary variation, when the elastic member 76 contracts by a predetermined contraction amount or more, this contraction causes the handle 11 to press the selection switch 41C (the switch 42) and thus switches the selection switch 41C from the OFF state to the ON state. Thus, even when the handle 11 is closed, the selection switch 41C is maintained to be in the OFF state unless the application of operation force in an amount more than or equal to a predetermined amount causes the elastic member 76 to contract by a predetermined contraction amount or more. Thus, similarly to the seventh exemplary variation and the eighth exemplary variation, the selection switch 41C is switched to the ON state only when the object to be treated is grasped between the grasp units 16 and 17 and the force application unit 33 applies the operation force in an amount more than or equal to a predetermined amount and the handle 11 is closed in the present exemplary variation.
The tenth exemplary variation illustrated in
In the present exemplary variation, when both the selection button 41 and the selection switch 41C are in the ON states, both the switches 42A and 42B are closed so that the detection current flows through the detection signal lines 77A and 77D. The flow of the detection current through the detection signal lines 77A and 77D switches the mode from the mode in which both the selection buttons 41 and the selection switch 41C in the OFF states. Thus, even when both the selection button 41 and the selection switch 41C are in the OFF states and one of the selection button 41 and the selection switch 41C is switched to the ON state (even when one of the switch 42A and 42B is closed), the detection current does not flow through the detection signal lines 77A and 77D and thus the mode is not switched.
For example, in an exemplary embodiment, the mode is switched so that the medical treatment device 1 functions as the pattern X16 illustrated in
In the embodiments and variations, the handle 11 is placed on the head side of the grip 8. However, as an eleventh exemplary variation illustrated in
In the present exemplary variation, the grip grasp unit 51 of the grip 8 is provided with a selection button (the selection member) 41. In the present exemplary variation, the selection button 41 is exposed to the outside of the external surface of the housing 6, and placed nearer to the base side of the housing 6 than the operation buttons 31A and 31B. In the present exemplary variation, the control unit 26 causes the medical treatment device 1 to function, for example, in one of the patterns X1 to X16, Xa1 to Xa6, Xa9, Xa11 to Xc11, and Xa12 to Xc12 illustrated in
As illustrated in
In the present exemplary variation, the selection button (the selection member) 41 is placed nearer to the base side of the housing 6 than the operation buttons 31A and 31B on the external surface of the housing 6, and is positioned on the grip grasp unit 51. This enables the operator to input operation with the selection button 41 (to press the selection button 41) using any one of the middle finger F3, ring finger F4, and little finger F5 put on the grip grasp unit 51 of the grip 8. The middle finger F3, ring finger F4, or little finger F5 switches the selection button 41 between the ON state and the OFF state. Thus, the thumb F1 and index finger F2 used for at least one of the operations for opening or closing the handle 11, for rotating the rotating knob 12, and for inputting operation with the operation buttons 31A and 31B are not used for inputting operation with the selection button 41. Thus, it is unnecessary to change the positions and postures of the thumb F1 and index finger F2 and to hold the housing 6 and the handle 11 again with the right hand H in order to switch the selection button 41 between the ON state and the OFF state. Thus, in the present exemplary variation, the operability for opening or closing the handle 11, for rotating the rotating knob 12, and for inputting operation with the operation buttons 31A and 31B is secured and the operability for inputting operation with the selection button 41 is also secured.
In a twelfth exemplary variation illustrated in
In the present exemplary variation, the selection switch (the selection member) 41C is placed nearer to the base side of the housing 6 than the operation buttons 31A and 31B on the housing 6, and placed on the base surface 52 of the grip 8. Thus, opening or closing the handle 11 with respect to the housing 6 can vary the pressure from the handle 11 on the selection switch 41C. In other words, in the present exemplary variation, opening or closing the handle 11 immediately switches the selection switch 41C between the ON state and the OFF state. In the present exemplary variation, the housing 6 and the handle 11 are held as described in the eleventh exemplary variation (see
In the embodiments and variations, the handle 11 opens or closes in roughly parallel to the longitudinal axis C. For example, in a thirteenth exemplary variation as illustrated in
In the present exemplary variation, the grip grasp unit 55 of the grip 8 is provided with the selection button (the selection member) 41. In the present exemplary variation, the selection button 41 is exposed to the outside of the external surface of the housing 6 and is placed nearer to the base side of the grip 8 than the operation buttons 31A and 31B. In the present exemplary variation, the control unit 26 causes the medical treatment device 1 to function, for example, in one of the patterns X1 to X16, Xa1 to Xa6, Xa9, Xa11 to Xc11, and Xa12 to Xc12 illustrated in
As illustrated in
In the present exemplary variation, the selection button (the selection member) 41 is placed near to the base side of the housing 6 than the operation buttons 31A and 31B on the external surface of the housing 6, and placed on the grip grasp unit 55. This enables the operator to input operation with the selection button 41 (to press the selection button 41) using any one of the middle finger F3, ring finger F4, and little finger F5 put on the grip grasp unit 55 of the grip 8. The middle finger F3, ring finger F4 and little finger F5 switch the selection button 41 between the ON state and the OFF state. Thus, the thumb F1 and index finger F2 used for at least one of the operations for opening and closing the handle 11, for rotating the rotating knob 12, and for inputting operation with the operation buttons 31A and 31B are not used for inputting operation with the selection button 41. Thus, it is unnecessary to change the positions and postures of the thumb F1 and index finger F2 and to hold the housing 6 and the handle 11 again with the right hand H in order to switch the selection button 41 between the ON state and OFF state in treatment. Thus, in the present exemplary variation, the operability for opening and closing the handle 11, for rotating the rotating knob 12, and for inputting operation with the operation buttons 31A and 31B is secured and the operability for inputting operation with the selection button 41 is also secured.
In a fourteenth exemplary variation illustrated in
In the present exemplary variation, the selection switch (the selection member) 41C is placed near to the base side of the housing 6 than the operation buttons 31A and 31B on the housing 6, and placed at a portion 57 facing the handle 11 on the external surface of the housing 6. Opening or closing the handle 11 with respect to the housing 6 can vary the pressure from the handle 11 on the selection switch 41C. In other words, in the present exemplary variation, opening or closing the handle 11 immediately switches the selection switch 41C between the ON state and the OFF state. In the present exemplary variation, the housing 6 and the handle are held as described in the thirteenth exemplary variation (see
In a fifteenth exemplary variation illustrated in
The lever 60 includes a lever supporting shaft 61 through which the rotation axis R2 passes, a first lever extension portion 62 extending from the lever supporting shaft 61 toward the head side of the housing 6 (the side on which the operation buttons 31A and 31B are positioned), and a second lever extension portion 63 extending from the lever supporting shaft 61 toward the base side of the housing 6 (the side on which the selection button 41 is positioned). In order to input operation with the operation button 31A, rotating the lever 60 moves the first lever extension portion 62 to a position at which the first lever extension portion 62 can have contact with the operation button 31A. Meanwhile, the second lever extension portion 63 is positioned at a position at which the second lever extension portion 63 can have contact with the selection button 41. In order to input operation with the operation button 31B, rotating the lever 60 moves the first lever extension portion 62 to a position at which the first lever extension portion 62 can have contact with the operation button 31B. Meanwhile, the second lever extension portion 63 is positioned at a position at which the second lever extension portion 63 can have contact with the selection button 41.
As illustrated in
As illustrated in
On the other hand, when an external force (the pressing force from the operator) acts on the second lever extension portion 63 (the arrow τ2 in
When an external force (the pressing force from the operator) acts on the lever supporting shaft 61 (the arrow T3 in
As described above, in the present exemplary variation, the provision of the lever 60 can makes it easy to simultaneously input operation with both the operation button (31A or 31B) and the selection button 41.
An indicator (not illustrated) that indicates to the operator whether the selection member (41, 41A, 41B, or 41C) is in the ON state or the OFF state can be provided in an exemplary variation. The indicator can be provided on the medical treatment tool 2 (for example, on the housing 6) or on the control device 3. Alternatively, the indicator can be provided separately from the medical treatment tool 2 and the control device 3. The operation of the indicator is controlled, for example, by the control unit 26.
In an embodiment, the indicator is a light generation member such as an LED that generates light when the selection member (41, 41A, 41B, or 41C) in one of the ON state or the OFF state. In another exemplary embodiment, the indicator is, for example, a protrusion or lever provided on the housing. In this example, the switching of the selection member (41, 41A, 41B, or 41C) between the ON state and the OFF state varies the protrusion amount of the protrusion or the orientation of the lever. In other words, the shape of the indicator varies. In another exemplary embodiment, a member that changes, for example, the texture when the selection member (41, 41A, 41B, or 41C) is clicked, the stroke when the selection member (41, 41A, 41B, or 41C) is switched, or the amount of force necessary to switch the selection member (41, 41A, 41B, or 41C) is provided as the indicator. In this example, the switching of the selection member (41, 41A, 41B, or 41C) between the ON state and the OFF state varies the texture, stroke, or the amount of force.
In the embodiments and variations, the medical treatment device (1) is provided with the housing (6) that includes the base and head and includes the housing body (7) extending along the longitudinal axis (C), the handle (11) capable of opening and closing with respect to the housing (6), the end effector (18) placed nearer to the head side of the medical treatment device (1) than the housing (6) and used to treat an object to be treated. A portion on the head side of the housing (6) is provided with the operation member (31A or 31B), a portion nearer to the base side of the housing (6) than the operation member (31A or 31B) is provided with the selection member (41, 41A, 41B, 41C, or 41 and 41C). Operation for causing the medical treatment device (1) to function is input with the operation member (31A or 31B). The operating state input with selection member (41, 41A, 41B, 41C, or 41 and 41C) is switched. The control unit (26) can cause the medical treatment device (1) to function in a plurality of modes and the control unit (26) detects the operating state input with the selection member (41, 41A, 41B, 41C, or 41 and 41C). Then, the control unit (26) selects a mode in which the medical treatment device (1) functions from the modes in accordance with the result of detection of the operating state input with the selection member (41, 41A, 41B, 41C, or 41 and 41C). The configurations of the embodiments and variations can properly be changed or partially combined as long as the configuration includes the components described above.
The embodiments and variations of the present invention have been described above. Needless to say, the present invention is not limited to the embodiments and variations and can variously be changed without departing from the scope of the invention.
Number | Date | Country | Kind |
---|---|---|---|
2015082021 | Apr 2015 | JP | national |
This application is a Continuation application of PCT International Application No. PCT/JP2016/061587, filed on Apr. 8, 2016, and claims the benefit of priority from prior Japanese Patent Application No. 2015-082021, filed on Apr. 13, 2015. The entire contents of PCT International Application No. PCT/JP2016/061587 and Japanese Patent Application No. 2015-082021 are incorporated herein by reference.
Number | Date | Country | |
---|---|---|---|
Parent | PCT/JP2016/061587 | Apr 2016 | US |
Child | 15259850 | US |