Medical ultrasound imaging system with composite delay profile

Information

  • Patent Grant
  • 6312386
  • Patent Number
    6,312,386
  • Date Filed
    Friday, February 19, 1999
    25 years ago
  • Date Issued
    Tuesday, November 6, 2001
    23 years ago
Abstract
A medical ultrasound diagnostic imaging system includes a delay system that applies a composite delay profile to signals to or from respective transducer elements. One composite delay profile includes a first, substantially point-focus delay profile for a first set of the transducer elements and a second, substantially point-focus delay profile for a second set of the transducer elements. The first and second delay profiles cause ultrasonic energy from the respective first and second sets of the transducer elements to constructively add at first and second respective spaced focal zones in either transmit or receive. Another composite delay profile includes first and second portions that substantially correspond to respective parts of a point-focus delay profile, and third and fourth portions that are intermediate the point-focus delay profile and respective tangents.
Description




BACKGROUND




This invention relates to medical ultrasound diagnostic imaging, and in particular to systems and methods for providing more effective focusing of ultrasound waveforms.




In current ultrasound imaging systems, transducer probes which include many individual transducer elements are operated as phased arrays.




Delay profiles are applied either to transmit waveforms or to receive waveforms associated with individual transducer elements in order to achieve desired focusing characteristics. One prior-art approach is to use a simple delay profile in which all of the transducer elements of the transducer probe are focused at a single focal point. Another prior-art approach is to use a delay profile that provides a distributed focus, as for example the well-known Axicon profile that provides a line focus.




A third prior-art approach is to transmit two or more transmit focal zones simultaneously. This is typically done by superimposing two separate delay profiles such that each transducer element generates ultrasonic energy that focuses at each of the two or more focal zones. This approach is known as the multi-focus approach, and is described in U.S. Pat. Nos. 5,696,737, 5,675,554, 5,608,690, 5,740,128, as well as in U.S. patent application Ser. No. 09/089,463.




The Axicon focus is typically associated with large side lobe levels that can represent a substantial disadvantage in many clinical applications. The simultaneous transmission of multiple focal zones generally requires dedicated beamformer hardware. Also, if the probe is limited by regulatory power or thermal limits, then the use of the multi-focus approach may require reduced power which in turn is generally associated with a reduction in the signal to noise ratio.




Another approach for increasing depth to field includes the use of multiple sequential transmit events focused at respective ranges along with the same ultrasound line. This approach reduces the frame rate, though it can substantially increase the depth of field.




Thus, a need presently exists for an improved approach that increases depth of field while avoiding some or all of the disadvantages discussed above.




BRIEF SUMMARY




The preferred embodiments described below use several different types of composite delay profiles that have the advantage of extending depth of field while maintaining a high frame rate and reducing side lobe problems.




Some of the embodiments described below use a composite delay profile having at least a first, substantially point-focus delay profile for a first set of the transducer elements and a second, substantially point-focus delay profile for a second set of the transducer elements. The first and second delay profiles cause ultrasonic energy from the respective first and second sets of the transducer elements to constructively add at first and second respective spaced focal zones. This composite delay profile can be used either in the transmitter or the receiver of an ultrasound imaging system.




Other embodiments described below use a delay profile that includes first and second portions corresponding to respective parts of a point-focus delay profile, a third portion intermediate the point-focus delay profile and a first tangent to the point-focus delay profile, and a fourth portion intermediate the point-focus delay profile and a second tangent to the point-focus delay profile.




The foregoing discussion of the preferred embodiments has been provided only by way of introduction, and nothing in the section should be taken as a limitation on the following claims.











BRIEF DESCRIPTION OF THE DRAWINGS





FIG. 1

is a block diagram of a medical diagnostic ultrasound imaging system.





FIGS. 2 and 3

are block diagrams of portions of alternative embodiments of the transmitter of FIG.


1


.





FIGS. 4 and 5

are block diagrams of portions of alternative embodiments of the receiver of FIG.


1


.





FIGS. 6



a


,


6




b


and


6




c


are diagrams illustrating a first preferred embodiment of the composite delay profile of this invention.





FIGS. 7



a


,


7




b


and


7




c


are diagrams illustrating a second preferred embodiment of the composite delay profile of this invention.





FIG. 8

is a diagram illustrating a third preferred embodiment of the composite delay profile of this invention.





FIGS. 9



a


and


9




b


are schematic diagrams related to a fourth preferred embodiment of the composite delay profile of this invention.





FIG. 10

is a diagram of a weighting function.





FIGS. 11



a


,


11




b


and


11




c


are schematic diagrams illustrating a fifth embodiment of the composite delay profile of this invention.





FIG. 12

is diagram illustrating a sixth embodiment of the composite delay profile of this invention.





FIGS. 13



a


,


13




b


are diagrams related to a seventh embodiment of the composite delay profile of this invention.











DETAILED DESCRIPTION OF THE PRESENTLY PREFERRED EMBODIMENTS




Turning now to the drawings,

FIGS. 1 through 5

illustrate components of ultrasonic imaging systems that can be used to implement the present invention, and

FIGS. 6



b


through


13




b


provide information regarding composite delay profiles of selected embodiments of this invention.




As shown in

FIG. 1

, a medical diagnostic ultrasonic imaging system


10


includes a transducer probe


12


that in turn includes an array of individual transducer elements


14


. The transducer probe


12


is connected by a transmit/receive switch


16


to a transmitter


18


and a receiver


20


. The transmitter


18


applies respective transmit waveforms to the individual transducer elements


14


to cause the transducer probe


12


to form an ultrasonic transmit beam which is directed into an imaged region. Echoes from the imaged region impinge in the transducer elements


14


, causing the transducer elements


14


to generate receive waveforms that are delayed and summed in the receiver


20


to form receive beams along desired receive lines. These receive beams are then applied to a display processor (not shown) for further processing and display.




The present invention is useful in a wide variety of ultrasound imaging systems, and it is not intended to limit this invention to any particular hardware implementation.

FIGS. 2 and 3

illustrate two alternative approaches for applying delays to transmit waveforms in the transmitter


18


, and

FIGS. 4 and 5

illustrate two alternative approaches to applying delays to receive waveforms in the receiver


20


.





FIG. 2

shows a portion of a signal path for a delay system associated with a single transducer element


14


in the transmitter


18


of FIG.


1


. In practice, the signal path of

FIG. 2

would be replicated many times, with one replication for each group of one or more of the transducer elements


14


. In the signal path of

FIG. 2

, a transmit waveform generator


22


generates a transmit waveform which is applied to a transmit memory


24


. The transmit memory


24


is controlled by a time delay unit/counter


28


that is in turn controlled by a delay coefficient generator


26


. The delay coefficient generator


26


calculates the time delay coefficient for the particular transducer element and loads this delay coefficient into the counter


28


. Once the transmit waveform has been loaded into the transmit memory


24


and the counter


28


has been started to initiate a transmit event, the counter


28


counts down to zero, beginning at the stored delay coefficient, and then enables the transmit memory


24


to start transmission of the transmit waveform T


1


to a high voltage transmit amplifier


30


and then on to the associated transducer element


14


. This is one example of how a digital transmitter can be used to apply a separate selected delay to the transmit waveform for each respective transducer element.





FIG. 3

shows another delay system suitable for use with analog transmitters. The signal path shown in

FIG. 3

is suitable for a single transducer element, and would be replicated many times in a practical transmitter, once for each group of one or more transducer elements.




In the system of

FIG. 3

, a transmit waveform generator


32


applies a transmit waveform T


2


to a delay line that includes a number of sequential delay units


34


. Each of the delay units


34


imposes a preselected time delay Δt to the transmit waveform. The delayed transmit waveforms output by the respective delay units


34


are applied to a tap selector


36


that is controlled by a delay coefficient generator


38


such that one or more of the delayed transmit waveforms is applied by the tap selector


36


to a high voltage transmit amplifier


40


, and then on to the respective transducer element.




The initial transmit waveform T


2


is shown in

FIG. 3

as a bipolar rectangular pulse, and the time delayed transmit waveform T


2


′ is shown as delayed with respect to the original transmit waveform T


2


. In the system of

FIG. 3

, the delay coefficients are generated based on the desired delay profile, and the tap selector


36


activates the desired input based on the delay coefficient supplied by the delay coefficient generator


38


. In many applications the output transmit waveform is amplified before being applied to the high voltage transmitter amplifier.





FIG. 4

shows a digital delay system suitable for use with a receiver such as the receiver


20


of FIG.


1


. As before,

FIG. 4

shows the signal path for only a single channel of the delay system, associated with a single group of one or more transducer elements. The receive waveform from the associated transducer element is amplified in an amplifier


42


and then loaded into a receive memory


44


. The receive memory


44


is controlled by a time delay unit/counter


48


that operates in a manner similar to that of the counter


28


of

FIG. 2. A

delay coefficient generator


46


stores an appropriate delay coefficient in the counter


48


, and when the counter


48


counts down from the stored delay coefficient to zero, the counter


48


enables the receive memory


44


to start transmission of the receive waveform to the beamformer summer that receives other receive waveforms from other signal paths similar to that of FIG.


4


. In

FIG. 4

the original, undelayed receive waveform R


1


is shown at the input to the receive memory


44


, and the time delayed receive waveform R


1


′ is shown at the output of the receive memory


44


.




The delay system of

FIG. 5

is an analog delay system that is similar to the analog delay system of FIG.


3


. As shown in

FIG. 5

, the receive signal or waveform R


2


from a respective transducer element is amplified in the amplifier


50


and then applied to a delay line that includes multiple sequential delay units


52


. The outputs of the respective delay units


52


are applied to a tap selector


54


that is controlled by delay coefficient generator


56


to pass one or more of the partially delayed receive waveforms to a beamform summer (not shown). The input to the delay line is shown as receive waveform R


2


, and the output from the tap selector is shown as a delayed receive waveform R


2


′.




It should be apparent that the delay systems shown in

FIGS. 2 through 5

are merely four examples of a delay system that can apply time delays from associated delay profiles to respective channels of either a transmitter (

FIGS. 2 and 3

) or a receiver (FIGS.


4


and


5


). These four embodiments should be taken merely as examples of a few of the many delay systems that can be used to implement the present invention.




More generally, the widest variety of hardware can be used to implement the ultrasound imaging system of FIG.


1


. For example, any suitable transducer can be used, including 1, 1.5, and 2-dimensional transducers using either flat or curved arrays. Both digital and analog imaging systems can readily be adapted to implement the composite delay profiles described below.





FIGS. 6



a


through


6




c


relate to a first composite delay profile that illustrates select features of this invention.

FIGS. 6



a


and


6




b


are delay profile graphs in which the transducer element number is plotted on the horizontal axis and the time delays associated with the transducer elements are plotted on the Y axis. For example, a transducer element having 128 elements would have 128 separate time delays included in the delay profile.





FIG. 6



a


shows three separate point-focus delay profiles


60


,


62


,


64


. Each of these point-focus delay profiles includes a set of time delays that cause ultrasonic transmit or receive signals to focus at a desired point For example, at a given range R=ct/2, the time delays needed to form a beam in direction θ focused to range R is in the Fresnel approximation:










τ


(
x
)


=




-
x






sin





θ

c

+



x
2


2

Rc




cos
2


θ






(

Eq
.




1

)







τ


(
X
)


=





-
x






sin





θ

c

+



x
2



c
2


t




cos
2


θ


=



-

(

x
c

)



sin





θ

+



(


x





cos





θ

c

)

2



1
t








(

Eq
.




2

)













An exact solution to the problem can be derived from geometrical considerations. Consider the case of a transducer array with a center transducer element E


c


and additional transducer elements E


i


, where the desired focal point is situated at a distance d


c


from the center element E


c


along a line extending through the center element E


c


and perpendicular to the array. In this example, the elements E


c


and E


i


are separated by a distance w, and element E


i


is separated from the desired focal point by the distance d


i


. The propagation path difference between the elements E


i


and E


c


is






Δd={square root over (W


2


+L +d


c





2


+L )}−d


c


  (Eq. 3)






The time delay difference Δt


i


between the elements E


c


, E


i


required to achieve the desired focus is










Δ






t
i


=


1
c



[




w
2

+

d
c
2



-

d
c


]






(

Eq
.




4

)













As used herein, the term “point-focus delay profile” is intended to refer to a delay profile that causes ultrasonic waveforms to coherently add in (on transmit) or from (on receive) a relatively small physical region. This focusing region would of course have a physical extent, and is not in practice limited to a point. The point-focus delay profiles


60


,


62


,


64


are focused at separate respective ranges, with the delay profile


60


focused at a short range, the delay profile


62


focused at an intermediate range, and the delay profile


64


focused at a relatively long range.





FIG. 6



b


provides a graph of weighting coefficients for the respective transducer elements. In the graph of

FIG. 6



b


the reference symbol


66


is used for a first set of transducer elements, the reference symbol


68


is used for a second set of transducer elements, and the reference symbol


70


is used for a third set of transducer elements.





FIG. 6



c


shows a composite delay profile


72


that has been generated from the point-focus delay profiles


60


,


62


,


64


of

FIG. 6



a


, using the weighting coefficients of

FIG. 6



b


. As shown in

FIG. 6



c


, the composite delay profile


72


corresponds to the point-focus delay profile


60


for the first set of transducer elements


66


, to the second point-focus delay profile


62


for the second set of transducer elements


68


, and to the third point-focus delay profile


64


for the third set of transducer elements


70


. In this example, three transmit or receive foci have been selected and the point-focus delay profiles


60


,


62


,


64


for these three foci have been used for the composite delay profile


72


. The central part of the transducer aperture corresponding to the first set


66


of transducer elements is delayed by the point-focus delay profile


60


associated with the shortest range focus. Transducer elements in the next larger aperture (corresponding to the second set


68


) are associated with the point-focus delay profile


62


for the next deeper transmit focus, and so forth.




It is preferable to select the point-focus delay profiles such that the time difference between two adjacent point-focus delay profiles at the points of transition is in each case equal to an integer multiple of the time of one period if the transmitted wave (λ/c).




Note that in the example of

FIG. 6



a


through


6




c


, weighting coefficients have been limited to one and zero. In this example the transition between different point-focus delay profiles follows the aperture size or f-number, and the composite delay profile


72


is a combination of three point-focus delay profiles


60


,


62


,


64


. In this way three separate transmit foci are provided within a single transmit event by applying different point-focus delay profiles to different sets of transducer elements. If desired, the transition from one point-focus delay profile to the next across the transducer aperture can be made at integer multiples of the ultrasonic wavelength.




Another example of the composite delay profile of this invention is provided in

FIGS. 7



a


through


7




c


. In this example the entire transducer aperture is divided into two or more equal or unequal segments. Each segment is then allocated a different point-focus delay profile. The preferred approach is to allocate the central region of the aperture to the more shallow focus and the periphery of the aperture to a deeper focus. In

FIG. 7



a


two separate point-focus delay profiles


80


,


82


focused at two different focal zones are shown.

FIG. 7



b


shows the weighting coefficients used for the first set


84


of central transducer elements and the second set


86


of peripheral transducer elements.

FIG. 7



c


shows the composite delay profile


88


that applies focusing delays appropriate for the shorter range focus to the central transducer elements and focusing delays appropriate for the longer range focus to the peripheral transducer elements.





FIG. 8

shows another composite delay profile


90


that in this case is composed of a first point-focus delay profile


92


associated with central transducer elements and a second point-focus delay profile


94


associated with peripheral transducer elements. The point-focus delay profile


92


is associated with a first beam profile


98


having a first focal zone


100


, and the second delay profile


94


is associated with a second beam profile


98


having a second focal zone


102


. Note that the second focal zone


102


is disposed at a deeper range than the first focal zone


100


.




The composite delay profile


90


provides a shallow focus, and it extends the depth field as compared to a single focus. The transducer elements near the center of the array are focused in the shallow first focal zone


100


to improve near field performance. The second focal zone


102


improves far field performance.





FIGS. 9



a


and


9




b


relate to a composite delay profile


110


that is composed of a first point-focus delay profile


112


and a second point-focus delay profile


114


for respective sets of transducer elements. As shown in

FIG. 9



b


, the resulting composite beam profile is well formed, and provides −6 dB, −20 dB, and −30 dB beam profiles


116


,


118


,


120


as shown. In this case, the composite focusing provided by the composite delay profile


110


provides focus at both 10 and 20 millimeters.




The foregoing examples have used two-level weighting factors to control transition from one point-focus delay profile to the next. Another approach suitable for use with this invention is to provide more gradual transitions between adjacent point-focus delay profiles in the composite delay profile. One possible weighting scheme for a dual-focus composite delay profile is shown in

FIG. 10

, in which weighting functions


130


,


132


are provided for respective first and second point-focus delay profiles.




The foregoing examples have used sets of transducer elements that are contiguous for at least the central set associated with the central point-focus delay profile. Another alternative is to use alternating transducer elements for different ones of the available point-focus delay profiles. An example of this approach is shown in

FIGS. 11



a


through


11




c


. In


11




a


two point-focus delay profiles


140


,


142


are shown. The associated weighting coefficients are shown in

FIG. 11



b


, in which the reference symbol


144


indicates transducer elements of the first set and the reference symbol


146


indicates the transducer elements of the second set. Note that the transducer elements in the first and second sets alternate in the central portion of the transducer aperture. The resulting composite delay profile


148


of

FIG. 11



c


alternates between the two point-focus delay profiles in the central portion of the transducer aperture.





FIG. 12

illustrates another composite delay profile


160


. Again, transducer element number is plotted on the horizontal axis and time delay for the associated transducer element is plotted on the vertical axis. The composite delay profile


160


is related to a point-focus delay profile


150


that includes first and second parts


152


,


154


on respective sides of the center of the transducer array. Two tangents


156


,


158


have been drawn in

FIG. 12

, each tangentially oriented with respect to the point-focus delay profile


150


at a respective one of the first and second parts


152


,


154


. These two tangents


156


,


158


intersect at an intersection


170


. The composite delay profile


160


in this embodiment is a continuous function which may be considered for purposes of discussion as made up of four portions


162


,


164


,


166


,


168


. The first and second portions


162


,


164


that follow the point-focus delay profile


150


in the first and second parts


152


,


154


, respectively. The composite delay profile


160


also includes a third portion


166


positioned between the point-focus delay profile


150


and the tangent


156


, and a fourth portion


168


positioned between the point-focus delay profile


150


and the tangent


158


. The third and fourth portions


166


,


168


meet between the intersection


170


of the first and second tangents


156


,


158


and the point-focus delay profile


150


. As shown in

FIG. 12

, the third portion


166


extends on both sides of the first portion


162


and the fourth portion


168


extends on both sides of the second portion


164


.





FIGS. 13



a


and


13




b


are related to a practical example of a composite delay profile


180


that is generated in a manner similar to that described above in conjunction with the composite delay profile


160


of FIG.


12


.

FIG. 13



a


shows the composite delay profile


180


, and

FIG. 13



b


shows the corresponding beam profiles as a function of target depth or range. In

FIG. 13



b


the beam profiles at the −6 dB, −20 dB, and −30 dB signal levels are plotted using lines


182


,


184


,


186


, respectively. As shown in

FIG. 13



b


, the composite delay profile


180


results in a substantial extension in the depth of field.




Of course, it should be understood that many changes and modifications can be made to the preferred embodiments described above. For example, any of the composite delay profiles described above can be used in combination with multi-focus techniques, in which multiple delay profiles are superimposed for individual transducer elements. In this case the delay profile for one or more of the multi-focus delays is formed as described above, and the depth of field can be increased by a very large amount.




It should be apparent from the foregoing that novel techniques have been described for designing transmit or receive delay profiles to extend the depth of field. These techniques can be used for a wide variety of ultrasonic imaging modes, including fundamental imaging, contrast agent imaging, tissue harmonic imaging, B-mode imaging, Doppler imaging, M mode imaging, and so forth. In some applications it may be advantageous to use a transducer with a large aperture. In the examples described above the entire transducer aperture is utilized for each firing, and a large aperture with a large number of transducer elements may be particularly useful with this invention.




In the foregoing examples, the composite delay profiles have used multiple foci arranged along the same beam direction. In alternative embodiments the multiple foci of a single composite delay profile may be oriented along beams at different angles. An alternative way to design the composite delay profiles is to use an adaptive optimization routine to find the optimum focus delay based on beam width criteria.




As used herein the term “set” is intended broadly to encompass two or more. The term “coupled with” is intended broadly to encompass elements that are coupled together either directly or indirectly. Thus, first and second elements are said to be coupled with one another whether or not they are separated by intervening elements.




The foregoing detailed description has discussed only a few of the many forms that this invention can take. For this reason this detailed description is intended only by way of illustration. It is only the following claims, including all equivalents, that are intended to define the scope of this invention.



Claims
  • 1. In a medical ultrasound imaging system comprising a transducer comprising an array of transducer elements, a transmitter coupled with the transducer, and a receiver coupled to the transducer and to a display processor, the improvement comprising:at least one delay system coupled with the transducer, said delay system operative to form a delay profile for a plurality of the transducer elements within a single transmit event; said delay profile comprising at least a first, substantially point-focus delay profile selectively applied to a first set of the transducer elements and not to a second set of the transducer elements during the single transmit event, and a second, substantially point-focus delay profile selectively applied to the second set of the transducer elements and not to the first set of the transducer elements during the single transmit event, said first and second delay profiles causing ultrasonic energy from the respective first and second sets of the transducer elements to constructively add at first and second respective spaced focal zones.
  • 2. The invention of claim 1 wherein the delay profile additionally comprises a transitional delay profile for a third set of transducer elements intermediate the first and second sets of transducer elements.
  • 3. The invention of claim 1 wherein the transducer elements of the first set are contiguous with one another.
  • 4. The invention of claim 1 wherein at least some of the transducer elements of the first set are interleaved with at least some of the transducer elements of the second set.
  • 5. The invention of claim 1 wherein the first focal zone is at a shorter range than the second focal zone and wherein the first set of the transducer elements is disposed more centrally than the second set of the transducer elements in the transducer.
  • 6. The invention of claim 1 wherein the first and second delay profiles differ by about n λ/c at a transition between the delay profiles, where n is a positive integer, λ is a wavelength characterizing an ultrasonic pulse for the transducer, and c is the speed of sound.
  • 7. The invention of claim 1 wherein the first and second spaced focal zones are spaced in range.
  • 8. The invention of claim 1 wherein the first and second spaced focal zones are spaced in azimuth.
  • 9. A medical ultrasound diagnostic imaging system comprising a transducer comprising an array of transducer elements, a transmitter coupled with the transducer, and a receiver coupled to the transducer and to a display processor, the improvement comprising:at least one delay system coupled with the transducer, said delay system operative to form a delay profile characterized by a respective time delay for each of a respective plurality of the transducer elements within a single transmit event; said delay profile comprising first and second portions that substantially correspond to respective parts of a point-focus delay profile, a third portion intermediate the point-focus delay profile and a first tangent to the point-focus delay profile at the first portion, and a fourth portion intermediate the point-focus delay profile and a second tangent to the point-focus delay profile at the second portion.
  • 10. The invention of claim 9 wherein the third portion extends on both sides of the first portion.
  • 11. The invention of claim 9 wherein the fourth portion extends on both sides of the second portion.
  • 12. The invention of claim 9, 10 or 11 wherein the third and forth portions meet between an intersection of the first and second tangents and the point-focus delay profile.
  • 13. The invention of claim 1 or 9 wherein the transmitter comprises at least one waveform generator operative to generate at least one transmit waveform, and wherein the delay system is operative to delay the at least one transmit waveform prior to application to the transducer elements.
  • 14. The invention of claim 1 or 9 wherein the transducer elements generate respective receive waveforms, and wherein the delay system is responsive to a plurality of receive waveforms.
  • 15. A medical ultrasound diagnostic imaging method for providing a delay profile for at least one ultrasonic waveform, said method comprising:(a) delaying the at least one ultrasonic waveform during a first transmit event with a first, substantially point-focus delay profile applied to a first set of transducer elements included in a transducer but not to a second set of transducer elements included in the transducer; (b) delaying the at least one ultrasonic waveform during said first transmit event with a second, substantially point-focus delay profile applied to the second set of transducer elements but not to the first set of transducer elements; said first and second delay profiles causing ultrasonic energy associated with the ultrasonic waveforms for the respective first and second sets of transducer elements to constructively add at first and second respective spaced focal zones within said first transmit event.
  • 16. The method of claim 15 further comprising(c) providing a transitional delay profile for a third set of transducer elements intermediate the first and second sets of transducer elements.
  • 17. The method of claim 15 wherein the transducer elements of the first set are contiguous with one another.
  • 18. The method of claim 15 wherein at least some of the transducer elements of the first set are interleaved with at least some of the transducer elements of the second set.
  • 19. The method of claim 15 wherein the first focal zone is at a shorter range than the second focal zone, and wherein the first set of the transducer element is disposed more centrally than the second set of the transducer elements in the transducer.
  • 20. The method of claim 15 wherein the first and second delay profiles differ by about n λ/c at a transition between the delay profiles, where n is a positive integer, λ is a wavelength characterizing the ultrasonic waveform, and c is the speed of sound.
  • 21. The method of claim 15 wherein the first and second spaced focal zones are spaced in range.
  • 22. The method of claim 15 wherein the first and second spaced focal zones are spaced in azimuth.
  • 23. A medical ultrasound diagnostic imaging method for providing a delay profile for at least one ultrasonic waveform, said method comprising:(a) delaying the at least one ultrasonic waveform during a first transmit event with first and second delay profile portions that substantially correspond to respective parts of a point-focus delay profile; (b) delaying the at least one ultrasonic waveform during said first transmit event with a third delay profile portion intermediate the point-focus delay profile and a first tangent to the point-focus delay profile at the first portion; (c) delaying the at least one ultrasonic waveform during said first transmit event with a third delay profile portion intermediate the point-focus delay profile and a second tangent to the point-focus delay profile at the second portion.
  • 24. The method of claim 23 wherein the third portion extends on both sides of the first portion.
  • 25. The method of claim 23 wherein the fourth portion extends on both sides of the second portion.
  • 26. The method of claim 23, 24, or 25 wherein the third and forth portion meet between an intersection of the first and second tangents and the point-focus delay profile.
  • 27. The method of claim 15 or 23 wherein the at least one ultrasonic waveform comprises at least one transmit waveform.
  • 28. The method of claim 15 or 23 wherein the at least one ultrasonic waveform comprises at least one receive waveform.
US Referenced Citations (16)
Number Name Date Kind
4813279 Shirasaka Mar 1989
5111824 Lazenby et al. May 1992
5113706 Pittaro May 1992
5140558 Harrison, Jr. et al. Aug 1992
5143075 Ishizuka Sep 1992
5301674 Erikson et al. Apr 1994
5402792 Kimura Apr 1995
5579770 Finger Dec 1996
5581517 Gee et al. Dec 1996
5608690 Hossack et al. Mar 1997
5638821 Nakamura et al. Jun 1997
5675554 Cole et al. Oct 1997
5696737 Hossack et al. Dec 1997
5740128 Hossack et al. Apr 1998
5951479 Holm et al. Sep 1999
6056693 Haider May 2000
Non-Patent Literature Citations (1)
Entry
U.S. application No. 09/089,463.