The present disclosure relates generally to prosthetic valves and more specifically to flexible synthetic leaflets for use in prosthetic heart valve devices.
A number of fabrication techniques have been used to manufacture synthetic leaflets for use in prosthetic valves. In many cases, the resulting leaflet is supported on a prosthetic valve frame and defines a flap having a mounting edge where the leaflet is coupled to the prosthetic valve frame and a free edge that allows the flap to move. These prosthetic valve frames may include one, two, three, or more than three leaflets. The leaflet generally moves or transitions between open and closed configurations under the influence of fluid pressure in a patient's anatomy. In operation, the leaflets open when the fluid pressure on the inflow side of the prosthetic valve (e.g., upstream of the prosthetic valve) exceeds the fluid pressure on the outflow side of the prosthetic valve (e.g., downstream of the prosthetic valve) and closes when the fluid pressure on the outflow side of the prosthetic valve exceeds the fluid pressure on the inflow side of the prosthetic valve. The free edges of the leaflets coapt (either partially or completely) under the influence of downstream fluid pressure, which operates to minimize or prevent downstream blood from flowing retrograde through the prosthetic valve. Generally, the term “distal” is used in the disclosure to refer to the outflow end (distal end) or outflow direction of a prosthetic valve, and in turn the term “proximal” is used to refer to the inflow end of a prosthetic valve, or a direction opposite the direction of primary flow through the prosthetic valve.
The tissue response associated with the implantation of conventional prosthetic heart valves with synthetic leaflets can lead to a number of known complications, as well as decreased leaflet performance in some instances. It is believed that conventional leaflet designs that include materials that are impermeable or otherwise inhibitory to cellular tissue ingrowth perpetually traumatize endothelial cells surrounding the valve and/or leaflet, causing inflammation and promoting platelet activation. One potential result of this response by the body is thrombus formation, which can lead to a number of known complications.
According to one example, (“Example 1”), a prosthetic valve includes a leaflet frame and a leaflet construct including a synthetic leaflet, wherein each leaflet includes a portion configured to promote tissue ingrowth thereon such that tissue is encouraged to grow between the leaflet frame and the leaflet.
According to another example, (“Example 2”) further to Example 1, the leaflet includes a tissue ingrowth curtain coupled to an underlying leaflet base, wherein the tissue ingrowth curtain is configured to promote tissue ingrowth.
According to another example, (“Example 3”) further to Example 2, the leaflet includes a plurality of tissue ingrowth curtains coupled to the underlying leaflet base, wherein each tissue ingrowth curtain of the plurality of tissue ingrowth curtains is configured to promote tissue ingrowth.
According to another example, (“Example 4”) further to Example 3, the plurality of ingrowth curtains includes a first tissue ingrowth curtain and a second tissue ingrowth curtain, wherein the first tissue ingrowth curtain is coupled to a first side of the underlying leaflet base of the leaflet, and wherein the second tissue ingrowth curtain is coupled to a second side of the underlying leaflet base of the leaflet.
According to another example, (“Example 5”) further to Examples 2 to 4, the tissue ingrowth curtain comprises a porous membrane.
According to another example, (“Example 6”) further to Example 5, the tissue ingrowth curtain comprises a fluoropolymer membrane.
According to another example, (“Example 7”) further to Example 6, the fluoropolymer membrane includes an expanded fluoropolymer.
According to another example, (“Example 8”) further to Example 7, the expanded fluoropolymer membrane comprises ePTFE.
According to another example, (“Example 9”) further to Examples 2 to 8, the tissue ingrowth curtain is bonded to the underlying leaflet base.
According to another example, (“Example 10”) further to any of the preceding Examples, the leaflet frame is configured to promote tissue ingrowth.
According to another example, (“Example 11”) further to any of the preceding Examples, tissue is encouraged to grow across the leaflet frame onto the leaflet.
According to another example, (“Example 12”) further to any of the preceding Examples, the leaflet frame is covered with a tissue ingrowth promoting material.
According to another example, (“Example 13”) further to Example 11, the tissue ingrowth promoting material is a fabric.
According to another example, (“Example 14”) further to Examples 2 to 13, the tissue ingrowth curtain is coupled to the underlying leaflet base with an adhesive.
According to another example, (“Example 15”) further to any of the preceding Examples, the leaflet includes a porous membrane having a first zone and a second zone, wherein a first elastomeric material is contained within the first zone of the porous membrane of the leaflet, and wherein the second zone of the porous membrane of the leaflet is free of the first elastomeric material.
According to another example, (“Example 16”) further to Example 15, the tissue ingrowth curtain is coupled to the second zone of the porous membrane of the leaflet.
According to another example, (“Example 17”) further to Example 16, the tissue ingrowth curtain is coupled to the second zone of the porous membrane of the leaflet with an adhesive.
According to another example, (“Example 18”) further to Examples 15 to 17, the porous membrane of the leaflet includes a first side and a second side and wherein the tissue ingrowth curtain completely covers the second zone of the porous membrane of the leaflet on the first side of the porous membrane of the leaflet.
According to another example, (“Example 19”) further to Examples 15 to 18, the porous membrane is a fluoropolymer membrane.
According to another example, (“Example 20”) further to Example 19, the fluoropolymer membrane includes an expanded fluoropolymer.
According to another example, (“Example 21”) further to Example 20, the expanded fluoropolymer comprises ePTFE.
According to another example, (“Example 22”) further to Examples 15 to 21, the first elastomeric material is silicone.
According to another example, (“Example 23”) further to Examples 15 to 21, the first elastomeric material is a fluoroelastomer.
According to another example, (“Example 24”) further to Examples 15 to 21, wherein the first elastomer is a urethane.
According to another example, (“Example 25”) further to Examples 15 to 21, the first elastomeric material is a TFE/PMVE copolymer.
According to another example, (“Example 26”) further to Examples 15 to 25, a second elastomeric material is contained within the first zone of the porous membrane of the leaflet.
According to another example, (“Example 27”) further to any of the preceding Examples, the tissue ingrowth curtain is coupled to the underlying leaflet base with an adhesive such that the adhesive forms a transition between one or more edges of the tissue ingrowth curtain and the underlying leaflet base.
According to another example, (“Example 87”) further to Example 27, a fillet is formed across a transition between the tissue ingrowth curtain and the leaflet base.
According to another example, (“Example 29”) a method of forming a synthetic leaflet includes providing a first synthetic porous membrane, imbibing one or more portions of the first porous membrane with one or more filler materials such that one or more of the imbibed portions or areas are rendered unsuitable for supporting or promoting tissue ingrowth. The method further includes providing a second synthetic porous membrane that is suitable for promoting tissue ingrowth thereon, and securing the second porous membrane to the first porous membrane.
According to another example, (“Example 30”) a method of forming a synthetic leaflet includes providing a synthetic porous membrane, wherein the porous membrane includes a first zone and a second zone, the first and second zones being suitable for promoting tissue ingrowth thereon. The method further includes imbibing a first zone of the porous membrane with a filler material such that imbibed first portion of the porous membrane is rendered unsuitable for supporting or promoting tissue ingrowth thereon.
According to one example (“Example 31”), a method of treating a failing or dysfunctional native valve with a prosthetic valve, the method comprising: replacing the native valve with a prosthetic valve in accordance with any of claims 1 to 28.
While multiple embodiments are disclosed, still other embodiments will become apparent to those skilled in the art from the following detailed description, which shows and describes illustrative embodiments. Accordingly, the drawings and detailed description are to be regarded as illustrative in nature and not restrictive.
The accompanying drawings are included to provide a further understanding of the disclosure and are incorporated in and constitute a part of this specification, illustrate embodiments, and together with the description serve to explain the principles of the disclosure.
Persons skilled in the art will readily appreciate that various aspects of the present disclosure can be realized by any number of methods and apparatus configured to perform the intended functions. Stated differently, other methods and apparatus can be incorporated herein to perform the intended functions. It should also be noted that the accompanying drawing figures referred to herein are not necessarily drawn to scale, but may be exaggerated to illustrate various aspects of the present disclosure, and in that regard, the drawing figures should not be construed as limiting.
Although the embodiments herein may be described in connection with various principles and beliefs, the described embodiments should not be bound by theory. For example, embodiments are described herein in connection with prosthetic valves, more specifically cardiac prosthetic valves. However, embodiments within the scope of this disclosure can be applied toward any valve or mechanism of similar structure and/or function. Furthermore, embodiments within the scope of this disclosure can be applied in non-cardiac applications.
The term leaflet as used herein in the context of prosthetic valves is a flexible component of a one-way valve wherein the leaflet is operable to move between an open and closed position under the influence of a pressure differential. In an open position, the leaflet allows blood to flow through the valve. In a closed position, so as to block or occlude the valve orifice and partially or entirely prevent flow in response to differential fluid pressure. It will be appreciated that, in some instances, coaptation of adjacent leaflets may operate to completely block the flow of fluid (e.g., blood) through the prosthetic valve, while in others coaptation of adjacent leaflets may operate to block less than all of the flow of fluid (e.g., blood) through the prosthetic valve.
In embodiments comprising multiple leaflets, each leaflet generally cooperates with at least one neighboring or adjacently situated leaflet to block or restrict the retrograde flow of blood. The pressure differential in the blood is caused, for example, by the contraction of a ventricle or atrium of the heart, such pressure differential typically resulting from a fluid pressure building up on one side of the leaflets when closed. As the pressure on the inflow side of the valve rises above the pressure on the outflow side of the valve, the leaflets open and blood flows therethrough. As blood flows through the valve into a neighboring chamber or blood vessel, the pressure on the inflow side equalizes with the pressure on the outflow side. As the pressure on the outflow side of the valve raises above the blood pressure on the inflow side of the valve, the leaflet returns to the closed position generally preventing retrograde flow of blood through the valve.
The embodiments and examples discussed herein include various apparatus, systems, and methods for a prosthetic valve, such as, but not limited to, cardiac valve replacement. In some examples, the prosthetic valve is operable as a one-way valve wherein the prosthetic valve defines a valve orifice into which leaflets open to permit flow and close so as to occlude the valve orifice and prevent flow in response to differential fluid pressure. In the instant disclosure, the examples are primarily described in association with prosthetic valves or mechanisms of similar structure and/or function, including surgically implanted valves, although it should be readily appreciated features of such examples are equally applicable to transcatheter cardiac valve applications.
The leaflet frame 200 is operable to hold and support the leaflets 310. Examples of suitable leaflet frame constructions and sewing cuffs are illustrated and described in U.S. patent application Ser. Nos. 13/833,650, 14/973,589, and 14/853,654, the contents of each of which are incorporated herein by reference. It will be appreciated that the leaflet frame 200 can be etched, cut, laser cut, stamped, or three-dimensional printed, among other suitable processes, into an annular structure or a sheet of material, with the sheet then formed into an annular structure. In various examples, the leaflet frame 200 can comprise, such as, but not limited to, any biocompatible and elastically deformable metallic or polymeric material including a shape-memory material, such as nitinol, a nickel-titanium alloy. Other materials suitable for the leaflet frame 200 include, but are not limited to, other titanium alloys, stainless steel, cobalt-nickel alloy, polypropylene, polyethylene terephthalate, PEEK, acetyl homopolymer, acetyl copolymer, other alloys, polymers, and thermoplastics, or any other material that is generally biocompatible having adequate physical and mechanical properties to function as a leaflet frame 200 as described herein.
In various embodiments, one or more portions of the leaflet frame 200 may be covered with material suitable for promoting tissue ingrowth. For example, the leaflet frame 200 can be wrapped with a material, suitable for promoting tissue ingrowth. In various examples, such tissue ingrowth promoting materials can be applied to leaflet frame 200 entirely, or alternatively to less than all of the leaflet frame 200. For example, suitable materials for promoting tissue ingrowth could be coupled to the leaflet frame inner surface and the leaflet frame outer surface of the leaflet frame and optionally between the leaflet frame projections prior to leaflet attachment. Some nonlimiting examples of materials that can be applied to the leaflet frame 200 (or other portions of the prosthetic valve 100) include expanded polytetrafluoroethylene (ePTFE), such as an ePTFE membrane, fabric, film, or coating, and a polyethylene terephthalate fabric (e.g., Dacron fabric).
The leaflets 310 are coupled to the leaflet frame 200 such that they each generally extend radially inwardly from the leaflet frame 200 toward a triple point 348, as shown in
With specific reference now to
The leaflet 510 shown in
In accordance with various embodiments, the various leaflet constructs discussed herein including the leaflets are synthetic in that the leaflets and the various other portions of the leaflet constructs comprise one or more biocompatible materials that are not of a biological source and that are sufficiently compliant and strong for the particular purpose, such as a biocompatible polymer. In some embodiments, the leaflets comprise a membrane that is combined with an elastomeric material, such as a fluoroelastomer, to form a composite material, as disclosed herein. It will be appreciated that while various examples are discussed with regard to leaflet constructs 300 and 900, the various examples and embodiments discussed herein may be universally applied across each of the leaflet constructs and/or the various components of the leaflet constructs discussed herein.
In some examples, the leaflet construct 300 including leaflets 310 can be made by starting from a cylinder of polymer material that has been cut into a shape like that shown in
As mentioned above, the leaflets 310 are generally formed as a synthetic composite material. In various embodiments, the leaflets 310 include an underlying synthetic leaflet base material combined with a tissue ingrowth curtain that may be incorporated into the leaflet base material and/or coupled with the leaflet base material as explained further below. In some examples, the composite material forming the underlying synthetic leaflet base includes an expanded fluoropolymer membrane, which comprises a plurality of spaces within a matrix of fibrils, and an elastomeric material such as a fluoroelastomer imbibed or otherwise incorporated into the expanded fluoropolymer membrane. In some examples, the underlying leaflet base includes an imbibed porous monolayer. It will be appreciated that multiple types of fluoropolymer membranes and multiple types of elastomeric materials (and non-elastomeric materials) can be combined to form a composite material of the underlying leaflet base while remaining within the spirit and scope of the present disclosure. It should also be appreciated that the elastomeric material can include multiple elastomers, multiple types of non-elastomeric components, such as inorganic fillers, therapeutic agents, radiopaque markers, and the like while remaining within the spirit and scope of the present disclosure.
Further examples include a leaflet construct 300 comprising at least one fluoropolymer membrane layer, wherein the leaflet construct 300 comprises a composite having more than one fluoropolymer membrane layer, and wherein the at least one fluoropolymer membrane layer is an expanded fluoropolymer membrane layer. In some examples, the leaflet construct 300 comprises a composite material having at least one fluoropolymer membrane layer having a plurality of pores and an elastomer and/or an elastomeric material present in the pores of at least one of the fluoropolymer membrane layers.
In various examples, any of the leaflet constructs described herein (e.g., leaflet construct) may be formed of a biocompatible, synthetic material (e.g., including ePTFE and ePTFE composites, or other materials as desired). Other biocompatible polymers which can be suitable for use in synthetic leaflets include but are not limited to the groups of urethanes, silicones (organopolysiloxanes), copolymers of silicon-urethane, styrene/isobutylene copolymers, polyisobutylene, polyethylene-co-poly(vinyl acetate), polyester copolymers, nylon copolymers, fluorinated hydrocarbon polymers and copolymers or mixtures of each of the foregoing.
As used herein, the term “elastomer” refers to a polymer or a mixture of polymers that has the ability to be stretched to at least 1.3 times its original length and to retract rapidly to approximately its original length when released. The term “elastomeric material” refers to a polymer or a mixture of polymers that displays stretch and recovery properties similar to an elastomer, although not necessarily to the same degree of stretch and/or recovery. The term “non-elastomeric material” refers to a polymer or a mixture of polymers that displays stretch and recovery properties not similar to either an elastomer or elastomeric material, that is, considered not an elastomer or elastomeric material.
In accordance with some embodiments herein, the leaflet construct comprises a composite material having at least one porous synthetic polymer membrane layer having a plurality of pores and/or spaces and an elastomer and/or an elastomeric material and/or a non-elastomeric material filling the pores and/or spaces of the at least one synthetic polymer membrane layer. In accordance with other examples, the leaflet construct further comprises a layer of an elastomer and/or an elastomeric material and/or a non-elastomeric material on the composite material. In accordance with some examples, the composite material comprises porous synthetic polymer membrane by weight in a range of about 10% to 90%.
An example of a porous synthetic polymer membrane includes expanded fluoropolymer membrane having a node and fibril structure defining the pores and/or spaces. In some examples, the expanded fluoropolymer membrane is expanded polytetrafluoroethylene (ePTFE) membrane. Another example of porous synthetic polymer membrane includes microporous polyethylene membrane.
Examples of an elastomer and/or an elastomeric material and/or a non-elastomeric material include, but are not limited to, copolymers of tetrafluoroethylene and perfluoromethyl vinyl ether (TFE/PMVE copolymer), (per)fluoroalkylvinylethers (PAVE), urethanes, silicones (organopolysiloxanes), copolymers of silicon-urethane, styrene/isobutylene copolymers, polyisobutylene, polyethylene-co-poly(vinyl acetate), polyester copolymers, nylon copolymers, fluorinated hydrocarbon polymers and copolymers or mixtures of each of the foregoing. In some examples, the TFE/PMVE copolymer is an elastomer comprising essentially of between 60 and 20 weight percent tetrafluoroethylene and respectively between 40 and 80 weight percent perfluoromethyl vinyl ether. In some examples, the TFE/PMVE copolymer is an elastomeric material comprising essentially of between 67 and 61 weight percent tetrafluoroethylene and respectively between 33 and 39 weight percent perfluoromethyl vinyl ether. In some examples, the TFE/PMVE copolymer is a non-elastomeric material comprising essentially of between 73 and 68 weight percent tetrafluoroethylene and respectively between 27 and 32 weight percent perfluoromethyl vinyl ether. The TFE and PMVE components of the TFE-PMVE copolymer are presented in wt %. For reference, the wt % of PMVE of 40, 33-39, and 27-32 corresponds to a mol % of 29, 23-28, and 18-22, respectively.
In some examples, the TFE-PMVE copolymer exhibits elastomer, elastomeric, and/or non-elastomeric properties.
In some examples, the composite material further comprises a layer or coating of TFE-PMVE copolymer comprising from about 73 to about 68 weight percent tetrafluoroethylene and respectively from about 27 to about 32 weight percent perfluoromethyl vinyl ether.
In some examples, the leaflet construct is an expanded polytetrafluoroethylene (ePTFE) membrane having been imbibed with TFE-PMVE copolymer comprising from about 60 to about 20 weight percent tetrafluoroethylene and respectively from about 40 to about 80 weight percent perfluoromethyl vinyl ether, the leaflet construct 300 further including a coating of TFE-PMVE copolymer comprising from about 73 to about 68 weight percent tetrafluoroethylene and respectively about 27 to about 32 weight percent perfluoromethyl vinyl ether on the blood-contacting surfaces.
As discussed above, the elastomer and/or an elastomeric material and/or a non-elastomeric material may be combined with the expanded fluoropolymer membrane such that the elastomer and/or the elastomeric material and/or the non-elastomeric material occupies substantially all of the void space or pores within the expanded fluoropolymer membrane.
In accordance with an embodiment, the composite material can include an expanded fluoropolymer material made from porous ePTFE membrane, for instance as generally described in U.S. Pat. No. 7,306,729 to Bacino.
The expanded fluoropolymer membrane, used to form some of the composites described, can comprise PTFE homopolymer. In alternative embodiments, blends of PTFE, expandable modified PTFE and/or expanded copolymers of PTFE can be used. Non-limiting examples of suitable fluoropolymer materials are described in, for example, U.S. Pat. No. 5,708,044, to Branca, U.S. Pat. No. 6,541,589, to Baillie, U.S. Pat. No. 7,531,611, to Sabol et al., U.S. patent application Ser. No. 11/906,877, to Ford, and U.S. patent application Ser. No. 12/410,050, to Xu et al.
In various embodiments, the leaflet 310 is constructed in a manner that promotes tissue ingrowth. In some embodiments, the leaflet 310 may be constructed to encourage tissue ingrowth and proliferation across one or more discrete regions, portions, or sections of one or more of the materials forming the leaflet 310, or alternatively across an entirety of one or more of the materials forming the leaflet 310. Tissue ingrowth and proliferation may be promoted on an outflow side or surface of the leaflet 310, and/or on an inflow side or surface of the leaflet 310, and/or within one or more materials forming the leaflet.
According to some examples, as will be discussed in greater detail below, this promotion of tissue ingrowth is facilitated by the coupling of one or more synthetic tissue ingrowth curtains to one or more underlying leaflet base materials such that tissue is encouraged to grow (or is not otherwise prevented or inhibited from growing) into and/or onto the one or more tissue ingrowth curtains. That is, in some examples, one or more layers configured to promote tissue ingrowth may be applied to an underlying leaflet structure or material. In some examples, as described herein, the underlying leaflet structure or material may be configured to inhibit or prevent tissue ingrowth.
Additionally or alternatively, in some examples, this promotion of tissue ingrowth is facilitated by selectively imbibing, such as with one or more fluoroelastomers, one or more portions of the one or more materials forming the leaflet 310. That is, in some examples, in addition to or as an alternative to coupling one or more synthetic tissue ingrowth curtains to one or more underlying leaflet base materials, the underlying leaflet base materials themselves are configured to promote or accommodate tissue ingrowth. In some such examples, as discussed in greater detail below, underlying leaflet base materials are configured such that tissue is encouraged to grow (or is not otherwise prevented or inhibited from growing) into and/or onto one or more discrete or designated sections, portions, or regions of the one or more underlying leaflet base materials.
In various embodiments, the tissue ingrowth curtain generally includes an expanded fluoropolymer membrane, which comprises a plurality of spaces within a matrix of fibrils, and that is suitable for promoting and supporting the ingrowth of tissue. Other nonlimiting example materials include other biocompatible porous materials such as knit PTFE. However, as mentioned above, and as discussed in greater detail below, in some examples the tissue ingrowth curtain(s) may be applied to the underlying leaflet base in the form of one or more coatings.
In some examples, the tissue ingrowth curtain includes an expanded fluoropolymer material made from a porous ePTFE membrane. However, it will be appreciated that the tissue ingrowth curtain may be formed from a number of different types of membranes, including other fluoropolymer membranes, and other biocompatible porous materials such as knit PTFE. For instance, the expandable fluoropolymer can comprise PTFE homopolymer. In some examples, the tissue ingrowth curtain can be formed from copolymers of hexafluoropropylene and tetrafluoroethylenethe, such as Fluorinated Ethylene Propylene (FEP). In some examples, blends of PTFE, expandable modified PTFE and/or expanded copolymers of PTFE can be used. It will thus be appreciated that the tissue ingrowth curtain may be formed from a variety of different polymeric materials, provided they are biocompatible and possess or are modified to include a suitable microstructure suitable for promoting or supporting tissue ingrowth. In various examples, the tissue ingrowth curtains may range in thickness from between one microns and four hundred microns depending on the selected material.
In some examples, the polymeric material may include one or more naturally occurring and/or one or more artificially created pores, reliefs, or channels for supporting tissue ingrowth. Other biocompatible porous materials which can be suitable for use forming the tissue ingrowth curtain include but are not limited to the groups of urethanes, fluoropolymers, styrene/isobutylene copolymers, polyisobutylene, polyethylene-co-poly(vinyl acetate), polyester copolymers, nylon copolymers, fluorinated hydrocarbon polymers and copolymers or mixtures of each of the foregoing, for example.
Turning now to
As shown in
Moreover, as discussed above and as shown in
While the leaflet 310 is shown in
Additionally, as discussed above, in some embodiments, the leaflet 310 is configured such that one or more tissue ingrowth curtains 732 cover one or both sides of the underlying leaflet base 720 entirely. For example, as shown in
Additionally, while the first and second tissue ingrowth curtains 332a and 332b shown in
For example, as shown in
Additionally, while the tissue ingrowth curtain may terminate into the leaflet belly such that the boundary 334 adopts a linear profile (see, e.g.,
As mentioned above, in some examples, one or more tissue ingrowth curtains can be applied to an underlying leaflet base such that a profile of the boundary between the leaflet belly region and the tissue ingrowth curtains is discontinuous. With reference now to
The tissue ingrowth curtains discussed herein may be applied, bonded, or otherwise coupled with the underlying leaflet base according to methods known to those of skill in the art. For instance, in some examples, one or more adhesives, such as FEP, may be used to bond the tissue ingrowth curtains to the underlying tissue leaflet base. Other suitable adhesive include, but are not limited to urethane, thermoplastics, fluoropolymers, silicone/urethane blends, epoxies, fluoroelastomers, FEP, and copolymers of FEP. Such adhesives may be applied to one or more of the underlying leaflet base and the tissue ingrowth curtain. In some such examples, the underlying adhesive is wicked or imbibed into the underlying leaflet base and/or the tissue ingrowth curtain prior to combining the underlying leaflet base and the tissue ingrowth curtain. In some examples, the underlying leaflet base and the tissue ingrowth curtain may additionally or alternatively be subjected to one or more thermal processes and/or pressing processes to facilitate bonding between the tissue ingrowth curtain and the underlying leaflet base.
While the above-discussed tissue ingrowth curtains generally include membranes, films, knits, or other structures that are bonded, applied, or otherwise attached to the underlying leaflet base, as mentioned above, in some examples the tissue ingrowth curtain(s) may be applied to the underlying leaflet base in the form of one or more coatings. In some such example, a coherent irregular network is distributed or deposited onto one or more portions, regions, sections, areas, or zones of the underlying leaflet base. Examples of distributing such coherent irregular networks are illustrated and described in U.S. patent application Ser. No. 12/879,333, the contents of which are incorporated herein by reference. In some examples, the coherent irregular network is applied to one or more portions of the underlying leaflet base to create a surface texture suitable for supporting the ingrowth and proliferation of tissue, as those of skill will appreciate. For example, the coherent irregular network may be selectively applied to one or more discrete or designated sections, portions, or regions of the underlying leaflet base. In some such examples, the coherent irregular network is applied to the designated areas by masking or otherwise covering those portions of the underlying leaflet where ingrowth of tissue is undesirable such that the cover or mask can be removed subsequent to the coherent irregular network application process to achieve a leaflet having a first region including the coherent irregular network and a second region free of a coherent irregular network. In some examples, one or more sacrificial sheets, such as one or more polyimide sheets (e.g., Kapton sheets), are arranged on the underlying leaflet base and operate to mask or otherwise prevent the coherent irregular network from being applied to the masked or covered areas. Some nonlimiting examples of sacrificial sheet materials include polyester, polyetheretherketone (PEEK), PET, ePTFE/Kapton blends such as mapton, ePTFE, PTFE, silicones, and stainless steel, or other thin metal sheeting. In some examples, the one or more sacrificial sheets can be removed after the coherent irregular network application process to reveal a leaflet having a structure including one or more regions including the coherent irregular network and one or more regions free of the coherent irregular network (e.g., where the underlying leaflet base material is exposed). Such a configuration provides for a construction of the leaflet that minimizes a possibility for delamination between bonded membrane layers.
As mentioned above, in some examples, in addition to or as an alternative to applying one or more tissue ingrowth curtains to the underlying leaflet base, the underlying leaflet base materials themselves are configured to promote or accommodate tissue ingrowth. For instance, in some examples, the underlying leaflet base materials are configured such that tissue is encouraged to grow (or is not otherwise prevented or inhibited from growing) into and/or onto one or more discrete or designated sections, portions, or regions of the one or more underlying leaflet base materials. For instance, as mentioned above, the composite material forming the underlying synthetic leaflet base may include an elastomer and/or an elastomeric material such as a fluoroelastomer imbibed or otherwise incorporated into the expanded fluoropolymer membrane. In various examples, to achieve an underlying leaflet base that promotes or otherwise accommodates the ingrowth and proliferation of tissue the expanded fluoropolymer membrane is selectively imbibed, such as with one or more fluoroelastomers, such that the expanded fluoropolymer membrane includes one or more discrete portions, regions, sections, zones, or areas that are free of or are not otherwise imbibed with the elastomeric filler material (or at least are not filled to the extent that the elastomeric filler material operates to prevent tissue ingrowth). Selectively imbibing the underlying synthetic leaflet base material may be done in accordance with techniques as known to those of skill in the art.
As mentioned above, the leaflet 310 may be constructed to include first and second tissue ingrowth curtains disposed on opposing first and second sides of the leaflet base 320 such that the leaflet 310 has a first tissue ingrowth curtain with a different cross section and/or boundary profile and/or shape and/or size than the second tissue ingrowth curtain. Similarly, the membrane 1421 of the leaflet 1410 may be imbibed such that the first side 1416 includes one or more portions, regions, sections, zones, or areas not imbibed with filler material (if any) that differ from the one or more portions, regions, sections, zones, or areas of the second side 1418 not imbibed with filler material (if any). In other words, the membrane 1421 of the leaflet 1410 may be imbibed such that the first side 1416 and the second side 1418 have different tissue ingrowth profiles and/or capabilities.
For example,
While the above discussed embodiments and examples include applying a tissue ingrowth curtain to one or more portions of one or more surfaces of an underlying leaflet base, or selectively imbibing one or more portions of one or more sides of a membrane of an underlying leaflet base with a filler material, it will be appreciated that, in various examples, a leaflet may be constructed by both imbibing one or more portions of the membrane and applying a tissue ingrowth curtain to the selectively imbibed underlying leaflet base.
In particular, the ingrowth curtain 1732 has been applied to a portion the second side 1718 of the underlying leaflet base 1720 not imbibed with the filler material (e.g., the portion of second side 1718 of the underlying leaflet base 1720 extending between the edge 1714 and the boundary 1735). Thus, the boundaries 1734 and 1735 are overlapping one another in
In some examples, the ingrowth curtain 1732 may be applied to less than an entirety of those portions of the first and/or second sides 1716 and 1718 of the underlying leaflet base 1720 not otherwise imbibed, or may additionally or alternatively be applied to one or more portions of the first and/or second sides 1716 and 1718 of the underlying leaflet base 1720 imbibed with a filler material.
Similar to leaflet 1710, the leaflet 1910 includes an underlying leaflet base 1920, a leaflet free edge 1912, an edge 1914, first and second sides 1916 and 1918, a leaflet belly region 1922, a leaflet base 1925, and a leaflet attachment region 1930. The underlying leaflet base 1920 includes a membrane 1921. As shown, the membrane 1921 has been selectively imbibed to form the underlying leaflet base 1920. In particular, the membrane 1921 has been selectively imbibed in the belly region 1922 in a similar manner as membrane 1721 of leaflet 1710 to achieve an underlying leaflet base 1920 that is identical to the underlying leaflet base 1720. Additionally, similar to the construction of leaflet 1710 shown in
It will be appreciated that, in various other examples, a tissue ingrowth curtain 1932 may be additionally or alternatively applied to a portion of less than all of the first side 1916 of the underlying leaflet base 1920 not imbibed with the filler such that a portion of the first side 1916 of the underlying leaflet base 1920 not imbibed with the filler is exposed to surrounding tissue. In some examples, tissue is encouraged to grow or proliferate into and/or onto and/or across these additional tissue ingrowth regions.
In various examples, the underlying leaflet base may be imbibed with a plurality of filler materials. That is, in some examples, a first portion, area, region, section, or zone of the membrane of underlying leaflet base may be imbibed with a first filler material while a second portion, area, region, section, or zone of the membrane of the underlying leaflet base is imbibed with a second filler material. For instance, in some examples, a first portion of the membrane of underlying leaflet base is imbibed with a first filler material such that the first portion of the membrane is resistant to or otherwise inhibits or prevents tissue ingrowth into and/or onto and/or across the first portion. However, in some examples, those portions of the membrane imbibed with the first filler may also be unsuitable for accommodating the bonding or coupling of a tissue ingrowth curtain. Accordingly, in examples where it is desirable bond or otherwise couple a tissue ingrowth leaflet to a second portion of the membrane, the second portion may be imbibed with a second filler material such that the second portion of the membrane is suited to have a tissue ingrowth curtain bonded or otherwise coupled thereto. In some examples, the second filler material may additionally or alternatively encourage tissue ingrowth. That is, in some examples, one or more portions of the membrane may be imbibed with a filler material that encourages tissue ingrowth and proliferation. Alternatively, as mentioned above, the second portion may not be imbibed with any filler material at all, but may instead remain free of filler material.
It will be appreciated that, in various examples, a tissue ingrowth curtain 2132 may be additionally or alternatively applied to the second portion of the membrane 2121 on the first side 2116 of the underlying leaflet base 2120. It will also be appreciated that the tissue ingrowth curtain 2132 may be applied to less than all of the second portion of the first and/or second sides 2116 and 2118 of the underlying leaflet base 2120. Similarly, it will be appreciated that the underlying leaflet base 2120 may be constructed such that less than all of the second portion of the membrane 2121 is imbibed with the second filler material. That is, in some examples, one or more regions or zones of the second portion may be free of both the first and the second filler material.
It has been observed that some leaflet constructions that include a tissue ingrowth curtain bonded or adhered to an underlying leaflet base have a failure mode of detachment or delamination. In some examples, detachment or delamination occurs at or near the edges of the tissue ingrowth curtain. Generally, delamination occurs between adjoining surfaces of the tissue ingrowth curtain and the underlying leaflet base proximate to or at where the adjoining surface of the tissue ingrowth curtain terminates into an edge of the tissue ingrowth curtain. Thus, in some instances, delamination or detachment occurs between adjoining surfaces of the tissue ingrowth curtain and the underlying leaflet base at or proximate where the tissue ingrowth curtain 332 and the leaflet belly region 322 intersect. Put differently, in some instances, delamination or detachment occurs at or proximate to the boundary 334, discussed above.
In some examples, to minimize a potential for delamination or detachment between the tissue ingrowth curtains and underlying leaflet bases, the adhesive or adhesive layer coupling the tissue ingrowth curtain and the underlying leaflet base together (or additionally or alternatively an additional adhesive layer) can be applied such that it forms a transition between one or more edges of the tissue ingrowth curtain and the underlying leaflet base. In some examples, such a transition area is formed across the intersection between the tissue ingrowth curtain 332 and the leaflet belly region 322 (e.g., across the boundary 334).
Turning now to
A method of making a prosthetic valve in accordance with some embodiments, includes forming one or more leaflets in accordance with the above-discussed embodiments and examples, and securing the one or more leaflets to a leaflet frame. In some examples, forming the one or more leaflets includes obtaining a tube or sheet comprising one or more layers of a membrane, such as an ePTFE construct, that is suitable for forming the underlying leaflet material, as discussed herein. In some examples, one or more portions of the membrane are imbibed (entirely or selectively) with one or more filler materials such that one or more of these imbibed portions or areas are rendered unsuitable for supporting or promoting tissue ingrowth. As discussed above, the membrane may be imbibed with the filler material according to methods known to those of skill in the art.
In some examples, the method further includes providing a membrane, such as an ePTFE construct, such as a film or membrane, that is suitable for forming the tissue ingrowth curtain, as discussed herein. It will be appreciated that a variety of constructs ranging in size, shape, thickness, and material are contemplated. The method further includes bonding or otherwise coupling the tissue ingrowth curtain with the underlying leaflet base. However, in some examples, prior to applying or bonding the tissue ingrowth curtain with the underlying leaflet base, the method includes applying an adhesive to the tissue ingrowth curtain. In some examples, an adhesive, such as FEP, is wicked or imbibed into the tissue ingrowth curtain. In some examples, the adhesive is wicked or imbibed into the tissue ingrowth curtain from one or more sides of the construct. Additionally or alternatively the adhesive is wicked or imbibed into the tissue ingrowth curtain from one or more edges of the construct. In some examples, the adhesive is wicked or imbibed to a distance ranging from between five percent (5%) to ninety five percent (95%) of the thickness of the construct.
In some examples, a desired pattern for the tissue ingrowth curtain is then cut from the construct according to known methods, such as laser cutting for example. Thereafter, in some examples, the tissue ingrowth curtain is applied to the underlying leaflet base. In some examples, the tissue ingrowth curtain is layered with an accompanying underlying leaflet base and the tissue ingrowth curtain and the underlying leaflet base are bonded together. It will be appreciated that the tissue ingrowth curtain and the underlying leaflet base may be bonded according to known methods, including but not limited to, pressing, and/or thermal processing, and/or heat setting, and/or solvent welding.
In some examples, the method further includes cutting the leaflet from the resulting construct according to known methods. In some examples, a final free edge cutting operation may be performed to achieve a clean free edge of the resulting leaflet according to known methods, as those of skill will appreciate.
In some examples, the method includes applying an adhesive to the underlying leaflet base in addition to or as an alternative to applying the adhesive to the tissue ingrowth curtain, as discussed above. In some examples, an adhesive, such as FEP, is similarly wicked or imbibed into one or more portions of the underlying leaflet base, after which the tissue ingrowth curtain and the underlying leaflet base are pressed together and/or heat set according to known methods.
In some other examples, in addition to or as an alternative to applying adhesives to the tissue ingrowth curtain and the underlying leaflet base separately or individually, the tissue ingrowth curtain (e.g., having a designated pattern) and the underlying leaflet base are layered with one or more adhesives or adhesive layers therebetween, after which the layered construct is pressed and/or heat set according to known methods. The method further includes cutting the leaflet from the resulting construct according to known methods. In some examples, a final free edge cutting operation may be performed on the leaflet to achieve a clean free edge of the resulting leaflet according to known methods, as those of skill will appreciate.
In some examples, the method further includes securing the leaflets to a leaflet frame such that tissue is encouraged to grow onto and/or into the leaflets when the prosthetic valve is implanted in a patient's anatomy. In some examples, the method includes securing the leaflets to the leaflet frame such that the tissue ingrowth curtains are adjacent the leaflet frame. In some examples, the method includes securing the leaflets to the leaflet frame such that the portion of the underlying leaflet configured to promote tissue ingrowth is adjacent the leaflet frame. In some examples, the method includes securing the leaflets to the leaflet frame such that tissue is encouraged to grow across the leaflet frame and/or across the interface between the leaflets and the leaflet frame and/or onto the leaflets.
As shown in the
Moreover, as mentioned above one or more portions of the leaflet frame 200 may be covered with material suitable for promoting tissue ingrowth. Thus, it will be appreciated that the prosthetic valve 100 is configured such that tissue is encouraged to grow onto the leaflet frame 200 (e.g., onto and/or into the material covering the leaflet frame 200), and additionally from the leaflet frame 200 onto and/or into the leaflet (e.g., the tissue ingrowth curtain and/or the portions of the underlying leaflet base configured to promote tissue ingrowth). In some examples, unlike conventional designs, the embodiments and examples discussed herein include prosthetic valve configurations including fully synthetic (or non-biological) leaflets, wherein tissue is encouraged to proliferate and grow across the interface between the leaflet frame 200 and the leaflet 310 and onto the synthetic leaflet 310.
Moreover, as mentioned above, one or more portions of the leaflet frame 200 may be covered with material suitable for promoting tissue ingrowth. Thus, it will be appreciated that the prosthetic valve 100 is configured such that tissue is encouraged to grow onto the leaflet frame 200 (e.g., onto and/or into the material covering the leaflet frame 200), and additionally from the leaflet frame 200 onto and/or into the leaflet (e.g., the tissue ingrowth curtain and/or the portions of the underlying leaflet base configured to promote tissue ingrowth). The embodiments and examples discussed herein include prosthetic valve configurations including fully synthetic (or non-biological) leaflets, wherein tissue is encouraged to proliferate and grow across the interface between the leaflet frame 200 and the leaflet 310 and onto the synthetic leaflet 310. The prosthetic valve 100 shown in
Transcatheter Delivery System
In some embodiments, with reference to
Some methods of delivery include the steps of radially compressing the prosthetic valve 100 into its collapsed configuration onto the end of the delivery catheter 6200; delivering the prosthetic valve 100 to a desired treatment location, including a tissue orifice 6400, such as a native valve orifice (e.g., aortic valve orifice or a mitral valve orifice), via a transfemoral or transapical route, and expanding the prosthetic valve 100 into the tissue orifice 6400. The prosthetic valve 100 can be self-expanding and/or expansion can also be facilitated by expanding a balloon (not shown).
It is appreciated that the prosthetic valve 100 (according to any of the examples previously described) may be surgically implanted rather than using transcatheter techniques. As shown in
It should be appreciated that where the leaflet is additionally or alternatively constructed with selective imbibing in accordance with the embodiments and examples discussed above, the corresponding portions, section, regions, areas, and/or zones suitable for supporting and/or promoting tissue ingrowth may be similarly sized to the tissue ingrowth curtains.
Numerous characteristics and advantages have been set forth in the preceding description, including various alternatives together with details of the structure and function of the devices and/or methods. The disclosure is intended as illustrative only and as such is not intended to be exhaustive. It will be evident to those skilled in the art that various modifications can be made, especially in matters of structure, materials, elements, components, shape, size and arrangement of parts including combinations within the principles of the disclosure, to the full extent indicated by the broad, general meaning of the terms in which the appended claims are expressed. To the extent that these various modifications do not depart from the spirit and scope of the appended claims, they are intended to be encompassed therein.
This application claims the benefit of Provisional Application No. 62/579,760, filed Oct. 31, 2017, which is incorporated herein by reference in its entirety for all purposes.
Number | Name | Date | Kind |
---|---|---|---|
654799 | Levett | Jul 1900 | A |
3953566 | Gore | Apr 1976 | A |
4178639 | Bokros | Dec 1979 | A |
4222126 | Boretos et al. | Sep 1980 | A |
4265694 | Boretos et al. | May 1981 | A |
4332035 | Mano | Jun 1982 | A |
4340091 | Skelton et al. | Jul 1982 | A |
4477930 | Totten et al. | Oct 1984 | A |
4556996 | Wallace | Dec 1985 | A |
4626255 | Reichart et al. | Dec 1986 | A |
4759759 | Walker et al. | Jul 1988 | A |
4851000 | Gupta | Jul 1989 | A |
4955899 | Della et al. | Sep 1990 | A |
5064435 | Porter | Nov 1991 | A |
5071609 | Tu et al. | Dec 1991 | A |
5123918 | Perrier et al. | Jun 1992 | A |
5163955 | Love et al. | Nov 1992 | A |
5415667 | Frater | May 1995 | A |
5469868 | Reger | Nov 1995 | A |
5476589 | Bacino | Dec 1995 | A |
5489297 | Duran | Feb 1996 | A |
5534007 | St et al. | Jul 1996 | A |
5549663 | Cottone, Jr. | Aug 1996 | A |
5554183 | Nazari | Sep 1996 | A |
5554185 | Block et al. | Sep 1996 | A |
5562729 | Purdy | Oct 1996 | A |
5628791 | Bokros et al. | May 1997 | A |
5673102 | Suzuki et al. | Sep 1997 | A |
5708044 | Branca | Jan 1998 | A |
5718973 | Lewis et al. | Feb 1998 | A |
5749852 | Schwab et al. | May 1998 | A |
5759192 | Saunders | Jun 1998 | A |
5769884 | Solovay | Jun 1998 | A |
5772884 | Tanaka et al. | Jun 1998 | A |
5788626 | Thompson | Aug 1998 | A |
5814405 | Branca et al. | Sep 1998 | A |
5843158 | Lenker et al. | Dec 1998 | A |
5843161 | Solovay | Dec 1998 | A |
5843171 | Campbell et al. | Dec 1998 | A |
5853419 | Imran | Dec 1998 | A |
5925061 | Ogi et al. | Jul 1999 | A |
5928281 | Huynh et al. | Jul 1999 | A |
5935162 | Dang | Aug 1999 | A |
5935163 | Gabbay | Aug 1999 | A |
5944654 | Crawford | Aug 1999 | A |
5957974 | Thompson et al. | Sep 1999 | A |
6010529 | Herweck et al. | Jan 2000 | A |
6013854 | Moriuchi | Jan 2000 | A |
6019785 | Strecker | Jan 2000 | A |
6042588 | Munsinger et al. | Mar 2000 | A |
6042605 | Martin et al. | Mar 2000 | A |
6042606 | Frantzen | Mar 2000 | A |
6086612 | Jansen | Jul 2000 | A |
6110198 | Fogarty et al. | Aug 2000 | A |
6117169 | Moe | Sep 2000 | A |
6129758 | Love | Oct 2000 | A |
6161399 | Jayaraman | Dec 2000 | A |
6171335 | Wheatley et al. | Jan 2001 | B1 |
6174329 | Callol et al. | Jan 2001 | B1 |
6174331 | Moe et al. | Jan 2001 | B1 |
6190406 | Duerig et al. | Feb 2001 | B1 |
6197143 | Bodnar | Mar 2001 | B1 |
6217609 | Haverkost | Apr 2001 | B1 |
6245012 | Kleshinski | Jun 2001 | B1 |
6261320 | Tam et al. | Jul 2001 | B1 |
6261620 | Leadbeater | Jul 2001 | B1 |
6283994 | Moe et al. | Sep 2001 | B1 |
6283995 | Moe et al. | Sep 2001 | B1 |
6287334 | Moll et al. | Sep 2001 | B1 |
6328763 | Love et al. | Dec 2001 | B1 |
6334873 | Lane et al. | Jan 2002 | B1 |
6336937 | Vonesh et al. | Jan 2002 | B1 |
6352552 | Levinson et al. | Mar 2002 | B1 |
6379382 | Yang | Apr 2002 | B1 |
6436132 | Patel et al. | Aug 2002 | B1 |
6454798 | Moe | Sep 2002 | B1 |
6454799 | Schreck | Sep 2002 | B1 |
6461382 | Cao | Oct 2002 | B1 |
6461665 | Scholander | Oct 2002 | B1 |
6482228 | Norred | Nov 2002 | B1 |
6488701 | Nolting et al. | Dec 2002 | B1 |
6541589 | Baillie | Mar 2003 | B1 |
6558418 | Carpentier et al. | May 2003 | B2 |
6562069 | Cai et al. | May 2003 | B2 |
6582464 | Gabbay | Jun 2003 | B2 |
6613086 | Moe et al. | Sep 2003 | B1 |
6620190 | Colone | Sep 2003 | B1 |
6626939 | Burnside et al. | Sep 2003 | B1 |
6645244 | Shu et al. | Nov 2003 | B2 |
6666885 | Moe | Dec 2003 | B2 |
6673102 | Vonesh et al. | Jan 2004 | B1 |
6673107 | Brandt et al. | Jan 2004 | B1 |
6726715 | Sutherland | Apr 2004 | B2 |
6730118 | Spenser et al. | May 2004 | B2 |
6730120 | Berg et al. | May 2004 | B2 |
6755856 | Fierens et al. | Jun 2004 | B2 |
6755857 | Peterson et al. | Jun 2004 | B2 |
6758858 | McCrea et al. | Jul 2004 | B2 |
6890350 | Walak | May 2005 | B1 |
6893460 | Spenser et al. | May 2005 | B2 |
6916338 | Speziali | Jul 2005 | B2 |
6936067 | Buchanan | Aug 2005 | B2 |
6953332 | Kurk et al. | Oct 2005 | B1 |
7022132 | Kocur | Apr 2006 | B2 |
7083642 | Sirhan et al. | Aug 2006 | B2 |
7105018 | Yip et al. | Sep 2006 | B1 |
7137184 | Schreck | Nov 2006 | B2 |
7163556 | Xie et al. | Jan 2007 | B2 |
7238200 | Lee et al. | Jul 2007 | B2 |
7247167 | Gabbay | Jul 2007 | B2 |
7306729 | Bacino et al. | Dec 2007 | B2 |
7381218 | Schreck | Jun 2008 | B2 |
7419678 | Falotico | Sep 2008 | B2 |
7462675 | Chang et al. | Dec 2008 | B2 |
7510575 | Spenser et al. | Mar 2009 | B2 |
7513909 | Lane et al. | Apr 2009 | B2 |
7531611 | Sabol et al. | May 2009 | B2 |
7563277 | Case et al. | Jul 2009 | B2 |
7708775 | Rowe et al. | May 2010 | B2 |
7727274 | Zilla et al. | May 2010 | B2 |
7758640 | Vesely | Jul 2010 | B2 |
7780725 | Haug et al. | Aug 2010 | B2 |
7789908 | Sowinski et al. | Sep 2010 | B2 |
7803186 | Li et al. | Sep 2010 | B1 |
7879085 | Sowinski et al. | Jan 2011 | B2 |
7887562 | Young et al. | Feb 2011 | B2 |
7914569 | Nguyen et al. | Mar 2011 | B2 |
7935141 | Randall et al. | May 2011 | B2 |
7967829 | Gunderson et al. | Jun 2011 | B2 |
7967853 | Eidenschink et al. | Jun 2011 | B2 |
7993394 | Hariton et al. | Aug 2011 | B2 |
8062359 | Marquez et al. | Nov 2011 | B2 |
8092523 | Li et al. | Jan 2012 | B2 |
8167935 | McGuckin et al. | Apr 2012 | B2 |
8226710 | Nguyen et al. | Jul 2012 | B2 |
8246678 | Salahieh et al. | Aug 2012 | B2 |
8252037 | Styrc et al. | Aug 2012 | B2 |
8303647 | Case | Nov 2012 | B2 |
8349000 | Schreck | Jan 2013 | B2 |
8409274 | Li et al. | Apr 2013 | B2 |
8475512 | Hunt | Jul 2013 | B2 |
8545525 | Surti et al. | Oct 2013 | B2 |
8568475 | Nguyen et al. | Oct 2013 | B2 |
8585757 | Agathos | Nov 2013 | B2 |
8628566 | Eberhardt et al. | Jan 2014 | B2 |
8637144 | Ford | Jan 2014 | B2 |
8709077 | Schreck | Apr 2014 | B2 |
8722178 | Ashmead et al. | May 2014 | B2 |
8728103 | Surti et al. | May 2014 | B2 |
8728154 | Alkhatib | May 2014 | B2 |
8784481 | Alkhatib et al. | Jul 2014 | B2 |
8801774 | Silverman | Aug 2014 | B2 |
8808848 | Bacino | Aug 2014 | B2 |
8845709 | Styrc et al. | Sep 2014 | B2 |
8845721 | Braido et al. | Sep 2014 | B2 |
8852272 | Gross et al. | Oct 2014 | B2 |
8870948 | Erzberger et al. | Oct 2014 | B1 |
8945212 | Bruchman et al. | Feb 2015 | B2 |
8961599 | Bruchman et al. | Feb 2015 | B2 |
8992608 | Haug et al. | Mar 2015 | B2 |
9101469 | Bruchman et al. | Aug 2015 | B2 |
9107771 | Wubbeling et al. | Aug 2015 | B2 |
9125740 | Morriss et al. | Sep 2015 | B2 |
9139669 | Xu et al. | Sep 2015 | B2 |
9144492 | Bruchman et al. | Sep 2015 | B2 |
9168131 | Yohanan et al. | Oct 2015 | B2 |
9198787 | Kratzberg et al. | Nov 2015 | B2 |
9241695 | Peavey et al. | Jan 2016 | B2 |
9283072 | Bruchman et al. | Mar 2016 | B2 |
9314355 | Styrc et al. | Apr 2016 | B2 |
9345601 | Jantzen et al. | May 2016 | B2 |
9375308 | Norris | Jun 2016 | B2 |
9393110 | Levi et al. | Jul 2016 | B2 |
9398952 | Bruchman et al. | Jul 2016 | B2 |
9399085 | Cleek et al. | Jul 2016 | B2 |
9504565 | Armstrong | Nov 2016 | B2 |
9554786 | Carley et al. | Jan 2017 | B2 |
9554900 | Bruchman et al. | Jan 2017 | B2 |
9597181 | Christianson et al. | Mar 2017 | B2 |
9629718 | Gloss et al. | Apr 2017 | B2 |
9681948 | Levi et al. | Jun 2017 | B2 |
9737398 | Bruchman et al. | Aug 2017 | B2 |
9743932 | Amplatz et al. | Aug 2017 | B2 |
9801712 | Bruchman et al. | Oct 2017 | B2 |
9827089 | Bruchman et al. | Nov 2017 | B2 |
9827094 | Bennett | Nov 2017 | B2 |
9855141 | Dienno et al. | Jan 2018 | B2 |
9931204 | Rothstein et al. | Apr 2018 | B2 |
9937037 | Dienno et al. | Apr 2018 | B2 |
9968443 | Bruchman et al. | May 2018 | B2 |
10039638 | Bruchman et al. | Aug 2018 | B2 |
10285808 | Bruchman et al. | May 2019 | B2 |
10314697 | Gassler | Jun 2019 | B2 |
10321986 | Bruchman et al. | Jun 2019 | B2 |
10342659 | Bennett | Jul 2019 | B2 |
10368984 | Armstrong | Aug 2019 | B2 |
10376360 | Bruchman et al. | Aug 2019 | B2 |
10441416 | Oba et al. | Oct 2019 | B2 |
10463478 | Bruchman et al. | Nov 2019 | B2 |
10639144 | Bruchman et al. | May 2020 | B2 |
10660745 | Bruchman et al. | May 2020 | B2 |
10881507 | Bruchman et al. | Jan 2021 | B2 |
11020221 | Arcaro et al. | Jun 2021 | B2 |
11039917 | Bruchman et al. | Jun 2021 | B2 |
D926322 | Bennett et al. | Jul 2021 | S |
11065112 | Gassler | Jul 2021 | B2 |
20020045936 | Moe | Apr 2002 | A1 |
20020055773 | Campbell et al. | May 2002 | A1 |
20020076542 | Kramer et al. | Jun 2002 | A1 |
20020082687 | Moe | Jun 2002 | A1 |
20020133226 | Marquez et al. | Sep 2002 | A1 |
20020183840 | Lapeyre et al. | Dec 2002 | A1 |
20020198594 | Schreck | Dec 2002 | A1 |
20030027332 | Lafrance et al. | Feb 2003 | A1 |
20030055494 | Bezuidenhout et al. | Mar 2003 | A1 |
20030055496 | Cai et al. | Mar 2003 | A1 |
20030060871 | Hill et al. | Mar 2003 | A1 |
20030074052 | Besselink et al. | Apr 2003 | A1 |
20030097175 | O'Connor et al. | May 2003 | A1 |
20030114913 | Spenser et al. | Jun 2003 | A1 |
20030180488 | Lim et al. | Sep 2003 | A1 |
20030229394 | Ogle et al. | Dec 2003 | A1 |
20040024448 | Chang et al. | Feb 2004 | A1 |
20040024451 | Johnson et al. | Feb 2004 | A1 |
20040026245 | Agarwal et al. | Feb 2004 | A1 |
20040039436 | Spenser et al. | Feb 2004 | A1 |
20040044400 | Cheng et al. | Mar 2004 | A1 |
20040044401 | Bales et al. | Mar 2004 | A1 |
20040133266 | Clerc et al. | Jul 2004 | A1 |
20040170782 | Wang et al. | Sep 2004 | A1 |
20040176839 | Huynh et al. | Sep 2004 | A1 |
20040224442 | Grigg | Nov 2004 | A1 |
20040243222 | Osborne et al. | Dec 2004 | A1 |
20040260277 | Maguire | Dec 2004 | A1 |
20040260393 | Rahdert et al. | Dec 2004 | A1 |
20050027348 | Case et al. | Feb 2005 | A1 |
20050119722 | Styrc et al. | Jun 2005 | A1 |
20050137680 | Ortiz et al. | Jun 2005 | A1 |
20050137682 | Justino | Jun 2005 | A1 |
20050261765 | Liddicoat | Nov 2005 | A1 |
20050283224 | King | Dec 2005 | A1 |
20060008497 | Gabbay | Jan 2006 | A1 |
20060009835 | Osborne et al. | Jan 2006 | A1 |
20060015171 | Armstrong | Jan 2006 | A1 |
20060036311 | Nakayama et al. | Feb 2006 | A1 |
20060041091 | Chang | Feb 2006 | A1 |
20060106337 | Blankenship | May 2006 | A1 |
20060118236 | House et al. | Jun 2006 | A1 |
20060122693 | Biadillah et al. | Jun 2006 | A1 |
20060135985 | Cox et al. | Jun 2006 | A1 |
20060154365 | Ratcliffe et al. | Jul 2006 | A1 |
20060161241 | Barbut et al. | Jul 2006 | A1 |
20060190070 | Dieck et al. | Aug 2006 | A1 |
20060229718 | Marquez | Oct 2006 | A1 |
20060229719 | Marquez et al. | Oct 2006 | A1 |
20060259136 | Nguyen et al. | Nov 2006 | A1 |
20060265053 | Hunt | Nov 2006 | A1 |
20060271091 | Campbell et al. | Nov 2006 | A1 |
20060276813 | Greenberg | Dec 2006 | A1 |
20060276883 | Greenberg et al. | Dec 2006 | A1 |
20060276888 | Lee et al. | Dec 2006 | A1 |
20060282162 | Nguyen et al. | Dec 2006 | A1 |
20060290027 | O'Connor et al. | Dec 2006 | A1 |
20070010876 | Salahieh et al. | Jan 2007 | A1 |
20070021826 | Case et al. | Jan 2007 | A1 |
20070118210 | Pinchuk | May 2007 | A1 |
20070129786 | Beach et al. | Jun 2007 | A1 |
20070207186 | Scanlon et al. | Sep 2007 | A1 |
20070207816 | Spain | Sep 2007 | A1 |
20070208421 | Quigley | Sep 2007 | A1 |
20070244552 | Salahieh et al. | Oct 2007 | A1 |
20070250146 | Cully et al. | Oct 2007 | A1 |
20070250153 | Cully et al. | Oct 2007 | A1 |
20070254012 | Ludwig et al. | Nov 2007 | A1 |
20080009940 | Cribier | Jan 2008 | A1 |
20080026190 | King et al. | Jan 2008 | A1 |
20080039934 | Styrc | Feb 2008 | A1 |
20080051876 | Ta et al. | Feb 2008 | A1 |
20080065198 | Quintessenza | Mar 2008 | A1 |
20080071369 | Tuval et al. | Mar 2008 | A1 |
20080082154 | Tseng et al. | Apr 2008 | A1 |
20080097301 | Alpini et al. | Apr 2008 | A1 |
20080097401 | Trapp et al. | Apr 2008 | A1 |
20080097579 | Shanley et al. | Apr 2008 | A1 |
20080119943 | Armstrong et al. | May 2008 | A1 |
20080133004 | White | Jun 2008 | A1 |
20080140178 | Rasmussen et al. | Jun 2008 | A1 |
20080195199 | Kheradvar et al. | Aug 2008 | A1 |
20080208327 | Rowe | Aug 2008 | A1 |
20080220041 | Brito et al. | Sep 2008 | A1 |
20080228263 | Ryan | Sep 2008 | A1 |
20080300678 | Eidenschink et al. | Dec 2008 | A1 |
20080319531 | Doran et al. | Dec 2008 | A1 |
20090005854 | Huang et al. | Jan 2009 | A1 |
20090030499 | Bebb et al. | Jan 2009 | A1 |
20090036976 | Beach et al. | Feb 2009 | A1 |
20090043373 | Arnault et al. | Feb 2009 | A1 |
20090104247 | Pacetti | Apr 2009 | A1 |
20090117334 | Sogard et al. | May 2009 | A1 |
20090138079 | Tuval et al. | May 2009 | A1 |
20090157175 | Benichou | Jun 2009 | A1 |
20090182413 | Burkart et al. | Jul 2009 | A1 |
20090240320 | Tuval et al. | Sep 2009 | A1 |
20090264997 | Salahieh et al. | Oct 2009 | A1 |
20090276039 | Meretei | Nov 2009 | A1 |
20090287305 | Amalaha | Nov 2009 | A1 |
20090292350 | Eberhardt et al. | Nov 2009 | A1 |
20090306762 | McCullagh et al. | Dec 2009 | A1 |
20090306766 | McDermott et al. | Dec 2009 | A1 |
20100016940 | Shokoohi et al. | Jan 2010 | A1 |
20100023114 | Chambers et al. | Jan 2010 | A1 |
20100036021 | Lee et al. | Feb 2010 | A1 |
20100036484 | Hariton et al. | Feb 2010 | A1 |
20100049294 | Zukowski et al. | Feb 2010 | A1 |
20100082094 | Quadri et al. | Mar 2010 | A1 |
20100094394 | Beach et al. | Apr 2010 | A1 |
20100094405 | Cottone | Apr 2010 | A1 |
20100106240 | Duggal et al. | Apr 2010 | A1 |
20100131056 | Lapeyre | May 2010 | A1 |
20100137998 | Sobrino-Serrano et al. | Jun 2010 | A1 |
20100145438 | Barone | Jun 2010 | A1 |
20100159171 | Clough | Jun 2010 | A1 |
20100168839 | Braido et al. | Jun 2010 | A1 |
20100185274 | Moaddeb et al. | Jul 2010 | A1 |
20100185277 | Braido et al. | Jul 2010 | A1 |
20100191320 | Straubinger et al. | Jul 2010 | A1 |
20100204781 | Alkhatib | Aug 2010 | A1 |
20100204785 | Alkhatib | Aug 2010 | A1 |
20100211165 | Schreck | Aug 2010 | A1 |
20100217382 | Chau et al. | Aug 2010 | A1 |
20100248324 | Xu et al. | Sep 2010 | A1 |
20100249923 | Alkhatib et al. | Sep 2010 | A1 |
20100256738 | Berglund | Oct 2010 | A1 |
20100262231 | Tuval et al. | Oct 2010 | A1 |
20100286760 | Beach et al. | Nov 2010 | A1 |
20100298931 | Quadri et al. | Nov 2010 | A1 |
20100305682 | Furst | Dec 2010 | A1 |
20110009953 | Luk et al. | Jan 2011 | A1 |
20110040366 | Goetz et al. | Feb 2011 | A1 |
20110054515 | Bridgeman et al. | Mar 2011 | A1 |
20110064781 | Cleek et al. | Mar 2011 | A1 |
20110087318 | Daugherty et al. | Apr 2011 | A1 |
20110160836 | Behan | Jun 2011 | A1 |
20110172784 | Richter et al. | Jul 2011 | A1 |
20110208283 | Rust | Aug 2011 | A1 |
20110218619 | Benichou et al. | Sep 2011 | A1 |
20110251678 | Eidenschink et al. | Oct 2011 | A1 |
20110257739 | Corbett | Oct 2011 | A1 |
20110282439 | Thill et al. | Nov 2011 | A1 |
20110295363 | Girard et al. | Dec 2011 | A1 |
20120035722 | Tuval | Feb 2012 | A1 |
20120078357 | Conklin | Mar 2012 | A1 |
20120083839 | Letac et al. | Apr 2012 | A1 |
20120089223 | Nguyen et al. | Apr 2012 | A1 |
20120101567 | Jansen | Apr 2012 | A1 |
20120101571 | Thambar et al. | Apr 2012 | A1 |
20120116496 | Chuter et al. | May 2012 | A1 |
20120116498 | Chuter et al. | May 2012 | A1 |
20120123529 | Levi et al. | May 2012 | A1 |
20120123530 | Carpentier et al. | May 2012 | A1 |
20120130468 | Khosravi et al. | May 2012 | A1 |
20120130471 | Shoemaker et al. | May 2012 | A1 |
20120185038 | Fish et al. | Jul 2012 | A1 |
20120253453 | Bruchman et al. | Oct 2012 | A1 |
20120290082 | Quint et al. | Nov 2012 | A1 |
20120323211 | Ogle et al. | Dec 2012 | A1 |
20120323315 | Bruchman et al. | Dec 2012 | A1 |
20130018456 | Li et al. | Jan 2013 | A1 |
20130018458 | Yohanan et al. | Jan 2013 | A1 |
20130079700 | Ballard et al. | Mar 2013 | A1 |
20130110229 | Bokeriya et al. | May 2013 | A1 |
20130116655 | Bacino et al. | May 2013 | A1 |
20130150956 | Yohanan et al. | Jun 2013 | A1 |
20130158647 | Norris et al. | Jun 2013 | A1 |
20130166021 | Bruchman et al. | Jun 2013 | A1 |
20130183515 | White | Jul 2013 | A1 |
20130204360 | Gainor | Aug 2013 | A1 |
20130253466 | Campbell et al. | Sep 2013 | A1 |
20130297003 | Pinchuk | Nov 2013 | A1 |
20130338755 | Goetz et al. | Dec 2013 | A1 |
20140005771 | Braido et al. | Jan 2014 | A1 |
20140005773 | Wheatley | Jan 2014 | A1 |
20140031924 | Bruchman et al. | Jan 2014 | A1 |
20140031927 | Bruchman et al. | Jan 2014 | A1 |
20140094898 | Borck | Apr 2014 | A1 |
20140106951 | Brandon | Apr 2014 | A1 |
20140135897 | Cully et al. | May 2014 | A1 |
20140163671 | Bruchman et al. | Jun 2014 | A1 |
20140163673 | Bruchman et al. | Jun 2014 | A1 |
20140172066 | Goepfrich et al. | Jun 2014 | A1 |
20140172069 | Roeder et al. | Jun 2014 | A1 |
20140172077 | Bruchman et al. | Jun 2014 | A1 |
20140172078 | Bruchman et al. | Jun 2014 | A1 |
20140172079 | Bruchman et al. | Jun 2014 | A1 |
20140172082 | Bruchman et al. | Jun 2014 | A1 |
20140172083 | Bruchman et al. | Jun 2014 | A1 |
20140180400 | Bruchman et al. | Jun 2014 | A1 |
20140194968 | Zukowski | Jul 2014 | A1 |
20140236289 | Alkhatib | Aug 2014 | A1 |
20140277413 | Arnold et al. | Sep 2014 | A1 |
20140277418 | Miller | Sep 2014 | A1 |
20140296969 | Tegels et al. | Oct 2014 | A1 |
20140324160 | Benichou et al. | Oct 2014 | A1 |
20140324164 | Gross et al. | Oct 2014 | A1 |
20140330368 | Gloss et al. | Nov 2014 | A1 |
20140343670 | Bakis et al. | Nov 2014 | A1 |
20150005870 | Kovach et al. | Jan 2015 | A1 |
20150018944 | O'Connell et al. | Jan 2015 | A1 |
20150088250 | Zeng et al. | Mar 2015 | A1 |
20150105856 | Rowe et al. | Apr 2015 | A1 |
20150142100 | Morriss et al. | May 2015 | A1 |
20150157770 | Cully et al. | Jun 2015 | A1 |
20150224231 | Bruchman et al. | Aug 2015 | A1 |
20150245910 | Righini et al. | Sep 2015 | A1 |
20150313871 | Li et al. | Nov 2015 | A1 |
20150366663 | Bruchman et al. | Dec 2015 | A1 |
20150366664 | Guttenberg et al. | Dec 2015 | A1 |
20160001469 | Bacchereti et al. | Jan 2016 | A1 |
20160015422 | De et al. | Jan 2016 | A1 |
20160074161 | Bennett | Mar 2016 | A1 |
20160113699 | Sverdlik et al. | Apr 2016 | A1 |
20160157998 | Bruchman et al. | Jun 2016 | A1 |
20160175095 | Dienno et al. | Jun 2016 | A1 |
20160175096 | Dienno et al. | Jun 2016 | A1 |
20160206424 | Al-Jilaihawi et al. | Jul 2016 | A1 |
20160213465 | Girard et al. | Jul 2016 | A1 |
20160235525 | Rothstein et al. | Aug 2016 | A1 |
20160317299 | Alkhatib | Nov 2016 | A1 |
20170027727 | Wuebbeling et al. | Feb 2017 | A1 |
20170042674 | Armstrong | Feb 2017 | A1 |
20170056169 | Johnson et al. | Mar 2017 | A1 |
20170095330 | Malewicz et al. | Apr 2017 | A1 |
20170105854 | Treacy et al. | Apr 2017 | A1 |
20170106176 | Taft et al. | Apr 2017 | A1 |
20170128199 | Gurovich et al. | May 2017 | A1 |
20170156859 | Chang et al. | Jun 2017 | A1 |
20170165066 | Rothstein | Jun 2017 | A1 |
20170165067 | Barajas-Torres et al. | Jun 2017 | A1 |
20170216062 | Armstrong et al. | Aug 2017 | A1 |
20170224481 | Spenser et al. | Aug 2017 | A1 |
20170252153 | Chau et al. | Sep 2017 | A1 |
20170348101 | Vaughn et al. | Dec 2017 | A1 |
20180021128 | Bruchman et al. | Jan 2018 | A1 |
20180125646 | Bruchman et al. | May 2018 | A1 |
20180221144 | Bruchman et al. | Aug 2018 | A1 |
20180318070 | Bruchman et al. | Nov 2018 | A1 |
20190076245 | Arcaro et al. | Mar 2019 | A1 |
20190091014 | Arcaro et al. | Mar 2019 | A1 |
20190091015 | Dienno et al. | Mar 2019 | A1 |
20190110893 | Haarer et al. | Apr 2019 | A1 |
20190125530 | Arcaro et al. | May 2019 | A1 |
20190125531 | Bennett et al. | May 2019 | A1 |
20190125534 | Arcaro et al. | May 2019 | A1 |
20190209292 | Bruchman et al. | Jul 2019 | A1 |
20190247185 | Gassler | Aug 2019 | A1 |
20190254815 | Bruchman et al. | Aug 2019 | A1 |
20190269505 | Bruchman et al. | Sep 2019 | A1 |
20190314154 | Armstrong | Oct 2019 | A1 |
20190328525 | Noe et al. | Oct 2019 | A1 |
20190374339 | Bennett | Dec 2019 | A1 |
20200000578 | Bruchman et al. | Jan 2020 | A1 |
20200237505 | Bruchman et al. | Jul 2020 | A1 |
20200246137 | Bruchman et al. | Aug 2020 | A1 |
20200276014 | Burkart et al. | Sep 2020 | A1 |
20210121289 | Bruchman et al. | Apr 2021 | A1 |
20210177589 | Arcaro et al. | Jun 2021 | A1 |
20210205074 | Bruchman et al. | Jul 2021 | A1 |
Number | Date | Country |
---|---|---|
2013363172 | Jul 2015 | AU |
2017202405 | Apr 2017 | AU |
2462509 | Apr 2003 | CA |
2878691 | Jan 2014 | CA |
2964546 | Jan 2014 | CA |
2960034 | Mar 2016 | CA |
101057796 | Oct 2007 | CN |
101091675 | Dec 2007 | CN |
101374477 | Feb 2009 | CN |
101420913 | Apr 2009 | CN |
101926699 | Dec 2010 | CN |
201744060 | Feb 2011 | CN |
102015009 | Apr 2011 | CN |
102119013 | Jul 2011 | CN |
102292053 | Dec 2011 | CN |
102438546 | May 2012 | CN |
102573703 | Jul 2012 | CN |
102652694 | Sep 2012 | CN |
102764169 | Nov 2012 | CN |
102791223 | Nov 2012 | CN |
102883684 | Jan 2013 | CN |
103079498 | May 2013 | CN |
103228232 | Jul 2013 | CN |
103237524 | Aug 2013 | CN |
103384505 | Nov 2013 | CN |
103732183 | Apr 2014 | CN |
103781439 | May 2014 | CN |
104114127 | Oct 2014 | CN |
104487023 | Mar 2015 | CN |
104507417 | Apr 2015 | CN |
105101911 | Nov 2015 | CN |
105263445 | Jan 2016 | CN |
105792780 | Jul 2016 | CN |
106714733 | May 2017 | CN |
106794065 | May 2017 | CN |
107106294 | Aug 2017 | CN |
212013000104 | Nov 2014 | DE |
0293090 | Nov 1988 | EP |
0313263 | Apr 1989 | EP |
0582870 | Feb 1994 | EP |
1318775 | Jun 2003 | EP |
1666003 | Jun 2006 | EP |
1395205 | Jul 2008 | EP |
2193762 | Jun 2010 | EP |
2400923 | Jan 2012 | EP |
2359774 | Jan 2013 | EP |
2591100 | May 2013 | EP |
2109417 | Nov 2013 | EP |
3142608 | Mar 2017 | EP |
2591100 | Jun 1987 | FR |
2312485 | Oct 1997 | GB |
2513194 | Oct 2014 | GB |
44-032400 | Dec 1969 | JP |
1969-032400 | Dec 1969 | JP |
02-000645 | Jan 1990 | JP |
09-241412 | Sep 1997 | JP |
10-507097 | Jul 1998 | JP |
11-290448 | Oct 1999 | JP |
2000-511459 | Sep 2000 | JP |
2000-513248 | Oct 2000 | JP |
2001-508641 | Jul 2001 | JP |
2001-508681 | Jul 2001 | JP |
2001-511030 | Aug 2001 | JP |
2002-525169 | Aug 2002 | JP |
2002-541915 | Dec 2002 | JP |
2004-510471 | Apr 2004 | JP |
2005-500101 | Jan 2005 | JP |
2005-512611 | May 2005 | JP |
2007-526098 | Sep 2007 | JP |
2007-536989 | Dec 2007 | JP |
2008-535572 | Sep 2008 | JP |
2010-517623 | May 2010 | JP |
2010-528761 | Aug 2010 | JP |
2010-188189 | Sep 2010 | JP |
2010-536527 | Dec 2010 | JP |
2012-504031 | Feb 2012 | JP |
2012-152563 | Aug 2012 | JP |
2014-517720 | Jul 2014 | JP |
2016-501104 | Jan 2016 | JP |
2016-518948 | Jun 2016 | JP |
2017-527397 | Sep 2017 | JP |
6392778 | Sep 2018 | JP |
2124986 | Jan 1999 | RU |
2434604 | Nov 2011 | RU |
9413224 | Jun 1994 | WO |
9505555 | Feb 1995 | WO |
9509586 | Apr 1995 | WO |
9602212 | Jan 1996 | WO |
9607370 | Mar 1996 | WO |
9640348 | Dec 1996 | WO |
9926558 | Jun 1999 | WO |
0018333 | Apr 2000 | WO |
0047271 | Aug 2000 | WO |
0062716 | Oct 2000 | WO |
0128453 | Apr 2001 | WO |
0207795 | Jan 2002 | WO |
0224118 | Mar 2002 | WO |
0224119 | Mar 2002 | WO |
0245933 | Jun 2002 | WO |
0247468 | Jun 2002 | WO |
0260506 | Aug 2002 | WO |
2002100301 | Dec 2002 | WO |
0303946 | Jan 2003 | WO |
0307795 | Jan 2003 | WO |
0347468 | Jun 2003 | WO |
0390834 | Nov 2003 | WO |
2005112827 | Nov 2005 | WO |
2006108090 | Oct 2006 | WO |
2007016251 | Feb 2007 | WO |
2008021002 | Feb 2008 | WO |
2008028964 | Mar 2008 | WO |
2008052421 | May 2008 | WO |
2008091589 | Jul 2008 | WO |
2008021006 | Aug 2008 | WO |
2008097589 | Aug 2008 | WO |
2008097592 | Aug 2008 | WO |
2008150529 | Dec 2008 | WO |
2009029199 | Mar 2009 | WO |
2009045332 | Apr 2009 | WO |
2009100210 | Aug 2009 | WO |
2009108355 | Sep 2009 | WO |
2010006783 | Jan 2010 | WO |
2010008570 | Jan 2010 | WO |
2010030766 | Mar 2010 | WO |
2010037141 | Mar 2010 | WO |
2010057262 | May 2010 | WO |
2010086460 | Aug 2010 | WO |
2010132707 | Nov 2010 | WO |
2010150208 | Dec 2010 | WO |
2011098565 | Aug 2011 | WO |
2011109450 | Sep 2011 | WO |
2011109801 | Sep 2011 | WO |
2011112706 | Sep 2011 | WO |
2012004460 | Jan 2012 | WO |
2012011261 | Jan 2012 | WO |
2012040643 | Mar 2012 | WO |
2012065080 | May 2012 | WO |
2012082952 | Jun 2012 | WO |
2012099979 | Jul 2012 | WO |
2012110767 | Aug 2012 | WO |
2012116368 | Aug 2012 | WO |
2012135603 | Oct 2012 | WO |
2012167131 | Dec 2012 | WO |
2013074990 | May 2013 | WO |
2013096854 | Jun 2013 | WO |
2014018189 | Jan 2014 | WO |
2014018432 | Jan 2014 | WO |
2014099150 | Jun 2014 | WO |
2014099163 | Jun 2014 | WO |
2014099722 | Jun 2014 | WO |
2014144937 | Sep 2014 | WO |
2015045002 | Apr 2015 | WO |
2015085138 | Jun 2015 | WO |
2015171743 | Nov 2015 | WO |
2015173794 | Nov 2015 | WO |
2016028591 | Feb 2016 | WO |
2016044223 | Mar 2016 | WO |
2016100913 | Jun 2016 | WO |
2016172349 | Oct 2016 | WO |
2016186909 | Nov 2016 | WO |
2017038145 | Mar 2017 | WO |
2017096157 | Jun 2017 | WO |
2019067219 | Apr 2019 | WO |
2019067220 | Apr 2019 | WO |
2019074607 | Apr 2019 | WO |
2019089138 | May 2019 | WO |
Entry |
---|
Clough, Norman E. Introducing a New Family of GORE ePTFE Fibers (2007), pp. 1-10. |
English translation of RU2434604 (C1), filed Oct. 30, 2010, translation powered by EPO and Google, 8 pages. |
Mano Thubrikar, “The Aortic Valve”, Chapter 1: Geometry of the Aortic Valve, CRC Press, Inc., Informa Healthcare, 2011, 40 pages. |
Norman E. Clough. Introducing a New Family of GORE (Trademark) ePTFE Fibers (2007). |
Opposition from EP16196687.4, dated Dec. 12, 2019, 38 pages. |
Opposition from EP17187595.8, filed Sep. 12, 2019, 50 pages. |
Cardiac Surgery in the Adult, Third Edition, Chapter 2 2008. |
EPO Form 1002 for EP16196687.4 Filed Dec. 28, 2016. |
Forward citations for E12 obtained from: https://scholar.google.com/scholar?cites=5981833429320176658&assdt=2005&sciodt=0,5&hl= en. |
International Preliminary Report on Patentability received for PCT Patent Application No. PCT/US2018/050764, dated Mar. 26, 2020, 9 pages. |
International Preliminary Report on Patentability received for PCT Patent Application No. PCT/US2018/050766, dated Apr. 9, 2020, 11 pages. |
International Preliminary Report on Patentability received for PCT Patent Application No. PCT/US2018/050768, dated May 14, 2020, 8 pages. |
International Preliminary Report on Patentability received for PCT Patent Application No. PCT/US2018/050769, dated May 14, 2020, 8 pages. |
International Preliminary Report on Patentability received for PCT Patent Application No. PCT/US2018/050778, dated Apr. 9, 2020, 8 pages. |
International Preliminary Report on Patentability received for PCT Patent Application No. PCT/US2018/050779, dated May 14, 2020, 11 pages. |
International Preliminary Report on Patentability received for PCT Patent Application No. PCT/US2018/050786, dated Apr. 23, 2020, 9 pages. |
International Preliminary Report on Patentability received for PCT Patent Application No. PCT/US2018/053278, dated May 14, 2020, 8 pages. |
Google Image Search Results, “S-Shaped”, accessed Nov. 1, 2013. |
Nakayama, Yasuhide. Microporous Stent Achieves Brain Aneurysm Occlusion Without Disturbing Branching Flow. NeuroNews Nov. 2012; 8:1-2. |
Nishi S, Nakayama Y, Ishibashi-Ueda FL, Okamoto Y, Yoshida M. Development of microporous self-expanding stent grafts for treating cerebral aneurysms: designing micropores to control intimal hyperplasia. J Artif Organs 2011; 14:348-356. |
Number | Date | Country | |
---|---|---|---|
20190125528 A1 | May 2019 | US |
Number | Date | Country | |
---|---|---|---|
62579760 | Oct 2017 | US |