The invention relates generally to devices configured to releasably hold a wire and more specifically to devices configured to releasably hold a medical wire such as a guidewire or a filter wire.
Heart and vascular disease are major problems in the United Sates and throughout the world. Conditions such as atherosclerosis result in blood vessels becoming blocked or narrowed. This blockage can result in lack of oxygenation of the heart, which has significant consequences since the heart muscle must be well oxygenated in order to maintain its blood pumping action.
Occluded, stenotic or narrowed blood vessels may be treated with a number of relatively non-invasive medical procedures including percutaneous transluminal angioplasty (PTA), percutaneous transluminal coronary angioplasty (PTCA), and atherectomy. These procedures typically include steps of advancing various treatment devices such as balloon catheters, atherectomy catheters, stent delivery catheters and the like over a wire such as a guidewire. In some instances, these devices are deployed over a filter wire, which can be considered to be a guidewire having a filter secured to the distal end thereof.
Often times when treating occluded, stenotic or narrowed blood vessels, one or more medical devices such as those noted above are advanced over a guidewire or filter wire that has previously been advanced to or even beyond a treatment site. One of the challenges faced by the physician or other health care professional in advancing devices over the wire is limiting or even preventing undesirable movement of the wire once the wire has been deployed. In some cases, the user will attempt to hold the wire immobile with one hand while advancing a device over the wire with the other hand.
Therefore, a need remains for a device that will easily and releasably secure a guidewire or filter wire once deployed, thereby freeing the physician or other health care professional to concentrate instead on advancing devices over the guidewire or filter wire.
The present invention pertains to a device that easily and releasably secures a medical wire such as a guidewire or a filter wire. In some instances, the present invention pertains to a wire holding device that may be considered to be disposable.
Accordingly, an example embodiment of the present invention may be found in a disposable wire holder that is configured to releasable secure a medical wire. The disposable wire holder includes a base assembly and a top assembly. The base assembly includes a first magnet having a first polarity and a second magnet having a second polarity. The top assembly includes a magnet track that is disposed within the top assembly and a third magnet that is disposed within the magnet track. The third magnet is translatable between an open position in which the third magnet overlies the first magnet and a closed position in which the third magnet overlies the second magnet.
Another example embodiment of the present invention may be found in a medical wire clamp that includes a base fixture and a clamp fixture. The medical wire clamp can include holding apparatus to hold the clamp fixture against the base fixture, releasing apparatus to release the clamp fixture from the base fixture, and selecting apparatus to select between the holding apparatus and the releasing apparatus.
Another example embodiment of the present invention may be found in a method of using a medical wire clamp. The medical wire clamp may include a base fixture, a clamp fixture, holding apparatus to hold the clamp fixture against the base fixture, and releasing apparatus to release the clamp fixture from the base fixture. A medical wire having a proximal portion and a distal portion may be advanced to a treatment site. The distal portion of the medical wire may be positioned within the medical wire clamp, and the holding structure can be activated to hold the clamp fixture to the base fixture, thereby securing the medical wire.
The above summary of the present invention is not intended to describe each disclosed embodiment or every implementation of the present invention. The Figures, Detailed Description and Examples which follow more particularly exemplify these embodiments.
The invention may be more completely understood in consideration of the following detailed description of various embodiments of the invention in connection with the accompanying drawings, in which:
While the invention is amenable to various modifications and alternative forms, specifics thereof have been shown by way of example in the drawings and will be described in detail. It should be understood, however, that the intention is not to limit the invention to the particular embodiments described. On the contrary, the intention is to cover all modifications, equivalents, and alternatives falling within the spirit and scope of the invention.
For the following defined terms, these definitions shall be applied, unless a different definition is given in the claims or elsewhere in this specification.
All numeric values are herein assumed to be modified by the term “about”, whether or not explicitly indicated. The term “about” generally refers to a range of numbers that one of skill in the art would consider equivalent to the recited value, i.e., having the same function or result. In many instances, the term “about” may include numbers that are rounded to the nearest significant figure.
The recitation of numerical ranges by endpoints includes all numbers within that range. For example, a range of 1 to 5 includes 1, 1.5, 2, 2.75, 3, 3.80, 4 and 5.
As used in this specification and in the appended claims, the singular forms “a”, “an”, and “the” include plural referents unless the content clearly dictates otherwise. As used in this specification and in the appended claims, the term “or” is generally employed in its sense including “and/or” unless the content clearly dictates otherwise.
The following description should be read with reference to the drawings, in which like elements in different drawings are numbered in like fashion. The drawings, which are not necessarily to scale, depict selected embodiments and are not intended to limit the scope of the invention. Although examples of construction, dimensions, and materials are illustrated for the various elements, those skilled in the art will recognize that many of the examples provided have suitable alternatives that may be utilized.
The top portion 12 and the bottom portion 14 may each be formed of any suitable material. For ease of manufacturing and expense, the top portion 12 and the bottom portion 14 may be formed of any suitable polymeric material that is sufficiently strong and that is easily machineable. In some embodiments, the top portion 12 and the bottom portion 14 may be formed of a polycarbonate such as lexane. In some instances, the top portion 12 may be formed of a single block of lexane, and the features such as the handle track 18 and the magnet track may be drilled or otherwise formed within the single block of lexane. In other cases, such as illustrated in
The medical wire holder 10 may be constructed to any suitable dimensions. In some instances, the medical wire holder 10 may have an overall length that is in the range of about 2″ to about 6″, an overall width that is in the range of about 1″ to about 4″, and an overall height (excluding the handle 18) that is in the range of about ½″ to about 1⅝″. In particular embodiments, the medical wire holder 10 can have an overall length of about three inches, an overall width of about one and one half inches, and a height (excluding the handle 18) that is about one inch or less. The handle 18 may have a height of about ½″ and a diameter of about ⅛″.
In
The top portion 12 can be seen to include, in phantom, the handle track 18 and a magnet track 24. Magnet 20 may be translated along the magnet track 24 by moving the handle 16. The bottom portion 14 can be seen to include, in phantom, an aperture 26 formed within the bottom portion 14 and a first magnet 28 disposed within the aperture 26. The bottom portion 14 also includes an aperture 30 formed within the bottom portion 14 and a second magnet 32 disposed within the aperture 30. As illustrated in
The first magnet 28 and the second magnet 32 may be any suitable magnetic material. In some embodiments, the first magnet 28 and the second magnet 32 are each neodymium disc magnets and can be sized as appropriate. In particular embodiments, the first magnet 28 may be a neodymium disc magnet having a diameter of about ⅝ inches and a thickness of about ⅛ inches while the second magnet 32 may be a neodymium disc magnet having a diameter of about 9/16 inches and a thickness of about 3/16 inches. In some instances, the aperture 26 and the aperture 30 may be sized to accommodate the dimensions of the first magnet 28 and the second magnet 32, respectively.
A magnet such as a disc magnet can have one of two distinct and opposite polarities, depending on orientation. The top of a disc magnet may, to illustrate, have a North polarity while the bottom of a disc magnet would correspondingly have a South polarity. In some embodiments, the first magnet 28 can have a first polarity and the second magnet 32 can have a second polarity that is opposite the first polarity. The third magnet 20 may have a polarity equal to that of the first magnet 28. As a non-limiting example, the first magnet 28 may be installed within the aperture 26 having an orientation that provides a North polarity and the second magnet 32 may be installed within the aperture 30 having an orientation that provides a South polarity. In this particular example, the third magnet 20 would be oriented to have a North polarity.
When the third magnet 20 is positioned to overlie the first magnet 28, there will be a repulsive force between the first magnet 28 and the third magnet 20 due to both magnets being oriented to have a common polarity. When the third magnet 20 is positioned to overlie the second magnet 32, there will be an attractive force between the second magnet 32 and the third magnet 20 due to the magnets being oriented to have opposite polarities. Therefore, the medical wire holder 10 can be considered as having a closed position when the third magnet 20 overlies the second magnet 32 and an open position when the third magnet 20 overlies the first magnet 28.
When a medical wire such as a guidewire or a filter wire is placed between the top portion 12 and the bottom portion 14, the third magnet 20 may be translated along the magnet track 24 between the closed position and the open position. When the medical wire holder 10 is in the open position, the medical wire may easily be disposed within the medical wire holder 10. By moving the handle 16 (and hence the third magnet 20) along the magnet track 24 to a position in which the third magnet 20 overlies the second magnet 32, the medical wire holder 10 attains its closed position and the medical wire is securely held against movement.
In some embodiments, a medical wire may be held in place by compressive forces between the top portion 12 and the bottom portion 14. In some embodiments, it may be useful to include a thin layer of a material on at least one of the top portion 12 and the bottom portion 14 to provide additional grip on a medical wire. In
In some embodiments, the thin layer 34 may be a thin layer of rubber that is glued or otherwise adhered to the top portion 12. The thin layer 36 may be a thin layer of rubber that is glued or otherwise adhered to the bottom portion 14. The thin layer 34 and the thin layer 36 may be distinct pieces of rubber. In some embodiments, however, the thin layer 34 and the thin layer 36 may be formed from a single thin piece of rubber that is secured to both top portion 12 and bottom portion 14. In this case, the rubber can provide a resilient material between the top portion 12 and the bottom portion 14 that may function as a hinge therebetween.
Turning now to
The middle piece 40 can be formed of any suitable material such as lexane and can be drilled or otherwise machined to form the magnet track 24. In some cases, the magnet track 24 extends vertically the entire thickness of the middle piece 40. In other cases, the magnet track 24 extends downwardly from an upper surface of the middle piece 40 to an internal point within the middle piece 40.
It will be appreciated that there are particular manufacturing advantages to forming the top portion 12 from three distinct pieces, as illustrated. Moreover, it can be seen that third magnet 20 can be positioned within and held captive within the magnet track 24.
Each of the top piece 38, the middle piece 40 and the bottom piece 42 may be constructed to any suitable dimensions. The overall length and width of each of the top piece 38, the middle piece 40 and the bottom piece 42 may be set according to the overall dimensions desired for medical wire holder 10, as discussed previously with respect to
In some embodiments, the top piece 38 and the bottom piece 42 are relatively thinner, having a thickness that is in the range of about 1/32″ to about ⅛″. In particular embodiments, the top piece 38 and the bottom piece 42 are each about 1/16 inches thick. In some embodiments, the middle piece 40 can have a thickness that is in the range of about 3/16″ to about ⅝″. In particular embodiments, the middle piece 40 can have a thickness that is about ⅜ inches thick.
To assemble the top portion 12, the middle piece 40 may be glued or otherwise secured onto the bottom piece 42. An assembly including the third magnet 20 and the handle 16 may be positioned within the magnet track 24. The top piece 38 may then be glued or otherwise secured to the middle piece 40. Any suitable adhesive may be used. An example of an adhesive suitable for gluing polycarbonate materials together is Loctite® Plastix® Advanced Plalstic Bonder or Loctite® 4014 glue.
Turning now to
The upper piece 44 and the lower piece 46 may be formed of any suitable material such as lexane and can have any suitable dimensions. In some embodiments, the overall length and width of the upper piece 44 and the lower piece 46 are set according to the overall dimensions of the medical wire holder 10, as discussed previously with respect to
In some embodiments, the upper piece 44 is relatively thinner and has a thickness that is in the range of about 1/32″ to about ⅛″. In particular embodiments, the upper piece 44 has a thickness that is about 1/16 inches thick. In some embodiments, the lower piece 46 is relatively thicker and has a thickness that is in the range of about ⅛″ to about ½″. In particular embodiments, the lower piece 46 has a thickness that is about ¼ inches thick.
To assemble the bottom portion 14, the first magnet 28 and the second magnet 32 may be disposed within aperture 26 and aperture 30, respectively, of lower piece 46. The upper piece 44 may be glued or otherwise secured to the lower piece 46 using any suitable adhesive. An example of an adhesive suitable for gluing polycarbonate materials together is Loctite Plastix® Advanced Plalstic Bonder or Loctite® 4014 glue.
In an alternate embodiment, the bottom portion 14 may be formed of a single block of a suitable material such as lexane. In such an embodiment, the first magnet 28 may be glued or otherwise adhered in the aperture 26 while the second magnet 32 may be glued or otherwise adhered in the aperture 30. Inclusion of the thin layer 36 (
Use of the medical wire holder 10 is illustrated in
A patient 50 is generically represented. Once the medical wire holder 10 has been secured to the table 48, a medical wire 52 may be advanced into and through the patient 50 as is known. The medical wire 52 may be a guidewire or a filter wire. Once the medical wire 52 has been properly positioned within the patient 50, the medical wire 52 may be positioned within the medical wire holder 10. The medical wire 52 can be secured by moving the medical wire holder 10 from its open position to its closed position. Any desired device may now be advanced over the medical wire 52.
The invention should not be considered limited to the particular examples described above, but rather should be understood to cover all aspects of the invention as set out in the attached claims. Various modifications, equivalent processes, as well as numerous structures to which the invention can be applicable will be readily apparent to those of skill in the art upon review of the instant specification.
Number | Name | Date | Kind |
---|---|---|---|
3278674 | Chickvary et al. | Oct 1966 | A |
3468576 | Beyer et al. | Sep 1969 | A |
3472230 | Fogarty | Oct 1969 | A |
3592186 | Oster | Jul 1971 | A |
3683904 | Forster | Aug 1972 | A |
3822906 | Gaines | Jul 1974 | A |
3889657 | Baumgarten | Jun 1975 | A |
3952747 | Kimmell, Jr. | Apr 1976 | A |
3996938 | Clark, III | Dec 1976 | A |
4046150 | Schwartz et al. | Sep 1977 | A |
4336806 | Eldridge, Jr. | Jun 1982 | A |
4425908 | Simon | Jan 1984 | A |
4447227 | Kotsanis | May 1984 | A |
4580568 | Gianturco | Apr 1986 | A |
4590938 | Segura et al. | May 1986 | A |
4619246 | Molgaard-Nielsen et al. | Oct 1986 | A |
4631052 | Kensey | Dec 1986 | A |
4643184 | Mobin-Uddin | Feb 1987 | A |
4650466 | Luther | Mar 1987 | A |
4662885 | DiPisa, Jr. | May 1987 | A |
4705517 | DiPisa, Jr. | Nov 1987 | A |
4706671 | Weinrib | Nov 1987 | A |
4723549 | Wholey et al. | Feb 1988 | A |
4728319 | Masch | Mar 1988 | A |
4733665 | Palmaz | Mar 1988 | A |
4790812 | Hawkins, Jr. et al. | Dec 1988 | A |
4790813 | Kensey | Dec 1988 | A |
4794928 | Kletschka | Jan 1989 | A |
4794931 | Yock | Jan 1989 | A |
4800882 | Gianturco | Jan 1989 | A |
4807626 | McGirr | Feb 1989 | A |
4842579 | Shiber | Jun 1989 | A |
4857045 | Rydell | Aug 1989 | A |
4857046 | Stevens et al. | Aug 1989 | A |
4867157 | McGurk-Burleson et al. | Sep 1989 | A |
4873978 | Ginsburg | Oct 1989 | A |
4886061 | Fischelle et al. | Dec 1989 | A |
4898575 | Fischell et al. | Feb 1990 | A |
4907336 | Gianturco | Mar 1990 | A |
4921478 | Solano et al. | May 1990 | A |
4921484 | Hillstead | May 1990 | A |
4926858 | Giffort, III et al. | May 1990 | A |
4950277 | Farr | Aug 1990 | A |
4955895 | Sugiyama et al. | Sep 1990 | A |
4957482 | Shiber | Sep 1990 | A |
4969891 | Gewertz | Nov 1990 | A |
4979951 | Simpson | Dec 1990 | A |
4986807 | Farr | Jan 1991 | A |
4998539 | Delsanti | Mar 1991 | A |
5002560 | Machold et al. | Mar 1991 | A |
RE33569 | Gifford, III et al. | Apr 1991 | E |
5007896 | Shiber | Apr 1991 | A |
5007917 | Evans | Apr 1991 | A |
5011488 | Ginsburg | Apr 1991 | A |
5019088 | Farr | May 1991 | A |
5041126 | Gianturco | Aug 1991 | A |
5053008 | Bajaj | Oct 1991 | A |
5053044 | Mueller et al. | Oct 1991 | A |
5071407 | Termin et al. | Dec 1991 | A |
5071425 | Gifford, III et al. | Dec 1991 | A |
5085662 | Willard | Feb 1992 | A |
5087265 | Summers | Feb 1992 | A |
5100423 | Fearnot | Mar 1992 | A |
5100424 | Jang et al. | Mar 1992 | A |
5100425 | Fischell et al. | Mar 1992 | A |
5102415 | Guenther et al. | Apr 1992 | A |
5104399 | Lazarus | Apr 1992 | A |
5108419 | Reger et al. | Apr 1992 | A |
5133733 | Rasmussen et al. | Jul 1992 | A |
5135531 | Shiber | Aug 1992 | A |
5152771 | Sabbaghian et al. | Oct 1992 | A |
5152777 | Goldberg et al. | Oct 1992 | A |
5160342 | Reger et al. | Nov 1992 | A |
5171233 | Amplatz et al. | Dec 1992 | A |
5190546 | Jervis | Mar 1993 | A |
5195955 | Don Michael | Mar 1993 | A |
5224953 | Morgentaler | Jul 1993 | A |
5269759 | Hernandez et al. | Dec 1993 | A |
5306286 | Stack et al. | Apr 1994 | A |
5314444 | Gianturco | May 1994 | A |
5314472 | Fontaine | May 1994 | A |
5318576 | Plassche, Jr. et al. | Jun 1994 | A |
5329942 | Gunther et al. | Jul 1994 | A |
5330484 | Gunther | Jul 1994 | A |
5330500 | Song | Jul 1994 | A |
5350398 | Pavcnik et al. | Sep 1994 | A |
5354310 | Garnic et al. | Oct 1994 | A |
5356423 | Tihon et al. | Oct 1994 | A |
5361962 | Andersen et al. | Nov 1994 | A |
5366464 | Belknap | Nov 1994 | A |
5366473 | Winston et al. | Nov 1994 | A |
5370657 | Irie | Dec 1994 | A |
5370683 | Fontaine | Dec 1994 | A |
5376100 | Lefebvre | Dec 1994 | A |
5383887 | Nadal | Jan 1995 | A |
5383892 | Cardon et al. | Jan 1995 | A |
5383926 | Lock et al. | Jan 1995 | A |
5387235 | Chuter | Feb 1995 | A |
5395349 | Quiachon et al. | Mar 1995 | A |
5397345 | Lazerus | Mar 1995 | A |
5405377 | Cragg | Apr 1995 | A |
5409454 | Fischell et al. | Apr 1995 | A |
5415630 | Gory et al. | May 1995 | A |
5419774 | Willard et al. | May 1995 | A |
5421832 | Lefebvre | Jun 1995 | A |
5423742 | Theron | Jun 1995 | A |
5423885 | Williams | Jun 1995 | A |
5425765 | Tiefenbrun et al. | Jun 1995 | A |
5443498 | Fontaine | Aug 1995 | A |
5449372 | Schmaltz et al. | Sep 1995 | A |
4842579 | Shiber | Oct 1995 | A |
5456667 | Ham et al. | Oct 1995 | A |
5462529 | Simpson et al. | Oct 1995 | A |
5464023 | Viera | Nov 1995 | A |
5476104 | Sheahon | Dec 1995 | A |
5484418 | Quiachon et al. | Jan 1996 | A |
5487729 | Avellanet et al. | Jan 1996 | A |
5507767 | Maeda et al. | Apr 1996 | A |
5512044 | Duer | Apr 1996 | A |
5520656 | Byrd | May 1996 | A |
5527354 | Fontaine et al. | Jun 1996 | A |
5536242 | Willard et al. | Jul 1996 | A |
5540707 | Ressemann et al. | Jul 1996 | A |
5542938 | Avellanet et al. | Aug 1996 | A |
5549626 | Miller et al. | Aug 1996 | A |
5555893 | Hackett et al. | Sep 1996 | A |
5558101 | Brooks et al. | Sep 1996 | A |
5562724 | Vowerk et al. | Oct 1996 | A |
5569274 | Rapacki et al. | Oct 1996 | A |
5569275 | Kotula et al. | Oct 1996 | A |
5570701 | Ellis et al. | Nov 1996 | A |
5579779 | Humphrey | Dec 1996 | A |
5588442 | Scovil et al. | Dec 1996 | A |
5606980 | Calhoun et al. | Mar 1997 | A |
5623943 | Hackett et al. | Apr 1997 | A |
5630427 | Hastings | May 1997 | A |
5634897 | Dance et al. | Jun 1997 | A |
5658296 | Bates et al. | Aug 1997 | A |
5662671 | Barbut et al. | Sep 1997 | A |
5669933 | Simon et al. | Sep 1997 | A |
5695519 | Summers et al. | Dec 1997 | A |
5706827 | Ehr et al. | Jan 1998 | A |
5709704 | Nott et al. | Jan 1998 | A |
5720764 | Naderlinger | Feb 1998 | A |
5728066 | Daneshvar | Mar 1998 | A |
5746758 | Nordgren et al. | May 1998 | A |
5749370 | Brooks et al. | May 1998 | A |
5749848 | Jang et al. | May 1998 | A |
5769816 | Barbut et al. | Jun 1998 | A |
5776080 | Thome et al. | Jul 1998 | A |
5779716 | Cano et al. | Jul 1998 | A |
5792157 | Mische et al. | Aug 1998 | A |
5792300 | Inderbitzen et al. | Aug 1998 | A |
5795322 | Boudewijn | Aug 1998 | A |
5797952 | Klein | Aug 1998 | A |
5800457 | Gelbfish | Sep 1998 | A |
5800525 | Bachinski et al. | Sep 1998 | A |
5807398 | Shaknovich | Sep 1998 | A |
5810874 | Lefebvre | Sep 1998 | A |
5814064 | Daniel et al. | Sep 1998 | A |
5817102 | Johnson et al. | Oct 1998 | A |
5827324 | Cassell et al. | Oct 1998 | A |
5833644 | Zadno-Azizi et al. | Nov 1998 | A |
5833650 | Imran | Nov 1998 | A |
5846260 | Maahs | Dec 1998 | A |
5848964 | Samuels | Dec 1998 | A |
5876367 | Kaganov et al. | Mar 1999 | A |
5893867 | Bagaoisan et al. | Apr 1999 | A |
5895399 | Barbut et al. | Apr 1999 | A |
5902263 | Patterson et al. | May 1999 | A |
5906618 | Larson, III | May 1999 | A |
5908435 | Samuels | Jun 1999 | A |
5910154 | Tsugita et al. | Jun 1999 | A |
5911734 | Tsugita et al. | Jun 1999 | A |
5916193 | Stevens et al. | Jun 1999 | A |
5925016 | Chornenky et al. | Jul 1999 | A |
5925060 | Forber | Jul 1999 | A |
5925062 | Purdy | Jul 1999 | A |
5925063 | Khosravi | Jul 1999 | A |
5928203 | Davey et al. | Jul 1999 | A |
5928218 | Gelbfish | Jul 1999 | A |
5934284 | Plaia et al. | Aug 1999 | A |
5935139 | Bates | Aug 1999 | A |
5938645 | Gordon | Aug 1999 | A |
5941869 | Patterson et al. | Aug 1999 | A |
5941896 | Kerr | Aug 1999 | A |
5947995 | Samuels | Sep 1999 | A |
5951585 | Cathcart et al. | Sep 1999 | A |
5954745 | Gertler et al. | Sep 1999 | A |
5976172 | Homsma et al. | Nov 1999 | A |
5980555 | Barbut et al. | Nov 1999 | A |
5989210 | Morris et al. | Nov 1999 | A |
5989271 | Bonnette et al. | Nov 1999 | A |
5989281 | Barbut et al. | Nov 1999 | A |
5993469 | McKenzie et al. | Nov 1999 | A |
5997557 | Barbut et al. | Dec 1999 | A |
6001118 | Daniel et al. | Dec 1999 | A |
6007557 | Ambrisco et al. | Dec 1999 | A |
6010522 | Barbut et al. | Jan 2000 | A |
6013038 | Pflueger | Jan 2000 | A |
6013085 | Howard | Jan 2000 | A |
6027520 | Tsugita et al. | Feb 2000 | A |
6042598 | Tsugita et al. | Mar 2000 | A |
6051014 | Jang | Apr 2000 | A |
6051015 | Maahs | Apr 2000 | A |
6053932 | Daniel et al. | Apr 2000 | A |
6059814 | Ladd | May 2000 | A |
6066149 | Samson et al. | May 2000 | A |
6066158 | Engelson et al. | May 2000 | A |
6068645 | Tu | May 2000 | A |
6086605 | Barbut et al. | Jul 2000 | A |
6117154 | Barbut et al. | Sep 2000 | A |
6129739 | Khosravi | Oct 2000 | A |
6136016 | Barbut et al. | Oct 2000 | A |
6142987 | Tsugita | Nov 2000 | A |
6144277 | Matsui et al. | Nov 2000 | A |
6152946 | Broome et al. | Nov 2000 | A |
6165200 | Tsugita et al. | Dec 2000 | A |
6168579 | Tsugita | Jan 2001 | B1 |
6171327 | Daniel et al. | Jan 2001 | B1 |
6171328 | Addis | Jan 2001 | B1 |
6179851 | Barbut et al. | Jan 2001 | B1 |
6179859 | Bates et al. | Jan 2001 | B1 |
6179861 | Khosravi et al. | Jan 2001 | B1 |
6203561 | Ramee et al. | Mar 2001 | B1 |
6206868 | Parodi | Mar 2001 | B1 |
6214026 | Lepak et al. | Apr 2001 | B1 |
6215381 | Aoki | Apr 2001 | B1 |
6221006 | Dubrul et al. | Apr 2001 | B1 |
6224620 | Maahs | May 2001 | B1 |
6231544 | Tsugita et al. | May 2001 | B1 |
6235044 | Root et al. | May 2001 | B1 |
6235045 | Barbut et al. | May 2001 | B1 |
6238412 | Dubrul et al. | May 2001 | B1 |
6245087 | Addis | Jun 2001 | B1 |
6245088 | Lowery | Jun 2001 | B1 |
6245089 | Daniel et al. | Jun 2001 | B1 |
6258115 | Dubrul | Jul 2001 | B1 |
6264663 | Cano | Jul 2001 | B1 |
6264672 | Fisher | Jul 2001 | B1 |
6270513 | Tsugita et al. | Aug 2001 | B1 |
6277138 | Levinson et al. | Aug 2001 | B1 |
6277139 | Levinson et al. | Aug 2001 | B1 |
6280413 | Clark et al. | Aug 2001 | B1 |
6287321 | Jang | Sep 2001 | B1 |
6290710 | Cryer et al. | Sep 2001 | B1 |
6309399 | Barbut et al. | Oct 2001 | B1 |
6319268 | Ambrisco et al. | Nov 2001 | B1 |
6344049 | Levinson et al. | Feb 2002 | B1 |
6471172 | Lemke et al. | Oct 2002 | B1 |
6559748 | Nakano | May 2003 | B1 |
6656199 | Lafontaine | Dec 2003 | B1 |
6746466 | Eidenschink et al. | Jun 2004 | B2 |
6827722 | Schoenefeld | Dec 2004 | B1 |
6971147 | Halstead | Dec 2005 | B2 |
20020087100 | Onuki et al. | Jul 2002 | A1 |
20020165484 | Bowe et al. | Nov 2002 | A1 |
20040006329 | Scheu | Jan 2004 | A1 |
20040199197 | Eidenschink et al. | Oct 2004 | A1 |
Number | Date | Country |
---|---|---|
28 21 048 | Jul 1980 | DE |
34 17 738 | Nov 1985 | DE |
40 30 998 | Oct 1990 | DE |
0 200 688 | Nov 1986 | EP |
0 293 605 | Dec 1988 | EP |
0356630 | Jul 1990 | EP |
0 411 118 | Feb 1991 | EP |
0 427 429 | May 1991 | EP |
0 437 121 | Jul 1991 | EP |
0 472 334 | Feb 1992 | EP |
0 472 368 | Feb 1992 | EP |
0 533 511 | Mar 1993 | EP |
0 655 228 | Nov 1994 | EP |
0 686 379 | Jun 1995 | EP |
0 696 447 | Feb 1996 | EP |
0 737 450 | Oct 1996 | EP |
0 743 046 | Nov 1996 | EP |
0 759 287 | Feb 1997 | EP |
0 771 549 | May 1997 | EP |
0 784 988 | Jul 1997 | EP |
0 852 132 | Jul 1998 | EP |
0 934 729 | Aug 1999 | EP |
2 580 504 | Oct 1986 | FR |
2 643 250 | Aug 1990 | FR |
2 666 980 | Mar 1992 | FR |
2 768 326 | Mar 1999 | FR |
2 020 557 | Jan 1983 | GB |
8-187294 | Jul 1996 | JP |
08257134 | Oct 1996 | JP |
09253217 | Sep 1997 | JP |
764684 | Sep 1980 | SU |
WO 8809683 | Dec 1988 | WO |
WO 9203097 | Mar 1992 | WO |
WO 9414389 | Jul 1994 | WO |
WO 9424946 | Nov 1994 | WO |
WO 9601591 | Jan 1996 | WO |
WO 9604875 | Feb 1996 | WO |
WO 9610375 | Apr 1996 | WO |
WO 9619941 | Jul 1996 | WO |
WO 9623441 | Aug 1996 | WO |
WO 9633677 | Oct 1996 | WO |
WO 9717100 | May 1997 | WO |
WO 9727808 | Aug 1997 | WO |
WO 9742879 | Nov 1997 | WO |
WO 9802084 | Jan 1998 | WO |
WO 9802112 | Jan 1998 | WO |
WO 9823322 | Jun 1998 | WO |
WO 9833443 | Aug 1998 | WO |
WO 9834673 | Aug 1998 | WO |
WO 9836786 | Aug 1998 | WO |
WO 9838920 | Sep 1998 | WO |
WO 9838929 | Sep 1998 | WO |
WO 9839046 | Sep 1998 | WO |
WO 9839053 | Sep 1998 | WO |
WO 9846297 | Oct 1998 | WO |
WO 9847447 | Oct 1998 | WO |
WO 9849952 | Nov 1998 | WO |
WO 9850103 | Nov 1998 | WO |
WO 9851237 | Nov 1998 | WO |
WO 9855175 | Dec 1998 | WO |
WO 9909895 | Mar 1999 | WO |
WO 9922673 | May 1999 | WO |
WO 9923976 | May 1999 | WO |
WO 9925252 | May 1999 | WO |
WO 9930766 | Jun 1999 | WO |
WO 9940964 | Aug 1999 | WO |
WO 9942059 | Aug 1999 | WO |
WO 9944510 | Sep 1999 | WO |
WO 9944542 | Sep 1999 | WO |
WO 9955236 | Nov 1999 | WO |
WO 9958068 | Nov 1999 | WO |
WO 0007655 | Feb 2000 | WO |
WO 0009054 | Feb 2000 | WO |
WO 0016705 | Mar 2000 | WO |
WO 0049970 | Aug 2000 | WO |
Number | Date | Country | |
---|---|---|---|
20060163436 A1 | Jul 2006 | US |