Medicament delivery device comprising a visual indicator

Abstract
Disclosed herein is a pharmaceutical delivery device comprising a cartridge containing a fluid, the cartridge including a light pipe section which acts as a light pipe having an input location; and a light diffusing section optically coupled to the light pipe; and a light source optically coupled to the cartridge at the input location to the light pipe, such that at least some light from the light source entering at the input location is diffused at the light diffusing section.
Description
FIELD AND BACKGROUND OF THE INVENTION

The present invention, in some embodiments thereof, relates to a visual user indicator and, more particularly, but not exclusively, to a medicament delivery device used as a user indicator light.


U.S. Pat. No. 8,784,378 discloses “A visual identification coding for a cartridge or cartridge holder for use with a drug delivery device is described. The visual identification coding includes a cartridge containing a drug and a light source located on the cartridge to visually indicate that the correct cartridge has been inserted into the drug delivery device. The light source may be a light emitting diode (LED), a surface mount diode (SMD), or an organic light emitting diode (OLED). A cartridge holder may also be included to receive the cartridge. In another embodiment, the light source may be located on the cartridge holder or a dose setting member.”


U.S. Patent Application Publication no. 2014/0228768 to Eggert discloses “a handheld medical device having a housing, at least one operator activatable button mounted on a surface of the housing, and a light source mounted within the housing below the button and arranged to direct light towards the button. Substantially the whole of the button and the surface of the housing adjacent the button are opaque, save for a narrow strip adjacent the periphery of the button which is non-opaque.”


Additional background art includes International Patent Application Publication no. WO2013173092 to the present inventor.


SUMMARY OF THE INVENTION
Example 1

A medical delivery device having a void for containing a cartridge and at least one window, comprising: a cartridge containing a fluid material, the cartridge including: a light pipe section which acts as a light pipe having an input location; and a light diffusing section optically coupled to the light pipe and aligned with the window when the cartridge is positioned in the void; a light source optically coupled to the cartridge at the input location to the light pipe, such that at least some light from the light source entering at the input location is diffused at the light diffusing section.


Example 2

A medical delivery device, comprising: a housing defining a void therein for a cartridge and having a window overlapping with at least part of the void; a cartridge containing a fluid material and positioned within the void, the cartridge including: a light pipe section which acts as a light pipe having an input location; and a light diffusing section optically coupled to the light pipe and aligned with the window when the cartridge is positioned in the void; a light source positioned within the housing and optically coupled to the cartridge at the input location to the light pipe, such that at least some light from the light source entering at the input location is diffused at the light diffusing section and exits the housing through the window.


Example 3

The device according to any of examples 1-2, further comprising a housing defining a void therein for the cartridge and having a window overlapping with at least part of the void; wherein the cartridge is positioned within the void, and the light source is positioned within the housing, such that the light diffused at the light diffusing section exits the housing through the window.


Example 4

The device according to any of examples 1-3, further comprising a control circuitry having instructions to operate the light source in accordance with an operation status of the medical delivery device.


Example 5

The device according to any of examples 1-2, wherein the light diffusing section comprises at least one protruding element.


Example 6

The device according to example 5, wherein the protruding element at least partially surrounds a circumference of the cartridge.


Example 7

The device according to example 5, wherein the protruding element extends at an angle beyond a tangent to a wall of the cartridge.


Example 8

The device according to example 1, wherein the light diffusing section comprises a surface area having increased surface roughness.


Example 9

The device according to example 8, wherein the surface area diffuses the light in an even distribution.


Example 10

The device according to example 8, wherein the surface area is sized to distribute the light over an area at least twice an area defined by a surface area of the light source.


Example 11

The device according to example 1, wherein the light diffusing section comprises at least one bulge.


Example 12

The device according to example 1, wherein the light diffusing section comprises at least one slit.


Example 13

The device according to example 1, wherein the cartridge further comprises indicia.


Example 14

The device according to example 13, wherein the light diffusing section is positioned in proximity to the indicia, such that the light pipe and the indicia are viewable from a single viewing direction.


Example 15

The device according to example 1, wherein the light source is provided at a number having a range of 2 to 7 light sources.


Example 16

The device according to example 1, wherein the light source is provided at a number having a range of 3 to 6 light sources.


Example 17

The device according to example 16, having a plurality of the input locations and a plurality of the light diffusing sections, each of which is coupled to each of the input locations.


Example 18

The device according to example 17, wherein each of the input locations and its associated light diffusing section are optically coupled to single light source of the light sources.


Example 19

A method for indicating a user about a state of a medical delivery device comprising: optically coupling at least one light source with a cartridge containing a fluid material and having a light input location; optically coupling through the cartridge a light diffusing section to the light input location; positioning the at least one light source and the cartridge in a housing having a window, such that the light diffusing section is aligned with the window; operating the at least one light source in accordance with a state of the medical delivery device.


Example 20

The method according to example 19, wherein the state of the medical delivery device comprises an ongoing delivery state.


Example 21

The method according to example 19, wherein the state of the medical delivery device comprises a stop delivery state.


Example 22

The method according to example 19, wherein the state of the medical delivery device comprises an on or off state.


Example 23

The method according to example 19, wherein the state of the medical delivery device comprises device malfunction state.


Example 24

The method according to example 19, wherein the state of the medical delivery device comprises an inventory status of the fluid material.


Example 25

The method according to example 19, wherein the operating the at least one light source comprises turning the light source in a continuous manner.


Example 26

The method according to example 19, wherein the operating the at least one light source comprises turning the light source on in an intermittent manner.


Example 27

The method according to example 26, wherein the operating the at least one light source comprises changing a frequency of the intermittent manner.


Example 28

The method according to example 19, wherein the operating the at least one light source comprises turning the light source off.


Example 29

The method according to example 19, wherein the operating the at least one light source comprises changing the light source color.


Example 30

A process of manufacturing a medical delivery device, comprising: molding a cartridge to include: a transparent section which acts as a light pipe having an input location; and a light diffusing section optically coupled to the light pipe; filling the cartridge with a fluid material; providing a housing defining a void therein for a cartridge and having a window overlapping with at least part of the void; positioning the cartridge within the void such that the light diffusing section is aligned with the window; positioning at least one light source within the housing and optically coupling the at least one light source to the light pipe through the input location, such that at least some light from the light source entering at the light pipe input is diffused at the light diffusing section and exits the housing through the window.


Example 31

The process according to example 30, wherein the molding comprises using Crystal Zenith.


Example 32

The process according to any of examples 30-31, further comprising operatively coupling the at least one light source with a control circuitry.


Example 33

The process according to example 32, further comprising programming the control circuitry to turn on or turn off the at least one light source according to an operation state of the device.


Example 34

The process according to example 32, further comprising programming the control circuitry to adjust a light generated by the at least one light source according to an inventory status of the fluid material.


Example 35

The process according to any of examples 30-34, further comprising molding the light diffusing section in a position allowing view of a physical indicator of an inventory state of the fluid material.


Example 36

The process according to example 35, wherein the physical indicator comprises a fluid level of the fluid material.


Example 37

The process according to example 35, wherein the physical indicator comprises indicia markings.


Example 38

The process according to example 35, wherein the physical indicator comprises a cartridge plunger position.


Example 39

A process of manufacturing a medical delivery device, comprising: molding a cartridge to include: a transparent section which acts as a light pipe having an input location; and a light diffusing section optically coupled to the light pipe; and filling the cartridge with a fluid material.


Example 40

The process according to example 30, further comprising: providing a housing defining a void therein for a cartridge and having a window overlapping with at least part of the void; positioning the cartridge within the void such that the light diffusing section is aligned with the window; positioning at least one light source within the housing and optically coupling the at least one light source to the light pipe through the input location, such that at least some light from the light source entering at the light pipe input is diffused at the light diffusing section and exits the housing through the window.


Example 41

The device according to example 1, further comprising a housing defining a void therein for the cartridge and having a window overlapping with at least part of the void; wherein the cartridge is positioned within the void, and the light source is positioned within the housing, such that the light diffused at the light diffusing section exits the housing through the window.


Example 42

The device according to example 1, further comprising a control circuitry having instructions to operate the light source in accordance with a status of the medical delivery device.


Example 43

The device according to example 1, wherein the light diffusing section comprises a surface area having increased surface roughness sized to distribute the light over an area at least twice an area defined by a surface area of the light source.


Example 44

The device according to example 1, wherein the cartridge further comprises indicia, and wherein the light diffusing section is positioned in proximity to the indicia, such that the light pipe and the indicia are viewable from a single viewing direction (possible for two windows or more).


Example 45

The method according to example 19, wherein the state of the medical delivery device comprises at least one of an ongoing delivery state, a stop delivery state, an on or off state, device malfunction state and any combination thereof.


Example 46

The method according to example 19, wherein the operating the at least one light source comprises turning the light source in a continuous manner or in an intermittent manner.


Example 47

The process according to example 30, further comprising operatively coupling the at least one light source with a control circuitry and programming the control circuitry to operate the at least one light source according to a state of the device.


Example 48

The process according to example 30, further comprising programming the control circuitry to adjust a light generated by the at least one light source according to an inventory status of the fluid material.


Example 49

The process according to example 30, further comprising molding the light diffusing section in a position allowing view of a physical indicator of an inventory state of the fluid material.


Example 50

A medical delivery device having a void for containing a cartridge and at least one window, comprising:

    • (a) a cartridge containing a fluid material, wherein at least part of the cartridge is lined with a layer, the layer acts as a light pipe having a light input location, and the layer further comprises a light diffusing section optically coupled to the light pipe and aligned with the window when the cartridge is positioned in the void; and
    • (b) a light source optically coupled to the layer at the input location to the light pipe, such that at least some light from the light source entering at the input location is diffused at the light diffusing section.


Example 51

The device according to example 50, wherein at least a portion of the layer comprises an adhesive surface for attaching onto a surface of the cartridge.


Example 52

The device according to example 50, wherein the layer is at least partially transparent.


Example 53

The device according to example 52, wherein the light diffusing section comprises at least one marking, the marking diffuses a limited range of wavelengths.


Example 54

The method according to Example 53, wherein the marking is text directed to a user indication of the device.


Example 55

The device according to Example 50, wherein the layer is configured to diffuse light having a wavelength selected according to at least one visual perceptive property of said fluid.


Example 56

A pharmaceutical delivery device comprising: a cartridge containing a fluid, the cartridge including: a light pipe section which acts as a light pipe having an input location; and a light diffusing section optically coupled to the light pipe; and a light source optically coupled to the cartridge at the input location to the light pipe, such that at least some light from the light source entering at the input location is diffused at the light diffusing section.


Example 57

The device according to Example 1, further comprising a housing defining a void therein for the cartridge and having at least one window, at least one of which overlapping with at least part of the void; wherein the cartridge is positioned within the void and the light source is positioned within the housing, such that the at least some light which is diffused at the light diffusing section, exits the housing through the window.


Example 58

The device according to any of Examples 1, 19, 30, 50, 56 and 57, wherein the fluid is a bioactive material.


Example 59

The device according to any of Examples 56-58, further comprising a control circuitry having instructions to operate the light source in accordance with a status of the pharmaceutical delivery device.


Example 60

The device according to any of Examples 56-59, wherein the light diffusing section comprises at least one protruding element.


Example 61

The device according to Example 60, wherein the protruding element at least partially surrounds a circumference of the cartridge.


Example 62

The device according to Example 60, wherein the protruding element extends at an angle beyond a tangent to a wall of the cartridge.


Example 63

The device according to any of Examples 56-62, wherein the light diffusing section comprises a surface area having increased surface roughness sized to distribute the light over an area at least twice an area defined by a surface area of the light source.


Example 64

The device according to any of Examples 56-63, wherein the cartridge further comprises indicia, and wherein the light diffusing section is positioned in proximity to the indicia, such that the light pipe and the indicia are viewable from a single viewing direction.


Example 65

The device according to any of Examples 56-64, wherein the light source is provided at a number having a range of 2 to 7 light sources.


Example 66

The device according to any of examples 56-65, wherein the light diffusing section is the cartridge wall.


Example 67

The device according to any of Examples 56-11, wherein the light diffusing section transmits 80% of the light from the light source.


Example 68

The device according to any of Examples 56-57, wherein the light diffusing section is a plunger provided in the cartridge.


Example 69

A method for indicating a user about a state of a pharmaceutical delivery device comprising: optically coupling at least one light source with a cartridge containing a fluid and having a light input location; optically coupling through the cartridge a light diffusing section to the light input location; positioning the at least one light source and the cartridge in a housing having at least one window, such that the light diffusing section is aligned with the at least one window; and operating the at least one light source in accordance with a state of the pharmaceutical delivery device.


Example 70

The method according to Example 69, wherein the state of the pharmaceutical delivery device comprises at least one of an ongoing delivery state, a stop delivery state, an on or off state, device malfunction state and any combination thereof.


Example 71

The method according to Example 69, wherein the state of the pharmaceutical delivery device comprises an inventory status of the fluid.


Example 72

The method according to any of Examples 69-71, wherein the operating the at least one light source comprises turning the light source in a continuous manner or in an intermittent manner.


Example 73

The method according to any of Examples 69-72, wherein the operating the at least one light source comprises changing the light source color.


Example 74

A process of manufacturing a pharmaceutical delivery device, comprising: forming a cartridge to include: a transparent section which acts as a light pipe having an input location; and a light diffusing section optically coupled to the light pipe; and filling the cartridge with a fluid.


Example 75

The process according to Example 19, further comprising: providing a housing defining a void therein for a cartridge and having a window overlapping with at least part of the void; positioning the cartridge within the void such that the light diffusing section is aligned with the window; positioning at least one light source within the housing and optically coupling the at least one light source to the light pipe through the input location, such that at least some light from the light source entering at the light pipe input is diffused at the light diffusing section and exits the housing through the window.


Example 76

The process according to Example 74, wherein the forming comprises molding.


Example 77

The process according to Example 76, wherein the molding comprises using Crystal Zenith.


Example 78

The process according to any of Examples 74-77, further comprising operatively coupling the at least one light source with a control circuitry and programming the control circuitry to operate the at least one light source according to a state of the device.


Example 79

The process according to Example 78, further comprising programming the control circuitry to adjust a light generated by the at least one light source according to an inventory status of the fluid.


Example 80

The process according to any of Examples 74-79, further comprising forming the light diffusing section in a position allowing view of a physical indicator of an inventory state of the fluid.


Example 81

A pharmaceutical delivery device having a void for containing a cartridge and at least one window, comprising: a cartridge containing a fluid, wherein at least part of the cartridge is lined with a layer, the layer acts as a light pipe having a light input location, and the layer further comprises a light diffusing section optically coupled to the light pipe and aligned with the window when the cartridge is positioned in the void; and a light source optically coupled to the layer at the input location to the light pipe, such that at least some light from the light source entering at the input location is diffused at the light diffusing section.


Example 82

The device according to Example 81, wherein at least a portion of the layer comprises an adhesive surface for attaching onto a surface of the cartridge.


Example 83

The device according to any of Examples 81-82, wherein the layer is at least partially transparent.


Example 84

The device according to Example 83, wherein the light diffusing section comprises at least one marking, the marking diffuses a limited range of wavelengths. Example 85: The method according to Example 84, wherein the marking is text directed to a user indication of the device.


Example 86

The device according to any of Examples 81-85, wherein the layer is configured to diffuse light having a wavelength selected according to at least one visual perceptive property of the fluid.


Example 87

A cartridge for positioning within a pharmaceutical delivery device having a housing, the cartridge comprising: a light pipe section which acts as a light pipe having an input location; and a light diffusing section optically coupled to the light pipe; wherein the light diffusing section extends beyond a plane defined by the housing.


Example 88

The cartridge according to Example 87, wherein when the input location is optically coupled to a light source, at least some light from the light source entering at the input location is diffused at the light diffusing section.


Example 89

The cartridge according to any of Examples 87-88, wherein the cartridge and the light diffusing section are made from the same material.


Unless otherwise defined, all technical and/or scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art to which the invention pertains. Although methods and materials similar or equivalent to those described herein can be used in the practice or testing of embodiments of the invention, exemplary methods and/or materials are described below. In case of conflict, the patent specification, including definitions, will control. In addition, the materials, methods, and examples are illustrative only and are not intended to be necessarily limiting.


Implementation of the method and/or system of embodiments of the invention can involve performing or completing selected tasks manually, automatically, or a combination thereof. Moreover, according to actual instrumentation and equipment of embodiments of the method and/or system of the invention, several selected tasks could be implemented by hardware, by software or by firmware or by a combination thereof using an operating system.


For example, hardware for performing selected tasks according to embodiments of the invention could be implemented as a chip or a circuit. As software, selected tasks according to embodiments of the invention could be implemented as a plurality of software instructions being executed by a computer using any suitable operating system. In an exemplary embodiment of the invention, one or more tasks according to exemplary embodiments of method and/or system as described herein are performed by a data processor, such as a computing platform for executing a plurality of instructions. Optionally, the data processor includes a volatile memory for storing instructions and/or data and/or a non-volatile storage, for example, a magnetic hard-disk and/or removable media, for storing instructions and/or data. Optionally, a network connection is provided as well. A display and/or a user input device such as a keyboard or mouse are optionally provided as well.





BRIEF DESCRIPTION OF THE SEVERAL VIEWS OF THE DRAWING

Some embodiments of the invention are herein described, by way of example only, with reference to the accompanying drawings. With specific reference now to the drawings in detail, it is stressed that the particulars shown are by way of example and for purposes of illustrative discussion of embodiments of the invention. In this regard, the description taken with the drawings makes apparent to those skilled in the art how embodiments of the invention may be practiced.


In the drawings:



FIG. 1 is block diagram illustrating an exemplary device having a user indicator light in accordance with some embodiments of the current invention;



FIG. 2 schematically illustrates a top view of an exemplary drug delivery device having a user indicator light in accordance with some embodiments of the current invention;



FIGS. 3A-B schematically illustrate an exemplary drug delivery device housing in accordance with some embodiments of the current invention, wherein FIG. 3A illustrates a perspective view of a housing cross section and FIG. 3B illustrates a perspective view of a housing cross section and an optional cartridge in accordance with some embodiments of the current invention;



FIG. 4 schematically illustrates a perspective view of an exemplary cartridge having an optional extended light diffusing section, in accordance with some embodiments of the current invention;



FIGS. 5A-B schematically illustrates a perspective view of an exemplary cartridge having an optional light diffusing surface and/or sticker, in accordance with some embodiments of the current invention, wherein FIG. 5A illustrates a light diffusing surface and FIG. 5B illustrates a light diffusing sticker;



FIGS. 6A-B schematically illustrate a perspective view of an exemplary cartridge having optional light diffusing protrusions, in accordance with some embodiments of the current invention, wherein FIG. 6A illustrates protrusions arranged equidistantly, and FIG. 6B illustrates protrusions arranged in a non-equidistant manner;



FIG. 7 schematically illustrates a perspective view of an exemplary cartridge having an optional light diffusing bulge, in accordance with some embodiments of the current invention;



FIG. 8 schematically illustrates a perspective view of an exemplary cartridge having an optional light diffusing slot, in accordance with some embodiments of the current invention;



FIG. 9 schematically illustrates a perspective view of an exemplary cartridge having a plunger identifiable by alight diffusing surface, in accordance with some embodiments of the current invention;



FIG. 10 is a flow chart illustrating an exemplary manufacturing process, in accordance with some embodiments of the current invention;



FIG. 11 is a flow chart illustrating an exemplary light indication algorithm, in accordance with some embodiments of the current invention; and



FIG. 12 is a flow chart illustrating an exemplary method for using a medicament cartridge as a user indicator light, in accordance with some embodiments of the current invention.





DESCRIPTION OF SPECIFIC EMBODIMENTS OF THE INVENTION

The present invention, in some embodiments thereof, relates to a visual user indicator and, more particularly, but not exclusively, to a medicament delivery device used as a user indicator light.


Overview


An aspect of several embodiments of the invention relates to using a cartridge as a light pipe for indicating a status of a pharmaceutical delivery device. In some embodiments, a light pipe refers to light traveling and/or diffusing and/or being transmitted and/or guided in at least a portion of a volume of a cartridge wall, the cartridge optionally containing a medicament, e.g. a bioactive material. For example, a bioactive material is any composition having a therapeutic effect on a patient's body. Alternatively, a medicament is a non-bioactive material, such as for example, placebo. In some embodiments, the cartridge comprises a light diffusing section, e.g. an element being optically coupled to the light pipe and serving to diffuse light out of the cartridge wall. Alternatively or additionally, a light diffusing section acts as a light input, collecting light form a light source and into the cartridge pipe light. Optionally, such a cartridge is being used as a user indicator module in a drug delivery device, such as for example an injector device.


As used herein, a cartridge is a compartment containing fluid, and having a needle. In some embodiments, the needle is parallel with respect to the longitudinal axis of the cartridge. Alternatively, the needle is bent with respect to the longitudinal axis of the cartridge, optionally being substantially perpendicular to it. Fluid, as used herein, refers to a liquid and/or gas used for medical purposes. In some embodiments, fluid includes a medicament, optionally a bioactive material such as a drug, or a non-bioactive material such as a placebo. In some embodiments, fluid includes a suspension, and/or a solution, and/or a mixture of miscible or immiscible liquids.


In some embodiments, a light source is optically coupled to the cartridge, wherein at least some of the light generated by the light source is transmitted and/or guided and/or diffuses and/or travels across at least a portion of the volume of the cartridge wall. In some embodiments, a light source is optically coupled to the cartridge by a light diffusing section positioned on the cartridge such that it is embedded within the injector device; optionally the light diffusing section is not viewable from outside a housing containing the cartridge and only serves as a light input location. Alternatively or additionally, a light diffusing section optically coupled to light traveling in the cartridge, is positioned on the cartridge in a position which is viewable from outside a housing containing the cartridge.


For example, light generated by the light source travels to a light diffusing section embedded in the injector device and serving as a light input, and the light input guides the light to travel through at least a portion of the volume of the cartridge. Optionally, a second light diffusing section, optionally positioned substantially opposite to the light input, guides the light traveling through the volume of the cartridge to be viewable from the opposite direction of the cartridge. Alternatively or additionally, light diffuses through the fluid contained in the cartridge.


In some embodiments, at least two windows are provided in an injector housing, optionally for allowing a user to view more than one portion of the cartridge. Optionally, at least one window allows viewing of the medicament and/or plunger. Alternatively or additionally, at least one window allows viewing of the light diffusing section. In some embodiments, the same window allows viewing of both the medicament (and/or plunger) and the light diffusing section. A potential advantage of having a window to view the medicament, through which light is also transmitted, is that light generated within the injector assists in improving the inspection of the medicament status in the injector.


In some embodiments, light is generated by the light source in accordance with a state of a delivery cartridge device. In some embodiments, state is an operation status of the device, for example an ongoing delivery state and/or a stop-delivery state and/or an end-of-delivery state and/or an on/off state of a motor and/or availability of an electricity source and/or device malfunction. Alternatively or additionally, state is an inventory status of the amount of fluid delivered and/or left in the cartridge.


A potential advantage of using a medicament cartridge to transmit a user indicator light is reducing the need to add a separate module of an indicator light to a delivery device. Reducing the number of modules in a device is likely to reduce possible malfunctions of the device. In addition, another potential advantage is an enlarged surface area exhibiting the indicator light, which is likely to be viewable from a wide range of viewing angles. Usually the delivery cartridge surface visible by a user is larger than the typical indicator light provided in a separate module, and therefore, a user may detect the indicator light with greater ease and by looking from many different angles. In some embodiments, most of the light generated within the device comes out of the cartridge, e.g. at least 90%, or at least 80% or at least 70%, or at least 60%.


In some embodiments, a light source positioned in proximity to a cartridge containing a medicament serves a double role: a first role comprises being a status indicator light configured to travel through at least a portion of the cartridge wall and be in a viewing path of a user. A second role comprises lighting the cartridge content, enabling viewing of the medicament status in the cartridge, and/or viewing of indicia provided on the cartridge wall and/or viewing of a plunger position. In some embodiments, using the same window, a user can see an indication light of the status of the device operation simultaneously with observing the status of the medicament, such as for example the fluid level of the medicament, and/or the plunger position, and/or indicia markings. A potential advantage of having the same observation window for the above indication is that it gives a user a redundant view of two indicators possibly reducing the probability of misinterpretation and/or providing to the user an indicator of when there is a malfunction in one of the indicators. In some embodiments, at least two windows are provided, at least one for viewing at least the medicament and at least one for viewing at least a cartridge light guide. Optionally, both windows are positioned to enable viewing at the same time.


In some embodiments, the same light source illuminates the cartridge (potentially facilitating reading of the graduation and/or the level of medicine) and/or includes a coded status indicator (e.g. color and/or flickering). In some embodiments, light properties are suitable to a light traveling characteristic of the medicament, e.g. different light features are used if the medicament is opaque, or transparent or translucent. In some embodiments, the color of the light source is determined in accordance with a medicament color. In some embodiments, the medicament can be a material having any color. Alternatively or additionally, the medicament can have a milky and/or opaque appearance.


In some embodiments, a plunger configured for facilitating the medicament, provides a change in the total reflection of the light traveling through the cartridge wall, optionally causing light to diffuse out of the cartridge wall to a direction of a user, at the point where the plunger edge contacts the cartridge wall, providing a light indication of the plunger position. Alternatively or additionally an optical element (for example a diffuser and/or a reflector) may be added to the plunger, for example at the base (e.g. the proximal end) of the plunger. Alternatively or additionally, a wall of the plunger being in contact with the cartridge can serve as a light guide.


In some embodiments, a housing is provided having an observation window enabling a user to view a delivery cartridge serving as a light pipe embedded in the housing. Optionally, an observation window is any aperture in a housing containing a delivery cartridge and enabling a user a visual view of the cartridge. In some embodiments, the observation window is provided for a user visual detection of an indicator light embedded inside the housing and having a light path to the cartridge. Optionally, the observation window serves as a visual indicator of a light produced inside the housing traveling across a volume of the cartridge. Potentially the observation window is doubly used for the detection of an indicator light and for a user visual inspection of the cartridge content. Alternatively or additionally, the cartridge is provided with an appendage having light transmitting and/or diffusing properties. Optionally an observation window may include a pane and/or may include an open space.


In some embodiments, operation status is indicated by using a plurality of light wave properties, for example, frequency and/or amplitude and/or duration. In some embodiments, light is transmitted continuously. Alternatively or additionally, light is transmitted intermittently, for example by flickering. In some embodiments, light properties include frequency of flickering, which might increase or decrease over time. For example, flickering frequency, in some embodiments, is correlated to the delivery speed and/or is correlated with a medicament amount having been delivered.


In some embodiments, the cartridge serves as a pipe light by having at least a portion of a transparent section. As used herein, transparent relates to a material allowing at least some traveling of light therethrough. In some embodiments the cartridge comprises a light diffusing section in the form of an appended visual feature. In some embodiments, the visual feature is configured to guide (i.e. transmit) a light path through it. Alternatively or additionally, the visual feature is configured to diffuse light through it. In some embodiments, the visual feature protrudes from the surface of the cartridge, optionally made of the same material as the cartridge, optionally molded with the outer surface of the cartridge. Alternatively, the visual feature is in a different composition than the cartridge and is designed to guide and/or diffuse light around at least a partial circumference of the cartridge.


In some embodiments the visual feature comprises a plurality of protrusions, for example circumferential protruding ribs and/or segments of circumferential protruding ribs, optionally orthogonal to the longitudinal axis of the cartridge. Alternatively or additionally, the visual feature comprises a plurality of spaced apart bulges. A potential advantage of a surface having protrusions thereon is that protruding elements are likely to transmit and/or diffuse a greater amount of light with respect to a smooth surface. In some embodiments the protrusions are equidistant, probably enabling substantial uniform transmission of light. Alternatively, the protrusions are asymmetrically distributed, probably enabling more light to transmit to a predefined surface region.


Alternatively or additionally, the visual feature comprises a plurality of slots and/or grooves. Alternatively or additionally, the visual feature comprises at least one protrusion and at least one slot. Potentially, either protrusions and/or slots are configured to make light traveling through the volume of the cartridge's wall to diffuse outside of the cartridge wall. Alternatively or additionally, at least a portion of the cartridge wall comprises increased roughness, causing light to diffuse out of the cartridge wall. In some embodiments, surface textures such as bulges and/or slots and/or roughness are provided on the outer surface of the cartridge wall. Alternatively or additionally, surface textures are provided on the inner surface of the cartridge wall.


In some embodiments, protrusions are arranged in a group, guiding a light path from an individually operated light source. Optionally, a plurality of such groups is provided, each being coupled to a distinctly operated light source. A potential advantage of multiple individually operated groups is the increase of visual information provided to the user simultaneously, by having a different interpretation assigned to each group of protrusions. For example, a first group of protrusions is linked to a first light source indicating, e.g., the delivery operation state of the device, and a second group of protrusions is linked to a second light source indicating e.g., the state of the medicament amount.


In some embodiments the visual feature comprises a projecting element having light guiding and/or diffusing properties. In some embodiments, the element is projected beyond a plane defined by the cartridge and/or the housing. A potential advantage of a light transmitting projecting element is its likelihood to better guide a propagation of light through it. In addition, a protruding element is likely to be seen and/or noticed more conveniently from a variety of observation angles.


In some embodiments, a projecting element includes a light diffusing section configured to extend beyond a plane defined by the housing of cartridge and/or a plane defined by the inner edge of a window and/or a plane defined by an outer edge of a window. A potential advantage of extending beyond the housing and/or the edge of the window is an increase in a user available viewing angles of the light diffusing section. In some embodiments, more than one light diffusing section is provided, optionally each being coupled to a different light source.


In some embodiments the cartridge comprises at least one alignment guide defining an orientation of the cartridge with respect to an embedding injector device. In some embodiments, the alignment guide projects beyond the outer surface of the cartridge. Alternatively, the alignment guide comprises a recess in the outer surface of the cartridge. Optionally, the alignment guide interlocks with a complementary geometrical feature within the injector device, optionally preventing rotation of the cartridge with respect to the device. Potentially, alignment guides enable positioning of the cartridge at a predefined orientation, for example with respect to the observation window of the device housing and/or a light source, optionally allowing an appended visual feature to be visible to a user.


An aspect of several embodiments of the invention relates to a process of manufacturing a light transmitting and/or diffusing cartridge for medicament delivery to serve as a user indicator module, used for example in an injector device.


In some embodiments, a drug delivery device is provided by embedding a cartridge in a housing having a window at least partially aligned with the cartridge position. Optionally, the window follows a cartridge's longitudinal axis, or any axis across which a medicament is expelled.


In some embodiments, at least one light source is positioned within said housing such that it is optically coupled to the cartridge. In some embodiments a range of 1 to 10 light sources is provided. Alternatively a range of 2 to 7 light sources is provided. Alternatively, a range of 3 to 6 light sources are provided. Alternatively 4 light sources are provided.


In some embodiments a cartridge is manufactured from a material which permits traveling of electromagnetic waves in a visible frequency range. Optionally, the material is at least partially transparent, optionally providing view of the composition being delivered. Alternatively, the cartridge is internally coated with an opaque material, such as for example in the case of a light-sensitive medicament, but the cartridge wall enables visible light to diffuse across its volume. In some embodiments, at least part of the cartridge is manufactured using Crystal Zenith, optionally by molding. Alternatively or additionally, at least part of the cartridge is manufactured using glass. Alternatively or additionally, at least part of the cartridge is manufactured using a standard material known in the art to be used for cartridges.


In some embodiments the cartridge is molded asymmetrically, optionally having transmitting/diffusing elements where an observation window is designed to be fit with respect to the cartridge. Alternatively or additionally, the cartridge is molded having transmitting/diffusing elements which are embedded inside the injector housing, optionally not viewable from the outside. Alternatively or additionally, the cartridge is molded to have a defined angle with respect to the observation window and housing plane.


In some embodiments, the cartridge is manufactured from layers having at least two materials. Optionally, at least one of the layering materials is opaque. Alternatively or additionally, at least one of the layering materials is transparent, optionally partially. In some embodiments, in at least one of the layers visible light travels and/or diffuses throughout its volume.


An aspect of some embodiments of the invention relates to a light guiding liner and/or sticker sized and shaped to line at least a portion of a medicament cartridge. In some embodiments, the sticker comprises a material having light diffusing properties, i.e. light can travel and/or diffuse and/or be transmitted through at least a portion of the volume of the sticker. Optionally, at least a portion of the sticker surface comprises an adhesive material for adhering onto a cartridge inner and/or outer surface. In some embodiments, the sticker includes text and/or markings over it surface, optionally visible only when being exposed to light being in a particular wavelength range.


Optionally, the sticker is visible only when sharing a visual path with a light having a wavelength in the range of 400-450, and/or 450-480, and/or 480-490 and/or 490-500, and/or 500-560, and/or 560-580, and/or 580-600, and/or 600-650 and/or 650-750, and/or any range larger, smaller or intermediate range.


In some embodiments, the text and/or markings comprise a light diffusing material and are lit once light travels to them from a light input location. Optionally, the sticker comprises a light input located inside an injector housing, and sharing a visual path with at least one light source embedded within the housing. Alternatively or additionally, text and/or markings are visible by having only a contour which is a light guiding material. Alternatively or additionally, the text and/or markings are visible by being surrounded by a light guiding sticker and not guiding light themselves, such as by punching the text and/or markings out of the sticker and creating a material-free space being in the shape of the text and/or markings.


In some embodiments, the cartridge and/or syringe is manufactured in a process distinct from the filling of the fluid reservoir. Accordingly, optionally, some light guide types are provided in the first process and other light guide types are provided in the second process. For example, molded light guide features may be provided through the molding process of the cartridge, while the liner may be assembled onto the cartridge by a different manufacturer, either before or after filling and/or sealing with the plunger. In some embodiments, the light guide features provided by the first process are configured to be compatible to a variety of light sources and/or fluids. Alternatively or additionally, the light guide features provided by the second process are specifically tailored to the specific fluid type and/or light properties of the fluid being used for filling. Optionally, the features in the first process are provided independently from the features in the second process.


Before explaining at least one embodiment of the invention in detail, it is to be understood that the invention is not necessarily limited in its application to the details of construction and the arrangement of the components and/or methods set forth in the following description and/or illustrated in the drawings and/or the Examples. The invention is capable of other embodiments or of being practiced or carried out in various ways.


Exemplary User Indicator Light Path for Use in a Drug Delivery Device


Referring now to the drawings, FIG. 1 illustrates a block diagram illustrating an exemplary device having a user indicator light in accordance with some embodiments of the current invention. In some embodiments, a drug delivery device is provided with a housing 106 having a window 162, and having a void 164. In some embodiments, a cartridge 102 containing a medicament, e.g. a bioactive material, is positioned within void 164. In some embodiments, a light source 104 is also positioned within the housing, optionally in proximity to the cartridge.


In some embodiments, cartridge 102 is configured to serve as a light pipe, bridging light generated by light source 104 to window 162. Optionally, cartridge 102 comprises a light input location 122 sharing an optical pathway with the light source 104. In some embodiments, cartridge 102 is made of a material having light propagating properties. Optionally at least a portion of the wall of cartridge 102, serves as a light pipe 124 for transmitting light at least through a portion of its volume.


In some embodiments, cartridge 102 comprises a light diffusing section 126. Optionally, light diffusing section 126 comprises an extending element. Optionally, the extending element is substantially perpendicular to a longitudinal axis of cartridge 102, as shown for example in FIG. 4. Alternatively or additionally, light diffusing section 126 comprises a plurality of protruding elements as shown for example in FIG. 6. Alternatively or additionally, light diffusing section 126 comprises at least one bulge as shown for example in FIG. 7. Alternatively or additionally, light diffusing section 126 comprises at least one slot as shown for example in FIG. 8. Alternatively or additionally, light diffusing section 126 comprises at least one surface area having an increased roughness relative to other portions of the cartridge 102 as shown for example in FIG. 5. In some embodiments, the distal portion of the cartridge comprises a flange which serves as a light diffusing section 126, as shown in FIG. 4.


In some embodiments, light diffusing section 126 comprises an arrangement along a longitudinal axis of the cartridge. Alternatively or additionally, light diffusing section 126 comprises an arrangement along at least a portion of the cartridge circumference. In some embodiments, light pipe 124 comprises a material extending along at least a portion of the cartridge 102 circumference, serving as a light pipe between a light source positioned in proximity to one portion of the light pipe, to a light diffusing section positioned in proximity to a second portion of the light pipe.


In some embodiments, light generated by light source 104 travels through light path 110. Optionally, light generated by light source 104 travels to light input 122 found in cartridge 102. In some embodiments, light travels from light input 122 into the light pipe 124 of cartridge 102. Optionally, light pipe 124 includes a transparent section of cartridge 102. In some embodiments, light pipe 124 comprises the entire volume of the wall of cartridge 102. Alternatively, only a portion of cartridge 102 is made of a material enabling light traveling. In some embodiments, cartridge 102 comprises layers of materials, at least one of which allows light to travel through it.


In some embodiments, light traveling through light path 110 is internally reflected except for when encountering light diffusing section 126. In some embodiments, light diffusing section 126 is shaped to allow light traveling through light path 110 to diffuse out of the internal volume of cartridge 102.


In some embodiments, window 162 is aligned with cartridge 102 such that light diffusing section 126 is viewable through window 162. As such, in some embodiments, light traveling through light path 110 diffuses out of light diffusing section 126 and out 112 of housing 106.


In some embodiments, window 162 is positioned in a top cover of housing 106, optionally near the position of an operation button. Alternatively or additionally, window 162 is positioned in a base of housing 162, optionally near a position of a removable safety liner.


In some embodiments, window 162 is shaped as a circle. Alternatively or additionally, window 162 is shaped as an ellipse or an elongated polygon, optionally aligned with a longitudinal axis of cartridge 102. Alternatively or additionally, window 162 is shaped as a slot.


In some embodiments, housing 106 comprises a plurality of windows 162, optionally aligned with different segments of cartridge 102. Alternatively or additionally, window 162 includes a viewing section in-between a plurality of housing compartments. For example, if housing 106 is provided in a multi-part configuration, the plurality of housing parts are optionally assembled such that at least a portion of cartridge 102 can be viewed in between the housing parts. Optionally, cartridge 102 serves as a connector between pluralities of housing parts, for example, by having at least one housing for a proximal end of the cartridge and a separate at least one housing for the distal end of the cartridge, while at least a portion of the middle section of the cartridge is available for viewing in between the proximal and distal housing compartments.


Exemplary Drug Delivery Device Having a Cartridge Used as a Light Pipe


Reference is now made to FIG. 2, schematically illustrating a top view of an exemplary drug delivery device having a user indicator light in accordance with some embodiments of the current invention. In some embodiments, a cartridge 102 is used as a user indicator of a drug delivery device, for example injector 201. According to some embodiments, injector 201 comprises a housing 106 having a window 162, aligned with a cartridge 102. The cartridge 102, in some embodiments, is positioned such that a light diffusing section 126 is viewable through window 162. In some embodiments, light diffusing section 126 diffuses light, originally transmitted from cartridge 102, which serves as a light pipe from light source 104.


In some embodiments, light diffusing section 126 is found on the dorsal side of the cartridge, i.e. the side that faces window 162. In such embodiments, light diffusing section 126 is optionally used to transmit light diffusing through the walls of cartridge 102. Alternatively or additionally, light diffusing section is found on the ventral side of the cartridge, i.e. the side that faces the inner portion of injector 201. In such embodiments, light diffusion section 126 optionally serves as a light input, collecting light generated inside injector 201 by light source 104, and transmitting the light to the cartridge walls, a light which is then viewable through window 162. In some embodiments, window 162 comprises a dome, e.g. a curved material and/or cylindrically shaped cover, for covering and/or protecting the cartridge. A potential advantage of providing a curved covering is in protecting light diffusion section 126 if it extends beyond the surface of housing 106. Typically, a protective cover is useful when the cartridge and/or light diffusing section 126 are made of glass and prone to break if receiving a shock. In some embodiments, the dome projects from a plane defined by the surface of the housing by at least 0.5 mm, and/or at least 1 mm, and/or at least 2 mm, and/or at least 5 mm.


In some embodiments, window 162 serves a second role when allowing viewing of plunger 202, which is configured to push a medicament out of cartridge 102 through a fluid outlet, located at location 208. Optionally, plunger 202 is pushed by motor 206. Alternatively or additionally, window 162 allows viewing of the medicament fluid level found in cartridge 102. Alternatively, cartridge 102 comprises an inner layer which is opaque, for protecting light sensitive medicaments.


In some embodiments, a control circuitry 204 is provided, optionally having instructions to operate light source 104. For example, control circuitry 204 in some embodiments can get input from motor 206 as to an operation state of the device, and optionally accordingly provide instructions for light generation by light source 104. Alternatively or additionally, control circuitry 204 in some embodiments can get input as to a plunger 202 position, and optionally accordingly provide instructions for light generation by light source 104.


Optionally, housing 106 comprises at least two windows 162 and 164. In some embodiments, window 164 allows viewing of the distal portion 302 of cartridge 102. Optionally, the distal portion of cartridge 102 comprises a light diffusing section in the form of a flange 210, which is further illustrated in detail in FIG. 3. In some embodiments, window 164 is sized and shaped to allow viewing of the flange, the window optionally being in the shape of a slot.


Exemplary Drug Delivery Device Housing and Cartridge


Reference is now made to FIG. 3, schematically illustrating an exemplary drug delivery device housing in accordance with some embodiments of the current invention, wherein FIG. 3A illustrates a perspective view of a housing cross section, and FIG. 3B illustrates a perspective view of a housing cross section and accommodating a cartridge in accordance with some embodiments of the current invention.


In some embodiments, a drug delivery device, such as for example an injector, comprises a housing 106 having a window 162. In some embodiments, housing 106 comprises a void 164 sized and shaped to accommodate a cartridge 102. Optionally, window 162 is provided in accordance with the void 164 such that the cartridge 102 is at least partially viewable from the window. In some embodiments, the portion of the cartridge viewable from the window is configured to serve as a user indicator light, optionally by including in the viewable portion a light diffusing section 126.


In some embodiments, cartridge 102 comprises a proximal end 304 defined by having a needle accommodating member 208, and a distal end 302 defined by having a bore 310 for accommodating a plunger. In some embodiments, plunger is configured to be pushed along a longitudinal axis of cartridge 102, optionally, being aligned with the longitudinal axis of window 164. In some embodiments, non-symmetric orientation features of the cartridge lead to positioning of the cartridge such that the distal end 302, proximal end 304 and the light diffusing section 126 are correctly aligned with housing 106 and/or window 162. For example, interlocking members could be provided in cartridge 102 and housing 106. In some embodiments, such non-symmetric orientation alignment features keep cartridge 102 from shifting and/or rotating within housing 106. Alternatively or additionally, a distal and/or proximal end of the cartridge includes a connector, such as for example a septum and/or a physical connecting feature, e.g. a snap and/or a circumferential lip.


In some embodiments, light source 104 is positioned in housing 106 such that it shares an optical pathway with at least a portion of cartridge 102, optionally with a portion comprising a transparent section for allowing light to travel through a volume of cartridge 102, optionally through its wall. In some embodiments, more than one light source is provided, optionally more than 2. Alternatively, more than 3 light sources are provided. Alternatively more than 4 light sources are provided. In some embodiments, each light source is optically coupled to a different light pipe provided in cartridge 102, and/or optically coupled to a different light diffusing section. In some embodiments, a plurality of light sources is provided to enhance the viewing area of the indication light, optionally having all light sources operated in the same manner. Alternatively, a plurality of light sources is provided to allow different indications operated simultaneously, for example, a green light indicates operating status of the device motor and it is simultaneously turned on together with a blinking red light indicating delivery. In some embodiments, light source 104 comprises a light emitting diode.


Exemplary Cartridge Having an Extended Light Diffusing Section


Reference is now made to FIG. 4, schematically illustrating a perspective view of an exemplary cartridge having at least one extended light diffusing section, in accordance with some embodiments of the current invention.


In some embodiments, light diffusing surface 462 is provided to diffuse light traveling in light pipe 402, optionally being a wall of cartridge 102. In some embodiments, light pipe 402 comprises the entire wall of cartridge 102 extending from distal portion 302 to proximal portion 304. Alternatively, light pipe 402 is provided by having a transparent section only in a portion of cartridge 102, optionally, only a portion of a longitudinal axis. Alternatively, light pipe 402 is provided by having a transparent section only in a portion of cartridge 102, optionally, only a portion of a circumference of the cartridge 102.


In some embodiments, light diffusing section 462 extends at an angle beyond a plane being tangent to the circumference of cartridge 102. Alternatively or additionally, light diffusing section 462 extends to a direction perpendicular to the longitudinal axis of cartridge 102. In some embodiments, light diffusing section 462 comprises a longitudinal axis substantially aligned with the longitudinal axis of cartridge 102. Alternatively, light diffusing section 462 comprises a longitudinal axis substantially perpendicular to the longitudinal axis of cartridge 102.


In some embodiments, section 462 is molded with the cartridge in a molding process. Alternatively or additionally, section 462 is added to the cartridge, optionally by providing section 462 to be sized and shaped to fit at least a portion of the cartridge. In some embodiments, section 462 is pressed against the light transmitting wall/layer of the cartridge.


Optionally, the distal end 302 of cartridge 102 comprises a flange 210. In some embodiments, flange 210 serves as a light diffusing section, in addition to or instead of light diffusing section 462. In some embodiments, flange 210 comprises an edge at least partially surrounding the perimeter of distal end 302, optionally having at least one brim feature 317 extending beyond the perimeter of distal end 302 in a direction away from the central axis of cartridge 102. Potentially, brim feature 317 can guide light generated by light source comprised in the housing, and optionally deliver the light through flange 210. In some embodiments, at least a portion of flange 210 delivering the light is viewable from outside the housing. Alternatively or additionally, flange 210 and/or brim 317 are sized and shaped to complement at least one feature comprised in the housing, potentially fixing an orientation of the position of the cartridge within the housing.


A potential advantage of guiding light through a light diffusing section provided in the distal end 302 of cartridge 102 is that the distal end region is potentially free of medicament, which is probably located in a more proximal position of the cartridge, after the plunger. An environment without medicament potentially allows light to diffuse without interference or altering effects, which might be caused by a presence of a medicament.


Exemplary Cartridge having a Light Diffusing Surface Area


Reference is now made to FIG. 5A, schematically illustrating a perspective view of an exemplary cartridge having at least one light diffusing surface area, in accordance with some embodiments of the current invention.


In some embodiments, light diffusing surface area 562 is provided in cartridge 102. In some embodiments, surface area 562 is configured to diffuse light traveling through light pipe 502 provided by cartridge 102 by having a rough surface. In some embodiments, a rough surface is defined as a surface which is not tangential to the cartridge circumference and/or extending in a variety of angles, optionally without order. In some embodiments, the greater the angles of the non-tangential surfaces, the greater the roughness level is defined. Potentially, light traveling through light pipe 502 is internally reflected when encountering a smooth surface and/or diffuses out of the light pipe when encountering rough surface 562.


In some embodiments, more than one rough surface area 562 is provided. In some embodiments, surface area 562 is configured to diffuse light in an even manner, i.e. diffuse equal portions of light per area unit. Alternatively, surface area 562 is configured to provide unequal portions of light to diffuse per area unit, for example, by having a gradient of roughness level and/or areas of greater/smaller roughness level.


Reference is now made to FIG. 5B, schematically illustrating an aspect of some embodiments of the invention of providing a cartridge 502 with liner and/or sticker 564. In some embodiments, cartridge 502 is lined with sticker 564 on its inner surface. Alternatively or additionally, sticker 564 is lined over the outer surface of cartridge 564. In some embodiments, sticker 564 comprises a material having light guiding properties, and optionally, light generated inside an injector housing shares a visual path with sticker 564.


In some embodiments, sticker 564 comprises at least one marking 566, which is optionally text and/or indicia and/or a symbol and/or any other visual mark. Optionally, marking 566 is only visible when a shared-path light is generated within the injector housing. In some embodiments, marking 566 is only visible when the light generated inside has a particular range of wavelengths, for example, being in the range of 400-450, and/or 450-480, and/or 480-490 and/or 490-500, and/or 500-560, and/or 560-580, and/or 580-600, and/or 600-650 and/or 650-750, and/or any range larger, smaller or intermediate range. In some embodiments, an adhesive layer and/or a sticker has a thickness in the range of about 0.05 mm to about 1 mm. Alternatively, a thickness is in a range of 0.25 mm to about 0.75 mm.


Optionally, marking 566 is visible sharing a visual path with an inner light source, while the surrounding sticker 564 does not guide light through it. Alternatively or additionally, marking 566 and surrounding sticker 564 guide light having different wavelength ranges. Alternatively or additionally, only surrounding sticker 564 guides light, while marking 566 does not, such as for example, by punching out the area being taken by and/or the outline surrounding marking 566. In some embodiments, marking 566 is printed on the sticker before its placement onto the cartridge. In some embodiments, marking 566 comprises text, optionally directed to a user indication of the device, such as for example, indicating “OK” and/or “Error” if the device malfunctions, and/or “Cold”. User indicating text is optionally provided to a user using a different color, or a different range of wavelengths, for each user indicating text. For example, “Error” may be indicated with a red light and/or provided with a red filter, “OK” may be presented as green and “Cold” may be presented with blue.


In some embodiments, sticker 564 is flexible. Optionally, sticker 564 can be lined over any commercially available cartridge. In some embodiments, sticker 564 is lined over at least a portion of a cartridge which has been manufactured by molding, after the molding process is done, optionally before cartridge 502 is filled with a medicament. Alternatively, sticker 564 is lined over cartridge 502 after the cartridge is filled. In some embodiments, at least part of sticker 564 is transparent. Alternatively or additionally, at least part of sticker 564 is semi-transparent. Alternatively or additionally, at least part of sticker 564 is opaque.


In some embodiments, sticker 564 is configured to transmit light having a particular range of wavelengths. The wavelength transmitted by sticker 564 is optionally selected according to at least one visual perceptive property of the medicament comprised in the cartridge. In some embodiments, a visual perceptive property comprises the color of the medicament. Alternatively or additionally, the visual perceptive property includes the reflectivity of the medicament. Alternatively or additionally, the visual perceptive property includes the absorbance of the medicament.


Exemplary Cartridge Having Light Diffusing Protruding Elements


Reference is now made to FIG. 6, schematically illustrating a perspective view of an exemplary cartridge having a plurality of light diffusing protrusions, in accordance with some embodiments of the current invention, wherein FIG. 6A illustrates protrusions arranged equidistantly, and FIG. 6B illustrates protrusions arranged in a non-equidistant manner.


In some embodiments, at least one protruding element 662 is provided, extending along at least a portion of a circumference of cartridge 102. In some embodiments, a plurality of protruding elements 662 is provided. Optionally, the protruding elements 662 are arranged equidistantly, optionally along a longitudinal axis of cartridge 102. A potential advantage of equidistant elements 662 is a uniform view from a variety of viewing angles. Alternatively, protruding elements 662 are arranged non-equidistantly, optionally with respect to a longitudinal axis of cartridge 102. A potential advantage of non-equidistant elements 662 is for example allowing viewing the medicament being delivered at a portion having elements 662 being more distant from each other.


Exemplary Cartridge Having a Light Diffusing Bulge


Reference is now made to FIG. 7, schematically illustrating a perspective view of an exemplary cartridge having at least one light diffusing bulge, in accordance with some embodiments of the current invention.


In some embodiments, light diffusing section of cartridge 102 comprises at least one bulge 762. In some embodiments, bulge 762 comprises a protruding surface limited to a relatively small surface area. In some embodiments, a bulge 762 protrudes from a section area being in a range of about 1% to about 5% of the entire surface area of the cartridge 102. Alternatively or additionally, a bulge 762 protrudes from a section area being in a range of about 10% to about 20% of the entire surface area of the cartridge 102. Alternatively or additionally, a bulge 762 protrudes from a section area being in a range of about 20% to about 30% of the entire surface area of the cartridge 102.


In some embodiments, a bulge 762 extends to a height being no more than 0.2 mm. Alternatively or additionally, bulges 762 extend to a height being no more than 0.5 mm. Alternatively or additionally, bulges 762 extend to a height being no more than 1 mm.


Exemplary Cartridge Having a Light Diffusing Slot


Reference is now made to FIG. 8, schematically illustrating a perspective view of an exemplary cartridge having at least one light diffusing slot, in accordance with some embodiments of the current invention.


In some embodiments, light diffusing section comprises at least one slot 862 in cartridge 102. In some embodiments, slots 862 are provided as etched elements in cartridge 102. Optionally, slots 862 are provided along an entire circumference of cartridge 102. Alternatively or additionally, slots 862 are provided along a portion of the circumference of cartridge 102. Alternatively or additionally, slots 862 are provided being parallel to a longitudinal axis of the cartridge 102. Optionally, longitudinally aligned slots 862 enhance the optical path of viewing the fluid inventory status of the medicament. Optionally the inner surface of a slot may be smooth and/or rough and/or having a varying roughness.


Exemplary Cartridge Having a Light Diffusing Plunger Contact


Reference is now made to FIG. 9, schematically illustrating a perspective view of an exemplary cartridge having a plunger identifiable by diffusing and/or reflective light, in accordance with some embodiments of the current invention.


In some embodiments, plunger 202 defines a contact wall 962 with an inner wall of cartridge 102. In some embodiments, contact wall 962 serves as a light diffusing section by causing light to diffuse at the contact wall with plunger 202. In some embodiments, light emitted by contact wall 962 helps to identify the location of the plunger, potentially aiding in following a delivery of a medicament. In some embodiments, the light diffusing wall is at the proximal portion of the plunger (where the plunger contacts the medicament). Locating the light diffusing section at the proximal end of the plunger has the potential advantage of showing the contact point of the medicament with the plunger. Alternatively or additionally the light diffusing wall is at the distal end of the plunger. Alternatively or additionally, the light diffusing wall is located between the distal and proximal ends of the plunger. In some embodiments, indicia are provided for gauging the volume of medicament remained based on the location of the light diffusing wall of the plunger.


Exemplary Manufacturing Process


Reference is now made to FIG. 10 showing a flow chart illustrating an exemplary manufacturing process, in accordance with some embodiments of the current invention.


In some embodiments, a process begins by molding a cartridge 1002 configured for serving as a light pipe and having a light diffusing section. Optionally, the entire cartridge is molded using a transparent material, optionally a polymer, optionally, Crystal Zenith and/or glass. Alternatively or additionally, only a portion of a cartridge is molded using transparent material, optionally the portion defines a light input location. Optionally, the molded cartridge is coated internally with a second material layer, optionally having different light propagating characteristics than the molding material.


In some embodiments, after molding the cartridge, lining of the cartridge surface is provided 1003, for example, by lining at least a portion of the cartridge surface with a sticker, optionally a sticker which serves as a light diffuser, optionally lining the inner surface of the cartridge. Alternatively or additionally, the sticker lines the outside surface of the cartridge. In some embodiments, the sticker prevents at least a portion of the light from reaching the medicament, potentially useful when the medicament used is light-sensitive. In some embodiments, the sticker comprises a reflecting material. Alternatively or additionally, the sticker is provided with written text. Alternatively or additionally, the cartridge is provided with a layer of a light guiding element, optionally by linking in a chemical fashion.


In some embodiments, a sticker which is lined over at least a portion of the cartridge contains light-sensitive illustrations and/or text. Alternatively or additionally, the sticker contains fluorescent features which are detectable only when exposed to a specific range of wavelengths. For example, the sticker contains text and/or indicia which can only be seen when the embedded light source is on and/or when a specific wavelength is emitted. Optionally, the sticker is transparent, or semi-transparent, or opaque.


In some embodiments, once molded, a cartridge is filled with a medicament 1004. Optionally, the light input location and/or the transparent light pipe, and/or the light diffusing section are manufactured according to properties of the medicament being filled. For example, if the medicament is transparent, optionally having a non-transparent portion of the cartridge to avoid light traveling in uncontrolled set ups. Alternatively, when the medicament is light-sensitive, the cartridge is optionally coated with an opaque material.


In some embodiments, a housing having a window is provided 1006. In some embodiments, the cartridge is positioned in the housing 1008 such that the light diffusing section is aligned with the window. Optionally, the housing comprises a void sized and shaped to fit the cartridge. In some embodiments, the housing further comprises members sized and shaped to interlock with portions of the molded cartridge, such that a predefined orientation of the cartridge with respect to the housing is provided. In some embodiments, positioning of the cartridge is conducted such that at least a portion of the cartridge is viewed from the window. Optionally, the portion of the cartridge viewed from the window comprises the light diffusing section.


In some embodiments, at least one light source is positioned in the housing 1010. In some embodiments, the light source is positioned to have an optical path with at least a portion of the cartridge, optionally being a light input location.


Exemplary Manufacturing Light Indication Algorithm


Reference is now made to FIG. 11 showing a flow chart illustrating an exemplary light indication algorithm, in accordance with some embodiments of the current invention.


In some embodiments, light source is turned on 1102 once the device is turned on 1120, such as for example when electricity power is sensed by a control circuitry. Optionally, a user can start drug delivering. In some embodiments, while medicament delivery is ongoing 1140, the light flickers at flickering frequency A 1104. In some embodiments, when delivery stops 1160, the light source stops flickering 1106, optionally returning to the initial operating state. Alternatively the light source emits light having a different color.


In some embodiments, once a malfunction is identified 1180, the light flickers at frequency B 1108. In some embodiments, once delivery ends 1100, light flickering is stopped and optionally light changed color 1110. In some embodiments, when the device is turned off and/or removed from the user's body 1111, light is turned off 1112.


In some embodiments, improper use is also notified by light, such as when a user accidently removes a device while the device is delivering the medicament.


Optionally, a non-visual indication is also provided for any of the device state indications. For example, vibrations, optionally generated by the motor, are provided. Alternatively or additionally, sound indication may be provided for any indication of the device state.


Exemplary Method for Providing a User Indicator Light in a Drug Delivery Device


Reference is now made to FIG. 12 showing a flow chart illustrating an exemplary method for using a medicament cartridge as a user indicator light, in accordance with some embodiments of the current invention.


In some embodiments, a cartridge containing a medicament is used as a user indicator light by optically coupling a light source with a cartridge configured for serving as a light pipe for light generated by the light source 1202. In some embodiments, the cartridge further comprises at least one light diffusing section, which is optically coupled to the light pipe of the cartridge 1204, such that for example, light generated by the light source travels through the light pipe being the cartridge and diffuses out of the cartridge wall through the light diffusing element.


In some embodiments, the cartridge and the light source are positioned in a housing of a drug delivery device having a window 1206. Optionally, the cartridge and/or light source are aligned with respect to the window 1208, such that light generated by the light source travels through the light diffusing section and out of the window.


In some embodiments, the light is operated according to a state of the drug delivery device 1210, in accordance with device states as provided herein.


As used herein the term “about” refers to ±25%.


The terms “comprises”, “comprising”, “includes”, “including”, “having” and their conjugates mean “including but not limited to”.


The term “consisting of” means “including and limited to”.


The term “consisting essentially of” means that the composition, method or structure may include additional ingredients, steps and/or parts, but only if the additional ingredients, steps and/or parts do not materially alter the basic and novel characteristics of the claimed composition, method or structure.


As used herein, the singular form “a”, “an” and “the” include plural references unless the context clearly dictates otherwise.


Throughout this application, various embodiments of this invention may be presented in a range format. It should be understood that the description in range format is merely for convenience and brevity and should not be construed as an inflexible limitation on the scope of the invention. Accordingly, the description of a range should be considered to have specifically disclosed all the possible subranges as well as individual numerical values within that range. For example, description of a range such as from 1 to 6 should be considered to have specifically disclosed subranges such as from 1 to 3, from 1 to 4, from 1 to 5, from 2 to 4, from 2 to 6, from 3 to 6 etc., as well as individual numbers within that range, for example, 1, 2, 3, 4, 5, and 6. This applies regardless of the breadth of the range.


Whenever a numerical range is indicated herein, it is meant to include any cited numeral (fractional or integral) within the indicated range. The phrases “ranging/ranges between” a first indicate number and a second indicate number and “ranging/ranges from” a first indicate number “to” a second indicate number are used herein interchangeably and are meant to include the first and second indicated numbers and all the fractional and integral numerals therebetween.


As used herein the term “method” refers to manners, means, techniques and procedures for accomplishing a given task including, but not limited to, those manners, means, techniques and procedures either known to, or readily developed from known manners, means, techniques and procedures by practitioners of the chemical, pharmacological, biological, biochemical and medical arts.


As used herein, the term “treating” includes abrogating, substantially inhibiting, slowing or reversing the progression of a condition, substantially ameliorating clinical or aesthetical symptoms of a condition or substantially preventing the appearance of clinical or aesthetical symptoms of a condition.


It is appreciated that certain features of the invention, which are, for clarity, described in the context of separate embodiments, may also be provided in combination in a single embodiment. Conversely, various features of the invention, which are, for brevity, described in the context of a single embodiment, may also be provided separately or in any suitable subcombination or as suitable in any other described embodiment of the invention. Certain features described in the context of various embodiments are not to be considered essential features of those embodiments, unless the embodiment is inoperative without those elements.


Although the invention has been described in conjunction with specific embodiments thereof, it is evident that many alternatives, modifications and variations will be apparent to those skilled in the art. Accordingly, it is intended to embrace all such alternatives, modifications and variations that fall within the spirit and broad scope of the appended claims.


All publications, patents and patent applications mentioned in this specification are herein incorporated in their entirety by reference into the specification, to the same extent as if each individual publication, patent or patent application was specifically and individually indicated to be incorporated herein by reference. In addition, citation or identification of any reference in this application shall not be construed as an admission that such reference is available as prior art to the present invention. To the extent that section headings are used, they should not be construed as necessarily limiting.

Claims
  • 1. A pharmaceutical delivery device comprising: (a) a cartridge having a monolithic cylindrical body having an inner surface that defines a reservoir containing a fluid and an outer surface opposite the inner surface, said cartridge including: (i) a light pipe section which acts as a light pipe having an input location; and(ii) a layer at least partially lining the outer surface, wherein the layer defines a light diffusing section optically coupled to said light pipe; and(b) a light source optically coupled to said cartridge at said input location to said light pipe, such that at least some light from said light source entering at said input location is diffused at said light diffusing section,wherein said layer is configured to diffuse light having a wavelength selected according to at least one visually perceptive property of said fluid, and said light diffusing section transmits 80% of said light from said light source.
  • 2. The device according to claim 1, further comprising a housing defining a void therein for said cartridge and having at least one window that overlaps with part of said void; wherein said cartridge is positioned within said void and said light source is positioned within said housing, such that said at least some light, which is diffused at said light diffusing section, exits said housing through said window.
  • 3. The device according to claim 1, wherein said fluid is a bioactive material.
  • 4. The device according to claim 1, further comprising a control circuitry having instructions to operate said light source in accordance with a status of the pharmaceutical delivery device.
  • 5. The device according to claim 1, wherein said light diffusing section comprises at least one protruding element.
  • 6. The device according to claim 5, wherein said protruding element at least partially surrounds a circumference of said cartridge.
  • 7. The device according to claim 5, wherein said protruding element extends at an angle beyond a tangent to a wall of said cartridge.
  • 8. The device according to claim 1, wherein said light diffusing section comprises a surface area having increased surface roughness sized to distribute said light over an area at least twice an area defined by a surface area of said light source.
  • 9. The device according to claim 1, wherein said cartridge further comprises indicia, and wherein said light diffusing section is positioned in proximity to said indicia, such that said light pipe and said indicia are viewable from a single viewing direction.
  • 10. The device according to claim 1, wherein said light source is a plurality of light sources, where the plurality of light sources are up to 7 light sources and at least 2 light sources.
  • 11. The device according to claim 1, wherein said light diffusing section is the cartridge wall.
  • 12. A pharmaceutical delivery device having a void and at least one window, comprising: (a) a cartridge having a monolithic cylindrical body having an inner surface that defines a reservoir containing a fluid and an outer surface opposite the inner surface, at least a portion of said cartridge defining a light pipe having a light input location,(b) a layer at least partially lining the inner surface, the layer comprising a light diffusing section optically coupled to said light pipe and aligned with said window when said cartridge is positioned in said void, the light diffusing section comprising at least one marking configured to diffuse a limited range of wavelengths, and(c) a light source optically coupled to said layer at said input location to said light pipe, such that at least some light from said light source entering at said input location is diffused at said light diffusing section.
  • 13. The device according to claim 12, wherein at least a portion of said layer comprises an adhesive surface for attaching onto the inner surface of said cartridge cylindrical body.
  • 14. The device according to claim 12, wherein said layer is at least partially transparent.
  • 15. The device according to claim 12, wherein said marking is text.
  • 16. The device according to claim 12, wherein said layer is configured to diffuse light having a wavelength selected according to at least one visual perceptive property of said fluid.
Parent Case Info

This application is a section 371 of International Application No. PCT/US16/56258, filed Oct. 10, 2016, which was published Jul. 27, 2017 under International Publication No. WO 2017/127141 A1, which is a continuation of U.S. application Ser. No. 15/204,542, filed Jul. 7, 2016, which claims the benefit of U.S. Provisional Application No. 62/281,536, filed Jan. 21, 2016, and a continuation of U.S. application Ser. No. 15/269,248, filed Sep. 19, 2016, the disclosures of which are incorporated herein by reference.

PCT Information
Filing Document Filing Date Country Kind
PCT/US2016/056258 10/10/2016 WO 00
Publishing Document Publishing Date Country Kind
WO2017/127141 7/27/2017 WO A
US Referenced Citations (904)
Number Name Date Kind
232432 Allison Sep 1880 A
1125887 Schimmel Jan 1915 A
1321550 Platt Nov 1919 A
1704921 Nicoll Mar 1929 A
1795530 Cowan et al. Mar 1931 A
1795630 Wilson Mar 1931 A
2453590 Poux Nov 1948 A
2589426 Ogle Mar 1952 A
2677373 George May 1954 A
2702547 Glass Feb 1955 A
2860635 Wilburn Nov 1958 A
3203269 Perrine Aug 1965 A
3212685 James et al. Oct 1965 A
3585439 Schneeberger Jun 1971 A
3623474 Heilman et al. Nov 1971 A
3705582 Stumpf et al. Dec 1972 A
3708945 Klettke Jan 1973 A
3794028 Mueller et al. Feb 1974 A
3834387 Brown Sep 1974 A
3994295 Wulff Nov 1976 A
4085747 Lee Apr 1978 A
4189065 Herold Feb 1980 A
4195636 Behnke Apr 1980 A
4218724 Kaufman Aug 1980 A
4254768 Ty Mar 1981 A
4273122 Whitney et al. Jun 1981 A
4300554 Hessberg et al. Nov 1981 A
4324262 Hall Apr 1982 A
4403987 Gottinger Sep 1983 A
4425120 Sampson et al. Jan 1984 A
4435173 Siposs et al. Mar 1984 A
4465478 Sabelman et al. Aug 1984 A
4502488 Degironimo et al. Mar 1985 A
4504263 Steuer et al. Mar 1985 A
4549554 Markham Oct 1985 A
4564054 Gustavsson Jan 1986 A
4565543 Bekkering et al. Jan 1986 A
4583974 Kokernak Apr 1986 A
4585439 Michel Apr 1986 A
4599082 Grimard Jul 1986 A
4601702 Hudson Jul 1986 A
4636201 Ambrose et al. Jan 1987 A
4664654 Strauss May 1987 A
4685903 Cable et al. Aug 1987 A
4695274 Fox Sep 1987 A
4698055 Sealfon Oct 1987 A
4702738 Spencer Oct 1987 A
4704105 Adorjan et al. Nov 1987 A
4710178 Henri et al. Dec 1987 A
4729208 Galy et al. Mar 1988 A
4735311 Lowe et al. Apr 1988 A
4737144 Choksi Apr 1988 A
4772272 Mcfarland Sep 1988 A
4810215 Kaneko Mar 1989 A
4810249 Haber et al. Mar 1989 A
4813426 Haber et al. Mar 1989 A
4840185 Hernandez Jun 1989 A
4850966 Grau et al. Jul 1989 A
4861341 Woodburn Aug 1989 A
4863434 Bayless Sep 1989 A
4867743 Vaillancourt Sep 1989 A
4874383 Mcnaughton Oct 1989 A
4882575 Kawahara Nov 1989 A
4886499 Cirelli et al. Dec 1989 A
4892521 Laico et al. Jan 1990 A
4897083 Martell Jan 1990 A
4900310 Ogle, II Feb 1990 A
4915702 Haber Apr 1990 A
4919569 Wittenzellner Apr 1990 A
4919596 Slate et al. Apr 1990 A
4923446 Page et al. May 1990 A
4929241 Kulli May 1990 A
4950241 Ranford Aug 1990 A
4950246 Muller Aug 1990 A
4957490 Byrne et al. Sep 1990 A
4964866 Szwarc Oct 1990 A
4994045 Ranford Feb 1991 A
4998924 Ranford Mar 1991 A
5019051 Hake May 1991 A
5051109 Simon Sep 1991 A
5062828 Waltz Nov 1991 A
D322671 Szwarc Dec 1991 S
5088988 Falonn et al. Feb 1992 A
5109850 Blanco et al. May 1992 A
5112317 Michel May 1992 A
5114406 Gabriel et al. May 1992 A
5127910 Talonn et al. Jul 1992 A
5131816 Brown et al. Jul 1992 A
5147326 Talonn et al. Sep 1992 A
5156599 Ranford et al. Oct 1992 A
5190521 Hubbard et al. Mar 1993 A
5217437 Talonn et al. Jun 1993 A
5246670 Haber et al. Sep 1993 A
5254096 Rondelet et al. Oct 1993 A
5267977 Feeney, Jr. Dec 1993 A
5269762 Armbruster et al. Dec 1993 A
5275582 Wimmer Jan 1994 A
5282593 Fast Feb 1994 A
5295966 Stern et al. Mar 1994 A
5298023 Haber et al. Mar 1994 A
5300045 Plassche, Jr. Apr 1994 A
5318522 D'Antonio Jun 1994 A
5338311 Mahurkar Aug 1994 A
5342313 Campbell et al. Aug 1994 A
5348544 Sweeney et al. Sep 1994 A
5366498 Brannan et al. Nov 1994 A
5376785 Chin Dec 1994 A
5383865 Michel Jan 1995 A
D356150 Duggan et al. Mar 1995 S
5415645 Friend et al. May 1995 A
5456360 Griffin Oct 1995 A
5478315 Brothers et al. Dec 1995 A
5478316 Bitdinger et al. Dec 1995 A
5482446 Williamson et al. Jan 1996 A
5496274 Graves et al. Mar 1996 A
5501665 Jhuboo et al. Mar 1996 A
5505709 Funderburk et al. Apr 1996 A
5562624 Righi et al. Oct 1996 A
5562686 Sauer et al. Oct 1996 A
5593390 Castellano et al. Jan 1997 A
5609580 Kwiatkowski et al. Mar 1997 A
5611785 Mito et al. Mar 1997 A
5616132 Newman Apr 1997 A
5624400 Firth et al. Apr 1997 A
5637095 Nason et al. Jun 1997 A
5643218 Lynn et al. Jul 1997 A
5645530 Boukhny et al. Jul 1997 A
5645955 Maglica Jul 1997 A
5647853 Feldmann et al. Jul 1997 A
5658256 Shields Aug 1997 A
5662678 Macklin Sep 1997 A
5672160 Oesterlind et al. Sep 1997 A
5690618 Smith et al. Nov 1997 A
5697908 Imbert et al. Dec 1997 A
5697916 Schraga Dec 1997 A
5725500 Micheler Mar 1998 A
5728075 Levander Mar 1998 A
D393314 Meisner et al. Apr 1998 S
5741275 Wyssmann Apr 1998 A
5766186 Faraz et al. Jun 1998 A
5776103 Kriesel et al. Jul 1998 A
5795675 Maglica Aug 1998 A
5800420 Gross et al. Sep 1998 A
5807375 Gross et al. Sep 1998 A
5810167 Fujii Sep 1998 A
5810784 Tamaro Sep 1998 A
5814020 Gross Sep 1998 A
5830187 Kriesel et al. Nov 1998 A
5836920 Robertson Nov 1998 A
5848991 Gross et al. Dec 1998 A
5851197 Marano et al. Dec 1998 A
5858001 Tsals et al. Jan 1999 A
5858008 Capaccio Jan 1999 A
5868710 Battiato et al. Feb 1999 A
5893842 Imbert Apr 1999 A
5894015 Rechtin Apr 1999 A
5919167 Mulhauser et al. Jul 1999 A
5926596 Edwards et al. Jul 1999 A
5931814 Alex et al. Aug 1999 A
5941850 Shah et al. Aug 1999 A
5944699 Barrelle et al. Aug 1999 A
5948392 Haslwanter et al. Sep 1999 A
5954697 Srisathapat et al. Sep 1999 A
5957895 Sage et al. Sep 1999 A
5968011 Larsen et al. Oct 1999 A
5989221 Hjertman Nov 1999 A
5993423 Choi Nov 1999 A
6004296 Jansen et al. Dec 1999 A
6004297 Steenfeldt-Jensen et al. Dec 1999 A
6033245 Yamkovoy Mar 2000 A
6033377 Rasmussen et al. Mar 2000 A
6045533 Kriesel et al. Apr 2000 A
6064797 Crittendon et al. May 2000 A
6074369 Sage et al. Jun 2000 A
6162197 Mohammad Dec 2000 A
6186979 Dysarz Feb 2001 B1
6186982 Gross et al. Feb 2001 B1
6189292 Odell et al. Feb 2001 B1
6200289 Hochman et al. Mar 2001 B1
6200296 Dibiasi et al. Mar 2001 B1
6224569 Brimhall May 2001 B1
6248093 Moberg Jun 2001 B1
6270481 Mason et al. Aug 2001 B1
6277095 Kriesel et al. Aug 2001 B1
6277098 Klitmose et al. Aug 2001 B1
6277099 Strowe et al. Aug 2001 B1
6287283 Ljunggreen et al. Sep 2001 B1
6293925 Safabash et al. Sep 2001 B1
6302633 Poe Oct 2001 B1
6336729 Pavelle et al. Jan 2002 B1
6345968 Shupe Feb 2002 B1
6377848 Garde et al. Apr 2002 B1
6391005 Lum et al. May 2002 B1
6423029 Elsberry Jul 2002 B1
D461243 Niedospial Aug 2002 S
D465026 May et al. Oct 2002 S
6458102 Mann et al. Oct 2002 B1
6485461 Mason et al. Nov 2002 B1
6485465 Moberg et al. Nov 2002 B2
6500150 Gross et al. Dec 2002 B1
6503231 Prausnitz et al. Jan 2003 B1
6511336 Turek et al. Jan 2003 B1
6517517 Farrugia et al. Feb 2003 B1
D471274 Diaz et al. Mar 2003 S
D471983 Hippolyte et al. Mar 2003 S
6554800 Nezhadian et al. Apr 2003 B1
6558351 Steil et al. May 2003 B1
6565541 Sharp May 2003 B2
6589229 Connelly et al. Jul 2003 B1
6595956 Gross et al. Jul 2003 B1
6595960 West et al. Jul 2003 B2
6645181 Lavi et al. Nov 2003 B1
6652482 Hochman Nov 2003 B2
6656158 Mahoney et al. Dec 2003 B2
6656159 Flaherty Dec 2003 B2
6659980 Moberg et al. Dec 2003 B2
6673033 Sciulli et al. Jan 2004 B1
6679862 Diaz et al. Jan 2004 B2
6685678 Evans et al. Feb 2004 B2
6689118 Alchas et al. Feb 2004 B2
6699218 Flaherty et al. Mar 2004 B2
6719141 Heinz et al. Apr 2004 B2
6722916 Buccinna et al. Apr 2004 B2
6743211 Prausnitz et al. Jun 2004 B1
6749587 Flaherty Jun 2004 B2
6752783 Hung et al. Jun 2004 B2
6752787 Causey et al. Jun 2004 B1
6767336 Kaplan Jul 2004 B1
6768425 Flaherty et al. Jul 2004 B2
6786890 Preuthun et al. Sep 2004 B2
6800071 Mcconnell et al. Oct 2004 B1
6805687 Dextradeur et al. Oct 2004 B2
6824529 Gross et al. Nov 2004 B2
6843782 Gross et al. Jan 2005 B2
6854620 Ramey Feb 2005 B2
6905298 Haring Jun 2005 B1
6907679 Yarborough et al. Jun 2005 B2
6908452 Diaz et al. Jun 2005 B2
6960192 Flaherty et al. Nov 2005 B1
6979316 Rubin et al. Dec 2005 B1
6997727 Legrady et al. Feb 2006 B1
7001360 Veasey et al. Feb 2006 B2
7004104 Kundus Feb 2006 B1
7004929 McWethy et al. Feb 2006 B2
7025226 Ramey Apr 2006 B2
7033338 Vilks et al. Apr 2006 B2
7034223 Fan et al. Apr 2006 B2
7048715 Diaz et al. May 2006 B2
7060054 Nissels Jun 2006 B2
7060059 Keith et al. Jun 2006 B2
7066909 Peter et al. Jun 2006 B1
7094221 Veasey et al. Aug 2006 B2
7097637 Triplett et al. Aug 2006 B2
7112187 Karlsson Sep 2006 B2
7128727 Flaherty et al. Oct 2006 B2
7144384 Gorman et al. Dec 2006 B2
D544092 Lewis Jun 2007 S
7225694 Said Jun 2007 B2
7247149 Beyerlein Jul 2007 B2
7250037 Shermer et al. Jul 2007 B2
7267669 Staunton et al. Sep 2007 B2
RE39923 Blom Nov 2007 E
7291132 Deruntz et al. Nov 2007 B2
7291159 Schmelzeisen-Redeker et al. Nov 2007 B2
7303549 Flaherty et al. Dec 2007 B2
7326194 Zinger et al. Feb 2008 B2
7344385 Chen Mar 2008 B2
7364570 Gerondale et al. Apr 2008 B2
7377912 Graf et al. May 2008 B2
7390312 Barrelle Jun 2008 B2
7390314 Stutz et al. Jun 2008 B2
7407493 Cane Aug 2008 B2
7418880 Smith Sep 2008 B1
D578210 Muta et al. Oct 2008 S
7442186 Blomquist Oct 2008 B2
7455663 Bikovsky Nov 2008 B2
7465290 Reilly Dec 2008 B2
7468055 Prais et al. Dec 2008 B2
7488181 Van Feb 2009 B2
7497842 Diaz et al. Mar 2009 B2
7500963 Westbye et al. Mar 2009 B2
7501587 English Mar 2009 B2
7503786 Kato et al. Mar 2009 B2
7530964 Lavi et al. May 2009 B2
7540858 Dibiasi Jun 2009 B2
7547281 Hayes et al. Jun 2009 B2
7565208 Harris et al. Jul 2009 B2
7569050 Moberg et al. Aug 2009 B2
D600341 Loerwald Sep 2009 S
7585287 Bresina et al. Sep 2009 B2
7588559 Aravena et al. Sep 2009 B2
7589974 Grady et al. Sep 2009 B2
D602155 Foley et al. Oct 2009 S
D602586 Foley et al. Oct 2009 S
D604835 Conley Nov 2009 S
7611491 Pickhard Nov 2009 B2
7628770 Ethelfeld Dec 2009 B2
7628772 Mcconnell et al. Dec 2009 B2
7628782 Adair et al. Dec 2009 B2
7637891 Wall Dec 2009 B2
7637899 Woolston et al. Dec 2009 B2
7641649 Moberg et al. Jan 2010 B2
7660627 Mcnichols et al. Feb 2010 B2
7678079 Shermer et al. Mar 2010 B2
7682338 Griffin Mar 2010 B2
7686787 Moberg et al. Mar 2010 B2
7699829 Harris et al. Apr 2010 B2
7699833 Moberg et al. Apr 2010 B2
7704088 Sakamoto Apr 2010 B2
7704227 Moberg et al. Apr 2010 B2
7704229 Moberg et al. Apr 2010 B2
7704231 Pongpairochana et al. Apr 2010 B2
7708717 Estes et al. May 2010 B2
7713238 Mernoe May 2010 B2
7713240 Istoc et al. May 2010 B2
7717903 Estes et al. May 2010 B2
7717913 Novak et al. May 2010 B2
7722574 Toman et al. May 2010 B2
7736333 Gillespie, III Jun 2010 B2
7736344 Moberg et al. Jun 2010 B2
7744589 Mounce et al. Jun 2010 B2
7749194 Edwards et al. Jul 2010 B2
7758548 Gillespie et al. Jul 2010 B2
7758550 Bollenbach et al. Jul 2010 B2
7766867 Lynch et al. Aug 2010 B2
7776030 Estes et al. Aug 2010 B2
7780637 Jerde et al. Aug 2010 B2
7789857 Moberg et al. Sep 2010 B2
7794426 Briones et al. Sep 2010 B2
7794427 Estes et al. Sep 2010 B2
7801599 Young et al. Sep 2010 B2
7806868 De et al. Oct 2010 B2
7828528 Estes et al. Nov 2010 B2
7837659 Bush et al. Nov 2010 B2
7846132 Gravesen et al. Dec 2010 B2
7854723 Hwang et al. Dec 2010 B2
7857131 Vedrine Dec 2010 B2
7879025 Jacobson et al. Feb 2011 B2
7901382 Daily et al. Mar 2011 B2
7905867 Veasey et al. Mar 2011 B2
7918825 O'Connor et al. Apr 2011 B2
7935104 Yodfat et al. May 2011 B2
7935105 Miller et al. May 2011 B2
7938803 Mernoe et al. May 2011 B2
7955305 Moberg et al. Jun 2011 B2
7967784 Pongpairochana et al. Jun 2011 B2
7967795 Cabiri Jun 2011 B1
7976514 Abry et al. Jul 2011 B2
7981105 Adair et al. Jul 2011 B2
7988683 Adair et al. Aug 2011 B2
7993300 Nyholm et al. Aug 2011 B2
7993301 Boyd et al. Aug 2011 B2
7998111 Moberg et al. Aug 2011 B2
8002754 Kawamura et al. Aug 2011 B2
8021357 Tanaka et al. Sep 2011 B2
8025658 Chong et al. Sep 2011 B2
8029469 Ethelfeld Oct 2011 B2
8034019 Nair et al. Oct 2011 B2
8038666 Triplett et al. Oct 2011 B2
8057431 Woehr et al. Nov 2011 B2
8057436 Causey et al. Nov 2011 B2
8062253 Nielsen et al. Nov 2011 B2
8062255 Brunnberg et al. Nov 2011 B2
8066694 Wagener Nov 2011 B2
D650079 Presta et al. Dec 2011 S
D650903 Kosinski et al. Dec 2011 S
8086306 Katzman et al. Dec 2011 B2
D652503 Cameron et al. Jan 2012 S
8105279 Mernoe et al. Jan 2012 B2
8105293 Pickhard Jan 2012 B2
8114046 Covino et al. Feb 2012 B2
8114064 Alferness et al. Feb 2012 B2
8114066 Naef et al. Feb 2012 B2
8118781 Knopper et al. Feb 2012 B2
8121603 Zhi Feb 2012 B2
D657462 Siroky Apr 2012 S
8147446 Yodfat et al. Apr 2012 B2
8151169 Bieth et al. Apr 2012 B2
8152764 Istoc et al. Apr 2012 B2
8152770 Reid Apr 2012 B2
8152779 Cabiri Apr 2012 B2
8152793 Keinaenen et al. Apr 2012 B2
8157693 Waksmundzki Apr 2012 B2
8157769 Cabiri Apr 2012 B2
8162674 Cho et al. Apr 2012 B2
8162923 Adams et al. Apr 2012 B2
8167841 Teisen-Simony et al. May 2012 B2
8172591 Wertz May 2012 B2
8172804 Bikovsky May 2012 B2
8177749 Slate et al. May 2012 B2
8182462 Istoc et al. May 2012 B2
8197444 Bazargan et al. Jun 2012 B1
8206351 Sugimoto et al. Jun 2012 B2
8221356 Enggaard et al. Jul 2012 B2
8267921 Yodfat et al. Sep 2012 B2
8287520 Drew et al. Oct 2012 B2
8292647 Mcgrath et al. Oct 2012 B1
8308679 Hanson et al. Nov 2012 B2
8308695 Laiosa Nov 2012 B2
8323250 Chong et al. Dec 2012 B2
8348898 Cabiri Jan 2013 B2
8366668 Maritan Feb 2013 B2
8372039 Mernoe et al. Feb 2013 B2
8373421 Lindegger et al. Feb 2013 B2
8409141 Johansen et al. Apr 2013 B2
8409142 Causey et al. Apr 2013 B2
8409143 Lanigan et al. Apr 2013 B2
8409149 Hommann et al. Apr 2013 B2
8414533 Alexandersson Apr 2013 B2
8414557 Istoc et al. Apr 2013 B2
8425468 Weston Apr 2013 B2
8430847 Mernoe et al. Apr 2013 B2
8465455 Cabiri Jun 2013 B2
8469942 Kow et al. Jun 2013 B2
8474332 Bente et al. Jul 2013 B2
8475408 Mernoe et al. Jul 2013 B2
8479595 Vazquez et al. Jul 2013 B2
8490790 Cocheteux et al. Jul 2013 B2
8495918 Bazargan et al. Jul 2013 B2
8496862 Zelkovich et al. Jul 2013 B2
8512287 Cindrich et al. Aug 2013 B2
8512295 Evans et al. Aug 2013 B2
8517987 Istoc et al. Aug 2013 B2
8517992 Jones Aug 2013 B2
8523803 Favreau Sep 2013 B1
8551046 Causey et al. Oct 2013 B2
8556856 Bazargan et al. Oct 2013 B2
8562364 Lin et al. Oct 2013 B2
8568361 Yodfat et al. Oct 2013 B2
8574216 Istoc et al. Nov 2013 B2
8603026 Favreau Dec 2013 B2
8603027 Favreau Dec 2013 B2
8603028 Mudd et al. Dec 2013 B2
8622966 Causey et al. Jan 2014 B2
8628510 Bazargan et al. Jan 2014 B2
8647303 Cowe Feb 2014 B2
8674288 Hanson et al. Mar 2014 B2
8679060 Mernoe et al. Mar 2014 B2
D702834 Norton et al. Apr 2014 S
8690855 Alderete et al. Apr 2014 B2
8708961 Field et al. Apr 2014 B2
8721603 Lundquist May 2014 B2
8751237 Kubota Jun 2014 B2
8753326 Chong et al. Jun 2014 B2
8753331 Murphy Jun 2014 B2
8764707 Moberg et al. Jul 2014 B2
8764723 Chong et al. Jul 2014 B2
8771222 Kanderian et al. Jul 2014 B2
8777896 Starkweather et al. Jul 2014 B2
8777924 Kanderian et al. Jul 2014 B2
8777925 Patton Jul 2014 B2
8784369 Starkweather et al. Jul 2014 B2
8784370 Lebel et al. Jul 2014 B2
8784378 Weinandy Jul 2014 B2
8790295 Sigg et al. Jul 2014 B1
8795224 Starkweather et al. Aug 2014 B2
8795231 Chong et al. Aug 2014 B2
8795260 Drew Aug 2014 B2
8801668 Ali et al. Aug 2014 B2
8801679 Iio et al. Aug 2014 B2
8810394 Kalpin Aug 2014 B2
8814379 Griffiths et al. Aug 2014 B2
8858508 Lavi et al. Oct 2014 B2
8876778 Carrel Nov 2014 B2
8911410 Ekman et al. Dec 2014 B2
8915882 Cabiri Dec 2014 B2
8915886 Cowe Dec 2014 B2
8920374 Bokelman et al. Dec 2014 B2
8932266 Wozencroft Jan 2015 B2
8979802 Woehr Mar 2015 B2
8986250 Beebe et al. Mar 2015 B2
9011164 Filman et al. Apr 2015 B2
9011387 Ekman et al. Apr 2015 B2
9061104 Daniel Jun 2015 B2
9061110 Avery et al. Jun 2015 B2
9072827 Cabiri Jul 2015 B2
9072845 Hiles Jul 2015 B2
9089475 Fangrow Jul 2015 B2
9089641 Kavazov Jul 2015 B2
9138534 Yodfat et al. Sep 2015 B2
9149575 Cabiri Oct 2015 B2
9173997 Gross et al. Nov 2015 B2
9180248 Moberg et al. Nov 2015 B2
9205199 Kemp et al. Dec 2015 B2
D747799 Norton et al. Jan 2016 S
9233215 Hourmand et al. Jan 2016 B2
9259532 Cabiri Feb 2016 B2
9283327 Hourmand et al. Mar 2016 B2
9308327 Marshall et al. Apr 2016 B2
9314569 Causey et al. Apr 2016 B2
9320849 Smith et al. Apr 2016 B2
9345834 Henley et al. May 2016 B2
9345836 Cabiri et al. May 2016 B2
9350634 Fadell May 2016 B2
9352090 Brereton et al. May 2016 B2
9364606 Cindrich et al. Jun 2016 B2
9381300 Smith et al. Jul 2016 B2
9393365 Cabiri Jul 2016 B2
9421323 Cabiri et al. Aug 2016 B2
9421337 Kemp et al. Aug 2016 B2
9427531 Hourmand et al. Aug 2016 B2
9446196 Hourmand et al. Sep 2016 B2
9452261 Alon Sep 2016 B2
9463280 Cabiri Oct 2016 B2
9463889 Schmitz et al. Oct 2016 B2
9468720 Mudd et al. Oct 2016 B2
9474859 Ekman et al. Oct 2016 B2
9492622 Brereton et al. Nov 2016 B2
9522234 Cabiri Dec 2016 B2
9539384 Servansky Jan 2017 B2
9539388 Causey et al. Jan 2017 B2
9539757 Ramirez et al. Jan 2017 B2
9572926 Cabiri Feb 2017 B2
9572927 Bruggemann et al. Feb 2017 B2
9579471 Carrel et al. Feb 2017 B2
9610407 Bruggemann et al. Apr 2017 B2
9656019 Cabiri et al. May 2017 B2
9656021 Brereton et al. May 2017 B2
9656025 Bostrom et al. May 2017 B2
9707356 Hourmand et al. Jul 2017 B2
9744306 Cowe Aug 2017 B2
9775948 Bechmann et al. Oct 2017 B2
9782545 Gross et al. Oct 2017 B2
9789247 Kamen et al. Oct 2017 B2
9814830 Mernoe et al. Nov 2017 B2
9814839 Eaton Nov 2017 B2
9849242 Henley et al. Dec 2017 B2
9862519 Deutschle et al. Jan 2018 B2
9999722 Yodfat et al. Jun 2018 B2
10010681 Koch et al. Jul 2018 B2
10076356 Hadvary et al. Sep 2018 B2
10143794 Lanigan et al. Dec 2018 B2
10149943 Bar-El et al. Dec 2018 B2
D838367 Norton et al. Jan 2019 S
10166335 Reber et al. Jan 2019 B2
10207051 Cereda et al. Feb 2019 B2
10227161 Auerbach Mar 2019 B2
10232116 Ekman et al. Mar 2019 B2
10258740 McLoughlin et al. Apr 2019 B2
10376641 Hirschel et al. Aug 2019 B2
10376647 Farris et al. Aug 2019 B2
10434262 Bendek et al. Oct 2019 B2
10576213 Gylleby Mar 2020 B2
10576220 Armes Mar 2020 B2
10583260 Kemp Mar 2020 B2
10603430 Shor et al. Mar 2020 B2
10722645 Kamen et al. Jul 2020 B2
10842942 Iibuchi et al. Nov 2020 B2
20010005781 Bergens et al. Jun 2001 A1
20010018937 Nemoto Sep 2001 A1
20010025168 Gross et al. Sep 2001 A1
20010034502 Moberg et al. Oct 2001 A1
20010041869 Causey et al. Nov 2001 A1
20020010423 Gross et al. Jan 2002 A1
20020016569 Critchlow et al. Feb 2002 A1
20020029018 Jeffrey Mar 2002 A1
20020040208 Flaherty et al. Apr 2002 A1
20020055711 Lavi et al. May 2002 A1
20020055718 Hunt May 2002 A1
20020065488 Suzuki et al. May 2002 A1
20020107487 Preuthun Aug 2002 A1
20020123740 Flaherty et al. Sep 2002 A1
20020151855 Douglas et al. Oct 2002 A1
20020161332 Ramey Oct 2002 A1
20020169215 Meng Nov 2002 A1
20030009133 Ramey Jan 2003 A1
20030014018 Giambattista et al. Jan 2003 A1
20030050602 Pettis et al. Mar 2003 A1
20030069518 Daley et al. Apr 2003 A1
20030125671 Aramata et al. Jul 2003 A1
20030135159 Daily et al. Jul 2003 A1
20030160683 Blomquist Aug 2003 A1
20030167039 Moberg Sep 2003 A1
20030171717 Farrugia et al. Sep 2003 A1
20030199825 Flaherty et al. Oct 2003 A1
20030216683 Shekalim Nov 2003 A1
20030236498 Gross et al. Dec 2003 A1
20040000818 Preuthun et al. Jan 2004 A1
20040010207 Flaherty et al. Jan 2004 A1
20040049160 Hsieh et al. Mar 2004 A1
20040049161 Sheam Mar 2004 A1
20040082911 Tiu et al. Apr 2004 A1
20040092873 Moberg May 2004 A1
20040116866 Gorman et al. Jun 2004 A1
20040122359 Wenz et al. Jun 2004 A1
20040122369 Schriver Jun 2004 A1
20040127857 Shemesh et al. Jul 2004 A1
20040135078 Mandro Jul 2004 A1
20040158172 Hancock Aug 2004 A1
20040158205 Savage Aug 2004 A1
20040186419 Cho Sep 2004 A1
20040186441 Graf et al. Sep 2004 A1
20040210196 Bush et al. Oct 2004 A1
20040260233 Garibotto et al. Dec 2004 A1
20050027255 Lavi et al. Feb 2005 A1
20050033234 Sadowski et al. Feb 2005 A1
20050038391 Wittland et al. Feb 2005 A1
20050065466 Vedrine Mar 2005 A1
20050065472 Cindrich et al. Mar 2005 A1
20050071487 Lu et al. Mar 2005 A1
20050113761 Faust et al. May 2005 A1
20050124940 Martin et al. Jun 2005 A1
20050154353 Alheidt Jul 2005 A1
20050159706 Wilkinson et al. Jul 2005 A1
20050171476 Judson et al. Aug 2005 A1
20050171512 Flaherty Aug 2005 A1
20050177136 Miller Aug 2005 A1
20050197650 Sugimoto et al. Sep 2005 A1
20050203461 Flaherty et al. Sep 2005 A1
20050238507 Diianni et al. Oct 2005 A1
20050245956 Steinemann et al. Nov 2005 A1
20050283114 Bresina et al. Dec 2005 A1
20060013716 Nason et al. Jan 2006 A1
20060030816 Zubry Feb 2006 A1
20060036216 Rimlinger et al. Feb 2006 A1
20060095010 Westbye May 2006 A1
20060095014 Ethelfeld May 2006 A1
20060122577 Poulsen et al. Jun 2006 A1
20060124269 Miyazaki et al. Jun 2006 A1
20060173406 Hayes et al. Aug 2006 A1
20060173439 Thorne et al. Aug 2006 A1
20060184154 Moberg et al. Aug 2006 A1
20060195029 Shults et al. Aug 2006 A1
20060206054 Shekalim Sep 2006 A1
20060206057 Deruntz et al. Sep 2006 A1
20060211982 Prestrelski et al. Sep 2006 A1
20060229569 Lavi et al. Oct 2006 A1
20060264888 Moberg et al. Nov 2006 A1
20060264889 Moberg et al. Nov 2006 A1
20060264890 Moberg et al. Nov 2006 A1
20060264894 Moberg et al. Nov 2006 A1
20060270987 Peter Nov 2006 A1
20060283465 Nickel et al. Dec 2006 A1
20060293722 Slatkine et al. Dec 2006 A1
20070021733 Hansen et al. Jan 2007 A1
20070025879 Vandergaw Feb 2007 A1
20070049865 Radmer et al. Mar 2007 A1
20070073228 Mernoe et al. Mar 2007 A1
20070079894 Kraus et al. Apr 2007 A1
20070118405 Campbell et al. May 2007 A1
20070167912 Causey et al. Jul 2007 A1
20070179444 Causey et al. Aug 2007 A1
20070185449 Mernoe Aug 2007 A1
20070197954 Keenan Aug 2007 A1
20070197968 Pongpairochana et al. Aug 2007 A1
20070203454 Shermer et al. Aug 2007 A1
20070233038 Pruitt et al. Oct 2007 A1
20070265568 Tsals et al. Nov 2007 A1
20070282269 Carter et al. Dec 2007 A1
20080021439 Brittingham et al. Jan 2008 A1
20080033367 Haury et al. Feb 2008 A1
20080033369 Kohlbrenner et al. Feb 2008 A1
20080033393 Edwards et al. Feb 2008 A1
20080051711 Mounce et al. Feb 2008 A1
20080051730 Bikovsky Feb 2008 A1
20080059133 Edwards et al. Mar 2008 A1
20080097326 Moberg et al. Apr 2008 A1
20080097381 Moberg et al. Apr 2008 A1
20080097387 Spector Apr 2008 A1
20080108951 Jerde et al. May 2008 A1
20080140006 Eskuri et al. Jun 2008 A1
20080140014 Miller et al. Jun 2008 A1
20080140018 Enggaard et al. Jun 2008 A1
20080147004 Mann et al. Jun 2008 A1
20080167641 Hansen et al. Jul 2008 A1
20080188813 Miller et al. Aug 2008 A1
20080208138 Lim et al. Aug 2008 A1
20080215006 Thorkild Sep 2008 A1
20080215013 Felix-Faure Sep 2008 A1
20080215015 Cindrich et al. Sep 2008 A1
20080243087 Enggaard et al. Oct 2008 A1
20080249473 Rutti et al. Oct 2008 A1
20080262436 Olson Oct 2008 A1
20080269687 Chong et al. Oct 2008 A1
20080269723 Mastrototaro et al. Oct 2008 A1
20080274630 Shelton et al. Nov 2008 A1
20080294143 Tanaka et al. Nov 2008 A1
20080306449 Kristensen et al. Dec 2008 A1
20080312601 Cane Dec 2008 A1
20080319383 Byland et al. Dec 2008 A1
20080319416 Yodfat et al. Dec 2008 A1
20090012478 Weston Jan 2009 A1
20090041805 Walker Feb 2009 A1
20090048347 Cohen et al. Feb 2009 A1
20090054750 Jennewine Feb 2009 A1
20090069784 Estes et al. Mar 2009 A1
20090076383 Toews et al. Mar 2009 A1
20090076453 Mejlhede et al. Mar 2009 A1
20090088694 Carter et al. Apr 2009 A1
20090088731 Campbell et al. Apr 2009 A1
20090093763 Gonnelli et al. Apr 2009 A1
20090093792 Gross et al. Apr 2009 A1
20090093793 Gross et al. Apr 2009 A1
20090105650 Wiegel et al. Apr 2009 A1
20090105663 Brand et al. Apr 2009 A1
20090124977 Jensen May 2009 A1
20090143730 De et al. Jun 2009 A1
20090143735 De et al. Jun 2009 A1
20090149830 Spector Jun 2009 A1
20090182277 Carter Jul 2009 A1
20090182284 Morgan Jul 2009 A1
20090204076 Liversidge Aug 2009 A1
20090209896 Selevan Aug 2009 A1
20090234319 Marksteiner Sep 2009 A1
20090240240 Hines et al. Sep 2009 A1
20090253973 Bashan et al. Oct 2009 A1
20090259176 Yair Oct 2009 A1
20090281585 Katzman et al. Nov 2009 A1
20090299288 Sie et al. Dec 2009 A1
20090299290 Moberg Dec 2009 A1
20090299397 Ruan et al. Dec 2009 A1
20090326459 Shipway et al. Dec 2009 A1
20090326509 Muse et al. Dec 2009 A1
20100010455 Elahi et al. Jan 2010 A1
20100018334 Lessing Jan 2010 A1
20100030156 Beebe et al. Feb 2010 A1
20100030198 Beebe et al. Feb 2010 A1
20100049128 Mckenzie et al. Feb 2010 A1
20100049144 Mcconnell et al. Feb 2010 A1
20100057057 Hayter et al. Mar 2010 A1
20100076382 Weston Mar 2010 A1
20100076412 Rush et al. Mar 2010 A1
20100094255 Nycz et al. Apr 2010 A1
20100100076 Rush et al. Apr 2010 A1
20100100077 Rush et al. Apr 2010 A1
20100106098 Atterbury et al. Apr 2010 A1
20100121314 Iobbi May 2010 A1
20100137790 Yodrat Jun 2010 A1
20100137831 Tsais Jun 2010 A1
20100145303 Yodfat et al. Jun 2010 A1
20100145305 Alon Jun 2010 A1
20100160894 Julian et al. Jun 2010 A1
20100162548 Leidig Jul 2010 A1
20100168607 Miesel Jul 2010 A1
20100168683 Cabiri Jul 2010 A1
20100198157 Gyrn et al. Aug 2010 A1
20100204657 Yodfat et al. Aug 2010 A1
20100234767 Sarstedt Sep 2010 A1
20100234830 Straessler et al. Sep 2010 A1
20100241065 Moberg et al. Sep 2010 A1
20100256486 Savage Oct 2010 A1
20100264931 Lindegger et al. Oct 2010 A1
20100268169 Llewellyn-Hyde et al. Oct 2010 A1
20100274112 Hoss et al. Oct 2010 A1
20100274192 Mernoe Oct 2010 A1
20100280499 Yodfat et al. Nov 2010 A1
20100331826 Field et al. Dec 2010 A1
20110034900 Yodfat et al. Feb 2011 A1
20110054399 Chong et al. Mar 2011 A1
20110054400 Chong et al. Mar 2011 A1
20110066131 Cabiri Mar 2011 A1
20110092915 Olson et al. Apr 2011 A1
20110112504 Causey et al. May 2011 A1
20110125056 Merchant May 2011 A1
20110160654 Hanson et al. Jun 2011 A1
20110160666 Hanson et al. Jun 2011 A1
20110160669 Gyrn et al. Jun 2011 A1
20110172645 Moga et al. Jul 2011 A1
20110172745 Na et al. Jul 2011 A1
20110178463 Cabiri Jul 2011 A1
20110178472 Cabiri Jul 2011 A1
20110201998 Pongpairochana et al. Aug 2011 A1
20110224616 Slate et al. Sep 2011 A1
20110224646 Yodfat et al. Sep 2011 A1
20110238031 Mair et al. Sep 2011 A1
20110245773 Estes et al. Oct 2011 A1
20110270160 Mernoe Nov 2011 A1
20110282282 Lorenzen et al. Nov 2011 A1
20110282296 Harms et al. Nov 2011 A1
20110295205 Kaufmann et al. Dec 2011 A1
20110313238 Reichenbach et al. Dec 2011 A1
20110319861 Wilk Dec 2011 A1
20110319919 Curry et al. Dec 2011 A1
20120004602 Hanson et al. Jan 2012 A1
20120010594 Holt et al. Jan 2012 A1
20120022344 Kube Jan 2012 A1
20120022496 Causey et al. Jan 2012 A1
20120022499 Anderson et al. Jan 2012 A1
20120029431 Hwang et al. Feb 2012 A1
20120035546 Cabiri Feb 2012 A1
20120041364 Smith Feb 2012 A1
20120041387 Brüggemann et al. Feb 2012 A1
20120041414 Estes et al. Feb 2012 A1
20120071828 Tojo et al. Mar 2012 A1
20120096953 Bente et al. Apr 2012 A1
20120096954 Vazquez et al. Apr 2012 A1
20120101436 Bazargan et al. Apr 2012 A1
20120108933 Liang et al. May 2012 A1
20120109059 Ranalletta et al. May 2012 A1
20120118777 Kakiuchi et al. May 2012 A1
20120123387 Gonzalez et al. May 2012 A1
20120129362 Hampo et al. May 2012 A1
20120160033 Kow et al. Jun 2012 A1
20120165733 Bazargan et al. Jun 2012 A1
20120165780 Bazargan et al. Jun 2012 A1
20120172817 Brüggemann et al. Jul 2012 A1
20120184917 Bom et al. Jul 2012 A1
20120226234 Bazargan et al. Sep 2012 A1
20120238961 Julian et al. Sep 2012 A1
20120259282 Alderete et al. Oct 2012 A1
20130012875 Gross et al. Jan 2013 A1
20130068319 Plumptre et al. Mar 2013 A1
20130085457 Schiff et al. Apr 2013 A1
20130089992 Yang Apr 2013 A1
20130096509 Avery et al. Apr 2013 A1
20130110049 Cronenberg et al. May 2013 A1
20130131589 Mudd et al. May 2013 A1
20130131604 Avery May 2013 A1
20130133438 Kow et al. May 2013 A1
20130172808 Gilbert Jul 2013 A1
20130190693 Ekman et al. Jul 2013 A1
20130200549 Felts et al. Aug 2013 A1
20130204187 Avery et al. Aug 2013 A1
20130204191 Cindrich et al. Aug 2013 A1
20130237953 Kow et al. Sep 2013 A1
20130245595 Kow et al. Sep 2013 A1
20130245596 Cabiri et al. Sep 2013 A1
20130245604 Kouyoumjian et al. Sep 2013 A1
20130253419 Favreau Sep 2013 A1
20130253420 Favreau Sep 2013 A1
20130253421 Favreau Sep 2013 A1
20130253434 Cabiri Sep 2013 A1
20130267895 Hemmingsen Oct 2013 A1
20130296799 Degtiar et al. Nov 2013 A1
20130296824 Mo et al. Nov 2013 A1
20130304021 Cabiri et al. Nov 2013 A1
20130310753 Cabiri Nov 2013 A1
20130323699 Edwards et al. Dec 2013 A1
20130331791 Gross et al. Dec 2013 A1
20130338584 Mounce et al. Dec 2013 A1
20140018735 Causey et al. Jan 2014 A1
20140031747 Ardehali Jan 2014 A1
20140055073 Favreau Feb 2014 A1
20140055076 Favreau Feb 2014 A1
20140058349 Bazargan et al. Feb 2014 A1
20140083517 Moia et al. Mar 2014 A1
20140094755 Bazargan et al. Apr 2014 A1
20140121633 Causey et al. May 2014 A1
20140128807 Moberg et al. May 2014 A1
20140128835 Moberg et al. May 2014 A1
20140135692 Alderete et al. May 2014 A1
20140135694 Moberg et al. May 2014 A1
20140142499 Moberg et al. May 2014 A1
20140148784 Anderson et al. May 2014 A1
20140148785 Moberg et al. May 2014 A1
20140163522 Alderete et al. Jun 2014 A1
20140163526 Cabiri et al. Jun 2014 A1
20140171881 Cabiri Jun 2014 A1
20140174223 Gross et al. Jun 2014 A1
20140194819 Maule et al. Jul 2014 A1
20140194854 Tsais Jul 2014 A1
20140207064 Yavorsky Jul 2014 A1
20140207065 Yavorsky Jul 2014 A1
20140207066 Yavorsky Jul 2014 A1
20140213975 Clemente et al. Jul 2014 A1
20140214001 Mortazavi Jul 2014 A1
20140228768 Eggert et al. Aug 2014 A1
20140236087 Alderete et al. Aug 2014 A1
20140243786 Gilbert et al. Aug 2014 A1
20140261758 Wlodarczyk et al. Sep 2014 A1
20140343503 Holmqvist Nov 2014 A1
20150005703 Hutchinson et al. Jan 2015 A1
20150073344 Van Damme et al. Mar 2015 A1
20150088071 Cabiri Mar 2015 A1
20150112278 Ray et al. Apr 2015 A1
20150119798 Gross et al. Apr 2015 A1
20150157806 Knutsson Jun 2015 A1
20150202375 Schabbach Jul 2015 A1
20150374926 Gross et al. Dec 2015 A1
20160030665 Cabiri Feb 2016 A1
20160051756 Cabiri Feb 2016 A1
20160144117 Chun May 2016 A1
20160151586 Kemp Jun 2016 A1
20160175515 Mccullough Jun 2016 A1
20160184512 Marbet et al. Jun 2016 A1
20160193406 Cabiri Jul 2016 A1
20160199590 Schabbach et al. Jul 2016 A1
20160213840 Schabbach et al. Jul 2016 A1
20160228652 Cabiri et al. Aug 2016 A1
20160296713 Schader et al. Oct 2016 A1
20160296716 Cabiri et al. Oct 2016 A1
20160331900 Wei Nov 2016 A1
20160346478 Bar-El et al. Dec 2016 A1
20160354553 Anderson et al. Dec 2016 A1
20170007774 Brockmeier Jan 2017 A1
20170043092 Murakami et al. Feb 2017 A1
20170058349 Levy et al. Mar 2017 A1
20170175859 Brockmeier Jun 2017 A1
20170246399 Forlani Aug 2017 A1
20170246403 Cowe et al. Aug 2017 A1
20180028765 Waller et al. Feb 2018 A1
20180214637 Kemp et al. Aug 2018 A1
20190022306 Gibson et al. Jan 2019 A1
20190060578 Farris et al. Feb 2019 A1
20190071217 Brown et al. Mar 2019 A1
20190175821 Kamen et al. Jun 2019 A1
20190224415 Dugand et al. Jul 2019 A1
20190240417 Hostettler et al. Aug 2019 A1
20190328968 Giambattista Oct 2019 A1
20200009323 Nair et al. Jan 2020 A1
20200215270 Ogawa et al. Jul 2020 A1
20200297929 Zhang Sep 2020 A1
20210138157 Bar-El et al. May 2021 A1
20210220551 Dowd et al. Jul 2021 A1
Foreign Referenced Citations (210)
Number Date Country
1505535 Jun 2004 CN
1747683 Mar 2006 CN
1863566 Nov 2006 CN
101090749 Dec 2007 CN
101227943 Jul 2008 CN
101448536 Jun 2009 CN
101522235 Sep 2009 CN
101541362 Sep 2009 CN
101641126 Feb 2010 CN
201692438 Jan 2011 CN
201941304 Aug 2011 CN
102186733 Sep 2011 CN
102378638 Mar 2012 CN
105102025 Nov 2015 CN
855313 Nov 1952 DE
1064693 Sep 1959 DE
19518807 Dec 1995 DE
19717107 Nov 1998 DE
0017412 Oct 1980 EP
0222656 May 1987 EP
0401179 Dec 1990 EP
0925082 Jun 1999 EP
1003581 May 2000 EP
1124600 Aug 2001 EP
1219312 Jul 2002 EP
1472477 Nov 2004 EP
1530979 May 2005 EP
1666080 Jun 2006 EP
1372762 Feb 2007 EP
1974759 Oct 2008 EP
2060606 May 2009 EP
2140897 Jan 2010 EP
2173413 Apr 2010 EP
2185227 May 2010 EP
2192935 Jun 2010 EP
2361648 Aug 2011 EP
2364739 Sep 2011 EP
2393534 Dec 2011 EP
2452708 May 2012 EP
2498589 Sep 2012 EP
2574355 Apr 2013 EP
2393535 Mar 2015 EP
2878321 Jun 2015 EP
2886144 Jun 2015 EP
1904130 Mar 2016 EP
2991705 Mar 2016 EP
3266478 Jan 2018 EP
2819724 Mar 2019 EP
2770136 Apr 1999 FR
2436526 Oct 2007 GB
62-112566 May 1987 JP
01-172843 Dec 1989 JP
05-062828 Mar 1993 JP
07-194701 Aug 1995 JP
09-505758 Jun 1997 JP
11-507260 Jun 1999 JP
2000-515394 Nov 2000 JP
2001-512992 Aug 2001 JP
2002-505601 Feb 2002 JP
2002-507459 Mar 2002 JP
2002-528676 Sep 2002 JP
2003-501157 Jan 2003 JP
2003-534061 Nov 2003 JP
2004-501721 Jan 2004 JP
2004-512100 Apr 2004 JP
2003-527138 Aug 2005 JP
2005-523127 Aug 2005 JP
2005-527249 Sep 2005 JP
2005-270629 Oct 2005 JP
2006-507067 Mar 2006 JP
2006-510450 Mar 2006 JP
2006-525046 Nov 2006 JP
2007-509661 Apr 2007 JP
2007-306990 Nov 2007 JP
2008-534131 Aug 2008 JP
2008-220961 Sep 2008 JP
2009-502273 Jan 2009 JP
2009-101093 May 2009 JP
2010-540054 Dec 2010 JP
2010-540156 Dec 2010 JP
2011-136153 Jul 2011 JP
4947871 Jun 2012 JP
2013-505433 Feb 2013 JP
2013-517095 May 2013 JP
2013-519473 May 2013 JP
2013-530778 Aug 2013 JP
2013-531520 Aug 2013 JP
2013-531540 Aug 2013 JP
2014-030489 Feb 2014 JP
2014-515669 Jul 2014 JP
2014-518743 Aug 2014 JP
2015-514486 May 2015 JP
2016-525428 Aug 2016 JP
2016-530016 Sep 2016 JP
9009202 Aug 1990 WO
9307922 Apr 1993 WO
9407553 Apr 1994 WO
9415660 Jul 1994 WO
9513838 May 1995 WO
9609083 Mar 1996 WO
9632975 Oct 1996 WO
9700091 Jan 1997 WO
9710012 Mar 1997 WO
9721457 Jun 1997 WO
9733638 Sep 1997 WO
9857683 Dec 1998 WO
9857686 Dec 1998 WO
9929151 Jun 1999 WO
9938554 Aug 1999 WO
9959665 Nov 1999 WO
0025844 May 2000 WO
0069509 Nov 2000 WO
0130415 May 2001 WO
0130421 May 2001 WO
0170304 Sep 2001 WO
0172357 Oct 2001 WO
0187384 Nov 2001 WO
0189607 Nov 2001 WO
0189613 Nov 2001 WO
0202165 Jan 2002 WO
0204049 Jan 2002 WO
0234315 May 2002 WO
0238204 May 2002 WO
0256934 Jul 2002 WO
02056934 Jul 2002 WO
0272182 Sep 2002 WO
0362672 Jul 2003 WO
0390833 Nov 2003 WO
2004000397 Dec 2003 WO
2004032990 Apr 2004 WO
2004098684 Nov 2004 WO
2004105841 Dec 2004 WO
2005018703 Mar 2005 WO
2005037350 Apr 2005 WO
2005072795 Aug 2005 WO
2005070485 Aug 2005 WO
2006018617 Feb 2006 WO
2006037434 Apr 2006 WO
2006052737 May 2006 WO
2006069380 Jun 2006 WO
2006102676 Sep 2006 WO
2006104806 Oct 2006 WO
2006121921 Nov 2006 WO
2007017052 Feb 2007 WO
2007051563 May 2007 WO
2007056504 May 2007 WO
2007066152 Jun 2007 WO
2007073228 Jun 2007 WO
2007119178 Oct 2007 WO
2008001377 Jan 2008 WO
2008014908 Feb 2008 WO
2008057976 May 2008 WO
2008072229 Jun 2008 WO
2008076459 Jun 2008 WO
2008078318 Jul 2008 WO
2009019438 Feb 2009 WO
2009022132 Feb 2009 WO
2009043564 Apr 2009 WO
2009044401 Apr 2009 WO
2009046989 Apr 2009 WO
2009043000 Apr 2009 WO
2009069064 Jun 2009 WO
2009125398 Oct 2009 WO
2009144085 Dec 2009 WO
2010078227 Jul 2010 WO
2010078242 Jul 2010 WO
2010089313 Aug 2010 WO
2011075105 Jun 2011 WO
2011090955 Jul 2011 WO
2011090956 Jul 2011 WO
WO 2011101378 Aug 2011 WO
2011110872 Sep 2011 WO
2011124631 Oct 2011 WO
2011129175 Oct 2011 WO
2011131778 Oct 2011 WO
2011131780 Oct 2011 WO
2011131781 Oct 2011 WO
2011133823 Oct 2011 WO
2011156373 Dec 2011 WO
2012003221 Jan 2012 WO
2012032411 Mar 2012 WO
2012040528 Mar 2012 WO
2012145752 Oct 2012 WO
2012160157 Nov 2012 WO
2012168691 Dec 2012 WO
2013036602 Mar 2013 WO
2013058697 Apr 2013 WO
2013115843 Aug 2013 WO
2014132293 Sep 2014 WO
2014179117 Nov 2014 WO
2014179774 Nov 2014 WO
2014194183 Dec 2014 WO
2015048791 Apr 2015 WO
2015048803 Apr 2015 WO
2015078868 Jun 2015 WO
2015091758 Jun 2015 WO
2015091850 Jun 2015 WO
2015114158 Aug 2015 WO
2015114428 Aug 2015 WO
2015118358 Aug 2015 WO
2015163009 Oct 2015 WO
2016087626 Jun 2016 WO
2016087627 Jun 2016 WO
2016141082 Sep 2016 WO
2017022639 Feb 2017 WO
2017161076 Sep 2017 WO
2018222521 Dec 2018 WO
2019224782 Nov 2019 WO
2020120087 Jun 2020 WO
2020193468 Oct 2020 WO
Non-Patent Literature Citations (181)
Entry
Definition of Monolithic. In Merriam-Webster's online dictionary. Retrieved from https://www.merriam-webster.com/dictionary/monolithic (Year: 2021).
Int'l Search Report and Written Opinion dated Dec. 15, 2016 in Int'l Application No. PCT/US2016/056258.
Office Action dated Aug. 17, 2021 in Indian Application No. 201827027625.
Office Action dated Mar. 10, 2015 in CN Application No. 201180006567.4.
Office Action dated Mar. 10, 2015 in U.S. Appl. No. 12/244,666 by Gross.
Office Action dated Mar. 10, 2015 in U.S. Appl. No. 13/643,470 by Alon.
Office Action dated Mar. 30, 2018 in U.S. Appl. No. 14/850,450 by Gross.
Office Action dated Mar. 31, 2015 in JP Application No. 2012-550068.
Office Action dated Mar. 5, 2014 in CN Application No. 200880117084.X.
Office Action dated May 1, 2015 in U.S. Appl. No. 14/638,525 by Filman.
Office Action dated May 13, 2015 in CN Application No. 201380025566.3.
Office Action dated May 14, 2018 in EP Application No. 088081112.
Office Action dated May 16, 2012 in U.S. Appl. No. 12/615,828.
Office Action dated May 18, 2018 in EP 14166591.9.
Office Action dated May 23, 2014 in U.S. Appl. No. 13/472,112 by Cabiri.
Office Action dated May 24, 2017 in U.S. Appl. No. 13/874,121, by Degtiar.
Office Action dated May 25, 2021 in Japanese Office Action 2018-538073.
Office Action dated May 3, 2012 in CN Application No. 200880117084.X.
Office Action dated May 31, 2016 in U.S. Appl. No. 14/593,051 by Gross.
Office Action dated May 4, 2017 in CN Application No. 2014101836665.
Office Action dated May 5, 2015 in CN Application No. 201180006571.0.
Office Action dated May 7, 2015 in JP Application No. 2012-550069.
Office Action dated Nov. 10, 2016 in U.S. Appl. No. 13/874,121, by Degtiar.
Office Action dated Nov. 13, 2017 in U.S. Appl. No. 14/193,692, by Gross.
Office Action dated Nov. 2, 2014 in CN Application No. 201180006571.0.
Office Action dated Nov. 21, 2014 in U.S. Appl. No. 13/429,840 by Cabiri.
Office Action dated Nov. 21, 2014 in U.S. Appl. No. 13/472,112 by Cabiri.
Office Action dated Nov. 25, 2016 in U.S. Appl. No. 13/874,017, by Cabiri.
Office Action dated Nov. 4, 2013 in EP Application No. 11 709 234.6.
Office Action dated Nov. 5, 2013 in JP Application No. 2010-527595.
Office Action dated Nov. 5, 2014 in U.S. Appl. No. 13/643,470 by Alon.
Office Action dated Nov. 8, 2017 in U.S. Appl. No. 13/874,121, by Degtiar.
Office Action dated Oct. 13, 2020 in Japanese Application No. 2018-538073.
Office Action dated Oct. 2, 2018 in JP Application No. 2018-535062 (Year: 2018).
Office Action dated Oct. 28, 2011 in U.S. Appl. No. 12/615,828.
Office Action dated Oct. 28, 2016 in CN Application No. 2014101783742.
Office Action dated Oct. 5, 2016 in U.S. Appl. No. 13/964,651, by Gross.
Office Action dated Oct. 6, 2017 in U.S. Appl. No. 14/861,478, by Cabiri.
Office Action dated Oct. 9, 2014 in U.S. Appl. No. 13/873,335.
Office Action dated Sep. 18, 2015 in U.S. Appl. No. 13/874,085 by Cabiri.
Office Action dated Sep. 2, 2010 in U.S. Appl. No. 12/244,688 by Gross.
Office Action dated Sep. 2, 2014 in JP Application No. 2012-550068.
Office Action dated Sep. 2, 2014 in JP Application No. 2012-550069.
Office Action dated Sep. 28, 2017 in IN Application No. 2528/DELNP/2010.
Office Action dated Sep. 29, 2013 in CN Application No. 201080040968.7.
Office Action dated Sep. 30, 2010 in U.S. Appl. No. 12/689,250, by Cabiri.
Office Action dated Sep. 30, 2015 in U.S. Appl. No. 13/667,739 by Cabiri.
Office Action dated Sep. 6, 2011 in U.S. Appl. No. 12/345,818.
Office Action dated Sep. 9, 2015 in U.S. Appl. No. 13/643,470 by Alon.
Office Action dated Feb. 20, 2015 in U.S. Appl. No. 13/521,181 by Cabiri.
Office Action dated Nov. 6, 2015 in U.S. Appl. No. 14/715,791 by Cabiri.
Office Action dated Oct. 6, 2020 in Japanese Application No. 2018-538527.
Partial European Search Report dated Nov. 24, 2015 in EP Application No. 14166592.7.
Search Report dated Oct. 14, 2016 in CN Application No. 2014101783742.
U.S. Appl. No. 12/559,563, filed Sep. 15, 2009.
U.S. Appl. No. 12/689,249, filed Jan. 19, 2010.
U.S. Appl. No. 12/689,250, filed Jan. 19, 2010.
U.S. Appl. No. 13/429,840, by Cabiri, filed Mar. 26, 2012.
U.S. Appl. No. 13/472,112, by Cabiri, filed May 15, 2012.
U.S. Appl. No. 13/521,167, by Cabiri, filed Jul. 9, 2012.
U.S. Appl. No. 13/521,181, by Cabiri, filed Jul. 9, 2012.
U.S. Appl. No. 13/643,470, by Alon, filed Oct. 25, 2012.
U.S. Appl. No. 13/733,516, by Cabiri, filed Jan. 3, 2013.
U.S. Appl. No. 13/873,335, by Filman, filed Apr. 30, 2013.
U.S. Appl. No. 13/874,017, by Cabiri, filed Apr. 30, 2013.
U.S. Appl. No. 13/874,085, by Cabiri, filed Apr. 30, 2013.
U.S. Appl. No. 13/874,121, by Degtiar, filed Apr. 30, 2013.
U.S. Appl. No. 13/892,905, by Cabiri, filed May 13, 2013.
U.S. Appl. No. 13/964,651, by Gross, filed Aug. 12, 2013.
U.S. Appl. No. 14/193,692, by Gross, filed Feb. 28, 2014.
U.S. Appl. No. 14/258,661, by Cabiri, filed Apr. 22, 2014.
U.S. Appl. No. 14/553,399, by Cabiri, filed Nov. 25, 2014.
U.S. Appl. No. 14/593,051, by Gross, filed Jan. 9, 2015.
U.S. Appl. No. 14/638,525, by Filman, filed Mar. 4, 2015.
U.S. Appl. No. 14/683,193, by Cabiri, filed Apr. 10, 2015.
U.S. Appl. No. 14/715,791, by Cabiri, filed May 19, 2015.
U.S. Appl. No. 14/725,009, by Bar-El, filed May 29, 2015.
U.S. Appl. No. 14/850,450, by Gross, filed Sep. 10, 2015.
U.S. Appl. No. 14/861,478, by Cabiri, filed Sep. 22, 2015.
U.S. Appl. No. 14/880,673, by Cabiri, filed Oct. 12, 2015.
U.S. Appl. No. 29/479,307, by Norton, filed Jan. 14, 2014.
U.S. Appl. No. 60/997,459, filed Oct. 2, 2007.
West Introduces the Daikyo Crystal Zenith RU Prefillable Syringe, Pharmaceutical Online, Jun. 2008, downloaded from webpage: http://www.pharmaceuticalonline.com/article.mvc/west-introduces-prefillab-le-syringe-system, Download date: Jan. 2009, original posting date: Jun. 2008, 2 pages.
Communication Pursuant to Rules 161 and 162 dated Apr. 6, 2018 in EP Application No. 16784688.0.
Copaxone(Registered), Innovative Drugs, Teva Pharmaceuticals, downloaded from webpage http://levapharm.com/copaxone/, Download date: Jan. 2009, original posting date: unknown, 3 pages.
Daikyo Crystal Zenith(Registered) polymer, Manufactured by Daikyo Seiko, Lid. (Jun. 25, 2008).
English translation of an Office Action dated Jan. 30, 2013 in GN Application No. 200880117084.X.
English translation of an Office Action dated Mar. 5, 2014 in ON Application No. 200880117084.X.
European Search Report (Partial) dated Mar. 8, 2017 in EP Application 16193157.1.
Extended European Search Report dated Aug. 7, 2014 in EP Application No. 14174774.
Extended European Search Report dated Feb. 12, 2018 in EP Application No. 17191756.0.
Extended European Search Report dated Feb. 13, 2017 in EP Application No. 16171626.1.
Extended European Search Report dated Feb. 23, 2015 in EP Application No. 14166591.9.
Extended European Search Report dated Feb. 23, 2015 in EP Application No. 14166596.8.
Extended European Search Report dated Jul. 3, 2017 in EP Application No. 16190054.3.
Extended European Search Report dated Mar. 27, 2014 in EP Application No. 14154717.4.
Extended European Search Report dated Mar. 8, 2016 in EP Application No. 14166592.7.
Extended European Search Report dated Nov. 10, 2016 in EP Application No. 08808111.2.
Extended European Search Report dated Jul. 28, 2020 in European Application No. 20172466.3.
Extended Search Report dated Aug. 7, 2014 in EP Application No. 14171477.4.
Extended Search Report dated Jul. 7, 2017 in EP Application No. 16193157.1.
Int'l Preliminary Report on Patentability dated Nov. 22, 2017 in Int'l Application No. PCT/US2016/068371.
Int'l Search Report and Written Opinion dated Jan. 12, 2011 in Int'l Application No. PCT/US2010/048556; Written Opinion.
Int'l Search Report and Written Opinion dated Jan. 26, 2017 in Int'l Application No. PCT/US2016/056213.
Int'l Search Report and Written Opinion dated Mar. 27, 2017 in Int'l Application No. PCT/US2016/056247.
Int'l Search Report and Written Opinion dated Apr. 21, 2017 in Int'l Application No. PCT/US2016/068367.
Int'l Search Report and Written Opinion dated May 15, 2017 in Int'l Application No. PCT/US2016/068371.
Int'l Search Report and Written Opinion dated Jul. 6, 2017 in Int'l Application No. PCT/US2017/022966.
Int'l Search Report and Written Opinion dated Nov. 28, 2016 in Int'l Application No. PCT/US2016/056218.
Int'l Search Report and Written Opinion dated Dec. 2, 2016 in Int'l Application No. PCT/US2016/056210.
Int'l Search Report and Written Opinion dated Dec. 5, 2016 in Int'l Application No. PCT/US2016/056233.
Int'l Search Report and Written Opinion dated Dec. 8, 2016 in Inl'l Application No. PCT/US2016/056227.
Int'l Preliminary Report on Patentability date Jan. 8, 2018 in Int'l Application No. POT/US2016/056218.
Int'l Preliminary Report on Patentability dated Apr. 7, 2010 in Int'l Application No. PCT/IL2008/001312.
Int'l Preliminary Report on Patentability dated Aug. 2, 2012 in Int'l Application No. PCT/US2011/021604.
Int'l Preliminary Report on Patentability dated Feb. 7, 2013 in Int'l Application No. PCT/US11/21605.
Int'l Preliminary Report on Patentability dated Jan. 18, 2018 in Int'l Application No. PCT/US2016/056210.
Int'l Preliminary Report on Patentability dated Jan. 18, 2018 in Int'l Application No. PCT/US2016/056213.
Int'l Preliminary Report on Patentability dated Jan. 18, 2018 in Int'l Application No. PCT/US2016/056223.
Int'l Preliminary Report on Patentability dated Jan. 18, 2018 in Int'l Application No. PCT/US2016/056227.
Int'l Preliminary Report on Patentability dated Jul. 16, 2015 in Int'l Application No. PCT/US2013/078040.
Int'l Preliminary Report on Patentability dated May 14, 2015 in Int'l Application No. PCT/US2013/065211.
Int'l Preliminary Report on Patentability dated Nov. 27, 2014 in Int'l Application No. PCT/US2013/039465.
Int'l Preliminary Report on Patentability dated Nov. 30, 2017 in Int'l Application No. PCT/US2016/068367.
Int'l Preliminary Report on Patentability dated Nov. 9, 2018 in Int'l Application No. PCT/US2016/056238.
Int'l Preliminary Report on Patentability dated Oct. 9, 2014 in Int'l Application No. PCT/US2013/033118.
Int'l Preliminary Report on Patentability dated Sep. 1, 2011 in Int'l Application No. PCT/US2010/048556.
Int'l Search Report and Written Opinion dated Apr. 3, 2014 in Int'l Application No. PCT/US2013/078040.
Int'l Search Report and Written Opinion dated Aug. 5, 2013 in Int'l Application No. PCT/US2013/033118.
Int'l Search Report and Written Opinion dated Jan. 7, 2014 in Int'l Application No. PCT/US2013/065211.
Int'l Search Report and Written Opinion dated Jul. 12, 2017 in Int'l Application No. PCT/US2016/056238.
Int'l Search Report and Written Opinion dated Jul. 26, 2013 in Int'l Application No. PCT/US2012/039465.
Int'l Search Report and Written Opinion dated Jul. 31, 2014 in Int'l Application No. PCT/US2014/033598.
Int'l Search Report and Written Opinion dated May 13, 2009 in Int'l Application No. PCT/IL2008/001312.
Int'l Search Report dated Apr. 26, 2010 in Int'l Application No. PCT/US2009/069552.
Int'l Search Report dated Jun. 17, 2011 in Int'l Application No. PCT/US2011/021604.
Int'l Search Report dated Oct. 12, 2011 in Int'l Application No. PCT/US11/21605.
Int'l Search Report dated Sep. 22, 2011 in Int'l Application No. PCT/IL11/00368; Written Opinion.
Int'l Written Opinion dated Jul. 19, 2012 in Int'l Application No. PCT/US11/21605.
Intel Search Report and Written Opinion dated Nov. 30, 2016 in Int'l Application No. PCT/US2016/056223.
International Preliminary Report on Patentability and Written Opinion dated Jul. 5, 2011 in International Application No. PCT/US2009/069552.
Notice of Allowance dated Aug. 24, 2015 in U.S. Appl. No. 29/479,307 by Norton.
Offce Action dated Sep. 21, 2010 in U.S. Appl. No. 12/244,666 by Gross.
Office Action dated Apr. 22, 2016 in CN Application No. 2014102892041.
Office Action dated Apr. 5, 2010 in U.S. Appl. No. 12/244,666 by Gross.
Office Action dated Apr. 5, 2010 in U.S. Appl. No. 12/244,688 by Gross.
Office Action dated Aug. 13, 2015 in U.S. Appl. No. 14/553,399 by Cabiri.
Office Action dated Aug. 14, 2017 in CN Application No. 201410178318.9.
Office Action dated Aug. 15, 2013 in CN Application No. 200880117084.X.
Office Action dated Aug. 26, 2014 in CN Application No. 201180006567.4.
Office Action dated Aug. 6, 2014 in EP Appl. No. 11 707 942.6.
Office Action dated Dec. 1, 2015 in CN Application No. 201410289204.1.
Office Action dated Dec. 10, 2013 in CN Application No. 201180006567.4.
Office Action dated Dec. 15, 2017 in U.S. Appl. No. 15/269,248, by Cabiri.
Office Action dated Dec. 17, 2013 in JP Application No. 2012-529808.
Office Action dated Dec. 4, 2017 in CN Application No. 201410178374.2.
Office Action dated Dec. 9, 2016 in U.S. Appl. No. 14/593,051, by Gross.
Office Action dated Feb. 16, 2017 in CN Application No. 2014101783189.
Office Action dated Feb. 21, 2012 in U.S. Appl. No. 12/689,249.
Office Action dated Feb. 24, 2015 in U.S. Appl. No. 14/258,661 by Cabiri.
Office Action dated Feb. 24, 2017 in U.S. Appl. No. 13/964,651, by Gross.
Office Action dated Feb. 28, 2014 in CN Application No. 201180006571.0.
Office Action dated Feb. 4, 2014 in EP Application No. 11 707 942.6.
Office Action dated Jan. 10, 2017 in U.S. Appl. No. 14/193,692, by Gross.
Office Action dated Jan. 30, 2013 in CN Application No. 200880117084.X.
Office Action dated Jan. 8, 2013 in JP Application No. 2010-527595.
Office Action dated Jan. 8, 2014 in U.S. Appl. No. 13/521,167 by Cabiri.
Office Action dated Jul. 13, 2011 in U.S. Appl. No. 12/559,563 by Cabiri.
Office Action dated Jul. 2, 2012 in U.S. Appl. No. 13/272,555 by Cabiri.
Office Action dated Jul. 28, 2020 in Japanese Application No. 2018-538074.
Office Action dated Jul. 3, 2017 in CN Application No. 2014101783742.
Office Action dated Jul. 31, 2015 in U.S. Appl. No. 13/521,181 by Cabiri.
Office Action dated Jul. 7, 2014 in U.S. Appl. No. 12/244,666 by Gross.
Office Action dated Jun. 10, 2016 in U.S. Appl. No. 13/964,651 by Gross.
Office Action dated Jun. 14, 2018 in U.S. Appl. No. 13/874,121, by Degtiar.
Office Action dated Jun. 2, 2016 in CN Application No. 2014101783189.
Office Action dated Jun. 3, 2014 in JP Application No. 2010-527595.
Office Action dated Jun. 4, 2015 in U.S. Appl. No. 13/667,739 by Cabiri.
Office Action dated Jun. 9, 2017 in EP Application No. 14166591.9.
Office Action dated Jun. 9, 2017 in EP Application No. 14166596.8.
Office Action dated Mar. 1, 2018 in EP Application No. 14166592.7.
Related Publications (1)
Number Date Country
20190022323 A1 Jan 2019 US
Provisional Applications (1)
Number Date Country
62281536 Jan 2016 US
Continuations (2)
Number Date Country
Parent 15204542 Jul 2016 US
Child 16071509 US
Parent 15269248 Sep 2016 US
Child 15204542 US