This invention relates to medicament respiratory delivery devices for pulmonary, intranasal and buccal respiratory delivery of medicaments including an encapsulated medicament cartridge having a piercing element.
Inhalers and atomizers are now commonly used primarily to deliver various liquid medicaments via the patient's or user's nose or mouth. As used herein, “medicament” includes any powder or liquid medicament, drug or vaccine which may be administered from a respiratory delivery device through the user's nose or mouth, sometimes referred to herein as a medicament respiratory delivery device. More recently, the prior art has proposed unit dose disposable powder medicament delivery devices, such as disclosed in U.S. Pat. No. 5,215,221, wherein a predetermined quantity or unit dose of a powder medicament is sealed in a reservoir formed between opposed thermoplastic sheets and expressed or delivered by application of manual force to a thermoformed blister which, upon actuation, breaks a burstable seal between the sheets at the entrance to the reservoir and fluidizes the powder medicament in the reservoir through a delivery tube. The delivery tube is cut prior to use.
There are several considerations affecting the design and efficacy of medicament respiratory delivery devices. First, it is important to ensure that a predetermined quantity or dose of medicament is consistently delivered to the user with each application. Second, because respiratory therapy often requires numerous applications, the cost of providing the dosage should also be considered. That is, it is desirable that the medicament respiratory delivery device consistently express substantially all of the medicament to the user and that the delivery device is not susceptible to user error in operation. Third, it is important that the medicament be properly disbursed or entrained in the conveying fluid. Further considerations include operating complexity, cost of the device, portability and size of the delivery device.
The embodiments of the medicament respiratory delivery devices and medicament cartridge of this invention provides a reproducible, high level of clearance of medicament or emitted dose from the cartridge upon actuation with modest gas pressure.
The medicament respiratory delivery device of this invention includes a housing having a chamber, an inlet communicating with the chamber, and an outlet preferably generally coaxially aligned with the inlet and a medicament cartridge located within the chamber. The medicament cartridge includes a body portion having opposed ends and a passage extending through the body portion through the opposed ends. In the most preferred embodiment, the passage is generally cylindrical, but may have other shapes including an hourglass shape. The passage includes the medicament, which may be a unit dose of a liquid or powder medicament, drug or vaccine as discussed further hereinbelow. One end of the passage is sealed with a pierceable closure which may be formed during molding of the cartridge and the opposed end of the cartridge passage opposite the outlet of the medicament delivery device is sealed with a burstable membrane, preferably comprising a thin sheet of polyolefin or a polyolefin blend or copolymer having a thickness between 0.3 and 1.5 mils and a burst pressure of between 1.2 and 10 atmospheres, more preferably less than 5 atmospheres and most preferably between 1.5 and 4 atmospheres. The term polyolefin is understood to mean a polymer containing olefin units such as, for example, ethylene, propylene or 1-butene units or any other alpha-olefin. Polyolefin as used herein includes polyethylene, polypropylene, ethylene-.alpha. olefin copolymer, wherein the alpha olefin having from 3 to 20, preferably 4 to 8 carbon atoms, polyolefin copolymers made by polymerizing olefins in the presence of a metallocene catalyst, ethylene-vinyl acetate copolymer, ethylene-ethyl acrylate copolymer, and ethylene-methyl acrylate copolymer. In particular, it is desirable to use polyethylene, such as low-density, linear-low-density, very-low-density, medium-density, or high-density polyethylene, or polypropylene, such as a polypropylene homopolymer, ethylene-propylene copolymer, or ethylene-propylene block copolymer. In the most preferred embodiment, the end of the cartridge at the outlet of the delivery device is convex or frustoconical surrounding the passage and a polymeric film is stretched taut over the convex surface and bonded or fused to the convex surface, thereby avoiding wrinkles or bulges in the burstable membrane which may adversely affect the consistency of the emitted dose of the delivery device.
The medicament respiratory delivery device of this invention further includes a piercing element movable to pierce the pierceable closure of the cartridge and a manually compressible pressure actuator which delivers fluid under pressure through the housing inlet upon piercing of the pierceable closure, thereby rupturing the burstable membrane and expressing the medicament in the passage entrained in fluid to the outlet of the delivery device. In the most preferred embodiment, the piercing element pierces the pierceable closure prior to delivery of sufficient pressure to the burstable membrane to rupture the membrane. In the preferred embodiment, the piercing element includes an actuator portion and a shaft portion having a piercing end and the cartridge includes an integral tubular portion coaxially aligned with the pierceable closure which receives the piercing end of the shaft and which guides the piercing end of the piercing element. In this embodiment, the actuator portion of the piercing element is located within the pressure actuator, such that actuation of the pressure actuator also moves the shaft portion of the piercing element to pierce the pierceable closure.
In the preferred embodiment of the medicament respiratory delivery device of this invention, the housing is comprised of two opposed thermoformed thermoplastic sheets bonded together, wherein the sheets have formed therebetween a central chamber, an inlet communicating with the chamber, a collapsible or compressible pressure actuator having an outlet communicating with the inlet to the chamber and an inlet opposite the inlet to the chamber preferably including a generally conical diffuser portion. The medicament cartridge is thereby encapsulated between the thermoformed thermoplastic bonded sheets forming the housing chamber. In the disclosed embodiment, the pressure actuator is bulb-shaped, preferably symmetrical with respect to the axis of the inlet and outlet of the chamber; however, the pressure actuator may also be a bellows-type pressure actuator either symmetrical with respect to the axis of the chamber inlet and outlet or extending from either of the thermoformed sheets. Where the pressure actuator is bulb-shaped or spherical, the acuator portion of the piercing element is bow-shaped having a concave arcuate portion generally conforming to the bulb-shape of the pressure actuator and a concave arcuate portion connected to or integral with the ends of the concave arcuate portion and the shaft portion is connected to the end of the concave portion, such that compression collapsing of the bulb-shaped pressure actuator collapses the actuator portion of the piercing element, driving the piercing end of the shaft through the pierceable closure of the capsule and deliver fluid under pressure to the cartridge passage, rupturing the burstable membrane and expressing entrained medicament through the outlet of the delivery device.
As set forth above, the medicament respiratory delivery device of this invention may be utilized to aerosolize any medicament, drug or vaccine, referred to herein generically as a medicament, including liquid, powder or even gaseous medicaments. For example, the cartridge may contain a unit dose of a liquid or powder medicament or the bulb may be filled with a liquid, such as a diluent or medicament, and the cartridge may be filled with a powder medicament, wherein the powder medicament is simultaneously reconstituted by a diluent, for example, and expressed by the medicament respiratory delivery device of this invention to the respiratory system of a user or patient.
The preferred embodiments of the medicament respiratory delivery device of this invention are particularly, but not exclusively, adapted for pulmonary, intranasal or buccal medicament delivery of a liquid or powder medicament, wherein the patient's inspiratory flowrate is not the driving force behind the delivery of the medicament. In the most preferred embodiment, the burstable membrane is formed of a preferentially oriented polyolefin film, preferably a uniaxially oriented polyethylene film having a thickness of about 1 mil and having a burst pressure of less than 5 atmospheres. Polyolefin films can be oriented by drawing in one or both mutually perpendicular directions in the plane of the film to impart strength thereto using methods known in the art. Oriented polyolefin films include machine direction and transverse direction orientation. Oriented polyolefin films include uniaxially or biaxially oriented films, with uniaxially oriented films being preferred. Uniaxially-oriented films have properties to their advantage for use as the burstable membrane, including relatively high stiffness, as indicated by the tensile modulus in a particular direction, usually the machine direction, compared to the transverse direction. Properties of the oriented polyolefin film can be dependent to a certain degree on the particular process conditions under which the polyolefin film was manufactured. For example, a stiffer film with lower transverse burst pressure properties would result from an orientation process incorporating a larger machine direction orientation draw ratio. Thus, oriented polyolefins films can be tailored to provide an appropriate burst pressure property within a preferred film thickness range. However, the burstable film may also be formed from various polymers, including cast polyethylene and polyethylene copolymers and scored or embossed polypropylene, acetate or polycarbonate. The medicament respiratory delivery of this device consistently delivers a predetermined quantity or dose of medicament to the respiratory system, is relatively simple and inexpensive to manufacture, and preferably is disposable following use. Other advantages and meritorious features of the medicament respiratory delivery device of this invention will be more fully understood from the following description of the preferred embodiments, the claims and the appended drawings, a brief description of which follows.
In the preferred embodiment of the medicament cartridge 20, the outlet end 26 of the body 24 is convex or frustoconical surrounding the passage 30 and the burstable membrane 32 comprises a thin polyolefin film which is stretched taut over the convex end 26 and bonded to the convex end, thereby avoiding wrinkles in the burstable membrane 32 which may adversely affect the consistency of the emitted dose from the medicament respiratory delivery device, particularly at lower pressures. In the preferred embodiment, the burstable membrane 32 is formed from a thin sheet or film of polyolefin or a polyolefin copolymer, most preferably polyethylene or a polyethylene copolymer having a thickness of between 0.3 and 1.5 mils and a burst pressure of between 1.2 and 10 atmospheres, more preferable less than 5 atmospheres and most preferably between 1.5 and 4 atmospheres. The film is heat bonded or fused to the convex surface 26 of the outlet end of the body 24. In the most preferred embodiment, the burstable membrane is formed from a thin preferentially or uniaxially oriented polyethylene film as discussed further below.
The opposed end of the passage 30 is sealed with a pierceable closure 34 as shown in
The embodiment of the medicament respiratory delivery device shown in
The disclosed embodiment of the medicament respiratory delivery device 22 of this invention further includes a manually compressible pressure actuator 52 and a piercing element 54. In the preferred embodiment of the medicament respiratory delivery device of this invention, the pressure actuator 52 and the piercing element 54 cooperate to first pierce the pierceable closure 34 of the medicament cartridge and then deliver fluid under pressure through the pierced opening, as shown in
The disclosed embodiment of the piercing element 54 includes a bow-shaped actuator portion 58 and a shaft portion 60 having an enlarged sharp piercing end 62. As best shown in
As set forth above, the housing of the medicament respiratory delivery device 22 may be vacuum formed from various thermoplastic polymers, including polyethylene, polypropylene, acetate, polycarbonate, etc. As will be understood, the sheets 40 and 42 may be separately vacuum formed, the cartridge 20 and the piercing element 54 is then assembled into one of the vacuum formed sheet halves and the vacuum formed sheets may then be heat fused together around the periphery as shown. As set forth above, the cartridge 20 may be filled with any suitable medicament, such as the liquid medicament 70 shown in
Having described one preferred embodiment of the medicament respiratory delivery device 22 and the method of making same, the operation of the medicament respiratory delivery device will now be described with reference to
The operation of the medicament delivery device 22 shown in
As will now be understood, the medicament respiratory delivery device of this invention may be utilized to delivery various substances to the respiratory system of the user including medicaments, drugs and vaccines via the nasal, pulmonary or buccal routes used in the prevention, diagnosis, alleviation, treatment or cure of diseases. These substances may include, for example, (i) drugs such as Anti-Angiogenesis agents, Antisense, anto-ulcer, butorphanol, Calcitonin and analogs, COX-II inhibitors, desmopressin and analogs, dihydroergotamie, Dopamine agonists and antagonists, Enkephalins and other opioid peptides, Growth hormone and analogs (including growth hormone releasing hormone), Growth hormone antagonists, IgE suppressors, Insulin, insulinotropin and analogs, Ketamine, Kytril, Leutenizing hormone releasing hormone and analogs, lidocaine, metoclopramide, Midazolam, Narcotic analgesics, neuraminidase inhibitors, nicotine, Non-steroid anto-inflammatory agents, Oligosaccharides, ondansetron, Parathyroid hormone and analogs, Parathyroid hormone antagonists, Prostaglandin antagonists, Prostaglandins, Recombinant soluble receptors, scopolamine, Serotonin agonists and antagonists, Sildenafil, Terbutaline, vasopressin, (ii) Vaccines with or without carriers/adjuvants such as prophylactics and therapeutic antigens (including but not limited to subunit protein, peptide and polysaccharide, polysaccharide conjugates, toxoids, genetic based vaccines, live attenuated, reassortant, inactivated, whole cells, viral and bacterial vectors) in connection with arthritis, cholera, cocaine addiction, HIB, meningococcus, measles, mumps, rubella, varicella, yellow fever, Respiratory syncytial virus, pneumococcus, streptococcus. Typhoid, influenza, hepatitis, including hepatitis A, B, C and E, polio, HIV, parainfluenza, rotavirus, CMV, chlamydia, non-typeable haemophilus, moraxella catarrhalis, human papilloma virus, tuberculosis including BCG, gonorrhea, asthma, atheroschlerosis, malaria, otitis media, E-coli, Alzheimers, H. Pylori, salmonella, diabetes, cancer and herpes simplex, and (iii) other substances in all of the major therapeutics such as Agents for the common cold, Anti-addiction, anti-infectives, analgesics, anesthetics, anorexics, antiarthritics, anti-allergy agents, antiasthmatic agents, anticonvulsants, antidepressants, antidiabetic agents, anti-depressants, anti-diuretics, anti-emetics, antihistamines, anti-inflammatory agents, antimigraine preparations, antimotion sickness preparations, antineuseants, antieoplastics, anti-obesity, antiosteoporeteic, antiparkinsonism drugs, antipruritics, antipsychotics, antipyretics, anticholinergics, benzodiazepine antagonists, bone stimulating agents, central nervous system stimulants, hormones, hypnotics, immunosuppressives, prostaglandins, proteins, peptides, polypeptides and other macromolecules, psychostimulants, rhinitis treatment, sedatives, sexual hypofucnction, tranquilizers and vitamins including B12.
Computer modeling and testing of a prototype cartridge having a cylindrical bore or passage filled with a powder and various thin rupturable membranes indicated that a preferentially or uniaxially oriented polyethylene film having a thickness of about 0.5 mils resulted in an emitted dose of about 97% of powder from the passage with a burst pressure of about 3 atmospheres. Burst tests of burstable membranes were conducted by the applicant using a syringe to deliver gas under pressure to a cartridge having burstable membranes sealing both ends of the passage. The cartridge was placed in a test fixture simulating a medicament respiratory delivery device. The membranes of the cartridge each had a surface area of 0.049 in2 (3 mm diameter). The stopper was moved through the barrel under controlled conditions at 25 in/min and the burst pressure (force divided by area) and emitted dose (i.e. percentage of powder emitted from the passage, HPLC assay) was measured. Computer modeling indicated that the most preferred embodiment of the cartridge included a burstable membrane only at the outlet or exit end of the cartridge. Thus, the medicament delivery device of this invention results in the greatest emitted dose from the passage 30 because the inlet closure 34 is ruptured by piercing prior to delivery of fluid to the passage. Prototype testing by the applicant of other burstable membranes as described above indicated that the next preferred burstable membrane film was a cast 50/50 polyolefin copolymer of ethylene and methylacrylate and having a thickness of about one mil and a burst pressure of 2 atmospheres, wherein the emitted dose was about 95%. The applicant also tested a polyethylene film having a thickness of about 0.9 mil wherein the polyethylene film had a checkerboard embossment having a burst pressure of 3 atmospheres, wherein the emitted dose was about 91%. It is also believed that the films formed from other polymers may be utilized for the burstable membrane 32 including, for example, polypropylene, acetate and polycarbonate. However, it is believed that such other films should also be scored or embossed to reduce the burst pressure of the burstable membrane. As set forth above, the pierceable closure 34 may be formed of various pierceable films or sheets. In the most preferred embodiment, the pierceable closure 34 is integrally formed with the body 24 of the cartridge, such as by injection molding. Thus, where the burstable membrane 32 is formed from a film of a polyolefin, most preferably polyethylene or polyethylene copolymer or blend and heat fused to the end 26 of the cartridge, the cartridge is most preferably formed from a polyethylene or a polyethylene copolymer, such that the pierceable membrane may also be formed of polyethylene. The thermoformed sheets 40 and 42 which form the housing may also be formed from various thermoformable plastic polymers including polyethylene, polypropylene, polycarbonates, etc.
Having described preferred embodiments of the medicament respiratory delivery device of this invention, it will be understood that various modifications may be made within the purview of the appended claims. For example, the passage 30 through the cartridge is preferably generally cylindrical; however, the passage may also include other shapes or configurations including, for example, an hourglass shape.
This application is a continuation application of Ser. No. 09/879,714 filed on Jun. 12, 2001, now U.S. Pat. No. 6,443,152, which is a continuation in part application of Ser. No. 09/758,776 filed on Jan. 12, 2001, now U.S. Pat. No. 6,722,364.
Number | Name | Date | Kind |
---|---|---|---|
2307986 | Bolte et al. | Jan 1943 | A |
3625213 | Brown | Dec 1971 | A |
3807400 | Cocozza | Apr 1974 | A |
3874380 | Baum | Apr 1975 | A |
3934585 | Maurice | Jan 1976 | A |
3949751 | Birch et al. | Apr 1976 | A |
4344573 | De Felice | Aug 1982 | A |
4723691 | Minkevitch et al. | Feb 1988 | A |
4900315 | Lundqvist et al. | Feb 1990 | A |
4962868 | Borchard | Oct 1990 | A |
5215221 | Dirksing | Jun 1993 | A |
5239991 | Chawla et al. | Aug 1993 | A |
5307953 | Regan | May 1994 | A |
5328464 | Kriesel et al. | Jul 1994 | A |
5331954 | Rex et al. | Jul 1994 | A |
5349947 | Newhouse et al. | Sep 1994 | A |
5458135 | Patton et al. | Oct 1995 | A |
5513630 | Century | May 1996 | A |
5533505 | Kallstrand et al. | Jul 1996 | A |
5542412 | Century | Aug 1996 | A |
5547131 | Brace | Aug 1996 | A |
5571246 | Alldredge | Nov 1996 | A |
5601077 | Imbert | Feb 1997 | A |
5619984 | Hodson et al. | Apr 1997 | A |
5637087 | O'Neil et al. | Jun 1997 | A |
5702362 | Herold et al. | Dec 1997 | A |
5740794 | Smith et al. | Apr 1998 | A |
5787881 | Chawla | Aug 1998 | A |
5797392 | Keldmann et al. | Aug 1998 | A |
5819730 | Stone et al. | Oct 1998 | A |
5881716 | Wirch et al. | Mar 1999 | A |
5881719 | Gottenauer et al. | Mar 1999 | A |
5881720 | Vindogradov et al. | Mar 1999 | A |
5894967 | Stahley et al. | Apr 1999 | A |
5918594 | Asking et al. | Jul 1999 | A |
5921236 | Ohki et al. | Jul 1999 | A |
5941867 | Kao | Aug 1999 | A |
5983893 | Wetterlin | Nov 1999 | A |
6065472 | Anderson et al. | May 2000 | A |
6070575 | Gonda et al. | Jun 2000 | A |
6098619 | Britto et al. | Aug 2000 | A |
6105574 | Jahnsson | Aug 2000 | A |
6209538 | Casper et al. | Apr 2001 | B1 |
6214255 | Hekal | Apr 2001 | B1 |
6267753 | Kao | Jul 2001 | B1 |
6286507 | Jahnsson | Sep 2001 | B1 |
6308704 | Wennerberg | Oct 2001 | B1 |
6443152 | Lockhart et al. | Sep 2002 | B1 |
6585959 | Walz et al. | Jul 2003 | B2 |
6606992 | Schuler | Aug 2003 | B1 |
6644309 | Casper et al. | Nov 2003 | B2 |
6722364 | Connelly et al. | Apr 2004 | B2 |
6782887 | Sullivan | Aug 2004 | B2 |
6929005 | Sullivan et al. | Aug 2005 | B2 |
7040316 | Connelly et al. | May 2006 | B2 |
7051734 | Casper et al. | May 2006 | B2 |
20020092523 | Connelly et al. | Jul 2002 | A1 |
20040163645 | Connelly et al. | Aug 2004 | A1 |
20050000514 | Sullivan et al. | Jan 2005 | A1 |
20060150969 | Connelly et al. | Jul 2006 | A1 |
Number | Date | Country |
---|---|---|
1338254 | Nov 1973 | GB |
1488719 | Oct 1977 | GB |
WO9205824 | Apr 1992 | WO |
WO9206727 | Apr 1992 | WO |
WO9706842 | Feb 1997 | WO |
WO9710017 | Mar 1997 | WO |
WO9725087 | Jul 1997 | WO |
WO9740876 | Nov 1997 | WO |
WO9947099 | Sep 1999 | WO |
WO9956807 | Nov 1999 | WO |
Number | Date | Country | |
---|---|---|---|
20030047184 A1 | Mar 2003 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 09879714 | Jun 2001 | US |
Child | 10233863 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 09758776 | Jan 2001 | US |
Child | 09879714 | US |