The present invention relates to novel pharmaceutical compositions based on β2 agonists with a long-lasting effect and salts of a new anticholinergic, processes for preparing them, and their use in the treatment of respiratory complaints.
a: shows an inhaler for use in pharmaceutical compositions according this invention.
a: shows a longitudinal section through the atomizer with the spring under tension.
b: shows a longitudinal section through the atomizer with the spring released.
The present invention relates to novel pharmaceutical compositions based on β2 agonists with a long-lasting effect and salts of a new anticholinergic 1, processes for preparing them, and their use in the treatment of respiratory complaints.
Within the scope of the present invention the anticholinergic agents used are the salts of formula 1
wherein:
Preferably, the salts of formula 1 are used wherein X− denotes an anion with a single negative charge selected from among chloride, bromide, 4-toluenesulfonate, and methanesulfonate, preferably bromide.
Most preferably, the salts of formula 1 are used wherein X− denotes an anion with a single negative charge selected from among chloride, bromide, and methanesulfonate, preferably bromide.
Particularly preferred according to the invention is the salt of formula 1 wherein X− denotes bromide.
Anticholinergics may appropriately be used to treat a number of diseases. Particular mention should be made, for example, of the treatment of asthma or chronic obstructive pulmonary disease). For treating these diseases WO 92/16528 proposes, for example, anticholinergics which have a scopine, tropenol, or tropine basic structure.
The problem on which WO 92/16528 is based is the preparation of anticholinergically active compounds which are characterized by their long-lasting activity. To solve this problem, WO 92/16528 discloses inter alia benzilic acid esters of scopine, tropenol, or tropine.
For treating chronic diseases, it is often desirable to prepare pharmaceutical compositions with a longer-lasting effect. This will generally ensure that the concentration of the active substance needed to achieve the therapeutic effect is present in the body for a longer period of time without the need for the pharmaceutical composition to be administered repeatedly and all too frequently. Moreover, if an active substance is administered at longer intervals of time, this contributes to the feeling of well-being of the patient to a considerable degree. It is particularly desirable to provide a pharmaceutical composition which can be used to therapeutically good effect by administering it once a day (single dose). A single application per day has the advantage that the patient can become accustomed relatively quickly to the regular taking of the medicament at a particular time of the day.
If it is to be used as a medicament for administration once a day, the active substance which is to be given must meet particular requirements. First of all, the desired onset of the activity after the administration of the pharmaceutical composition should occur relatively quickly and ideally the activity should remain as constant as possible over a fairly lengthy ensuing period. On the other hand, the duration of activity of the pharmaceutical composition should not greatly exceed a period of about one day. Ideally, an active substance should have an activity profile such that the preparation of a pharmaceutical composition which is intended to be administered once a day and contains the active substance in therapeutically appropriate doses can be properly controlled.
It has been found that the esters of scopine, tropenol, or tropine disclosed in WO 92/16528 do not meet these more stringent requirements. Because of their extremely long duration of activity, significantly exceeding the period of about one day specified above, they cannot be used therapeutically in a single once-a-day dose. The salts of formula 1, however, meet this requirement.
Surprisingly, an unexpectedly beneficial therapeutic effect, particularly a synergistic effect, can be observed in the treatment of inflammatory and/or obstructive diseases of the respiratory tract if the anticholinergic of formula 1 is used with one or more betamimetics 2. In view of this synergistic effect, the pharmaceutical combinations according to the invention can be used in smaller doses than would be the case with the individual compounds used in monotherapy in the usual way. As a further positive aspect of the present invention, unwanted side effects such as may occur when β2 agonists are administered, for example, are thus reduced. Undesirable side effects in this context are, in particular, the stimulant effects on the heart which are sometimes caused by betamimetics, especially tachycardia, palpitations, angina-pectoris-like pain, and arrhythmia.
The effects mentioned above may be observed both when the two active substances are administered simultaneously in a single active substance formulation and when they are administered successively in separate formulations. According to the invention, it is preferable to administer the two active substance ingredients simultaneously in a single formulation.
Within the scope of the present invention, any reference to the compound 1′ is to be regarded as a reference to the pharmacologically active cation of the following formula contained in the salts 1:
In the pharmaceutical combinations mentioned above, the active substances may be combined in a single preparation or contained in two separate formulations. Pharmaceutical compositions which contain the active substances 1 and 2 in a single preparation are preferred according to the invention.
Salmeterol salts or formoterol salts are preferably used as the long-acting betamimetics 2 according to the invention. Any reference to the term betamimetics 2 also includes a reference to the relevant enantiomers or mixtures thereof. Accordingly, any reference to the preferred compounds 2 according to the invention, the salts of salmeterol and formoterol, also includes the relevant enantiomeric salts of R-salmeterol, S-salmeterol, R,R-formoterol, S,S-formoterol, R,S-formoterol, S,R-formoterol, and the mixtures thereof, while the enantiomeric salts of R-salmeterol and R,R-formoterol are of particular importance. The compounds 2 may also be present according to the invention in the form of the hydrates or solvates thereof.
The long-acting betamimetics 2 may also be the salts of the compounds of formula 2a′,
wherein:
Preferably, salts of the compounds of formula 2a′ wherein:
More preferably, salts of the compounds of formula 2a′ wherein:
Most preferably, according to the invention, the salts of the following compounds of formula 2a′ wherein:
The compounds of formula 2a′ are known from WO 00/75114.
Of the compounds mentioned above, the structure defined in (a), wherein R1 and R2 denote hydrogen and R3 and R4 denote ethyl, are exceptionally important in the pharmaceutical combinations according to the invention. The acid addition salt of this compound is hereinafter referred to as compound 2aa, while any reference to the free base of this compound is characterized by the designation 2aa′ according to the following formula:
In the pharmaceutical compositions according to the invention, the salts of the compounds of formula 2a′ may be present in the form of their racemates, enantiomers, or mixtures thereof. The separation of the enantiomers from the racemates may be carried out using methods known in the art (e.g., by chromatography on chiral phases, etc.). If the salts of the compounds of formula 2a′ are used in the form of their enantiomers, it is particularly preferable to use the enantiomers in the R configuration at the C—OH group.
The alkyl groups used, unless otherwise stated, are branched and unbranched alkyl groups having 1 to 4 carbon atoms. Examples include: methyl, ethyl, propyl, or butyl. The groups methyl, ethyl, propyl, or butyl may optionally also be referred to by the abbreviations Me, Et, Prop, or Bu. Unless otherwise stated, the definitions propyl and butyl also include all possible isomeric forms of the groups in question. Thus, for example, propyl includes n-propyl and isopropyl, butyl includes isobutyl, sec-butyl, and tert-butyl, etc.
The alkylene groups used, unless otherwise stated, are branched and unbranched double-bonded alkyl bridges with 1 to 4 carbon atoms. Examples include: methylene, ethylene, propylene, or butylene.
The alkyloxy groups used (also known as —O—C1-C4-alkyl groups), unless otherwise stated, are branched and unbranched alkyl groups with 1 to 4 carbon atoms which are linked via an oxygen atom. The following may be mentioned, for example: methyloxy, ethyloxy, propyloxy, or butyloxy. The groups methyloxy, ethyloxy, propyloxy, or butyloxy may optionally also be referred to by the abbreviations MeO, EtO, PropO, or BuO. Unless otherwise stated, the definitions propyloxy and butyloxy also include all possible isomeric forms of the groups in question. Thus, for example, propyloxy includes n-propyloxy and isopropyloxy, butyloxy includes isobutyloxy, sec-butyloxy, and tert-butyloxy, etc. The word alkoxy may also possibly be used within the scope of the present invention instead of the word alkyloxy. The groups methyloxy, ethyloxy, propyloxy, or butyloxy may optionally also be referred to as methoxy, ethoxy, propoxy, or butoxy.
The alkylene-alkyloxy groups used, unless otherwise stated, are branched and unbranched double-bonded alkyl bridges with 1 to 4 carbon atoms which may be mono-, di-, or trisubstituted, preferably monosubstituted, by an alkyloxy group.
Within the scope of the present invention, any reference to compounds 2 should be taken to mean a reference to physiologically acceptable acid addition salts thereof. Examples of physiologically acceptable acid addition salts of the betamimetics 2 according to the invention are the pharmaceutically acceptable salts which are selected from among the salts of hydrochloric acid, hydrobromic acid, sulfuric acid, phosphoric acid, methanesulfonic acid, acetic acid, fumaric acid, succinic acid, lactic acid, citric acid, tartaric acid, 1-hydroxy-2-naphthalenecarboxylic acid, 4-phenylcinnamic acid, 5-(2,4-difluorophenyl)salicylic acid, or maleic acid. If desired, mixtures of the abovementioned acids may also be used to prepare the salts 2.
According to the invention, the salts of the betamimetics 2 selected from among the hydrochloride, hydrobromide, sulfate, phosphate, fumarate, methanesulfonate, 4-phenylcinnamate, 5-(2,4-difluorophenyl)salicylate, maleate, and xinafoate are preferred. Particularly preferred are the salts of 2 in the case of salmeterol selected from among the hydrochloride, sulfate, 4-phenylcinnamate, 5-(2,4-difluorophenyl)salicylate, and xinafoate, of which the 4-phenylcinnamate, 5-(2,4-difluorophenyl)salicylate, and especially xinafoate are particularly important. Particularly preferred are the salts of 2 in the case of formoterol selected from the hydrochloride, sulfate, and fumarate, of which the hydrochloride and fumarate are particularly preferred. Of exceptional importance according to the invention is formoterol fumarate. Most preferably, the salts of 2 in the case of the compound 2aa′ are selected from among the hydrochloride and maleate, of which the maleate is particularly preferred.
Where the present invention refers to betamimetics which are not in the form of salts, this is indicated by a reference to compounds 2′. For example, the preferred betamimetics 2′ according to the invention which are not in salt form include the free base of formoterol, salmeterol or the compounds of formula 2a′, whereas the particularly preferred compounds 2 according to the invention are salmeterol xinafoate, formoterol fumarate, or an acid addition salt 2a of a compound of formula 2a′.
Within the scope of the present invention, the betamimetics 2 may possibly also be referred to as sympathomimetics or β2-agonists. All these terms are to be regarded as interchangeable for the purposes of the present invention.
In one aspect, the present invention relates to the abovementioned pharmaceutical compositions which contain, in addition to therapeutically effective quantities of 1 and 2, a pharmaceutically acceptable carrier. In another aspect, the present invention relates to the abovementioned pharmaceutical compositions which do not contain any pharmaceutically acceptable carrier in addition to therapeutically effective quantities of 1 and 2.
The present invention also relates to the use of therapeutically effective quantities of the salts 1 for preparing a pharmaceutical composition containing long-acting betamimetics 2 for treating inflammatory or obstructive diseases of the respiratory tract. Preferably, the present invention relates to the abovementioned use for preparing a pharmaceutical composition for treating asthma or COPD.
Within the scope of the present invention the compounds 1 and 2 may be administered simultaneously or successively, while it is preferable according to the invention to administer compounds 1 and 2 simultaneously.
The present invention further relates to the use of therapeutically effect amounts of salts 1 and long-acting betamimetics 2 for treating inflammatory or obstructive respiratory complaints, particularly asthma or COPD.
The proportions in which the active substances 1 and 2 may be used in the active substance combinations according to the invention are variable. Active substances 1 and 2 may possibly be present in the form of their solvates or hydrates. Depending on the choice of the compounds 1 and 2, the weight ratios which may be used within the scope of the present invention vary on the basis of the different molecular weights of the various salt forms. Therefore, the weight ratios specified below were based on the cation 1′ and the free bases 2′ of the betamimetics salmeterol, formoterol and the compound 2aa′ (a compound of formula 2a wherein R1 and R2 denote hydrogen and R3 and R4 denote ethyl) which are preferred according to the invention.
The pharmaceutical combinations according to the invention may contain 1′ and 2′ in the case of formoterol, for example, in ratios by weight ranging from 1:10 to 300:1, preferably from 1:5 to 200:1, preferably 1:3 to 150:1, more preferably from 1:2 to 100:1. For example, without restricting the scope of the invention thereto, preferred combinations of 1 and 2 according to the invention may contain the cation 1′ and formoterol 2′ in the following weight ratios: 1:5, 1:4, 1:3, 1:2, 1:1, 2:1, 3:1, 4:1, 5:1, 6:1, 7:1, 8:1, 9:1, 10:1, 11:1, 12:1, 13:1, 14:1, 15:1, 16:1, 17:1, 18:1, 19:1, 20:1, 21:1, 22:1, 23:1, 24:1, 25:1, 26:1, 27:1, 28:1, 29:1, 30:1, 31:1, 32:1, 33:1, 34:1, 35:1, 36:1, 37:1, 38:1, 39:1, 40:1, 41:1, 42:1, 43:1, 44:1, 45:1, 46:1, 47:1, 48:1, 49:1, 50:1, 51:1, 52:1, 53:1, 54:1, 55:1, 56:1, 57:1, 58:1, 59:1, 60:1, 61:1, 62:1, 63:1, 64:1, 65:1, 66:1, 67:1, 68:1, 69:1, 70:1, 71:1, 72:1, 73:1, 74:1, 75:1, 76:1, 77:1, 78:1, 79:1, 80:1, 81:1, 82:1, 83:1, 84:1, 85:1, 86:1, 87:1, 88:1, 89:1, 90:1, 91:1, 92:1, 93:1, 94:1, 95:1, 96:1, 97:1, 98:1, 99:1, or 100:1.
The pharmaceutical compositions according to the invention containing the combinations of 1 and 2 are normally administered so that the pharmacologically active cation 1′ and formoterol 2′ are present together in doses of 5 μg to 5000 μg, preferably from 10 μg to 2000 μg, more preferably from 15 μg to 1000 μg, better still from 20 μg to 800 μg, preferably, according to the invention, from 30 μg to 600 μg, preferably from 40 μg to 500 μg.
For example, combinations of 1 and 2 according to the invention contain a quantity of cation 1′ and formoterol 2′ such that the total dosage per single dose is about 10 μg, 15 μg, 20 μg, 25 μg, 30 μg, 35 μg, 45 μg, 50 μg, 55 μg, 60 μg, 65 μg, 70 μg, 75 μg, 80 μg, 85 μg, 90 μg, 95 μg, 100 μg, 105 μg, 110 μg, 115 μg, 120 μg, 125 μg, 130 μg, 135 μg, 140 μg, 145 μg, 150 μg, 155 μg, 160 μg, 165 μg, 170 μg, 175 μg, 180 μg, 185 μg, 190 μg, 195 μg, 200 μg, 205 μg, 210 μg, 215 μg, 220 μg, 225 μg, 230 μg, 235 μg, 240 μg, 245 μg, 250 μg, 255 μg, 260 μg, 265 μg, 270 μg, 275 μg, 280 μg, 285 μg, 290 μg, 295 μg, 300 μg, 305 μg, 310 μg, 315 μg, 320 μg, 325 μg, 330 μg, 335 μg, 340 μg, 345 μg, 350 μg, 355 μg, 360 μg, 365 μg, 370 μg, 375 μg, 380 μg, 385 μg, 390 μg, 395 μg, 400 μg, 405 μg, 410 μg, 415 μg, 420 μg, 425 μg, 430 μg, 435 μg, 440 μg, 445 μg, 450 μg, 455 μg, 460 μg, 465 μg, 470 μg, 475 μg, 480 μg, 485 μg, 490 μg, 495 μg, 500 μg, 505 μg, 510 μg, 515 μg, 520 μg, 525 μg, 530 μg, 535 μg, 540 μg, 545 μg, 550 μg, 555 μg, 560 μg, 565 μg, 570 μg, 575 μg, 580 μg, 585 μg, 590 μg, 595 μg, 600 μg, or similar. It is clear to anyone skilled in the art that the suggested dosages per single dose specified above are not to be regarded as being limited to the numerical values actually stated. Fluctuations of about ±2.5 μg, particularly in the decimal range, are also included, as will be apparent to one of skill in the art. In these dosage ranges, the active substances 1′ and 2′ may be present in the weight ratios given above.
For example, without restricting the scope of the invention thereto, the combinations of 1 and 2 according to the invention may contain a quantity of cation 1′ and formoterol 2′ such that, for each single dose, 8.3 μg of 1′ and 2.5 μg of 2′, 8.3 μg of 1′ and 4.9 μg of 2′, 8.3 μg of 1′ and 9.8 μg of 2′, 8.3 μg of 1′ and 14.7 μg of 2′, 8.3 μg of 1′ and 19.6 μg of 2′, 8.3 μg of 1′ and 24.4 μg of 2′, 16.5 μg of 1′ and 2.5 μg of 2′, 16.5 μg of 1′ and 4.9 μg of 2′, 16.5 μg of 1′ and 9.8 μg of 2′, 16.5 μg of 1′ and 14.7 μg of 2′, 16.5 μg of 1′ and 19.6 μg of 2′, 16.5 μg of 1′ and 24.4 μg of 2′, 33.0 μg of 1′ and 2.5 μg of 2′, 33.0 μg of 1′ and 4.9 μg of 2′, 33.0 μg of 1′ and 9.8 μg of 2′, 33.0 μg of 1′ and 14.7 μg of 2′, 33.0 μg of 1′ and 19.6 μg of 2′, 33.0 μg of 1′ and 24.4 μg of 2′, 49.5 μg of 1′ and 2.5 μg of 2′, 49.5 μg of 1′ and 4.9 μg of 2′, 49.5 μg of 1′ and 9.8 μg of 2′, 49.5 μg of 1′ and 14.7 μg of 2′, 49.5 μg of 1′ and 19.6 μg of 2′, 49.5 μg of 1′ and 24.4 μg of 2′, 82.6 μg of 1′ and 2.5 μg of 2′, 82.6 μg of 1′ and 4.9 μg of 2′, 82.6 μg of 1′ and 9.8 μg of 2′, 82.6 μg of 1 ′ and 14.7 μg of 2′, 82.6 μg of 1′ and 19.6 μg of 2′, 82.6 μg of 1′ and 24.4 μg of 2′, 165.1 μg of 1′ and 2.5 μg of 2′, 165.1 μg of 1′ and 4.9 μg of 2′, 165.1 μg of 1′ and 9.8 μg of 2′, 165.1 μg of 1′ and 14.7 μg of 2′, 165.1 μg of 1′ and 19.6 μg of 2′, 165.1 μg of 1′ and 24.4 μg of 2′, 206.4 μg of 1′ and 2.5 μg of 2′, 206.4 μg of 1′ and 4.9 μg of 2′, 206.4 μg of 1′ and 9.8 μg of 2′, 206.4 μg of 1′ and 14.7 μg of 2′, 206.4 μg of 1′ and 19.6 μg of 2′, 206.4 μg of 1′ and 24.4 μg of 2′, 412.8 μg of 1′ and 2.5 μg of 2′, 412.8 μg of 1′ and 4.9 μg of 2′, 412.8 μg of 1′ and 9.8 μg of 2′, 412.8 μg of 1′ and 14.7 μg of 2′, 412.8 μg of 1′ and 19.6 μg of 2′, or 412.8 μg of 1′ and 24.4 μg of 2′ are present.
If the active substance combination in which the bromide is used as the salt 1 and in which 2 denotes formoterol fumarate is used as the preferred combination of 1 and 2 according to the invention, the quantities of active substance 1′ and 2′ administered per single dose mentioned by way of example correspond to the following quantities of 1 and 2 administered per single dose: 10 μg of 1 and 2.9 μg of 2, 10 μg of 1 and 5.7 μg of 2, 10 μg of 1 and 11.5 μg of 2, 10 μg of 1 and 17.2 μg of 2, 10 μg of 1 and 22.9 μg of 2, 10 μg of 1 and 28.5 μg of 2, 20 μg of 1 and 2.9 μg of 2, 20 μg of 1 and 5.7 μg of 2, 20 μg of 1 and 11.5 μg of 2, 20 μg of 1 and 17.2 μg of 2, 20 μg of 1 and 22.9 μg of 2, 20 μg of 1 and 28.5 μg of 2, 40 μg of 1 and 2.9 μg of 2, 40 μg of 1 and 5.7 μg of 2, 40 μg of 1 and 11.5 μg of 2, 40 μg of 1 and 17.2 μg of 2, 40 μg of 1 and 22.9 μg of 2, 40 μg of 1 and 28.5 μg of 2, 60 μg of 1 and 2.9 μg of 2, 60 μg of 1 and 5.7 μg of 2, 60 μg of 1 and 11.5 μg of 2, 60 μg of 1 and 17.2 μg of 2, 60 μg of 1 and 22.9 μg of 2, 60 μg of 1 and 28.5 μg of 2, 100 μg of 1 and 2.9 μg of 2, 100 μg of 1 and 5.7 μg of 2, 100 μg of 1 and 11.5 μg of 2, 100 μg of 1 and 17.2 μg of 2, 100 μg of 1 and 22.9 μg of 2, 100 μg of 1 and 28.5 μg of 2, 200 μg of 1 and 2.9 μg of 2, 200 μg of 1 and 5.7 μg of 2, 200 μg of 1 and 11.5 μg of 2, 200 μg of 1 and 17.2 μg of 2, 200 μg of 1 and 22.9 μg of 2, 200 μg of 1 and 28.5 μg of 2, 250 μg of 1 and 2.9 μg of 2, 250 μg of 1 and 5.7 μg of 2, 250 μg of 1 and 11.5 μg of 2, 250 μg of 1 and 17.2 μg of 2, 250 μg of 1 and 22.9 μg of 2, 250 μg of 1 and 28.5 μg of 2, 500 μg of 1 and 2.9 μg of 2, 500 μg of 1 and 5.7 μg of 2, 500 μg of 1 and 11.5 μg of 2, 500 μg of 1 and 17.2 μg of 2, 500 μg of 1 and 22.9 μg of 2, or 500 μg of 1 and 28.5 μg of 2.
If the active substance combination in which 2 denotes formoterol fumarate dihydrate and the salt 1 is bromide is used as a preferred combination of 1 and 2 according to the invention, the quantities of active substance 1′ and 2′ administered per single dose mentioned by way of example correspond to the following quantities of 1 and 2 administered per single dose: 10 μg of 1 and 3 μg of 2, 10 μg of 1 and 6 μg of 2, 10 μg of 1 and 12 μg of 2, 10 μg of 1 and 18 μg of 2, 10 μg of 1 and 24 μg of 2, 10 μg of 1 and 30 μg of 2, 20 μg of 1 and 3 μg of 2, 20 μg of 1 and 6 μg of 2, 20 μg of 1 and 12 μg of 2, 20 μg of 1 and 18 μg of 2, 20 μg of 1 and 24 μg of 2, 20 μg of 1 and 30 μg of 2, 40 μg of 1 and 3 μg of 2, 40 μg of 1 and 6 μg of 2, 40 μg of 1 and 12 μg of 2, 40 μg of 1 and 18 μg of 2, 40 μg of 1 and 24 μg of 2, 40 μg of 1 and 30 μg of 2, 60 μg of 1 and 3 μg of 2, 60 μg of 1 and 6 μg of 2, 60 μg of 1 and 12 μg of 2, 60 μg of 1 and 18 μg of 2, 60 μg of 1 and 24 μg of 2, 60 μg of 1 and 30 μg of 2, 100 μg of 1 and 3 μg of 2, 100 μg of 1 and 6 μg of 2, 100 μg of 1 and 12 μg of 2, 100 μg of 1 and 18 μg of 2, 100 μg of 1 and 24 μg of 2, 100 μg of 1 and 30 μg of 2, 200 μg of 1 and 3 μg of 2, 200 μg of 1 and 6 μg of 2, 200 μg of 1 and 12 μg of 2, 200 μg of 1 and 18 μg of 2, 200 μg of 1 and 24 μg of 2, 200 μg of 1 and 30 μg of 2, 250 μg of 1 and 3 μg of 2, 250 μg of 1 and 6 μg of 2, 250 μg of 1 and 12 μg of 2, 250 μg of 1 and 18 μg of 2, 250 μg of 1 and 24 μg of 2, 250 μg of 1 and 30 μg of 2, 500 μg of 1 and 3 μg of 2, 500 μg of 1 and 6 μg of 2, 500 μg of 1 and 12 μg of 2, 500 μg of 1 and 18 μg of 2, 500 μg of 1 and 24 μg of 2, or 500 μg of 1 and 30 μg of 2.
The active substance combinations according to the invention may contain 1′ and 2′, in the case of salmeterol, for example, in ratios by weight in the range from about 1:30 to 400:1, preferably 1:25 to 200:1, preferably 1:20 to 100:1, more preferably from 1:15 to 50:1.
For example, without restricting the scope of the invention thereto, preferred combinations of 1 and 2 according to the invention may contain the cation 1′ and salmeterol 2′ in the following ratios by weight: 1:15, 1:14, 1:13, 1:12, 1:11, 1:10, 1:9, 1:8, 1:7, 1:6, 1:5, 1:4, 1:3, 1:2, 1:1, 2:1, 3:1, 4:1, 5:1, 6:1, 7:1, 8:1, 9:1, 10:1, 11:1, 12:1, 13:1, 14:1, 15:1, 16:1, 17:1, 18:1, 19:1, 20:1, 21:1, 22:1, 23:1, 24:1, 25:1, 26:1, 27:1, 28:1, 29:1, 30:1, 31:1, 32:1, 33:1, 34:1, or 35:1.
The pharmaceutical compositions according to the invention containing the combinations of 1 and 2 are usually administered so that the cation 1′ and salmeterol 2′ are present together in dosages of 5 μg to 5000 μg, preferably from 10 μg to 2000 μg, more preferably from 15 μg to 1000 μg, even more preferably from 20 μg to 800 μg, and preferably according to the invention from 30 μg to 750 μg, preferably from 40 μg to 700 μg per single dose.
For example, combinations of 1 and 2 according to the invention contain an amount of 1′ and salmeterol 2′ such that the total dosage per single dose is about 15 μg, 20 μg, 25 μg, 30 μg, 35 μg, 45 μg, 50 μg, 55 μg, 60 μg, 65 μg, 70 μg, 75 μg, 80 μg, 85 μg, 90 μg, 95 μg, 100 μg, 105 μg, 110 μg, 115 μg, 120 μg, 125 μg, 130 μg, 135 μg, 140 μg, 145 μg, 150 μg, 155 μg, 160 μg, 165 μg, 170 μg, 175 μg, 180 μg, 185 μg, 190 μg, 195 μg, 200 μg, 205 μg, 210 μg, 215 μg, 220 μg, 225 μg, 230 μg, 235 μg, 240 μg, 245 μg, 250 μg, 255 μg, 260 μg, 265 μg, 270 μg, 275 μg, 280 μg, 285 μg, 290 μg, 295 μg, 300 μg, 305 μg, 310 μg, 315 μg, 320 μg, 325 μg, 330 μg, 335 μg, 340 μg, 345 μg, 350 μg, 355 μg, 360 μg, 365 μg, 370 μg, 375 μg, 380 μg, 385 μg, 390 μg, 395 μg, 400 μg, 405 μg, 410 μg, 415 μg, 420 μg, 425 μg, 430 μg, 435 μg, 440 μg, 445 μg, 450 μg, 455 μg, 460 μg, 465 μg, 470 μg, 475 μg, 480 μg, 485 μg, 490 μg, 495 μg, 500 μg, 505 μg, 510 μg, 515 μg, 520 μg, 525 μg, 530 μg, 535 μg, 540 μg, 545 μg, 550 μg, 555 μg, 560 μg, 565 μg, 570 μg, 575 μg, 580 μg, 585 μg, 590 μg, 595 μg, 600 μg, 605 μg, 610 μg, 615 μg, 620 μg, 625 μg, 630 μg, 635 μg, 640 μg, 645 μg, 650 μg, 655 μg, 660 μg, 665 μg, 670 μg, 675 μg, 680 μg, 685 μg, 690 μg, 695 μg, 700 μg, or similar. It is clear to anyone skilled in the art that the suggested dosages per single dose specified above are not to be regarded as being limited to the numerical values actually stated. Fluctuations of about ±2.5 μg, particularly in the decimal range, are also included, as will be apparent to the skilled man. In these dosage ranges, the active substances 1′ and 2′ may be present in the weight ratios given above.
For example, without restricting the scope of the invention thereto, the combinations of 1 and 2 according to the invention may contain a quantity of cation 1′ and salmeterol 2′ such that, for each single dose, 8.3 μg of 1′ and 12.5 μg of 2′, 8.3 μg of 1′ and 25 μg of 2′, 8.3 μg of 1′ and 50 μg of 2′, 8.3 μg of 1′ and 75 μg of 2′, 8.3 μg of 1′ and 100 μg of 2′, 8.3 μg of 1′ and 200 μg of 2′, 16.5 μg of 1′ and 12.5 μg of 2′, 16.5 μg of 1′ and 25 μg of 2′, 16.5 μg of 1′ and 50 μg of 2′, 16.5 μg of 1′ and 75 μg of 2′, 16.5 μg of 1′ and 100 μg of 2′, 16.5 μg of 1′ and 200 μg of 2′, 33.0 μg of 1′ and 12.5 μg of 2′, 33.0 μg of 1′ and 25 μg of 2′, 33.0 μg of 1′ and 50 μg of 2′, 33.0 μg of 1′ and 75 μg of 2′, 33.0 μg of 1′ and 100 μg of 2′, 33.0 μg of 1′ and 200 μg of 2′, 49.5 μg of 1′ and 12.5 μg of 2′, 49.5 μg of 1′ and 25 μg of 2′, 49.5 μg of 1′ and 50 μg of 2′, 49.5 μg of 1′ and 75 μg of 2 ′, 49.5 μg of 1′ and 100 μg of 2′, 49.5 μg of 1′ and 200 μg of 2′, 82.6 μg of 1′ and 12.5 μg of 2′, 82.6 μg of 1′ and 25 μg of 2′, 82.6 μg of 1′ and 50 μg of 2′, 82.6 μg of 1′ and 75 μg of 2′, 82.6 μg of 1′ and 100 μg of 2′, 82.6 μg of 1′ and 200 μg of 2′, 165.1 μg of 1′ and 12.5 μg of 2′, 165.1 μg of 1′ and 25 μg of 2′, 165.1 μg of 1′ and 50 μg of 2′, 165.1 μg of 1′ and 75 μg of 2′, 165.1 μg of 1′ and 100 μg of 2′, 165.1 μg of 1′ and 200 μg of 2′, 206.4 μg of 1′ and 12.5 μg of 2′, 206.4 μg of 1′ and 25 μg of 2′, 206.4 μg of 1′ and 50 μg of 2′, 206.4 μg of 1′ and 75 μg of 2′, 206.4 μg of 1′ and 100 μg of 2′, 206.4 μg of 1′ and 200 μg of 2′, 412.8 μg of 1′ and 12.5 μg of 2′, 412.8 μg of 1′ and 25 μg of 2′, 412.8 μg of 1′ and 50 μg of 2′, 412.8 μg of 1′ and 75 μg of 2′, 412.8 μg of 1′ and 100 μg of 2′, or 412.8 μg of 1′ and 200 μg of 2′ are present, for example.
If a combination of active substances wherein the bromide is used as the salt 1 and 2 denotes salmeterol xinafoate is used as the preferred combination of 1 and 2 according to the invention, the amounts of active substances 1′ and 2′ administered per single dose as specified hereinbefore correspond to the following amounts of 1 and 2 administered per single dose: 10 μg of 1 and 18.2 μg of 2, 10 μg of 1 and 36.3 μg of 2, 10 μg of 1 and 72.6 μg of 2, 10 μg of 1 and 108.9 μg of 2, 10 μg of 1 and 145.2 μg of 2, 10 of 1 and 290.4 μg of 2, 20 μg of 1 and 18.2 μg of 2, 20 μg of 1 and 36.3 μg of 2, 20 μg of 1 and 72.6 μg of 2, 20 μg of 1 and 108.9 μg of 2, 20 μg of 1 and 145.2 μg of 2, 20 μg of 1 and 290.4 μg of 2, 40 μg of 1 and 18.2 μg of 2, 40 μg of 1 and 36.3 μg of 2, 40 μg of 1 and 72.6 μg of 2, 40 μg of 1 and 108.9 μg of 2, 40 μg of 1 and 145.2 μg of 2, 40 μg of 1 and 290.4 μg of 2, 60 μg of 1 and 18.2 μg of 2, 60 μg of 1 and 36.3 μg of 2, 60 μg of 1 and 72.6 μg of 2, 60 μg of 1 and 108.9 μg of 2, 60 μg of 1 and 145.2 μg of 2, 60 μg of 1 and 290.4 μg of 2, 100 μg of 1 and 18.2 μg of 2, 100 μg of 1 and 36.3 μg of 2, 100 μg of 1 and 72.6 μg of 2, 100 μg of 1 and 108.9 μg of 2, 100 μg of 1 and 145.2 μg of 2, 100 μg of 1 and 290.4 μg of 2, 200 μg of 1 and 18.2 μg of 2, 200 μg of 1 and 36.3 μg of 2, 200 μg of 1 and 72.6 μg of 2, 200 μg of 1 and 108.9 μg of 2, 200 μg of 1 and 145.2 μg of 2, 200 μg of 1 and 290.4 μg of 2, 250 μg of 1 and 18.2 μg of 2, 250 μg of 1 and 36.3 μg of 2, 250 μg of 1 and 72.6 μg of 2, 250 μg of 1 and 108.9 μg of 2, 250 μg of 1 and 145.2 μg of 2, 250 μg of 1 and 290.4 μg of 2, 500 μg of 1 and 18.2 μg of 2, 500 μg of 1 and 36.3 μg of 2, 500 μg of 1 and 72.6 μg of 2, 500 μg of 1 and 108.9 μg of 2, 500 μg of 1 and 145.2 μg of 2, or 500 μg of 1 and 290.4 μg of 2.
The quantities of active substance in the pharmaceutical combinations according to the invention which are administered per single dose can be calculated analogously if instead of the salmeterol xinafoate the compounds 2 salmeterol-4-phenylcinnamic acid salt (4-phenylcinnamate) and salmeterol-5-(2,4-difluorophenyl)salicylic acid salt (5-(2,4-difluorophenyl)salicylate), which are also preferably used according to the invention, are used.
The combinations of active substances according to the invention may contain 1′ and 2aa′ in weight ratios which are in the range from about 1:30 to 400:1, preferably 1:25 to 200:1, preferably 1:20 to 100:1, more preferably from 1:15 to 50:1. For example, and without restricting the scope of the invention thereto, preferred combinations of 1 and 2 according to the invention may contain the cation 1′ and the compound 2aa′ in the following ratios by weight: 1:15, 1:14, 1:13, 1:12, 1:11, 1:10, 1:9, 1:8, 1:7, 1:6, 1:5, 1:4, 1:3, 1:2, 1:1, 2:1, 3:1, 4:1, 5:1, 6:1, 7:1, 8:1, 9:1, 10:1, 11:1, 12:1, 13:1, 14:1, 15:1, 16:1, 17:1, 18:1, 19:1, 20:1, 21:1, 22:1, 23:1, 24:1, 25:1, 26:1, 27:1, 28:1, 29:1, 30:1, 31:1, 32:1, 33:1, 34:1, or 35:1.
The pharmaceutical compositions according to the invention containing the combinations of 1 and 2 are usually administered so that each single dose contains the cation 1′ and the compound 2aa′ together in doses of from 5 μg to 5000 μg, preferably from 10 μg to 2000 μg, more preferably from 15 μg to 1000 μg, even more preferably from 20 μg to 800 μg, preferably, according to the invention, from 30 μg to 750 μg, preferably from 40 μg to 700 μg.
For example, combinations of 1 and 2 according to the invention contain an amount of 1′ and 2aa′ such that the total dosage per single dose is about 15 μg, 20 μg, 25 μg, 30 μg, 35 μg, 45 μg, 50 μg, 55 μg, 60 μg, 65 μg, 70 μg, 75 μg, 80 μg, 85 μg, 90 μg, 95 μg, 100 μg, 105 μg, 110 μg, 115 μg, 120 μg, 125 μg, 130 μg, 135 μg, 140 μg, 145 μg, 150 μg, 155 μg, 160 μg, 165 μg, 170 μg, 175 μg, 180 μg, 185 μg, 190 μg, 195 μg, 200 μg, 205 μg, 210 μg, 215 μg, 220 μg, 225 μg, 230 μg, 235 μg, 240 μg, 245 μg, 250 μg, 255 μg, 260 μg, 265 μg, 270 μg, 275 μg, 280 μg, 285 μg, 290 μg, 295 μg, 300 μg, 305 μg, 310 μg, 315 μg, 320 μg, 325 μg, 330 μg, 335 μg, 340 μg, 345 μg, 350 μg, 355 μg, 360 μg, 365 μg, 370 μg, 375 μg, 380 μg, 385 μg, 390 μg, 395 μg, 400 μg, 405 μg, 410 μg, 415 μg, 420 μg, 425 μg, 430 μg, 435 μg, 440 μg, 445 μg, 450 μg, 455 μg, 460 μg, 465 μg, 470 μg, 475 μg, 480 μg, 485 μg, 490 μg, 495 μg, 500 μg, 505 μg, 510 μg, 515 μg, 520 μg, 525 μg, 530 μg, 535 μg, 540 μg, 545 μg, 550 μg, 555 μg, 560 μg, 565 μg, 570 μg, 575 μg, 580 μg, 585 μg, 590 μg, 595 μg, 600 μg, 605 μg, 610 μg, 615 μg, 620 μg, 625 μg, 630 μg, 635 μg, 640 μg, 645 μg, 650 μg, 655 μg, 660 μg, 665 μg, 670 μg, 675 μg, 680 μg, 685 μg, 690 μg, 695 μg, 700 μg, or similar. It is clear to anyone skilled in the art that the suggested dosages per single dose specified above are not to be regarded as being limited to the numerical values actually stated. Fluctuations of about ±2.5 μg, particularly in the decimal range, are also included, as will be apparent to the skilled man. In these dosage ranges, the active substances 1′ and 2aa′ may be present in the weight ratios given above.
For example, and without restricting the scope of the invention thereto, the combinations of 1 and 2 according to the invention may contain an amount of cation 1′ and 2aa′ such that each single dose contains, for example, 8.3 μg of 1′ and 12.5 μg of 2aa′, 8.3 μg of 1′ and 25 μg of 2aa′, 8.3 μg of 1′ and 50 μg of 2aa′, 8.3 μg of 1′ and 75 μg of 2aa′, 8.3 μg of 1′ and 100 μg of 2aa′, 8.3 μg of 1′ and 200 μg of 2aa′, 16.5 μg of 1′ and 12.5 μg of 2aa′, 16.5 μg of 1′ and 25 μg of 2aa′, 16.5 μg of 1′ and 50 μg of 2aa′, 16.5 μg of 1′ and 75 μg of 2aa′, 16.5 μg of 1′ and 100 μg of 2aa′, 16.5 μg of 1′ and 200 μg of 2aa′, 33.0 μg of 1′ and 12.5 μg of 2aa′, 33.0 μg of 1′ and 25 μg of 2aa′, 33.0 μg of 1′ and 50 μg of 2aa′, 33.0 μg of 1′ and 75 μg of 2aa′, 33.0 μg of 1′ and 100 μg of 2aa′, 33.0 μg of 1′ and 200 μg of 2aa′, 49.5 μg of 1′ and 12.5 μg of 2aa′, 49.5 μg of 1′ and 25 μg of 2aa′, 49.5 μg of 1′ and 50 μg of 2aa′, 49.5 μg of 1′ and 75 μg of 2aa′, 49.5 μg of 1′ and 100 μg of 2aa′, 49.5 μg of 1′ and 200 μg of 2aa′, 82.6 μg of 1′ and 12.5 μg of 2aa′, 82.6 μg of 1′ and 25 μg of 2aa′, 82.6 μg of 1′ and 50 μg of 2aa′, 82.6 μg of 1′ and 75 μg of 2aa′, 82.6 μg of 1′ and 100 μg of 2aa′, 82.6 μg of 1′ and 200 μg of 2aa′, 165.1 μg of 1′ and 12.5 μg of 2aa′, 165.1 μg of 1′ and 25 μg of 2aa′, 165.1 μg of 1′ and 50 μg of 2aa′, 165.1 μg of 1′ and 75 μg of 2aaμ, 165.1 μg of 1′ and 100 μg of 2aa′, 165.1 μg of 1′ and 200 μg of 2aa′, 206.4 μg of 1′ and 12.5 μg of 2aa′, 206.4 μg of 1′ and 25 μg of 2aa′, 206.4 μg of 1′ and 50 μg of 2aa′, 206.4 μg of 1′ and 75 μg of 2aa′, 206.4 μg of 1′ and 100 μg of 2aa′, 206.4 μg of 1′ and 200 μg of 2aa′, 412.8 μg of 1′ and 12.5 μg of 2aa′, 412.8 μg of 1′ and 25 μg of 2aa′, 412.8 μg of 1′ and 50 μg of 2aa′, 412.8 μg of 1′ and 75 μg of 2aa′, 412.8 μg of 1′ and 100 μg of 2aa′, or 412.8 μg of 1′ and 200 μg of 2aa′.
If the active substance combination wherein the salt 1 is the bromide and the salt 2aa is the maleate of the compound 2aa′ is used as the preferred combination of 1 and 2 according to the invention, the quantities of active substances 1′ and 2aa′ administered per single dose as specified above by way of example correspond to the following amounts of 1 and 2aa administered per single dose: 10 μg of 1 and 16.2 μg of 2aa, 10 μg of 1 and 32.4 μg of 2aa, 10 μg of 1 and 64.8 μg of 2aa, 10 μg of 1 and 97.2 μg of 2aa, 10 μg of 1 and 129.6 μg of 2aa, 10 μg of 1 and 259.2 μg of 2aa, 20 μg of 1 and 16.2 μg of 2aa, 20 μg of 1 and 32.4 μg of 2aa, 20 μg of 1 and 64.8 μg of 2aa, 20 μg of 1 and 97.2 μg of 2aa, 20 μg of 1 and 129.6 μg of 2aa, 20 μg of 1 and 259.2 μg of 2aa, 40 μg of 1 and 16.2 μg of 2aa, 40 μg of 1 and 32.4 μg of 2aa, 40 μg of 1 and 64.8 μg of 2aa, 40 μg of 1 and 97.2 μg of 2aa, 40 μg of 1 and 129.6 μg of 2aa, 40 μg of 1 and 259.2 μg of 2aa, 60 μg of 1 and 16.2 μg of 2aa, 60 μg of 1 and 32.4 μg of 2aa, 60 μg of 1 and 64.8 μg of 2aa, 60 μg of 1 and 97.2 μg of 2aa, 60 μg of 1 and 129.6 μg of 2aa, 60 μg of 1 and 259.2 μg of 2aa, 100 μg of 1 and 16.2 μg of 2aa, 100 μg of 1 and 32.4 μg of 2aa, 100 μg of 1 and 64.8 μg of 2aa, 100 μg of 1 and 97.2 μg of 2aa, 100 μg of 1 and 129.6 μg of 2aa, 100 μg of 1 and 259.2 μg of 2aa, 200 μg of 1 and 16.2 μg of 2aa, 200 μg of 1 and 32.4 μg of 2aa, 200 μg of 1 and 64.8 μg of 2aa, 200 μg of 1 and 97.2 μg of 2aa, 200 μg of 1 and 129.6 μg of 2aa, 200 μg of 1 and 259.2 μg of 2aa, 250 μg of 1 and 16.2 μg of 2aa, 250 μg of 1 and 32.4 μg of 2aa, 250 μg of 1 and 64.8 μg of 2aa, 250 μg of 1 and 97.2 μg of 2aa, 250 μg of 1 and 129.6 μg of 2aa, 250 μg of 1 and 259.2 μg of 2aa, 500 μg of 1 and 16.2 μg of 2aa, 500 μg of 1 and 32.4 μg of 2aa, 500 μg of 1 and 64.8 μg of 2aa, 500 μg of 1 and 97.2 μg of 2aa, 500 μg of 1 and 129.6 μg of 2aa, or 500 μg of 1 and 259.2 μg of 2aa.
The active substance combinations of 1 and 2 according to the invention are preferably administered by inhalation. For this purpose, ingredients 1 and 2 have to be made available in forms suitable for inhalation. Inhalable preparations according to the invention include inhalable powders, propellant-containing metered dose aerosols, or propellant-free inhalable solutions. Inhalable powders according to the invention containing the combination of active substances 1 and 2 may consist of the active substances on their own or of a mixture of the active substances with physiologically acceptable excipients. Within the scope of the present invention, the term carrier may optionally be used instead of the term excipient. Within the scope of the present invention, the term propellant-free inhalable solutions also includes concentrates or sterile inhalable solutions ready for use. The preparations according to the invention may contain the combination of active substances 1 and 2 either together in one formulation or in two separate formulations. These formulations which may be used within the scope of the present invention are described in more detail in the next part of the specification.
A. Inhalable Powder Containing the Combinations of Active Substances 1 and 2 According to the Invention
The inhalable powders according to the invention may contain 1 and 2 either on their own or in admixture with suitable physiologically acceptable excipients.
If the active substances 1 and 2 are present in admixture with physiologically acceptable excipients, the following physiologically acceptable excipients may be used to prepare these inhalable powders according to the invention: monosaccharides (e.g., glucose or arabinose), disaccharides (e.g., lactose, saccharose, or maltose), oligo- and polysaccharides (e.g., dextran), polyalcohols (e.g., sorbitol, mannitol, or xylitol), salts (e.g., sodium chloride or calcium carbonate) or mixtures of these excipients with one another. Preferably, mono- or disaccharides are used, while the use of lactose or glucose is preferred, particularly, but not exclusively, in the form of their hydrates.
Within the scope of the inhalable powders according to the invention, the excipients have a maximum average particle size of up to 250 μm, preferably between 10 μm and 150 μm, most preferably between 15 μm and 80 μm. It may sometimes seem appropriate to add finer excipient fractions with an average particle size of 1 μm to 9 μm to the excipient mentioned above. These finer excipients are also selected from the group of possible excipients listed hereinbefore. Finally, in order to prepare the inhalable powders according to the invention, micronized active substance 1 and 2, preferably with an average particle size of 0.5 μm to 10 μm, more preferably from 1 μm to 6 μm, is added to the excipient mixture. Processes for producing the inhalable powders according to the invention by grinding and micronizing and by finally mixing the ingredients together are known from the prior art. The inhalable powders according to the invention may be prepared and administered either in the form of a single powder mixture which contains both 1 and 2 or in the form of separate inhalable powders which contain only 1 or 2.
The inhalable powders according to the invention may be administered using inhalers known from the prior art. Inhalable powders according to the invention which contain one or more physiologically acceptable excipients in addition to 1 and 2 may be administered, for example, by means of inhalers which deliver a single dose from a supply using a measuring chamber as described in U.S. Pat. No. 4,570,630, or by other means as described in DE 36 25 685 A. The inhalable powders according to the invention which contain 1 and 2 optionally in conjunction with a physiologically acceptable excipient may be administered, for example, using the inhaler known by the name TURBUHALER® or using inhalers as disclosed for example in EP 237507 A. Preferably, the inhalable powders according to the invention which contain physiologically acceptable excipient in addition to 1 and 2 are packed into capsules (to produce so-called inhalettes) which are used in inhalers as described, for example, in WO 94/28958.
A particularly preferred inhaler for using the pharmaceutical combination according to the invention in inhalettes is shown in
This inhaler (HANDIHALER®) for inhaling powdered pharmaceutical compositions from capsules is characterized by a housing 1 containing two windows 2, a deck 3 in which there are air inlet ports and which is provided with a screen 5 secured via a screen housing 4, an inhalation chamber 6 connected to the deck 3 on which there is a push button 9 provided with two sharpened pins 7 and movable counter to a spring 8, and a mouthpiece 12 which is connected to the housing 1, the deck 3 and a cover 11 via a spindle 10 to enable it to be flipped open or shut, as well as air holes 13 for adjusting the flow resistance. If the inhalable powders according to the invention are packed into capsules (inhalers) for the preferred use described above, the quantities packed into each capsule should be 1 mg to 30 mg per capsule. These capsules contain, according to the invention, either together or separately, the doses of 1 or 1′ and 2 or 2′ mentioned hereinbefore for each single dose.
B. Propellant Gas-Driven Inhalation Aerosols Containing the Combinations of Active Substances 1 and 2
Inhalation aerosols containing propellant gas according to the invention may contain substances 1 and 2 dissolved in the propellant gas or in dispersed form. 1 and 2 may be present in separate formulations or in a single preparation, in which 1 and 2 are either both dissolved, both dispersed or only one component is dissolved and the other is dispersed. The propellant gases which may be used to prepare the inhalation aerosols according to the invention are known from the prior art. Suitable propellant gases are selected from among hydrocarbons such as n-propane, n-butane, or isobutane and halohydrocarbons such as fluorinated derivatives of methane, ethane, propane, butane, cyclopropane, or cyclobutane. The propellant gases mentioned above may be used on their own or in mixtures thereof. Particularly preferred propellant gases are halogenated alkane derivatives selected from TG11, TG12, TG134a (1,1,1,2-tetrafluoroethane), and TG227 (1,1,1,2,3,3,3-heptafluoropropane) and mixtures thereof, of which the propellant gases TG134a, TG227, and mixtures thereof are preferred.
The propellant-driven inhalation aerosols according to the invention may also contain other ingredients such as co-solvents, stabilizers, surfactants, antioxidants, lubricants, and pH adjusters. All these ingredients are known in the art.
The inhalation aerosols containing propellant gas according to the invention may contain up to 5 wt.-% of active substance 1 and/or 2. Aerosols according to the invention contain, for example, 0.002 to 5 wt.-%, 0.01 to 3 wt.-%, 0.015 to 2 wt.-%, 0.1 to 2 wt.-%, 0.5 to 2 wt.-% or 0.5 to 1 wt.-% of active substance 1 and/or 2.
If the active substances 1 and/or 2 are present in dispersed form, the particles of active substance preferably have an average particle size of up to 10 μm, preferably from 0.1 μm to 6 μm, more preferably from 1 μm to 5 μm.
The propellant-driven inhalation aerosols according to the invention mentioned above may be administered using inhalers known in the art, such as metered dose inhalers (MDIs). Accordingly, in another aspect, the present invention relates to pharmaceutical compositions in the form of propellant-driven aerosols as hereinbefore described combined with one or more inhalers suitable for administering these aerosols. In addition, the present invention relates to inhalers which are characterized in that they contain the propellant gas-containing aerosols described above according to the invention. The present invention also relates to cartridges fitted with a suitable valve which can be used in a suitable inhaler and which contain one of the above-mentioned propellant gas-containing inhalation aerosols according to the invention. Suitable cartridges and methods of filling these cartridges with the inhalable aerosols containing propellant gas according to the invention are known from the prior art.
C. Propellant-Free Inhalable Solutions or Suspensions Containing the Combinations of Active Substances 1 and 2 According to the Invention
Propellant-free inhalable solutions and suspensions according to the invention contain, for example, aqueous or alcoholic, preferably ethanolic solvents, optionally ethanolic solvents mixed with aqueous solvents. If aqueous/ethanolic solvent mixtures are used the relative proportion of ethanol compared with water is not limited but preferably the maximum is up to 70 percent by volume, more particularly up to 60 percent by volume of ethanol. The remainder of the volume is made up of water. The solutions or suspensions containing 1 and 2, separately or together, are adjusted to a pH of 2 to 7, preferably 2 to 5, using suitable acids. The pH may be adjusted using acids selected from inorganic or organic acids. Examples of particularly suitable inorganic acids include hydrochloric acid, hydrobromic acid, nitric acid, sulfuric acid, and/or phosphoric acid. Examples of particularly suitable organic acids include ascorbic acid, citric acid, malic acid, tartaric acid, maleic acid, succinic acid, fumaric acid, acetic acid, formic acid, and/or propionic acid etc. Preferred inorganic acids are hydrochloric and sulfuric acids. It is also possible to use the acids which have already formed an acid addition salt with one of the active substances. Of the organic acids, ascorbic acid, fumaric acid and citric acid are preferred. If desired, mixtures of the above acids may be used, particularly in the case of acids which have other properties in addition to their acidifying qualities, e.g., as flavorings, antioxidants, or complexing agents, such as citric acid or ascorbic acid, for example. According to the invention, it is particularly preferred to use hydrochloric acid to adjust the pH.
According to the invention, the addition of edetic acid (EDTA) or one of the known salts thereof, sodium edetate, as stabilizer or complexing agent is unnecessary in the present formulation. Other embodiments may contain this compound or these compounds. In a preferred embodiment, the content based on sodium edetate is less than 100 mg/100 mL, preferably less than 50 mg/100 mL, more preferably less than 20 mg/100 mL. Generally, inhalable solutions in which the content of sodium edetate is from 0 to 10 mg/100 mL are preferred.
Co-solvents and/or other excipients may be added to the propellant-free inhalable solutions according to the invention. Preferred co-solvents are those which contain hydroxyl groups or other polar groups, e.g., alcohols, particularly isopropyl alcohol, glycols, particularly propyleneglycol, polyethyleneglycol, polypropyleneglycol, glycol ether, glycerol, polyoxyethylene alcohols, and polyoxyethylene fatty acid esters. The terms excipients and additives in this context denote any pharmacologically acceptable substance which is not an active substance but which can be formulated with the active substance or substances in the pharmacologically suitable solvent in order to improve the qualitative properties of the active substance formulation. Preferably, these substances have no pharmacological effect or, in connection with the desired therapy, no appreciable or at least no undesirable pharmacological effect. The excipients and additives include, for example, surfactants such as soya lecithin, oleic acid, sorbitan esters, such as polysorbates, polyvinylpyrrolidone, other stabilizers, complexing agents, antioxidants, and/or preservatives which guarantee or prolong the shelf life of the finished pharmaceutical formulation, flavorings, vitamins and/or other additives known in the art. The additives also include pharmacologically acceptable salts such as sodium chloride as isotonic agents. The preferred excipients include antioxidants such as ascorbic acid, for example, provided that it has not already been used to adjust the pH, vitamin A, vitamin E, tocopherols, and similar vitamins and provitamins occurring in the human body.
Preservatives may be used to protect the formulation from contamination with pathogens. Suitable preservatives are those which are known in the art, particularly cetyl pyridinium chloride, benzalkonium chloride, or benzoic acid or benzoates such as sodium benzoate in the concentration known from the prior art. The preservatives mentioned above are preferably present in concentrations of up to 50 mg/100 mL, more preferably between 5 and 20 mg/100 mL.
Preferred formulations contain, in addition to the solvent water and the combination of active substances 1 and 2, only benzalkonium chloride and sodium edetate. In another preferred embodiment, no sodium edetate is present.
The propellant-free inhalable solutions according to the invention are administered in particular using inhalers of the kind which are capable of nebulizing a small amount of a liquid formulation in the therapeutic dose within a few seconds to produce an aerosol suitable for therapeutic inhalation. Within the scope of the present invention, preferred inhalers are those in which a quantity of less than 100 μL, preferably less than 50 μL, more preferably between 20 μL and 30 μL of active substance solution can be nebulized in preferably one spray action to form an aerosol with an average particle size of less than 20 μm, preferably less than 10 μm, in such a way that the inhalable part of the aerosol corresponds to the therapeutically effective quantity.
An apparatus of this kind for propellant-free delivery of a metered quantity of a liquid pharmaceutical composition for inhalation is described for example in International Patent Application WO 91/14468 and also in WO 97/12687 (cf. in particular FIGS. 6a and 6b). The nebulizers (devices) described therein are known by the name RESPIMAT®.
This RESPIMAT® nebulizer can advantageously be used to produce the inhalable aerosols according to the invention containing the combination of active substances 1 and 2. Because of its cylindrical shape and handy size of less than 9 cm to 15 cm long and 2 cm to 4 cm wide, this device can be carried at all times by the patient. The nebulizer sprays a defined volume of pharmaceutical formulation using high pressures through small nozzles so as to produce inhalable aerosols.
The preferred atomizer essentially consists of an upper housing part, a pump housing, a nozzle, a locking mechanism, a spring housing, a spring and a storage container, characterized by
The hollow plunger with valve body corresponds to a device disclosed in WO 97/12687. It projects partially into the cylinder of the pump housing and is axially movable within the cylinder. Reference is made in particular to
The valve body is preferably mounted at the end of the hollow plunger facing the valve body.
The nozzle in the nozzle body is preferably microstructured, i.e., produced by microtechnology. Microstructured nozzle bodies are disclosed, for example, in WO 94/07607; reference is hereby made to the contents of this specification, particularly
The nozzle body consists for example of two sheets of glass and/or silicon firmly joined together, at least one of which has one or more microstructured channels which connect the nozzle inlet end to the nozzle outlet end. At the nozzle outlet end there is at least one round or non-round opening 2 to 10 microns deep and 5 to 15 microns wide, the depth preferably being 4.5 to 6.5 microns, while the length is preferably 7 to 9 microns.
In the case of a plurality of nozzle openings, preferably two, the directions of spraying of the nozzles in the nozzle body may extend parallel to one another or may be inclined relative to one another in the direction of the nozzle opening. In a nozzle body with at least two nozzle openings at the outlet end the directions of spraying may be at an angle of 20° to 160° to one another, preferably 60° to 150°, most preferably 80° to 100°. The nozzle openings are preferably arranged at a spacing of 10 to 200 microns, more preferably at a spacing of 10 to 100 microns, most preferably 30 to 70 microns. Spacings of 50 microns are most preferred. The directions of spraying will therefore meet in the vicinity of the nozzle openings.
The liquid pharmaceutical preparation strikes the nozzle body with an entry pressure of up to 600 bar, preferably 200 bar to 300 bar, and is atomized into an inhalable aerosol through the nozzle openings. The preferred particle or droplet sizes of the aerosol are up to 20 microns, preferably 3 to 10 microns.
The locking mechanism contains a spring, preferably a cylindrical helical compression spring, as a store for the mechanical energy. The spring acts on the power takeoff flange as an actuating member the movement of which is determined by the position of a locking member. The travel of the power takeoff flange is precisely limited by an upper and lower stop. The spring is preferably biased, via a power step-up gear, e.g., a helical thrust gear, by an external torque which is produced when the upper housing part is rotated counter to the spring housing in the lower housing part. In this case, the upper housing part and the power takeoff flange have a single or multiple V-shaped gear.
The locking member with engaging locking surfaces is arranged in a ring around the power takeoff flange. It consists, for example, of a ring of plastic or metal which is inherently radially elastically deformable. The ring is arranged in a plane at right angles to the atomizer axis. After the biasing of the spring, the locking surfaces of the locking member move into the path of the power takeoff flange and prevent the spring from relaxing. The locking member is actuated by means of a button. The actuating button is connected or coupled to the locking member. In order to actuate the locking mechanism, the actuating button is moved parallel to the annular plane, preferably into the atomizer; this causes the deformable ring to deform in the annular plane. Details of the construction of the locking mechanism are given in WO 97/20590.
The lower housing part is pushed axially over the spring housing and covers the mounting, the drive of the spindle and the storage container for the fluid.
When the atomizer is actuated the upper housing part is rotated relative to the lower housing part, the lower housing part taking the spring housing with it. The spring is thereby compressed and biased by means of the helical thrust gear and the locking mechanism engages automatically. The angle of rotation is preferably a whole-number fraction of 360°, e.g., 180°. At the same time as the spring is biased, the power takeoff part in the upper housing part is moved along by a given distance, the hollow plunger is withdrawn inside the cylinder in the pump housing, as a result of which some of the fluid is sucked out of the storage container and into the high pressure chamber in front of the nozzle.
If desired, a number of exchangeable storage containers which contain the fluid to be atomized may be pushed into the atomizer one after another and used in succession. The storage container contains the aqueous aerosol preparation according to the invention.
The atomizing process is initiated by pressing gently on the actuating button. As a result, the locking mechanism opens up the path for the power takeoff member. The biased spring pushes the plunger into the cylinder of the pump housing. The fluid leaves the nozzle of the atomizer in atomized form.
Further details of construction are disclosed in PCT Applications WO 97/12683 and WO 97/20590, to which reference is hereby made.
The components of the atomizer (nebulizer) are made of a material which is suitable for its purpose. The housing of the atomizer and, if its operation permits, other parts as well, are preferably made of plastics, e.g., by injection molding. For medicinal purposes, physiologically safe materials are used.
a/b attached to this patent application, which are identical to FIGS. 6a/b of WO 97/12687, show the nebulizer (RESPIMAT®) which can advantageously be used for inhaling the aqueous aerosol preparations according to the invention.
a shows a longitudinal section through the atomizer with the spring biased while
The upper housing part (51) contains the pump housing (52) on the end of which is mounted the holder (53) for the atomizer nozzle. In the holder is the nozzle body (54) and a filter (55). The hollow plunger (57) fixed in the power takeoff flange (56) of the locking mechanism projects partially into the cylinder of the pump housing. At its end the hollow plunger carries the valve body (58). The hollow plunger is sealed off by means of the seal (59). Inside the upper housing part is the stop (60) on which the power takeoff flange abuts when the spring is relaxed. On the power takeoff flange is the stop (61) on which the power takeoff flange abuts when the spring is biased. After the biasing of the spring the locking member (62) moves between the stop (61) and a support (63) in the upper housing part. The actuating button (64) is connected to the locking member. The upper housing part ends in the mouthpiece (65) and is sealed off by means of the protective cover (66) which can be placed thereon.
The spring housing (67) with compression spring (68) is rotatably mounted on the upper housing part by means of the snap-in lugs (69) and rotary bearing. The lower housing part (70) is pushed over the spring housing. Inside the spring housing is the exchangeable storage container (71) for the fluid (72) which is to be atomized. The storage container is sealed off by the stopper (73) through which the hollow plunger projects into the storage container and is immersed at its end in the fluid (supply of active substance solution).
The spindle (74) for the mechanical counter is mounted in the covering of the spring housing. At the end of the spindle facing the upper housing part is the drive pinion (75). The slider (76) sits on the spindle.
The nebulizer described above is suitable for nebulizing the aerosol preparations according to the invention to produce an aerosol suitable for inhalation.
If the formulation according to the invention is nebulized using the method described above (RESPIMAT®) the quantity delivered should correspond to a defined quantity with a tolerance of not more than 25%, preferably 20% of this amount in at least 97%, preferably at least 98% of all operations of the inhaler (spray actuations). Preferably, between 5 mg and 30 mg of formulation, most preferably between 5 mg and 20 mg of formulation are delivered as a defined mass on each actuation.
However, the formulation according to the invention may also be nebulized by means of inhalers other than those described above, e.g., jet stream inhalers or other stationary nebulizers.
Accordingly, in a further aspect, the invention relates to pharmaceutical formulations in the form of propellant-free inhalable solutions or suspensions as described above combined with a device suitable for administering these formulations, preferably in conjunction with the RESPIMAT®. Preferably, the invention relates to propellant-free inhalable solutions or suspensions characterized by the combination of active substances 1 and 2 according to the invention in conjunction with the device known by the name RESPIMAT®. In addition, the present invention relates to the above-mentioned devices for inhalation, preferably the RESPIMAT® device, characterized in that they contain the propellant-free inhalable solutions or suspensions according to the invention as described hereinbefore.
According to the invention, inhalable solutions which contain the active substances 1 and 2 in a single preparation are preferred. The term “single preparation” also includes preparations which contain the two ingredients 1 and 2 in two-chamber cartridges, as disclosed for example in WO 00/23037. Reference is hereby made to this publication in its entirety.
The propellant-free inhalable solutions or suspensions according to the invention may take the form of concentrates or sterile inhalable solutions or suspensions ready for use, as well as the above-mentioned solutions and suspensions designed for use in a Respimat®. Formulations ready for use may be produced from the concentrates, for example, by the addition of isotonic saline solutions. Sterile formulations ready for use may be administered using energy-operated free-standing or portable nebulizers which produce inhalable aerosols by means of ultrasound or compressed air by the Venturi principle or other principles.
Accordingly, in another aspect, the present invention relates to pharmaceutical compositions in the form of propellant-free inhalable solutions or suspensions as described hereinbefore which take the form of concentrates or sterile formulations ready for use, combined with a device suitable for administering these solutions, characterized in that the device is an energy-operated free-standing or portable nebulizer which produces inhalable aerosols by means of ultrasound or compressed air by the Venturi principle or other methods.
The Examples which follow serve to illustrate the present invention in more detail without restricting the scope of the invention to the following embodiments by way of example.
First, the preparation of compounds 1 and 2 used within the scope of the present invention which are not known in the art will be described.
1. Preparation of the Compounds of Formula 1
1.a. 2,2-Diphenylpronionic Acid Chloride
52.08 g (0.33 mol) of oxalyl chloride are slowly added dropwise at 20° C. to a suspension of 25.0 g (0.11 mol) of 2,2-diphenylpropionic acid, 100 mL of dichloromethane, and 4 drops of dimethylformamide. The mixture is stirred for 1 hour at 20° C. and 0.5 hour at 50° C. The solvent is distilled off and the residue remaining is used in the next step without any further purification.
1.b. Scopine 2,2-diphenylpropionate
The residue obtained from step 1.a. is dissolved in 100 mL of dichloromethane and at 40° C. a solution of 51.45 g (0.33 mol) of scopine in 200 mL of dichloromethane is added dropwise thereto. The resulting suspension is stirred for 24 hours at 40° C., then the precipitate formed is suction filtered and the filtrate is extracted first with water, then with aqueous hydrochloric acid. The combined aqueous phases are made alkaline with aqueous sodium carbonate solution, extracted with dichloromethane, the organic phase is dried over Na2SO4, evaporated to dryness, and the hydrochloride is precipitated from the residue. The product is purified by recrystallization from acetonitrile. Yield: 20.85 g (47% of theory); DC: Rf value: 0.24 (eluent: sec-butanol/formic acid/water 75:15:10); m.p.: 203° C.-204° C.
1.c. Scopine 2,2-diphenylpropionate methobromide
11.98 g (0.033 mol) of the compound of step 1.b., 210 mL of acetonitrile, 70 mL of dichloromethane, and 20.16 g (0.1 mol) of 46.92% bromomethane in acetonitrile are combined at 20° C. and left to stand for 3 days. The solution is evaporated to dryness and the residue is recrystallized from isopropanol. Yield: 11.34 g (75% of theory); m.p.: 208° C.-209° C.; C24H28NO3xBr (458.4); elemental analysis: calculated: C, (62.89), H, (6.16), N, (3.06); found: C, (62.85), H, (6.12), N, (3.07). The salts 1 wherein X− denotes an anion with a single negative charge other than bromide may be obtained in a manner similar to step 1.3.
2. Preparation of the Compounds of Formula 2
2.1. Salmeterol-4-phenylcinnamate Salt 2b
1.35 g (6 mmol) of 4-phenylcinnamic acid is dissolved by refluxing in 75 mL of ethyl acetate. To this solution is added a warm solution of 2.5 g (6 mmol) of salmeterol in 25 mL of ethyl acetate. The solution is allowed to cool and stirred for 16 hours at room temperature. The suspension is filtered, the precipitate is washed with ethyl acetate and tert-butylmethylether and dried in vacuo at 25° C.-30° C. 47 g of the title compound are obtained as a colorless solid. Melting point: 109° C.
2.2. Salmeterol-5-(2,4-difluorophenyl)salicylate Salt 2c
30 g of salmeterol is dissolved by refluxing in 300 mL of ethyl acetate. 18.3 g of 5-(2,4-difluorophenyl)salicylic acid (Diflunisal) are added to this solution. The solution is allowed to cool to ambient temperature. The suspension is filtered off, the precipitate is washed with ethyl acetate, and dried in vacuo at 35° C. 46 g of the title salt are obtained as a colorless solid. Melting point: 104° C.
The following examples of formulations, which may be obtained analogously to methods known in the art, serve to illustrate the present invention more fully without restricting it to the contents of these examples.
1'-bromide
1'-bromide
1'-bromide
1'-bromide
1'-bromide
2b
1'-bromide
2c
1'-bromide
2aa' maleate salt
1'-bromide
2aa' maleate salt
1'-bromide
1'-bromide
Number | Date | Country | Kind |
---|---|---|---|
102 16 428 | Apr 2002 | DE | national |
102 56 317 | Dec 2002 | DE | national |
This application claims benefit of U.S. Ser. No. 60/386,160, filed Jun. 5, 2002.
Number | Name | Date | Kind |
---|---|---|---|
4042700 | Banholzer et al. | Aug 1977 | A |
4608377 | Banholzer et al. | Aug 1986 | A |
4783534 | Banholzer et al. | Nov 1988 | A |
5610163 | Banholzer et al. | Mar 1997 | A |
5654314 | Banholzer et al. | Aug 1997 | A |
5770738 | Banholzer et al. | Jun 1998 | A |
5952505 | Banholzer et al. | Sep 1999 | A |
6486321 | Banholzer et al. | Nov 2002 | B2 |
6506900 | Banholzer et al. | Jan 2003 | B1 |
6706726 | Meissner et al. | Mar 2004 | B2 |
6747154 | Brandenburg et al. | Jun 2004 | B2 |
20020115680 | Banholzer et al. | Aug 2002 | A1 |
20020115681 | Bozung et al. | Aug 2002 | A1 |
20020119991 | Meissner et al. | Aug 2002 | A1 |
20020133010 | Banholzer et al. | Sep 2002 | A1 |
20030223937 | Banholzer et al. | Dec 2003 | A1 |
20040002502 | Banholzer et al. | Jan 2004 | A1 |
20040024007 | Pairet et al. | Feb 2004 | A1 |
20040044020 | Meade et al. | Mar 2004 | A1 |
20040048886 | Meade et al. | Mar 2004 | A1 |
20040048887 | Meade et al. | Mar 2004 | A1 |
20040058950 | Meade et al. | Mar 2004 | A1 |
20040087617 | Meissner et al. | May 2004 | A1 |
20040166065 | Schmidt | Aug 2004 | A1 |
20040228805 | Pieper et al. | Nov 2004 | A1 |
20050004228 | Konetzki | Jan 2005 | A1 |
20050008578 | Schmidt | Jan 2005 | A1 |
20050025718 | Meade et al. | Feb 2005 | A1 |
20050101625 | Boeck et al. | May 2005 | A1 |
20050154006 | Meade et al. | Jul 2005 | A1 |
20050186175 | Meade et al. | Aug 2005 | A1 |
Number | Date | Country |
---|---|---|
100 50 994 | Apr 2002 | DE |
100 50 995 | Apr 2002 | DE |
WO 9216528 | Oct 1992 | WO |
Number | Date | Country | |
---|---|---|---|
20040010003 A1 | Jan 2004 | US |
Number | Date | Country | |
---|---|---|---|
60386160 | Jun 2002 | US |