The present invention relates to a medication cassette.
Conventionally, for instance, an apparatus for aligning and feeding small articles has been well-known which has a first rotating body in a disk shape rotated by a first driving means and a second rotating body in an annular shape rotated by a second driving means (for instance, see JP-B 1-51403).
However, in the conventional apparatus, the position relation between the first rotating body and the second rotating body is fixed, so that the number of articles capable of being stored is limited. The number of medications to be stored is desirably maximum so as not to frequently perform a filling operation. However, this is limited to be coped with by the first rotating body and the second rotating body having the configuration.
An object of the present invention is to provide a medication cassette which is capable of smooth automated dispensing according to the remaining number of stored medications despite being capable of storing a large number of medications.
According to an aspect of the present invention, a medication cassette includes: a cylindrical body in which medications are stored; a first rotating body which can be reciprocated in the cylindrical body in the direction of the shaft center thereof a second rotating body arranged on the outer circumference of the cylindrical body; conveyed medication detecting means detecting the medications conveyed by the second rotating body; and controlling means moving up the first rotating body when a medication detection signal is not outputted from the conveyed medication detecting means.
With this configuration, to fill the medications, the first rotating body is moved to one end side of the cylindrical body in the direction of the shaft center thereof so that a medication storing portion can be enlarged. To dispense the medications from the medication storing portion, the first rotating body is gradually moved to the other end side of the cylindrical body in the direction of the shaft center thereof so that the medications can be smoothly conveyed to the second rotating body.
The medication cassette includes discharged medication detecting means detecting the medications discharged to the outside of the second rotating body by the rotation thereof. When the time during which the medication detection signal is not outputted from the discharged medication detecting means exceeds a predetermined time, when the medications are not detected by the conveyed medication detecting means, the controlling means determines that medication running-out occurs.
When the time during which the medication detection signal is not outputted from the discharged medication detecting means exceeds the predetermined time, when the medications are detected by the conveyed medication detecting means, the controlling means may determine that an error occurs.
The cylindrical body can reciprocate the first rotating body in the direction of the shaft center thereof, and unrotatably guides the first rotating body in the circumferential direction. The cylindrical body further has a rotation driving mechanism which rotates the cylindrical body.
With this configuration, the first rotating body can be rotated via the cylindrical body by the rotation driving mechanism while being reciprocated in the direction of the shaft center thereof.
The medication cassette further includes: a raising/lowering mechanism reciprocating the first rotating body in the direction of the shaft center of the cylindrical body; and a clutch which can block power transmitted to the raising/lowering mechanism.
With this configuration, when the rotation of the first rotating body and the cylindrical body is inhibited due to medication clogging, the transmission of power is blocked by the clutch. Therefore, burnout in the rotation driving mechanism on which an excessive load acts can be prevented.
The medication cassette includes the raising/lowering mechanism reciprocating the first rotating body in the direction of the shaft center of the cylindrical body. The raising/lowering mechanism has a bearing member disposed between the first rotating body and a dimension variable member which can change the dimension in the shaft direction of the cylindrical body. The bearing member has a bearing rotatably supporting the first rotating body.
The medication cassette includes a regulation piece limiting the height of the medications conveyed in the circumferential direction by the second rotating body. The regulation piece has an auxiliary piece which can be raised and lowered and is projected into a space formed on the upper side at the time of lowering.
With this configuration, the height of the medications capable of being passed can be freely set. Even when the height is set to be low, a gap formed on the upper side can be covered by the auxiliary piece. Therefore, the passing of other medications through the gap and clogging occurrence can be reliably prevented from being caused.
The direction of the shaft center of the cylindrical body is tilted with respect to the vertical direction.
The direction of the shaft center of the cylindrical body coincides with the direction of the rotation shaft center of the first rotating body.
According to the present invention, the first rotating body can be reciprocated and rotated in the cylindrical body, so that by moving the first rotating body to one end side of the cylindrical body in the direction of the shaft center thereof, the medication storing portion can be increased in volume to be filled with a large number of medications. In addition, by gradually moving the first rotating body to the other end side of the cylindrical body, smooth automated dispensing can be made according to the remaining number of medications.
Hereinafter, an embodiment according to the present invention will be described with reference to the accompanying drawings. In the following description, the terms representing particular directions and positions (e.g., the terms including “up”, “down”, “side”, and “end”) will be used, if necessary. However, those terms are used for facilitating the understanding of the invention with reference to the drawings, and do not limit the technical range of the present invention by the meanings thereof. In addition, the following description is essentially illustrative only, and is not intended to limit the present invention, the applied objects thereof, or the application thereof.
(1. Overall Configuration)
As shown in
(1-1. The Vial Bottle Feeding Unit 2)
As shown in
On the outer wall of the stocker 21 on the front surface side, provided are a shoot 27 which slides down the vial bottle 9 taken out from the stocker 21 by the taking-out device 24 and a fork 28 which receives and supports the vial bottle 9 slid down from the shoot 27. The width of the fork 28 can be changed in the horizontal direction so that any vial bottle 9 differing in size can be supported by a well-known mechanism, such as a rack & pinion mechanism. As shown in
As shown in
(1-2. The Labeling Unit 3)
As shown in
(1-3. The Vial Bottle Lifter 4)
As shown in
Four pins 55 are projected from the upper surface of the lift 51, and support the outer periphery of the vial bottle 9. The bases of the two opposite pins 55 are fixed to movable blocks 56. The two movable blocks 56 can be moved along a guide rod 57 in the contacting and separating directions, and are biased by a spring 58 in the contacting direction. Long cutaways 59 into which the four pins 55 enter are formed in the support plate 52. The support plate 52 has plural ears 60 on the outer periphery thereof, and is placed on a bracket 61 fixed to the apparatus main body 8 by the ears 60. The lift mechanism 53 has a lift block 63 which is lifted and lowered along guide rods 62 by a belt driving device, not shown. The lift 51 is fixed to the distal end of an arm 64 provided on the lift block 63. The pin opening/closing rod 54 is located below the lift 51, and is fixed to the apparatus main body 8. The pin opening/closing rod 54 is engaged and disengaged between the two movable blocks 56 in the lift 51 with the lifting/lowering operation of the lift 51, and moves the movable blocks 56 to open and close the four pins 55.
When the lift 51 is lowered by the driving of the lift mechanism 53 of the vial bottle lifter 4, as shown in
(1-4. The Medication Feeding Unit 5)
As shown in
(1-4-1. The Cassette Mounting Portions 102)
The cassette mounting portions 102 are arranged on the support panel 101 in a matrix in the vertical and horizontal directions, where medication outlets 104 are formed. In addition, each of the cassette mounting portions 102 has a first guide rail 105 and a second guide rail 106 located on the outer surface of the support panel 101 and extended in the direction of the normal to the support panel 101.
As shown in
The second guide rail 106 has a rail 107, and an accommodating portion 108 joined thereto.
Like the first guide rail 105, the rail 107 has a groove 107a having a guide edge 107b on the upper surface thereof, where an engagement receiving portion (not shown) is formed.
As shown in
The accommodating portion 108 accommodates a bevel gear 108f of an intermediate gear member 108e engaged with a bevel gear 108d provided midway the shaft 108a, and a worm gear 108h engaged with a pinion gear 108g of the intermediate gear member 108e. A driven gear 108i having the same configuration as the driving gear 108b is integrated with the end of the rotational shaft of the worm gear 108h, where a driving gear 174a provided at the end of the rotational shaft of a first driving motor 174 described later can be engaged therewith. With this, when the first driving motor 174 is driven, power is transmitted to the driving gear 108b via the worm gear 108h and the intermediate gear member 108e, so that the raising/lowering mechanism 153 of the medication cassette 103 is driven. With the worm gear 108h being interposed, the driving gear 108b is not rotated freely even when the power from the first driving motor 174 is blocked.
Further, a driving gear 108j is accommodated in the accommodating portion 108 in a state where part of it is exposed, and is engaged with a driven gear 112b of a second rotating body 112. A bevel gear 108k is fixed to the rotational shaft of the driving gear 108j, where a bevel gear 108m provided on a driven gear member 108l is engaged therewith. In the same manner as above, a driven gear 108n is integrated with the end of the driven gear member 108l, so that a second driving gear 175a provided at the end of the rotational shaft of a second driving motor 175 described later can be engaged therewith. With this, when the second driving motor 175 is driven, power is transmitted via the driven gear 108n and the driving gear 108j to rotate the second rotating body 112.
(1-4-2. The Medication Cassette 103)
As shown in
As shown in
The main body 114 is substantially cylindrical, so that a knob 117 (except for the lower end portion thereof) is formed at the center of the front surface thereof.
As shown in
As shown in
As shown in
As shown in
The height regulation member 124 has a guide piece 125 and a dial 126. The guide piece 125 has the cylindrical portion 127 fitted onto the holding shaft 123, and a regulation piece 128 which is extended from the cylindrical portion 127 and regulates the height of medications conveyed on the second rotating body 112. Plural ridges 127a coinciding with the grooves of the holding shaft 123 are formed on the inner circumferential surface of the cylindrical portion 127, so that the cylindrical portion 127 can be raised and lowered, but is unrotatably supported by the holding shaft 123. Plural projections 127b are formed on the outer circumferential surface of the cylindrical portion 127 at predetermined intervals in the upward and downward direction (in
The upper surface of the main body 114 is surrounded by a peripheral wall 130, and as shown in
As shown in
A discharging portion 139 is provided on the other end side (the downstream side in the medication conveying direction) of the guide member 135. The discharging portion 139 is formed to be of substantially rectangular cylindrical cross section. A cutaway portion 140 which can receive the medications conveyed by the second rotating body 112 is formed in the upper portion of the discharging portion 139. A discharge guide piece 142 is mounted on the end portion of one side wall (a first side wall 141a). The end of the other side wall (a second side wall 141b) is abutted onto the end surface of the guide member 135. The discharge guide piece 142 has a mounting portion fitted to the first side wall 141a formed to be of rectangular cylindrical cross section, and a guide projected along the first side wall 141a. An inclined surface is formed at the end of the guide so as to increase the distance between it and the inner surface of the guide member 135 toward the end thereof and to be decreased in height. The discharge guide piece 142 which has the guide having such an inclined surface can smoothly guide the medications conveyed by the second rotating body 112 to the discharging portion 139.
Further, a through-hole 115a (see
A front cover 143 (see
As shown in
The annular collar 146 is formed on the outer circumferential surface on the upper side of the first cylindrical portion 144. The driven gear 146a is formed on the lower surface of the annular collar 146. The first gear 119a of the gear member 119 held by the bearing 118 of the main body 114 is engaged with the driven gear 146a. As shown in
As shown in
As shown in
The center portion of the first rotating body 111 is conically bulged, so that an engaging member 152 is mounted at the center thereof. Plural ridges 111a are formed on the upper surface of the first rotating body 111, and are helically extended from the rotation center to the opposite side of the rotating direction. With this, the medications receive the rotational force of the first rotating body 111, are influenced by the helical shape of the ridges 111a, and are conveyed in the rotating direction and the outside diameter direction.
As shown in
(1-4-3. The Raising/Lowering Mechanism 153)
As shown in
Engagement pieces 158 are mounted at the centers on both ends of the lower surface of the rectangular frame 154, and are biased by springs 158a to be projected toward the both end sides thereof.
The slide blocks 155 are arranged in the rectangular frame 154, and can be contacted and separated along the center line thereof. That is, the screw shaft 159 is screwed into the centers of the slide blocks 155. The screw shaft 159 is rotatably supported by both end walls of the rectangular frame 154, and has a helical groove formed on the outer circumferential surface thereof. The male screw (helical groove) formed on the outer circumferential surface of the screw shaft 159 is different in the helical direction of the helical groove formed of one slide block 155 and the other slide block 155 (when the direction of the helical groove formed on one end side of the screw shaft 159 is the clockwise direction seeing the other end side from one end side, the direction of the helical groove formed on the other end side is the counterclockwise direction seeing one end side from the other end side). With this, when the screw shaft 159 is rotated forward and rearward, the slide blocks 155 are contacted and separated. In addition, the driven gear 159a is provided at one end of the screw shaft 159, so that power from the first driving motor 174 is transmitted via the driven gear 159a. Further, a spring 159b is fitted onto the screw shaft 159, and biases the slide blocks 155 to both ends.
The link members 156 are rotatably connected at the centers thereof to be arranged inside both sides of the rectangular frame 154. One end of each of the link members 156 is rotatably connected to both side surfaces of each of the slide blocks 155. In addition, a shaft 156a projected inward is provided at the other end of each of the link members 156.
The bearing member 157 has a circular cylindrical portion 160, and a pair of arms 161 extended from the circular cylindrical portion 160 in the directions opposite to each other. The circular cylindrical shaft member 163 is provided in the circular cylindrical portion 160 via a bearing 162, and is rotatably supported. The mountain-shaped gear 163a is formed at the upper opening end of the shaft member 163 in the circumferential direction thereof. A long hole 161a is formed in each of the arms 161, where the shaft 156a provided at the other end of the link member 156 is slidably arranged.
When the first driving motor 174 is driven to rotate the screw shaft 159, the slide blocks 155 are contacted and separated, so that the link members 156 are rotated. Consequently the first rotating body 111 having the above mentioned configuration is reciprocated in the direction of the shaft center thereof. The upward moved position of the first rotating body 111 is regulated so that part of the first rotating body 111 is abutted onto an abutment piece, not shown, whereby part of the first rotating body 111 has substantially the same height as the second rotating body 112. In addition, the first rotating body 111 is moved to the lowermost side in the position where the slide blocks 155 are extremely separated from each other, so that the medication storing volume of a medication storing portion 164 (see
In a state where the medication cassette 103 is removed from the cassette mounting portion 102, the first rotating body 111 rotates the link members 156 mainly by its own weight, and is then moved to the lower side of the first cylindrical portion 144. With this, a sufficient space which can store the medications can be automatically obtained in the medication cassette 103 without requiring additional power.
The second rotating body 112 is annularly formed at a predetermined width, and is arranged substantially around the upper end opening of the second cylindrical portion 145. As shown in
(1-5. The Conveying Unit 6)
As shown in
As shown in
The unit main body 166 is formed in a substantially rectangular cylindrical shape in such a manner that a top plate 169 and a base plate 170 are opposite in the upward and downward direction and both sides thereof are connected by guide blocks 171 (in
As shown in
The first driving motor 174 is integrated with the driving gear 174a at the end of the rotational shaft thereof. The driving gear 174a is engaged with the driven gear 108i of the cassette mounting portion 102 provided on the support panel 101. For this, when the first driving motor 174 is driven, the screw shaft 159 is rotated via the driving gear 174a and the driven gear 159a, so that the slide blocks 155 are reciprocated. As a result, the link members 156 are rotated to raise and lower the first rotating body 111 via the bearing member 157. A magnet type clutch 177 is provided midway the rotational shaft of the first driving motor 174, and blocks an excessive load which acts on the first rotating body 111 side.
The second driving gear 175a integrated with the end of the rotational shaft of the second driving motor 175 is engaged with the driven gear 108n provided on the driven gear member 108l of the cassette mounting portion 102. The driven gear member 108l has the bevel gear 108m, which is engaged with the bevel gear 108k to rotate the driving gear 108j. The driving gear 108j is engaged with the driven gear 112b of the medication cassette 103. For this, when the second driving motor 175 is driven, the second rotating body 112 is rotated via the driven gear 112b.
A driving gear 176a integrated with the end of the rotational shaft of the third driving motor 176 is engaged with the second gear 119b of the gear member 119, and the first gear 119a is engaged with the driven gear 146a of the first cylindrical portion 144. When the third driving motor 176 is driven, the first cylindrical portion 144 is rotated.
As shown in
A mounting plate 180 is provided on the rear end side of the top plate 169 and is extended to the rear end opening of the unit main body 166, and a second control substrate 181 is mounted on the outer surface thereof. As shown in
In the slider 167, slide rails 185 are fixed to both sides of a mounting plate 184 having a bottom surface and both side surfaces, and are slidably guided by the slider guides 183. The driving force of the motor is transmitted to the slider 167 via link mechanisms. Each of the link mechanisms has a first link member 186, and a second link member 187 rotatably connected to the first link member 186.
One end of the first link member 186 is rotatably mounted on a first support shaft 188a rotatably supported between the guide blocks 171 on both sides. A driven gear 186a is provided on the first support shaft 188a on the side of one of the first link members 186, and is used by a driving gear 189a provided on the rotational shaft of a driving motor 189. The other end of the first link member 186 is rotatably connected to one end of the second link member 187 via a second support shaft 188b. The other end of the second link member 187 is rotatably connected to each of the side surfaces of the mounting plate 184 about a third support shaft 188c. Therefore, when the driving motor 189 is rotationally driven forward and rearward, the first link members 186 and the second link members 187 are rotated via the gears 189a and 186a, so that the mounting plate 184 is reciprocated on the slide rails 185 while being guided by the slider guides 183.
The chuck member 168 has a chuck main body 190 having a planar body assembled in a rectangular shape, a pair of sandwiching pieces 191 mounted on the chuck main body 190 to be rotatable about a pair of rotational shafts, and a driving motor 192 for opening and closing the sandwiching pieces 191.
The chuck main body 190 is supported on each of the side surfaces of the mounting plate 184 to be rotatable about the rotational shaft 190a. An arm 193 is integrated with both ends of each of the rotational shafts 190a, and a guide roller 194 is rotatably mounted on the end portion thereof. The guide roller 194 is rolled in the guide groove 182 formed in the guide block 171. Each of the sandwiching pieces 191 is fixed to each of rotating bodies 195 provided in parallel. The rotating bodies are synchronously rotated so that the upper ends thereof (which may be gears) are engaged. A spring 196 is engaged with the extended portion from each of the rotating bodies 195, and biases the sandwiching pieces in the direction in which the end portions thereof are close to each other. A bottle detection sensor 197 for detecting the vial bottle 9 is mounted on one of the extended portions. A pressing receiving portion 198 is formed in the portion extended from one of the rotating bodies 195 and projected from the upper surface of the chuck main body 190. An eccentric cam 199 is integrated with the rotational shaft of the driving motor 192. The eccentric cam 199 is pressed onto the pressing receiving portion 198 to rotate one of the rotating bodies 195, and rotates the other rotating body 195 in synchronization with this to open and close the sandwiching pieces 191.
When the chuck member 168 is reciprocated together with the slider 167 to be moved to the rear side, the guide rollers 194 are moved in the guide grooves 182 of the guide blocks 171 from the first horizontal portions 182a to the inclined portions 182b. As a result, the chuck member 168 is gradually tilted to be capable of tilting the sandwiched vial bottle. The guide rollers 194 reach the second horizontal portions 182c so that the tilted state of the chuck member 168 is stable. In this position, the medications which are dispensed from the medication cassette 103 and are then passed through the first medication detection sensor 178 can be collected into the vial bottle sandwiched by the chuck member 168.
A projection piece 200 is engaged with the engagement receiving portion (not shown) of the medication cassette 103 to position the arm unit 165 into the correct position, and a detection rod 201 detects whether or not the arm unit 165 is in the correct position. The unit main body 166 can be rotated about a rotational shaft 202.
(1-6. The Discharging Units 7)
As shown in
(1-7. The Controlling Unit 80)
As shown in
(2. Operation)
The operation of the medication filling apparatus having the configuration will be described with reference to the flowchart of
That is, the controlling unit 80 receives prescription data from the server, not shown, (step S1), and then designates the medication cassette 103 in which the medications included in the prescription data are stored (step S2). The second driving motor 175 is driven based on the designated medication cassette 103 to start the rotation of the second rotating body 112 (step S3). Then, the third driving motor 176 is driven to start the rotation of the first rotating body 111 (step S4). With this, the medications stored in the medication cassette 103 are moved to the outer circumference side while being rotated by the rotation of the first rotating body 111. The first cylindrical portion 144 and the second cylindrical portion 145 are arranged diagonally to the vertical direction, so that the medications stored in the medication storing portion 164 are closest to the second rotating body 112 in the shortest position of the second cylindrical portion 145. For this, the medications moved to the outer circumference side are sequentially moved onto the second rotating body 112 mainly near the shortest position of the second cylindrical portion 145.
At this time, the size of the vial bottle is designated based on the prescription data, so that the conveyor 23 and the taking-out device 24 of the stocker 21 accommodating the vial bottle 9 are driven. With this, the vial bottle 9 is taken out by the paddle 25 of the taking-out device 24, and is then slid down the shoot 27 to be placed on the fork 28. The label printer 31 is driven to stick the label 33 with a predetermined matter printed thereon, onto the vial bottle 9.
The conveying unit 6 is driven, so that the vial bottle 9 with the label 33 stuck thereonto is sandwiched between the sandwiching pieces 191 of the chuck member 168, and is then moved to the medication cassette 103 in which the corresponding medications included in the prescription data are stored. The vial bottle 9 is positioned in the dispensed position as follows. That is, the driving motor 189 is driven, and as shown in
The medications moved onto the second rotating body 112 are detected by the second medication detection sensor 179 through the through-hole 115a while being conveyed by the rotation of the second rotating body 112. The stacked medications are returned into the medication storing portion 164 by the height regulation member 124. The medications remaining on the second rotating body 112 can be passed one by one since the exposed portion of the second rotating body 112 is gradually narrowed by the guide member 135. Other medications are smoothly returned into the medication storing portion 164 along the curved surface formed in the second cylindrical portion 145. The passed medications are guided by the guide member 135 and the discharge guide piece 142 to be discharged from the discharging portion 139. At this time, the medications are detected by the first medication detection sensor 178, so that the number of dispensed medications is counted (step S5).
The dispensed medications are collected into the vial bottle 9. The vial bottle 9 which is tilted as described above has a tilting angle substantially coinciding with the dispensing direction of the medications dispensed from the medication cassette 103. Therefore, the medications dispensed from the medication cassette 103 are smoothly stored into the vial bottle 9. When the filling of the medications into the vial bottle 9 is completed, the conveying unit 6 is driven to convey the medication cassette 103 held by the chuck member 168 to any one of the discharge ports 73 formed on the front surface of the apparatus main body 8. At this time, the driving motor 189 is driven, and as shown in
Although the medications in the medication storing portion 164 are sequentially dispensed in this way, but the position of the first rotating body 111 is moved upward according to the medication dispensed state. That is, whether or not there are the medications on the second rotating body 112 is detected by the second medication detection sensor 179, and then, when the medications cannot be detected or when the interval during which the medications discharged from the discharging portion 139 is detected by the first medication detection sensor 178 exceeds a predetermined time, whether or not the medication dispensed state is deteriorated is determined (step S6). When the medication dispensed state is deteriorated, the first driving motor 174 is driven (step S7), so that the first rotating body 111 is moved upward in the first cylindrical portion 144 via the gears 174a and 159a, the link members 156, and the bearing member 157. As a result, the medications in the medication storing portion 164 can be smoothly moved onto the second rotating body 112 according to the dispensed state. As shown in
When the medications cannot be detected by the second medication detection sensor 179, the first driving motor 174 should be driven so that the first rotating body 111 is moved upward. Even when the first driving motor 174 is rotated over a predetermined time, when the medications cannot be detected by the second medication detection sensor 179, the need for medication filling is preferably notified. In addition, even when during the driving of the first driving motor 179, the first rotating body 111 reaches the upper limit position and cannot be further moved upward, the driving force of the first driving motor 179 is blocked by the clutch 177 and is not transmitted to the first rotating body 111 side. For this, an excessive load is not applied to the first driving motor 174, which cannot result in burnout. In step S8, even when the first driving motor 174 is rotated over the predetermined time, when the medications cannot be detected by the first medication detection sensor 178, medication running-out may be determined and notified.
When the need for medication filling into the medication storing portion 164 is notified, the medications should be filled by removing the medication cassette 103 from the cassette mounting portion 102. In this case, the screw shaft 159 is disengaged from the driving gear 108b on the cassette mounting portion side so as to be rotatable. As a result, as shown in
In the medication dispensing process, when the time during which the medications are not detected by the first medication detection sensor 178 exceeds the predetermined time, when the medications are detected by the second medication detection sensor 179, it may be determined that an error occurs. As the error, it is considered that, for instance, the medications remaining in the medication cassette 103 cannot be dispensed into the vial bottle due to jamming (medication clogging). When the raising/lowering operation of the first rotating body 111 is controlled only by the detection signal from the first medication detection sensor 178, in the above case, the raising operation of the first rotating body 111 is continued so that the medications can be overflown. However, by providing the second medication detection sensor 179, such a disadvantage can be prevented from occurring. When it is determined that an error occurs, as described above, occurrence of an error may be notified. Examples of the notification include sound notification and visible notification using a lamp and monitor provided in the medication filling apparatus. In this embodiment, the direction of the shaft center of the cylindrical body 110 is tilted with respect to the vertical direction, but may coincide with the vertical direction.
Number | Date | Country | Kind |
---|---|---|---|
2012-027340 | Feb 2012 | JP | national |
This application claims priority under 35 U.S.C. §120 as a continuation of U.S. patent application Ser. No. 14/377,791, filed Aug. 8, 2014, which is a national phase application under 35 U.S.C. §371 of International Application Serial No. PCT/JP2013/052921, filed on Feb. 7, 2013, and claims priority under 35 U.S.C. §119 to Japanese Patent Application No. 2012-027340, filed on Feb. 10, 2012, which is hereby expressly incorporated by reference in their entirety for all purposes.
Number | Name | Date | Kind |
---|---|---|---|
5369940 | Soloman | Dec 1994 | A |
5400893 | Spatafora | Mar 1995 | A |
7182201 | Fujimura | Feb 2007 | B2 |
7305092 | Mauro | Dec 2007 | B2 |
8827112 | Yuyama | Sep 2014 | B2 |
9242785 | Yuyama | Jan 2016 | B2 |
9365308 | Koike | Jun 2016 | B2 |
20040094386 | Yuyama | May 2004 | A1 |
20070145066 | Knoth | Jun 2007 | A1 |
20070240968 | Corbin | Oct 2007 | A1 |
20080029530 | Yuyama et al. | Feb 2008 | A1 |
Number | Date | Country |
---|---|---|
103857608 | Jun 2014 | CN |
2754627 | Jul 2014 | EP |
60-157414 | Aug 1985 | JP |
01-51403 | Nov 1989 | JP |
2007-82622 | Apr 2007 | JP |
10-2009-0097419 | Sep 2009 | KR |
I 340715 | Apr 2011 | TW |
2013035692 | Mar 2013 | WO |
Entry |
---|
International Preliminary Report on Patentability in PCT/JP2013/052921, Issued on Aug. 21, 2014 Authorized officer Yukari Nakamura of the International Bureau of WIPO. |
EPO, Extended European Search Report issued on Sep. 8, 2015 in European Patent Application No. 13746681.9, total 6 pages. |
Number | Date | Country | |
---|---|---|---|
20160250104 A1 | Sep 2016 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 14377791 | US | |
Child | 15152005 | US |