The present invention relates to a system for processing orders for prescribed medicinal products.
Patients suffering from long-term or chronic medical conditions, such as diabetes, asthma, hypertension, heart disease and many others, typically have to take medication on a regular basis. Such medication is typically prescribed by a qualified medical practitioner, and this may be on a “repeat” basis, such that the patient can obtain a resupply of the medication when his or her supplies are running low by contacting a pharmacy or other supplier of medicinal products without the need for a detailed examination by the medical practitioner again. Such re-supplies are known as repeat prescriptions. For example, a current routine in the UK for obtaining a repeat prescription is that the patient is provided with a paper slip which, when the repeat prescription is required, the patient delivers to the medical practitioner. A few days later the patient returns to the medical practitioner to obtain the prescription which he can take to the pharmacy and obtain the medication. Alternatively, patients sometimes attend the pharmacy directly, who contact the medical practitioner, and then at a later date has the prescribed medicament ready for collection.
However, there are a number of aspects of this process which are inconvenient and which can lead to poor compliance with the prescribed regime which can interfere with successful control of a patients condition.
Firstly, it can be inconvenient for a patient to attend the premises of a supplier of medicinal products not only to place the order for resupply, but also then to collect the medicaments. This inconvenience tends to lead to patients being supplied with large quantities of medicaments so that they will last a significant length of time, to reduce the number of visits that the patient has to make for order and collection of the medicaments. However, patients frequently do not complete their courses of medication, for example because of undesirable side-effects or because of forgetfulness, and in that case a large supply of medicament may be wasted. Further, it can be dangerous for patients to keep large quantities of certain medicinal products.
Further, some patients do not take their medication at the specified dosage. Such patients may be unwilling to disclose this to the medical practitioner, but generally information about the number of repeat prescriptions obtained is not available to the medical practitioner.
Also, there are some medical conditions in which the dose of medication is varied as necessary, rather than at a regular dosage. In such a case it can be difficult for a patient to obtain a resupply of medication when needed, and difficult for medical practitioners to monitor the amount of medication taken.
It is an object of this invention to provide a system which facilitates such a repeat prescription process, in particular by making it more convenient for the patient, but additionally by improving the quality of the monitoring of the patients usage of medication.
Accordingly the present invention provides a system for processing orders for prescribed medicinal products comprising:
a portable communications and data processing device for use by a patient for whom one or more medicinal products have been prescribed, the portable communications and data processing device carrying a prescription ordering application; a server comprising data processing means and a database storing information about the patient, the one or more prescribed medicinal products, and which of a plurality of suppliers of prescribed medicinal products is designated to supply said one or more prescribed medicinal products to said patient; and
data processing terminals connected to said server for use by said suppliers of prescribed medicinal products.
Preferably, on initiation of said prescription ordering application, said prescription ordering application controls the portable communications and data processing device to communicate with said server via a communications network to automatically provide a unique identifier to the server,
in response the server supplies to the portable communications and data processing device a list of only the medicinal products prescribed to that patient and the portable communications and data processing device displays that list, and
in response to operation of the portable communications and data processing device by a patient to select items from the displayed list, the prescription ordering application controls the portable communications and data processing device to send an order for the selected items to the server, said server making said list available for display on the terminal of said designated supplier of prescribed medicinal products.
The server preferably maintains in the database an estimate of the current stock of the prescribed medicinal products held by the patient. This estimate may be based on the prescribed starting amount and dosage, but it may also incorporate a record of medications taken entered by the patient into the portable communications and data processing device and, where applicable, a record of health checks entered by the patient into the portable communications and data processing device. For example, some chronic conditions such as diabetes and hypertension involve the patient making a check on their own health at regular intervals (for example blood glucose level or blood pressure). The results of these checks may be entered automatically or manually into the portable communications and data processing device for transmission to and storage at a database in an electronic health monitoring system. In such a system a record of medication taken may be generated automatically or kept by the patient. It is this record which can be used in the estimate of the stock of medication held by the patient.
The system can also keep track of other medical supplies required by the patient, for example consumable diagnostic items, and again the stock of these can be monitored in the same way. Such items can also be ordered by the patient in the same way.
The estimate of stock may be based on a statistical combination of several of the above factors.
Further, the estimate is allowed to be less than zero. The reason for this is that patients may start with a stock of medication or medical products which the system is unaware of. As the patient uses these, and also the prescribed or subsequently supplied products, the patient may appear to use more than they ordered. This also allows the system to estimate how many days the patient has gone without taking medication. This estimate may be reset after confirmation to the system that a new supply has been collected by the patient.
The server can automatically supply to the terminal at the medical supplier a list of patients whose supplies of medicinal product are running low or have been exhausted. Further, a message personal to the patient, listing the product(s) that they are estimated to be short of, or to have used-up, can be set to the patient. The medical practitioners may also be advised of patients of theirs who have exhausted their supply, and seem not to be following the regime prescribed for them. These steps improve the chances of the patients following the prescribed regime without accidentally running out of a medicament, and also allows medical intervention if a patient ceases to follow the regime. The predetermined amount below which such messaging or warning is triggered can be a certain number of days supply remaining, i.e. can be based on the dosage prescribed for the patient.
Optionally the message to the patient warning of low supply can cause the prescription ordering application to initiate automatically on the portable communications and data processing device. This avoids the need for the patient to remember to order new supplies when the supplies are running low.
The current stock of medication held by the patient can be viewed by the supplier and also the medical practitioner.
The terminal at the supplier's end can display to the supplier a list of pending orders for prescribed medicinal products assigned by the server to that supplier. The supplier can approve or reject each order, and can indicate when the orders are ready for collection. Appropriate status messages are sent automatically by the server to the patients indicating to them the progress of their order, and when the medication is ready for collection or delivery. The fact that the supplier can see the stocks held by patients allocated to them, and also can see a list of patients whose stocks are running low allows the supplier to improve their stock control processes.
The invention extends to the portable communications and data processing device carrying the prescription ordering application, and also to the prescription ordering application itself, which may be in the form of a computer program. The portable communications and data processing device may be a smart phone, GPRS phone or personal digital assistant which communicates with the server via a wireless network, such as one of the cellular telephone networks.
An example of the operation of the system in a typical order for medical supply from a patient will now be explained with reference to FIGS. 4 to 15.
As illustrated in
The portable communications and data processing device P will then display a list of drugs and supplies available for that particular patient. This list may either be stored on the device P itself, or retrieved from the server 10. In the case of retrieval from the server 10, as this constitutes the first contact with the server, the process includes an automatic, and invisible to the patient, check 403 on the patient identity following the reception at step 401 of the request from the patient. This check consists, for example, of an identification code and an authentication code. The list of drugs and/or supplies available for that patient is then sent by the server to the device P.
As indicated in step 605 the list of drugs and supplies available for that patient are then displayed on the device P and a typical display is shown in
As indicated in step 607 the patient then selects the products that they wish to order, e.g. by ticking the appropriate boxes in the lists indicated in
On reception at step 407 of the order from the patient, the server assigns in step 409 the order to a particular medical supplier by reference to its stored data on patients and suppliers. It also dispatches an order received confirmation to the device P, which is displayed at step 610.
The suppliers 3 in
As illustrated in
When the order is collected (or delivered), this is also registered at the supplier as indicated in
This estimate of the current stock of product held by the patient is maintained by the server 10 using the database 105 and data processor 103. As illustrated in
It is important to note that the estimate is allowed to count down below zero. This is illustrated in
It will be appreciated from the above that the system does not apply only to the ordering of prescribed medication, but also to medical products used by the customer in the course of the management of their condition, and to non-prescription medicaments. Furthermore, prescribed medication may be taken on a regular or irregular basis depending on whether it is required all the time or only as necessary according to the symptoms felt by the patient.
In the present invention the messages to the patient are sent by a bespoke messaging system designed to work in the present embodiment within a GPRS application. However they may be sent by the short messaging service (SMS) or e-mail or other means if desired.
The level at which the automatic initiation of the prescription ordering system occurs may be set as desired. This may depend on the severity of the patients condition, but in the illustrated embodiment is set at seven days supply remaining.
In the above description it is envisaged that the supplier does not need to contact the medical practitioner for confirmation of the repeat order. However, should such confirmation be required this can either occur automatically by the patient request first being alerted to the medical practitioner DOC for approval, and then being passed to the supplier PH for processing, or the supplier PH may be provided with an indication on the display shown in
Advantages of this system are that the patient can easily monitor the estimates of the medication they hold by accessing that information either stored on the device P or by accessing it on the server 10 using the device P, and can conveniently order more supplies when required. Further, because the system maintains an estimate of the remaining supply, the patient is less likely to run out of product. Further, the medical practitioner and supplier can monitor the consumption of medication and supplies by the patients and thus be alerted to those who are running low or have apparently run out of supplies. Running out of supplies is an indicator either that the patient is not sticking to the medication regimen (which needs attention by the medical practitioner) or that they are finding alternative sources of medication (which again would require investigation by the medical practitioner).
The interaction with the system of the medical practitioner allows straightforward changes to be made in the medication regimen without the need to see the patient. Thus a slight increase/decrease in medication, or change in frequency, could be agreed between the practitioner and the patient (e.g. by telephone) in which the case this can be entered by the practitioner, stored on the server and reflected in the ordering process available for that patient. In some jurisdictions only the medical practitioner may be permitted to do so, but the supplier can also be given the authorisation to do this, either to the same or to a more limited extent.
It should be noted that communications between the parties to the system are secured by means of requiring log-on identity checks and encrypted transmission as is conventional. Further, it should be noted that the interactions of the parties with the system are stored, rather than being discarded, thus resulting in the creation of an audit trail for each order.
The terminals useable by the suppliers 3 and practitioners 5 may be conventional personal computers, or portable communications and data processing devices such as smart phone, GPRS phones or PDAs. These run a prescription ordering application in a similar way to the patient devices P but which provides the functionality required by them. The server 10 may take the form of a personal computer, again running a prescription ordering application to provide the data processing and data storing functionality required by the system.