Exemplary embodiments of this invention improve and add utility to the nasal cannula devices sited herein. Exemplary embodiments of this invention may be used for any mammal, including horse, cattle, humans, and any other animal that breathes through a nasal cavity.
It is often desired to administer a medicine or one of a variety of gases to an animal, and in particular a mammal, such as a human, a dog or a horse, for pulmonary or nasal absorption. Direct application, such as by a spray or aerosol delivery device, or a dry powder delivery device, is difficult due to movements of the animal and may lead to improper application or delivery of the medicine as well as discomfort of the subject. To enable such application of medicines in the conventional art, an elongated, generally cup-shaped “mask” is often provided, having a relatively large open base end for fitment over a subject's nostril or muzzle and having a medicament administration port opposite that base end. Typically the mask is made out of a semi-rigid material (e.g., sheet polycarbonate) and is provided in various sizes for use with different sized animals. The mask, however, is not easily adaptable or adjustable to fit over the nostrils or muzzle of a range of sizes of one type of animal or different sizes of different types animals or humans. This requires a variety of different size masks to be available in order to treat different animals or humans.
In use in the conventional art, an appropriate sized mask must therefore be selected. The open base end of the mask is then positioned over the subject's nostril or muzzle, typically only sealing to the nose or muzzle of the animal or human through friction between the mask and the animal or human. The size of the open end is such that only a rough seal is established between the open end of the mask and the animal's or human's nostril or muzzle. When the mask is so positioned, medicine or gas is delivered through an administrative port, for example by spray, aerosol delivery device, or dry powder medicine delivery device, either breath-activated or user-driven. As the animal or human breathes, the medicine is drawn into one (or both) nostril(s), or in the mouth and into the lungs or the nasal passages. However, due to the design and structure of these masks, medicine or gas may not be properly administered to the mouth or nostrils of the animals or humans as there is a significant distance between the administrative port and the mouth or nostrils of the animal. Additionally, due to the lack of a seal between the mask and the animal or human, medicine or gas may escape from the mask, preventing the animal from receiving the medicinal benefits.
There are further inconveniences and problems associated with the conventional art masks. More particularly, because of the semi-rigid structure of such masks, the masks are bulky and take up significant volume when carried around by a veterinarian, or other provider. A further problem with these masks is the discomfort caused to the animal or human. Because these masks cover the entire nose and mouth of the animal or human, the animal or human is unable to use its mouth or eat when the mask is being worn. This may cause animals in particular to try to dislodge the mask in an effort to regain the use of their mouth. The dislodging of the mask may further lead to damaging the mask, rendering it incapable of repeated use. A further problem with these masks is their bulk, which may cause discomfort when an animal or human tries to sleep.
None of the above inventions and patents, taken either singly or in combination, is seen to describe the instant invention as claimed.
An interface for delivery of therapeutic aerosols or gases, including at least one hollow body having at least one nasal aperture defined therein. It also has at least one nasal insert tube associated with each nasal aperture of said hollow body is capable of being inserted into a nostril. The interface also includes at least one exhaust aperture having at least one exhaust valve configured to exhaust exhaled gases and configured to block inflow of air through the exhaust aperture and at least one intake aperture.
In another exemplary embodiment of the present invention, the interface for delivery of therapeutic aerosols or gases may include a hollow, arcuate nasal cannula having a semi-cylindrical shape. The nasal cannula may further include nasal inserts and expiration ports, as well tubes used for coupling the nasal cannula to ventilator supply tubes. The nasal inserts may provide a seal between the inserts and the nares of a user. Further, the nasal interface may have at least one connector tube coupled to the nasal cannula, at least one reservoir bag coupled to the at least one connector tube and at least one nebulizer coupled to the reservoir bag.
In yet another exemplary embodiment, a method for delivery of therapeutic aerosols or gases is shown comprising providing at least one hollow body having at least one nasal aperture defined therein. Then inserting at least one nasal insert tube associated with each nasal aperture of said hollow body into a nostril. Next, delivery of at least one of therapeutic mists, vapors, aerosols and gases to the nasal interface and expelling at least one of exhaled air through at least one exhaust aperture having at least one exhaust valve.
In another exemplary embodiment, an interface for delivery of therapeutic aerosols or gases, comprising means for delivery of aerosols through at least one hollow body having at least one nasal aperture defined therein; means for sealing at least one nasal insert tube associated with each nasal aperture of said hollow body with a nostril; means for exhausting exhaled gas; means for blocking inflow of air through the means for exhausting exhaled gas; and means for intake of at least one of therapeutic aerosols or gases.
Advantages of embodiments of the present invention will be apparent from the following detailed description of the exemplary embodiments thereof, which description should be considered in conjunction with the accompanying drawings in which:
Aspects of the invention are disclosed in the following description and related drawings directed to specific embodiments of the invention. Alternate embodiments may be devised without departing from the spirit or the scope of the invention. Additionally, well-known elements of exemplary embodiments of the invention will not be described in detail or will be omitted so as not to obscure the relevant details of the invention. Further, to facilitate an understanding of the description, discussion of several terms used herein follows.
Referring now to the drawings, wherein like reference numerals designate identical or corresponding parts throughout the several views.
Generally referring to
Additionally, the intranasal device 4 includes a body 12 and expiration port 26, which allows undesired expiration air or gases to escape the intranasal device 4. Additionally, expiration port 26 may have a one way valve, such as, for example, a flap valve 72 (see
In another embodiment of the present invention, the interface may be used for long periods of time, for example, many hours or days. Because there is not a pressure contact seal provided by the nasal inserts, tissue damage associated with other medicine delivery interfaces and masks that have such pressure contacts may be avoided. An extended distribution period for medication or therapeutic gases allows for high volume medication delivery, which may be given at a low rate per minute. Additionally, the ability of the device to be worn for long periods of time allows for a wider array of medications to be delivered, and allows for medications that require milligram doses rather than microgram doses to be delivered through the respiratory tract. For example, suitable antibiotics may be delivered to the lungs through this device, in part as a result of long time the interface may be worn.
In another exemplary embodiment the interface may also be used to treat other respiratory conditions or be configured to deliver oxygen or other medicinal gas treatment. Likewise, the device may be configured for pressurized delivery of medication or air. The ventilation interface may include a pair of nasal inserts that may be configured to provide a seal between the interface and the nares. The distal tip end 10 may be configured with a skirt, double skirt, flange or substantially oval distal to aid in sealing in the nares. The interface 12 may have at least one base end adapted for connection to a ventilator for air flow and at least one distal tip end 10. The interface may include at least one adjustable connector disposed on the ventilation interface that allows the device to fit a variety of patients.
The nebulizer 32 also acts to increase the amount of medication delivered during each respiratory cycle. Nebulizer 32 can be disposed on an upper portion or end portion of reservoir bag 6a, depending on the fitment to the face or snout of the mammal. Reservoir bag 6a may be a bellows-shaped expandable envelope. The nebulizer 32 may allow for the combination of air, oxygen, anesthetic or other gas or gas mixtures. Further, the use of a reservoir 6a with the nebulizer 32 may also act to increase the amount of medication delivered.
In one exemplary embodiment, the medication may be administered to the user of the device for the treatment of asthma, pneumonia, bronchitis or other respiratory diseases. Asthma, for example, may be treated with microgram doses of medication through an intranasal device that is worn. Additionally, because the intranasal device may be worn for long periods of time, for example, several hours, treatment utilizing larger amounts of medication may be performed that deliver anesthetic gases, antivirals or antibiotics directly to the target tissues of the user of the device.
Nebulizer 32 may produce a fine mist that can be administered to the horse or any other of a variety of mammals nasally. Single or multiple nebulizers may be designed to attach close to the airway, or be part of the airway device to improve performance, as aerosolized particles coalesce and be less effective in entering the desired point of treatment when the nebulized mist is further from the point of delivery.
Nebulizer 32 may further incorporate a switching device or a reservoir may be used with at least one of a nebulizer or a dose inhaler (MDI) to decrease medication wastage, better control dosing, and to decrease air contamination. In another embodiment, a switching, device can be used to control air or medication flow, decrease medication wastage, better control dosing and decrease air contamination through an opening and closing action. A switching device may also be used without a reservoir. When the switching device is in a closed position, air or medication may flow through tubing 36 and continue into reservoir bag 6a. When the switching device is in the open position, air or medication may flow through tubing 36 and into nebulizer 32, and then into reservoir bag 6a.
In another embodiment of the invention, tubing 36 may be a pressurized air tube, used, for example, with a jet nebulizer. Additionally, return tube 38 may be disposed in such a manner as it may act as a return tube 38 for aerosols that fall out of suspension. The return tube may be connected to the reservoir 6 at the float valve 37 which may be configured to open only when fluid has collected in the reservoir bag 6a. The float valve 37 may allow drainage of condensate in the reservoir bag 6a. If there is no liquid condensate present, the float valve 37 should remain closed so that aerosol and gas is not drawn back into the nebulizer 32 by negative pressure of the venturi effect in the nebulizer 32. If liquid condensate is present the small float above the opening and will allow passage of the liquid to the nebulizer 32 reservoir bag 6a.
In another embodiment, this device may incorporate an on-demand switching nebulizer. One method for this is a pressure sensitive switch which activates the nebulizer 32. An on-demand nebulizer would conserve medication, decrease medication release into the environment, and give more controllable dosing of medication. Other activation mechanisms may use flow detection, valves, or regulators.
In another embodiment of the invention, nebulizer 32 may be a vibrating mesh nebulizer, or similar type of electronic nebulizer, which allows use in a variety of positions. This would allow the nebulizer to be in close proximity to the nares, which may improve efficacy and work in concert with provisions above.
The nebulizer 32 may be designed to be used for long time periods, allowing for long dosing times and permitting large dose delivery, even at low flow rates. While traditional nebulizers are designed for short dosing periods in minutes, this device can be used for hours, perhaps for days.
In further exemplary embodiment with respect to
In another embodiment of the invention, a humidifier may be used interchangeably with nebulizer 32 or elsewhere ported into the system. In this embodiment, humidified air may be delivered through the system to provide a therapeutic effect on the user.
A cross sectional view I-I of the connector tube 44 is shown in
Connector tube 48 is a larger connector tube, demonstrating that different size tubes may be used for mammals of different sizes. Connector tube 48 also has adjustable and flexible tubing, further allowing fitment to a larger variety of mammals. For example, the connector tube 44 may be oval or flattened to stretch across the nose of large mammals. Connector tube 48 may, in another embodiment of the invention, be used interchangeably with adjustable connector 30. Additionally, a cross sectional view II-II showing the substantially circular outer perimeter of 50 of tube 48 is shown in
In another embodiment of the invention, tubing 36 and tubing 56 may deliver humidified air to the device. In this embodiment nebulizer 32 could be interchanged with a humidifier or, alternatively, a humidifier could be disposed in a variety of locations on the medicine delivery interface system.
In yet another embodiment of the invention, tubing 36 could be a water or medication supply tube. In this embodiment, tubing 36 may have single or multiple channel tubing for the supply of air, gases, pressure or medication. Tubing 36 may also house wires for delivery of electrical power to, for example, an electrically operated nebulizer or humidifier.
In another embodiment, tubing 56 may have a double wall chamber that allows warm gases, humidified air or medication to be delivered through the tubing. In this embodiment, the warm gases, humidified air or medication traveling through double-walled tubing 56 would be more insulated from ambient conditions and prevent the gases, air or medication from being cooled by those ambient conditions.
Reservoir bag 6a or 6b is connectably attached to connector tube 44 or 48, or any other of a variety of different size connector tubes, depending on the size and desired fitment to the horse or other mammal. Connector tube 44 or 48 may then be connected to intranasal device 4. The nasal inserts 18 and 20 (not pictured) of intranasal device 4 are inserted into the nares of horse 2. Additionally, expiration port 28 is shown as being optionally positioned in a downwards angle.
In a further exemplary embodiment, connector tubes 44a and 44b and 48a and 48b may be connected directly to the air intake valve(s) (e.g. air intake valve 35). In this embodiment, reservoir bags 6a and 6b could be replaced by any of a variety of different types of tubing.
In another exemplary embodiment, the expiration ports 26 and 28 for large animals for exhalation may be pointed downwards to avoid, for example, a blast of mucous and/or airflow directed at animal caretakers. In another embodiment, one-way exhalation valves could be placed across from the nostrils to exit breath and to reduce the likelihood of ejection of the device with snorting or sneezing of the animal.
Additionally, as shown in
Additionally,
In another exemplary embodiment of the present invention, a valve may be disposed in one of the ports on the interface device. In one exemplary embodiment, expiration ports 68 and 70 may include an exit valve 72. In another exemplary embodiment, a valve 72 may be disposed on connecting ports 64 and 66. Exemplary diagrams of the exit valves 72 that may be disposed in the expiration ports or the connecting ports are shown in
In another exemplary embodiment,
In yet another non-limiting example,
The foregoing description and accompanying drawings illustrate the principles, preferred embodiments and modes of operation of the invention. However, the invention should not be construed as being limited to the particular embodiments discussed above. Additional variations of the embodiments discussed above will be appreciated by those skilled in the art.
Therefore, the above-described embodiments should be regarded as illustrative rather than restrictive. Accordingly, it should be appreciated that variations to those embodiments can be made by those skilled in the art without departing from the scope of the invention as defined by the following claims.
This application claims priority under 35 U.S.C. § 120 to Provisional U.S. Application Ser. No. 60/580,393, filed Jun. 18, 2004, the disclosure of which is incorporated by reference herein in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
1443820 | Hudson | Jan 1923 | A |
2185997 | Heidbrink | Jan 1940 | A |
2735432 | Hudson | Feb 1956 | A |
3836000 | Jakubek | Sep 1974 | A |
3915173 | Brekke | Oct 1975 | A |
4173222 | Muetterties | Nov 1979 | A |
4193516 | Purdy et al. | Mar 1980 | A |
4248218 | Fischer | Feb 1981 | A |
4278082 | Blackmer | Jul 1981 | A |
4278110 | Price et al. | Jul 1981 | A |
4327741 | Watson et al. | May 1982 | A |
4484577 | Sackner et al. | Nov 1984 | A |
4790305 | Zoltan et al. | Dec 1988 | A |
4867153 | Lorenzen et al. | Sep 1989 | A |
4915105 | Lee | Apr 1990 | A |
4919128 | Kopala et al. | Apr 1990 | A |
4967742 | Theodorou | Nov 1990 | A |
5195515 | Levine | Mar 1993 | A |
5222491 | Thomas | Jun 1993 | A |
5269296 | Landis | Dec 1993 | A |
5299567 | Joye et al. | Apr 1994 | A |
5401262 | Karwoski et al. | Mar 1995 | A |
5477852 | Landis et al. | Dec 1995 | A |
5495848 | Aylsworth et al. | Mar 1996 | A |
5572994 | Smith | Nov 1996 | A |
5687715 | Landis et al. | Nov 1997 | A |
5727542 | King | Mar 1998 | A |
5752502 | King | May 1998 | A |
5842467 | Greco | Dec 1998 | A |
5848587 | King | Dec 1998 | A |
5997848 | Patton et al. | Dec 1999 | A |
6253767 | Mantz | Jul 2001 | B1 |
6390090 | Piper | May 2002 | B1 |
6478026 | Wood | Nov 2002 | B1 |
6494202 | Farmer | Dec 2002 | B2 |
6655385 | Curti et al. | Dec 2003 | B1 |
6679265 | Strickland et al. | Jan 2004 | B2 |
6763832 | Kirsch et al. | Jul 2004 | B1 |
6863069 | Wood | Mar 2005 | B2 |
6994089 | Wood | Feb 2006 | B2 |
7047974 | Strickland et al. | May 2006 | B2 |
20020092527 | Wood | Jul 2002 | A1 |
20030079749 | Strickland et al. | May 2003 | A1 |
20040016432 | Genger et al. | Jan 2004 | A1 |
20040045552 | Curti et al. | Mar 2004 | A1 |
20040084046 | Halperin | May 2004 | A1 |
20040134498 | Strickland et al. | Jul 2004 | A1 |
20050042170 | Jiang et al. | Feb 2005 | A1 |
20050061326 | Payne, Jr. | Mar 2005 | A1 |
20050066976 | Wondka | Mar 2005 | A1 |
20050199242 | Matula et al. | Sep 2005 | A1 |
20050205096 | Matula et al. | Sep 2005 | A1 |
20060107958 | Sleeper | May 2006 | A1 |
20060174887 | Chandran et al. | Aug 2006 | A1 |
20070186930 | Davidson et al. | Aug 2007 | A1 |
20070283957 | Schobel (nee Bauer) et al. | Dec 2007 | A1 |
20080041393 | Bracken | Feb 2008 | A1 |
20080051674 | Davenport et al. | Feb 2008 | A1 |
Number | Date | Country | |
---|---|---|---|
20050279351 A1 | Dec 2005 | US |
Number | Date | Country | |
---|---|---|---|
60580393 | Jun 2004 | US |