Medicine for treating cancer

Abstract
Abstract The present invention is directed to a method for treating cancer, a method for inhibiting histone deacetylase, and a method for facilitating gene therapy, comprising administering an effective amount of a cyclic amine compound represented by the following formula (1):(wherein R1, R2, and R3 each independently represent a hydrogen atom, a halogen atom, a hydroxy group, an alkyl group, a halogen-substituted alkyl group, an alkoxy group, an alkylthio group, a carboxyl group, an alkoxycarbonyl group, or an alkanoyl group; W1 and W2, which are identical to or different from each other, represent N or CH; X represents O, NR4, CONR4, or NR4CO; R4 represents a hydrogen atom, an alkyl group, an alkenyl group, an alkynyl group, a substituted or unsubstituted aryl group, a substituted or unsubstituted heteroaryl group, a substituted or unsubstituted aralkyl group, or a substituted or unsubstituted heteroaralkyl group; and l, m, and n each represent a number of 0 or 1), a salt thereof, or a hydrate thereof.208
Description
TECHNICAL FIELD

The present invention relates to a medicine for treating cancer with reduced side effects.


BACKGROUND ART

Trichostatin A (hereinafter referred to as “TSA”) was first isolated as an antifungal antibiotic from Streptomyces hygroscopicus by Tsuji and others in 1976 (J. Antibiot. (Tokyo), 1976 29(1): 1-6). Later, Yoshida and others reported that TSA is a potent inducer of differentiation in erythroleukemia cells (Cancer Res., 1987 47(14): 3688-91) and also acts as an inhibitor in G1 and G2 phases in the cell cycle (Exp. Cell. Res., 1988 177(1): 122-31), and also clarified that these actions are caused by inhibiting histone deacetylase (hereinafter referred to as “HDAC”) (J. Biol. Chem., 1990 265(28): 17174-9). It has been suggested that TSA inhibits HDAC by formation of a stable complex from the hydroxamic acid moiety in TSA structure and the amino acid in the active center of HDAC which are chelated via metallic zinc (Nature, 1999 401(6749): 188-93).


HDAC inhibition causes highly acetylated nuclear histones, which leads to expression of genes. Among the genes affected by inhibition of HDAC, quite a few are important ones having close relation with cancer. Therefore, a number of HDAC inhibitors have been studied for their potential use as an anticancer agents. Some actions of HDAC inhibitors include inhibition of proliferation, acceleration of differentiation, apoptosis induction, upraising of p21 expression, and upraising of MHC expression. Moreover, by virtue of gene expression promoting action of HDAC, they are expected to improve the efficacy of transferred genes in gene therapy (see, for example, “Ketsueki •Shuyo-ka,” 2001 42(5): 416-22; Gene & Medicine, 2002 6(1): 10-14; Japanese Application Laid-Open (kokai) No. 2000-256397).


Anticancer actions of HDAC inhibitors, particularly TSA, reported heretofore includes proliferation inhibition against cultured stomach cancer cells and oral cancer cell ant J. Cancer. 2000 88(6): 992-7); carcinostatic action against a rat breast cancer model (Clin. Cancer Res., 2001 7(4): 971-6); and proliferation inhibition and apoptosis induction for cultured liver cancer cells (J. Hepatol., 2002 36(2): 233-40).


Studies on HDAC inhibitors, which are expected to serve as anti-cancer drugs or to facilitate gene therapies, have focused on the synthesis of analogues of acetyl lysine, which acts as a substrate of HDAC. That is, a variety of HDAC inhibitors having a functional group which interacts with zinc (e.g., a hydroxamic acid group or an epoxy-ketone group) and those having a cap site consisting of an aromatic or cyclic peptide have been synthesized and studied. In addition, as a peptide not having an analogous structure of acetyl lysine as described above, FK228 and the like have been synthesized and studied as HDAC inhibitors (“Ketsueki •Shuyo-ka,” 2001 42(5): 416-22).


However, thus far HDAC inhibitors which are non-peptide compounds and are not analogues of acetyl lysine have virtually remained unknown.


Thus, the present invention provides a novel substance which inhibits HDAC and which is a non-peptide and is not an analogue of HDAC substrate; and a method for treating cancer using the substance with reduced side effects.


DISCLOSURE OF THE INVENTION

Accordingly, by use of culture cell systems, the present inventors have searched for substances which affect HDAC, and quite unexpectedly have found that compounds represented by the following formula (1) exhibit excellent HDAC-inhibitory activity, gene therapy facilitating effect, and cancer cell proliferation-inhibiting action, and thus are useful medicines for treating cancer to complete the invention.


Accordingly, the present invention provides a medicine for treating cancer, comprising administering an effective amount of a cyclic amine compound represented by the following formula (1):
embedded image

(wherein R1, R2, and R3 each independently represent a hydrogen atom, a halogen atom, a hydroxy group, an alkyl group, a halogen-substituted alkyl group, an alkoxy group, an alkylthio group, a carboxy group, an alkoxycarbonyl group, or an alkanoyl group; W1 and W2 each independently represent N or CH; X represents O, NR1, CONR4, or NR4CO; R4 represents a hydrogen atom, an alkyl group, an alkenyl group, an alkynyl group, a substituted or unsubstituted aryl group, a substituted or unsubstituted heteroaryl group, a substituted or unsubstituted aralkyl group, or a substituted or unsubstituted heteroaralkyl group; and l, m, and n each represent a number of 0 or 1), a salt thereof, or a hydrate thereof.


The present invention also provides a method for inhibiting HDAC, comprising administering an effective amount of the cyclic amine compound represented by the above formula (1), a salt thereof, or a hydrate thereof.


The present invention also provides a method for facilitating gene therapy, comprising administering an effective amount of a cyclic amine compound represented by the above formula (1), a salt thereof, or a hydrate thereof.


The present invention also provides a medicine for treating cancer and an HDAC inhibitor, comprising, as an active ingredient, a cyclic amine compound represented by the above formula (1), a salt thereof, or a hydrate thereof.


The present invention also provides use of a cyclic amine compound represented by the above formula (1), a salt thereof, or a hydrate thereof for producing a medicine for treating cancer and an HDAC inhibitor.


The present invention also provides a medicinal composition for treating cancer and an HDAC inhibiting composition, comprising a cyclic amine compound represented by the above formula (1), a salt thereof, or a hydrate thereof, and a pharmaceutically acceptable carrier.




BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 shows correlation in terms of various gene expression level.



FIG. 2 shows relative gene expression levels of several genes.




BEST MODE FOR CARRYING OUT THE INVENTION

Examples of the halogen atom represented by R1 to R3 in formula (1) include a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom.


Examples of the alkyl group represented by R1 to R4 include linear, branched, or cyclic C1-C8 alkyl groups. Examples of the linear or branched C1-C8 alkyl groups include a methyl group, an ethyl group, a propyl group, a butyl group, a pentyl group, a hexyl group, a heptyl group, and an octyl group. Examples of the cyclic C3-C8 alkyl groups include a cyclopropyl group, a cyclobutyl group, a cyclopentyl group, a cyclohexyl group, a cyclohexylmethyl group, and a cyclohexylethyl group. Of these, C1-C6 alkyl groups such as a methyl group, an ethyl group, a n-propyl group, an isopropyl group, and a n-butyl group are particularly preferred.


Examples of the halogen-substituted alkyl group represented by R1 to R3 include C1-C8 alkyl groups substituted by one to three halogen atoms. Of these, C1-C6 alkyl groups substituted by one to three halogen atoms such as a trifluoromethyl group and a 2,2,2-trifluoroethyl group are particularly preferred.


Examples of the alkoxy group include linear, branched, or cyclic C1-C8 alkoxy groups. Examples of the linear or branched C1-C8 alkoxy groups include a methoxy group, an ethoxy group, a n-propoxy group, an iso-propoxy group, a n-butoxy group, an iso-butoxy group, a sec-butoxy group, a tert-butoxy group, a pentyloxy group, and a hexyloxy group. Examples of the C3-C8 cycloalkyloxy groups include a cyclopropyloxy group, a cyclobutyloxy group, a cyclopentyloxy group, a cyclohexyloxy group, a cyclohexylmethyloxy group, and a cyclohexylethyloxy group. Of these, a C1-C6 alkoxy group such as a methoxy group, an ethoxy group, a n-propoxy group, an isopropoxy group, or a n-butoxy group is particularly preferred.


Examples of the alkylthio group include C1-C8 alkylthio groups, and C1-C6 alkylthio groups such as a methylthio group, an ethylthio group, a n-propylthio group, and an isopropylthio group are preferred.


Examples of the alkoxycarbonyl group include C1-C6 alkoxycarbonyl groups, and C1-C4 alkoxycarbonyl groups such as a methoxycarbonyl group, an ethoxycarbonyl group, and a tert-butoxycarbonyl group are preferred.


Examples of the alkanoyl group include C1-C6 alkanoyl groups, and C1-C4 alkanoyl group such as an acetyl group, a propionyl group, a butyryl group, and an iso-butyryl group are preferred.


Examples of the alkenyl group represented by R4 include C3-C8 alkenyl groups, and C3-C6 alkenyl groups such as a 2-propenyl group and a 3-butenyl group are preferred. Examples of the alkynyl group include C3-C8 alkynyl groups, and C3-C6 alkynyl groups such as a 2-propynyl group and a 3-butynyl group are preferred.


Examples of the aryl group represented by R4 include C6-C14 aryl groups, and, among others, a phenyl group, a naphthyl group, an anthryl group, an indenyl group, an indanyl group, and a 5,6,7,8-tetrahydronaphthyl group are preferred.


Examples of the heteroaryl group represented by R4 include heteroaryl groups containing a 5- or 6-membered ring having one to four nitrogen atoms, and among others, an imidazolyl group, a pyridyl group, and a pyrimidinyl group are preferred.


Examples of the aralkyl group represented by R4 include a (C6-C14)-aryl-(C1-C6)-alkyl group, and a phenyl-(C1-C6)-alkyl group or a naphthyl-(C1-C6)-alkyl group such as a benzyl group, a naphthylmethyl group, a phenylethyl group, or a phenylpropyl group is exemplified. Examples of the heteroaralkyl group represented by R4 include heteroaryl-(C1-C6)-alkyl groups containing a 5- or 6-membered ring having one to four nitrogen atoms such as an imidazolyl-(C1-C6)-alkyl group, a pyridyl-(C1-C6)-alkyl group, or a pyrimidinyl-(C1-C6)-alkyl group.


The aforementioned aryl groups, heteroaryl groups, aralkyl groups, or heteroaralkyl groups may be substituted by a substituent. Examples of the substituent include one to three groups or atoms selected from an alkyl group, an alkoxy group, a halogen-substituted alkoxy group, an alkylthio group, an alkylsulfinyl group, an alkylsulfonyl group, a halogen atom, a nitro group, an amino group, an acetylamino group, a trifluoromethyl group, and an alkylenedioxy group. Examples of the alkyl group, the alkoxy group, and the alkylthio group include those described in relation to the R1 to R3. Examples of the alkyl group contained in the alkylsulfinyl group and the alkylsulfonyl group include a C1-C3-alkyl group, particularly a methyl group, an ethyl group, a n-propyl group, and an isopropyl group. Preferable examples of the halogen-substituted alkoxy group include a C1-C8 alkoxy group substituted by one to three halogen atoms, particularly a C1-C4 alkoxy group substituted by one to three halogen atoms such as a trifluoromethoxy group or a 2,2,2-trifluoroethoxy group. Examples of the alkylenedioxy group include a C1-C3 alkylenedioxy group such as a methylenedioxy group, an ethylenedioxy group, or a propylenedioxy group.


X is preferably NR4, and R4 is more preferably a C1-C8 alkyl group, a substituted or unsubstituted C6-C14 aryl group, a substituted or unsubstituted heteroaryl group containing a 5- or 6-membered ring having one to four nitrogen atoms, a substituted or unsubstituted (C6-C14)-aryl-(C1-C6)-alkyl group, or a substituted or unsubstituted heteroaryl-(C1-C6)-alkyl group containing a 5- or 6-membered ring having one to four nitrogen atoms.


Preferably, R1, R2, and R3 are bonded at the 3-, 4-, and 5-positions, respectively, of the phenyl group. In this case, more preferably, R1 and R3 (i.e., the groups bonded at the 3- and 5-positions of the phenyl group) are an alkoxy group or a halogen atom, and R2 (i.e., the group bonded at the 4-position of the phenyl group) is a hydrogen atom, a halogen atom, a hydroxy group, an alkyl group, a halogen-substituted alkyl group, an alkoxy group, an alkylthio group, a carboxy group, an alkoxycarbonyl group, or an alkanoyl group.

    • l is a number of 0 or 1, with 1 being preferred.


W1 is preferably N. W2 is preferably N.


Among the compounds represented by formula (1), preferred is a compound in which X is NR4, and R4 is a C1-C8 alkyl group, a substituted or unsubstituted C6-C14 aryl group, a substituted or unsubstituted heteroaryl group containing a 5- or 6-membered ring having one to four nitrogen atoms, a substituted or unsubstituted (C6-C14)-aryl-(C1-C6)-alkyl group, or a substituted or unsubstituted heteroaryl-(C1-C6)-alkyl group containing a 5- or 6-membered ring having one to four nitrogen atoms. More preferably, R4 is a phenyl group or a pyridyl group which may be substituted by one or two groups or atoms selected from a halogen atom, an alkyl group, an alkoxy group, an alkylthio group, a trifluoromethyl group, and an alkylenedioxy group, or a C1-C8 alkyl group.


No particular limitations are imposed on the acid-addition salts of the compound (1) of the present invention, so long as the salts are pharmaceutically acceptable. Examples of the salts include addition salts of mineral acids such as hydrochlorides, hydrobromides, hydriodides, sulfates, and phosphates; and addition salts of organic acids such as benzoates, methanesulfonates, ethanesulfonates, benzenesulfonates, p-toluenesulfonates, oxalates, malates, fumarates, tartarates, citrates, and acetates.


The compound (1) of the present invention may form a solvate represented by hydrate, and the present invention encompasses such solvates.


The compound (1) of the present invention can be produced through the following methods A through L.


Process A: Preparation of the Compound of the Formula (1) wherein l=1, m=0, n=1 and X═CONR4embedded image

wherein, W1, W2, R1, R2, R3 and R4 are as defined above, W3 has the same meaning as W1 or W2, and B denotes a leaving group such as a halogen atom, or methanesulfonyloxy or p-toluenesulfonyloxy group.


Compound (2) and a N-(2-nitro)benzenesulfonylamine derivative (3) are reacted to give compound (4). The resulting compound (4) is treated with thiophenol in the presence of a base such as potassium carbonate to eliminate the 2-nitrobenzenesulfonyl group, thereby giving amine compound (5). Alternatively, when R4 is H, it is possible to react compound (2) with potassium phthalimide and then treat the resulting phthalimide derivative (6) with hydrazine to give the corresponding amine compound (5).


On the other hand, compound (2) is reacted with ethyl isonipecotate (7) in a solvent such as acetonitrile, N,N-dimethylformamide (DMF), dimethyl sulfoxide (DMSO), tetrahydrofuran (THF), dioxane, toluene, benzene, etc. in the presence of a base such as potassium carbonate or the like at a temperature between 0° C. and a reflux temperature for several hours to several days, preferably at room temperature overnight, to give compound (8). The compound (8) is subjected to a usual alkaline hydrolysis to give the corresponding carboxylic acid compound (9).


The carboxylic acid compound (9) is reacted with the amine compound (5) using a dehydration condensing agent such as 1-(3-dimethylaminopropyl)-3-ethylcarbodiimide hydrochloride (water-soluble carbodiimide), 2-(1H-benzotriazol -1-yl)-1,1,3,3-tetramethyluronium hexafluorophosphate (HBTU) or the like in a solvent such as chloroform, dichloroethane, THF, dioxane, acetonitrile, etc. at a temperature between 0° C. and a reflux temperature for several hours to several days, preferably at room temperature for 12 hours, to give an end product (1A).


Process B: Preparation of the Compound of the Formula (1) wherein l=1, m=0, n=1 and X═O
embedded image

wherein, B, W1, W2, R1, R2 and R3 are as defined above, and J denotes a protecting group such as benzyloxycarbonyl, tert-butoxycarbonyl, acetyl, benzoyl or benzyl group. Incidentally, in the reaction schemes shown above and below, the expression “(W2→W1)” following the term “compound (2)” means that W2 in the formula representing compound (2) is changed to W1.


4-hydroxypiperidine compound (10) with a protected amino group is reacted with compound (2) in the presence of sodium hydride and potassium iodide in a solvent such as DMF, DMSO, etc. at a temperature between 0° C. and a reflux temperature for several hours to several days, preferably at room temperature for 2 days, to give compound (11). The protecting group in the compound (11) is removed in a known manner. The resulting compound (12) is reacted with compound (2) in the presence of a base such as potassium carbonate in a solvent such as acetonitrile, DMF, DMSO, THF, dioxane, etc. at a temperature between 0° C. and a reflux temperature for several hours to several days, preferably at room temperature for 4 hours, to give an end product (1B).


Process C: Preparation of the Compound of the Formula (1) wherein l=1, m=0, n=0, X═NR4CO and R4═H or Me
embedded image

wherein, B, W1, W2, R1, R2 and R3 are as defined above, and R4 denotes a hydrogen atom or methyl group.


Isonipecotamide (13) is reacted with compound (2) in the presence of a base such as potassium carbonate, sodium carbonate or the like in a solvent such as acetonitrile, DMF, DMSO, THF, dioxane, etc. at a temperature between 0° C. and a reflux temperature for several hours to several days, preferably at room temperature for 4 hours, to give compound (14). The compound (14) is subjected to Hofmann rearrangement reaction to give amine compound (15).


On the other hand, by subjecting the compound (14) to Hofmann rearrangement reaction in ethanol, carbamate compound (16) is obtained. Then, by subjecting the compound (16) to a reduction reaction using lithium aluminum hydride, methylamine compound (17) is obtained.


By reacting carboxylic acid compound (18) with the amine compound (15) or methylamine compound (17) similarly to the condensation reaction in Process A, an end compound (1C) is obtained.


Process D: Preparation of the Compound of the Formula (1) wherein l=1, m=0, n=1 and X═NR4embedded imageembedded image

wherein, B, W1, W2, R1, R2 and R3 are as defined above, and R4 denotes an alkyl, alkenyl, alkynyl, aralkyl or heteroaralkyl group.


The amine compound (15) mentioned in the above is reacted with 2-nitrobenzenesulfonyl chloride (19) according to a known manner to give compound (20). The compound (20) is reacted with compound (2) in the presence of a base such as potassium carbonate in a solvent such as acetonitrile, DMF, DMSO, THF, dioxane or the like at a temperature between 0° C. and a reflux temperature for several hours to several days, preferably at room temperature for 4 hours, to give compound (21). The benzenesulfonyl group of the compound (21) is removed similarly to the procedure for the compound (4) in Process A to give an end compound (1D) (R4═H). The compound (1D) is reacted with R4-B in the presence of a base such as sodium carbonate, sodium bicarbonate, potassium carbonate, cesium carbonate or the like in a solvent such as acetonitrile, THF, dioxane, chloroform, dichloromethane, DMF, DMSO or the like at a temperature between 0° C. and a reflux temperature for several hours to several days, preferably at 80° C. for 12 hours, to give compound (1D′).


On the other hand, the methylamine compound (17) is reacted compound (2) in the presence of a base such as potassium carbonate in a solvent such as acetonitrile, DMF, DMSO, THF, dioxane or the like at a temperature between 0° C. and a reflux temperature for several hours to several days, preferably at room temperature for 4 hours, to give an end compound (1D″) (R4=Me).


Process E: Preparation of the Compound of the Formula (1) wherein l=1, m=0 or 1, n=1 and X═NR4,
embedded image

wherein, B, J, W1, W2, R1, R2 and R3 are as defined above, and R4 denotes an alkyl, alkenyl, alkynyl, aralkyl or heteroaralkyl group.


Aminopiperidine derivative (22) in which the amino group on the ring is protected is reacted with compound (2) in the presence of a base such as potassium carbonate in a solvent such as acetonitrile, DMF, DMSO, THF, dioxane or the like at a temperature between 0° C. and a reflux temperature for several hours to several days, preferably at room temperature for 4 hours, to give compound (23). The compound (23) is reacted with R4-B in the presence of a base such as sodium carbonate, sodium bicarbonate, potassium carbonate, cesium carbonate or the like in a solvent such as acetonitril, THF, dioxane, chloroform, dichloroethane, DMF, DMSO or the like at a temperature between 0° C. and a reflux temperature for several hours to several days, preferably at 80° C. for 12 hours, to give compound (24). After removal of the protecting group, the compound (25) is reacted compound (2) in the presence of a base such as potassium carbonate in a solvent such as acetonitrile, DMF, DMSO, THF, dioxane or the like at a temperature between 0° C. and a reflux temperature for several hours to several days, preferably at room temperature for 4 hours, to give compound (1E).


Process F: Preparation of the Compound of the Formula (1) wherein l=1, m=0, n=1 and X═NR4,
embedded image

wherein, B, W1, W2, R1, R2 and R3 are as defined above, and R4 denotes an alkyl, alkenyl, alkynyl, aralkyl, heteroaralkyl, aryl or heteroaryl group.


4-piperidone ethylene ketal (26) is reacted with compound (2) in the presence of a base such as potassium carbonate in a solvent such as acetonitrile, DMF, DMSO, THF, dioxane, etc. at a temperature between 0° C. and a reflux temperature for several hours to several days, preferably at room temperature for 4 hours, to give compound (27), which in turn is deketalized by using an acid to give ketone compound (28).


On the other hand, 4-piperidone (29) is reacted compound (2) in the presence of a base such as potassium carbonate in a solvent such as acetonitrile, DMF, DMSO, THF, dioxane or the like at a temperature between 0° C. and a reflux temperature for several hours to several days, preferably at room temperature for 4 hours, to give compound (28). Using the compound (28), amine compound (30) can be prepared according to either of the following two synthesis processes:


Synthesis process 1: The compound (28) is reacted with an amine compound of the formula: R4—NH2 in the presence of molecular sieves in toluene or benzene at a temperature between 0° C. and a reflux temperature for several hours to several days, preferably at reflux temperature for 12 hours, followed by reaction with a reducing agent such as sodium borohydride or sodium cyanoborohydride at a temperature between 0° C. and a reflux temperature for several minutes to several days, preferably at room temperature for 1 hour, to give the amine compound (30).


Synthesis process 2: The compound (28) is reacted with an amine compound of the formula: R4—NH2 in the presence of a reducing agent such as sodium triacetoxy boron hydride in a solvent such as dichloromethane, 1,2-dichloroethane, methanol, ethanol, etc. at a temperature between 0° C. and a reflux temperature for several minutes to several days, preferably at room temperature for 4 hours, to give the amine compound (30).


The resulting compound (30) is reacted compound (2) in a solvent such as acetonitrile, DMF, DMSO, THF, dioxane, etc. at a temperature between 0° C. and a reflux temperature for several hours to several days, preferably at room temperature for 4 hours, to give an end product (IF).


Process G: Preparation of the Compound of the Formula (1) wherein l=1, m=0, n=1 and X═NR4embedded image

wherein, B, J, W1, W2, R1, R2 and R3 are as defined above, and R4 denotes an alkyl, alkenyl, alkynyl, aralkyl, heteroaralkyl, aryl or heteroaryl group.


4-piperidone derivative (31) in which the amino group on the ring is protected is reacted with an amine compound R4—NH2 similarly to the procedure for preparation of compound (30) in Process F to give compound (32). The compound (32) is reacted with compound (2) in the presence of a base such as potassium carbonate in a solvent such as acetonitrile, DMF, DMSO, THF, dioxane, etc. at a temperature between 0° C. and a reflux temperature for several hours to several days, preferably at room temperature for 4 hours, to give compound (33). After removal of the protecting group from the compound (33), the resulting compound (34) is reacted with compound (2) in the presence of a base such as potassium carbonate in a solvent such as acetonitrile, DMF, DMSO, THF, dioxane, etc. at a temperature between 0° C. and a reflux temperature for several hours to several days, preferably at room temperature for 4 hours, to give an end product (1G).


Process H: Preparation of the Compound of the Formula (1) wherein l=0, m=0, n=1 and X═NH
embedded image

wherein, B, J, W1, W2, R1, R2 and R3 are as defied above.


3-aminopyrrolidine derivative (35) with a protected amino group on the ring is reacted with 2-nitrobenzenesulfonyl chloride (19) under usual conditions to give a benzenesulfonyl derivative (36). The derivative (36) is reacted with compound (2) in the presence of a base such as potassium carbonate in a solvent such as acetonitrile, DMF, DMSO, THF, dioxane, etc. at a temperature between 0° C. and a reflux temperature for several hours to several days, preferably at room temperature for 4 hours, to give compound (37). The protecting group of the amino group is removed from the compound (37) to give compound (38), which in turn is reacted with compound (2) in the presence of a base such as potassium carbonate in a solvent such as acetonitrile, DMF, DMSO, THF, dioxane, etc. at a temperature between 0° C. and a reflux temperature for several hours to several days, preferably at room temperature for 4 hours, to give compound (39). By subjecting the compound (39) to a reaction similar to that in the preparation of compound (5) in Process A, an end product (1H) is obtained.


Process I: Preparation of the Compound of the Formula (1) wherein l=0, m=0, n=1 and X═NR4embedded image

wherein, B, J, W1, W2, R1, R2 and R3 are as defined above, and R4 denotes an alkyl, alkenyl, alkynyl or aralkyl group.


Compound (36) is reacted with R4-B in the presence of a base such as sodium carbonate, potassium carbonate, etc. in a solvent such as acetonitrile, THF, dioxane, chloroform, dichloroethane, DMF, DMSO, etc. at a temperature between 0° C. and a reflux temperature for several hours to several days, preferably at 80° C. for 12 hours, to give compound (40). The amino-protecting group is removed from the compound (40), and the resulting compound (41) is reacted with compound (2) in the presence of a base such as potassium carbonate in a solvent such as acetonitrile, DMF, DMSO, THF, dioxane, etc. at a temperature between 0° C. and a reflux temperature for several hours to several days, preferably at room temperature for 4 hours, to give compound (42). By subjecting the compound (42) to a reaction similar to that in the preparation of compound (5) in Process A, compound (43) is obtained. The compound (43) is reacted with compound (2) in the presence of a base such as potassium carbonate in a solvent such as acetonitrile, DMF, DMSO, THF, dioxane, etc. at a temperature between 0° C. and a reflux temperature for several hours to several days, preferably at room temperature for 4 hours, to give an end product (1I).


Process J: Preparation of the Compound of the Formula (1) wherein R2═OH
embedded image

wherein, X, W1, W2, R1, R3, l, m and n have the same meanings as initially defined.


By reacting methoxy compound (1J) with iodotrimethylsilane in a solvent such as toluene, benzene, chloroform, dichloromethane, etc. at a temperature between −25° C. and a reflux temperature for several minutes to several days, preferably at 0° C. for 2 hours, there can be obtained an end product (1J′).


Process K: Preparation of the Compound of the Formula (1) wherein l=1, m 0, n=0 and X═NR4CO
embedded image

wherein, B, J, W1, W2, R1, R2 and R3 are as defined above, and R4 denotes an alkyl, alkenyl, alkynyl, aralkyl, heteroaralkyl, aryl or heteroaryl group.


Compound (32), which is described in the Process G, is reacted with compound (18) in the similar procedure as described in the preparation of compound (1A) in Process A to give gompound (44). After removal of the protecting group from the compound (44), the resulting compound (45) is reacted with compound (2) in the presence of a base such as potassium carbonate in a solvent such as acetonitrile, DMF, DMSO, THF, dioxane, etc. at a temperature between 0° C. and a reflux temperature for several hours to several days, preferably at room temperature for 4 hours, to give an end product (1 K).


Process L: Preparation of the Compound of the Formula (1) wherein l=1, m=0, n=1 and X=alkylsulfonylphenylamino Group
embedded image

wherein, B, W1, W2, R1, R2 and R3 are as defined above.


Compound (34), which was prepared in the Process G (wherein X denotes alkylthiophenylamino group), is reacted with an oxdation agent such as 3-chloroperbenzoic acid, peracetic acid, hydrogen peroxide, etc. in the known manner to give an alkylsulfonyl derivative (46). Compound (46) is then reacted with compound (2) in the presence of a base such as potassium carbonate in a solvent such as acetonitrile, DMF, DMSO, THF, dioxane, etc. at a temperature between 0° C. and a reflux temperature for several hours to several days, preferably at 70° C. overnight, to give an end product (1L).


The compounds (1) according to the present invention are obtained by any of the above-described processes and may further be purified by using an ordinary purification means such as recrystallization or column chromatography as needed. As needed, the compounds may also be converted into the desired salts or solvates in a method known per se in the art. When the compounds (1) have an asymmetric carbon atom, the present invention includes any configurational isomers.


These compounds (1) according to the present invention possess the almost same profile of gene expression in human cells as TSA which has the HDAC inhibiting action, and exhibit potent growth inhibitory effect on cultured human cancer cells as shown in the test example.


The medicine for treating cancer according to the present invention comprises a compound (1), a salt thereof, or a solvate thereof as an active ingredient. The form of administration may be suitably selected as necessary for the therapeutic application intended without any particular limitation, including oral preparations, injections, suppositories, ointments, inhalants, eye drops, nose drops and plasters. A composition suitable for use in these administration forms can be prepared by blending a pharmaceutically acceptable carrier in accordance with the conventional preparation method publicly known by those skilled in the art.


When an oral solid preparation is formulated, an excipient, and optionally, a binder, disintegrator, lubricant, colorant, a taste corrigent, a smell corrigent and the like are added to compound (1) and the resulting composition can be formulated into tablets, coated tablets, granules, powders, capsules, etc. in accordance with methods known in the art.


As such additives described above, any additives may be used which are generally used in the pharmaceutical field. Examples include excipients such as lactose, sucrose, sodium chloride, glucose, starch, calcium carbonate, kaolin, microcrystalline cellulose and silicic acid; binders such as water, ethanol, propanol, simple syrup, glucose solution, starch solution, gelatin solution, carboxymethyl cellulose, hydroxypropyl cellulose, hydroxypropyl starch, methyl cellulose, ethyl cellulose, shellac, calcium phosphate and polyvinyl pyrrolidone; disintegrators such as dry starch, sodium alginate, agar powder, sodium hydrogencarbonate, calcium carbonate, sodium lauryl sulfate, monoglyceryl stearate and lactose; lubricants such as purified talc, stearic acid salts, borax and polyethylene glycol; and taste corrigents such as sucrose, orange peel, citric acid and tartaric acid.


When an oral liquid preparation is formulated, a taste corrigent, buffer, stabilizer, smell corrigent and/or the like are added to compound (1) and the resulting composition can be formulated into internal liquid preparations, syrup preparations, elixirs, etc. in accordance with methods known in the art. In this case, vanillin as the taste corrigent, may be used. As the buffer, sodium citrate may be mentioned. As examples of the stabilizer, tragacanth, gum arabic and gelatin may be mentioned.


When an injection is formulated, a pH adjustor, buffer, stabilizer, isotonicity agent, local anesthetic and the like may be added to compound (1) according to the present invention, and the resultant composition can be formulated into subcutaneous, intramuscular and intravenous injections in accordance with methods known in the art. Examples of the pH adjustor and buffer in this case include sodium citrate, sodium acetate and sodium phosphate. Examples of the stabilizer include sodium pyrosulfite, EDTA, thioglycolic acid and thiolactic acid. Examples of the local anesthetic include procaine hydrochloride and lidocaine hydrochloride. Examples of the isotonicity agent include sodium chloride and glucose.


When a suppository is formulated, a carrier preparation known in the art, for example, polyethylene glycol, lanoline, cacao butter, fatty acid triglyceride or the like, and optionally, a surfactant such as Tween (trade mark) and the like are added to the compound (1), and the resultant composition can be formulated into suppositories in accordance with methods known in the art.


When an ointment is formulated, a base material, stabilizer, wetting agent, preservative and the like, which are generally used, are blended with compound (1) as needed, and the resulting blend is mixed and formulated into ointments in accordance with known methods. Examples of the base material include liquid paraffin, white vaseline, bleached beeswax, octyldodecyl alcohol and paraffin. Examples of the preservative include methyl p-hydroxybenzoate, ethyl p-hydroxybenzoate and propyl p-hydroxybenzoate.


Besides the above preparations, inhalants, eye drops and nose drops may also be formulated in accordance with known methods.


The medicine for treating cancer of this invention is useful for treating various cancer and carcinoma Examples of such cancer and carcinoma include cancer or carcinoma of brain, nerve and oculus such as pituitary adenoma, acoustic neurilemoma, glioma, brain tumor; cancer and carcinoma of head and neck region such as oral cancer (i.e. tongue cancer, carcinoma of the mouth floor, carcinoma of gingiva, carcinoma of the buccal mucosa, etc.), pharyngeal cancer (i.e. nasopharyngeal cancer, oropharyngeal cancer, hypopharyngeal cancer), laryngeal cancer (i.e. glottic laryngeal cancer, etc.), maxillary cancer, thyroid cancer (i.e. papillary carcinoma, follicular carcinoma, medullary carcinoma, undifferentiated carcinoma, malignant lymphoma, etc.), sialoma (i.e. parotid abscess, cancer of submandibular gland, cancer of sublingual gland, etc.); cancer and carcinoma of breast such as thymoma, breast cancer, lung cancer, mesothelioma; cancer and carcinoma of digestive organ such as stomach cancer, esophageal cancer, colon cancer; cancer and carcinoma of liver, gallbladder and pancreas such as hepatocarcinoma, cholangiocarcinoma, pancreatic cancer, gallbladder cancer, pancreatic endocrine tumors; cancer and carcinoma of uropoietic organ such as penile carcinoma, testicular cancer, renal pelvic and ureter carcinoma, prostate cancer, renal cell carcinoma, bladder carcinoma; cancer and carcinoma of gynecologic such as vulvar cancer, uterine cancer, cervical cancer, corpus uteri carcinoma (endometrial carcinoma), uterine sarcoma, trophoblastic disease, vaginal cancer, mammary carcinoma, ovarian cancer, germ cell tumor of ovary; cancer and carcinoma of cutis such as melanoma, mycosis fungoides, skin cancer; cancer and carcinoma of bone and muscle such as malignant bone tumors (i.e. bone cancer, parosteal osteosarcoma, periosteal osteosarcoma, malignant fibrous histiocytoma, chordoma, diffuse endothelioma of bone, adamantinoma, chondrosarcoma, etc), soft part sarcoma (i.e. malignant fibrous histiocytoma, liposarcoma, synovial sarcoma, leiomyosarcoma, rhabdomyosarcoma, angiosarcoma, perithelioma, lymphagiosarcoma, neurosarcoma, malignant neuroepithelioma, soft part Ewing, extraskeletal chondrosarcoma, extraskeletal osteosarcoma, alveolar soft part sarcoma, epithelioid sarcoma, clear cell sarcoma, etc); cancer and carcinoma of blood and lymph such as malignant lymphoma, non-Hodgkin's lymphoma, Hodgkin's disease, myelodysplastic syndromes, multiple myeloma, acute myelogenous leukemia, acute lymphocytic leukemia, adult T-cell leukemia, chronic myelogenous leukemia, chronic lymphocytic leukemia, chronic myeloproliferative disorders; cancer and carcinoma of endocrine such as melanocytoma, pancreatic endocrine tumors, parathyroid cancer, adrenal tumor; cancer and carcinoma of childhood such as soft part sarcoma, cerebral tumor, retinoblastoma, Wilms' tumor, and other unidentified cancer.


The dose of the medicine for treating cancer according to the present invention varies according to the age, weight and condition of the patient to be treated, the administration method, the number of times of administration, and the like. It is however preferred that the medicine is generally orally or parenterally administered at once or in several portions in a dose of 1 to 1,000 mg per day in terms of compound (1), for an adult.


The present invention will hereinafter be described in more detail by Examples. However, the present invention is not limited to these examples.


PREPARATION EXAMPLE 1
Synthesis of Ethyl 2-(3,4,5-trimethoxyphenyl)isonicotinate



embedded image


3,4,5-Trimethoxyphenylboronic acid (20.10 g) and ethyl 2-chloroisonicotinate (18.56 g) were suspended in a mixted solvent of toluene (200 mL) and THF (100 mL), and to the suspension 2 M sodium carbonate (200 mL) and tetrakis(triphenyl phosphine) palladium(0) (5.78 g) were added. The mixture was stirred at 90° C. overnight under an argon atmosphere. Ethyl acetate was added to the reaction mixture to separate an organic layer. The organic layer was washed with brine, dried over anhydrous sodium magnesium and concentrated under reduced pressure. The residue was purified by column chromatography on silica gel using hexane-ethyl acetate (5:1) to give the title compound.


Yield: 27.99 g (88%).



1H-NMR (400 MHz, CDCl3) δ: 1.45 (t, 3H, J=7.0 Hz), 3.92 (s, 3H), 3.99 (s, 6H), 4.46 (q, 2H, J=7.0 Hz), 7.30 (s, 2H), 7.76 (dd, 1H, J=5.1 Hz, 1.6 Hz), 8.24 (dd, 1H, J=1.6 Hz, 0.8 Hz), 8.81 (dd, 1H, J=5.1 Hz, 0.8 Hz).


PREPARATION EXAMPLE 2
Synthesis of 4-hydroxymethyl-2-(3,4,5-trimethoxyphenyl)pyridine



embedded image


Ethyl 2-(3,4,5-trimethoxyphenyl)isonicotinate (24.57 g) was dissolved in dry THF (200 mL), and to the solution lithium aluminum hydride (2.94 g) was added at 0° C. under an argon atmosphere. The mixture was stirred at 0° C. for 1 hour as it is. A small amount of water and then sodium sulfate were added to the reaction mixture, and the reaction mixture was filtered through celite. The filtrate was evaporated, and the reultant crude crystals were recrystalized from ethyl acetate-hexane to give the title compound.


Yield: 17.53 g (820%).



1H-NMR (400 MHz, CDCl3) δ: 3.90 (s, 3H), 3.95 (s, 6H), 4.79 (s, 2H), 7.19 (d, 1II, J=5.1 Hz), 7.21 (s, 2H), 7.66 (s, 1H), 8.60 (d, 1H, J=5.1 Hz).


PREPARATION EXAMPLE 3
Synthesis of 4-chloromethyl-2-(3,4,5-trimethoxyphenyl)pyridine



embedded image


4-hydroxymethyl-2-(3,4,5-trimethoxyphenyl)pyridine (19.18 g) was dissolved in chloroform (100 mL), and to the solution thinly chloride (10.2 mL) was added at 0° C. After 30 minutes, the mixture was warmed to room temperature and stirred for 4 hours. The reaction mixture was washed with aqaueous saturated sodium hydrogendcarbonate and brine, dried over anhydrous sodium sulfate and evaporated. The residue was then recrystallized from ethyl acetate-hexane to give the title compound as pale yellow crystalline powder.


Yield: 18.24 g (89%).



1H-NMR (400 MHz, CDCl3) δ: 3.91 (s, 3H), 3.97 (s, 6H), 4.61 (s, 2H), 7.24 (s, 2H), 7.26 (d, 1H, J=5.1 Hz), 7.68 (s, 1H), 8.67 (d, 1H, J=5.1 Hz).


PREPARATION EXAMPLE 4
Synthesis of N-[[2-(3,4,5-trimethoxyphenyl)pyridin-4-yl]methyl]phthalimide



embedded image


To a solution of 4-chloromethyl-2-(3,4,5-trimethoxyphenyl)pyridine (881 mg) in chloroform (10 mL) was added potassium phthalimide (556 mg). The mixture was stirred at room temperature overnight and water was added. After separating the organic layer, the aqueous layer was extracted with chloroform. Organic layers were combined, dried over anhydrous magnesium sulfate and evaporated to give the title compound as white powder.


Yield: 1.16 g (96%).


PREPARATION EXAMPLE 5
Synthesis of 4-aminomethyl-2-(3,4,5-trimethoxyphenyl)pyridine



embedded image


To a suspension of N-[[2-(3,4,5-trimethoxyphenyl)pyridin-4-yl]methyl] phthalimide (1.16 g) in ethanol (30 mL) was added hydrazine monohydrate (1 mL). The mixture was refluxed for 3 hours. After cooling, the precipitates were filtered off. The filtrate was evaporated and the residue was dissolved in chloroform. The solution was washed with saturated aqueous sodium hydrogen carbonate and brine, dried over anhydrous magnesium sulfate and evaporated to give the title compound as pale yellow oil.


Yield: 418 mg (53%).


PREPARATION EXAMPLE 6
Synthesis of Ethyl 1-[[2-(3,4,5-trimethoxyphenyl)pyridin yl]methyl]piperidine-4-carboxylate



embedded image


To a solution of ethyl piperidine-4-carboxylate (514 mg) and 4-chloromethyl-2-(3,4,5-trimethoxyphenyl)pyridine (969 mg) in acetonitrile (20 mL) was added potassium carbonate (452 mg). The mixture was stirred at room temperature for 4 hours and evaporated. The residual oil was subjected to a column of silica gel and eluted using hexane-ethyl acetate (2:1) and then chloroform-methanol (40:1). Fractions containing the product were collected and evaporated to give the title compound as white prisms.


Yield: 1.20 g (88%).



1H-NMR (400 MHz, CDCl3) δ: 1.25 (t, 3H, J=7.0 Hz), 1.72-1.93 (m, 4H), 2.10 (t, 2H, J=9.8 Hz), 2.27-2.35 (m, 1H), 2.86 (d, 2H, J=11.3 Hz), 3.55 (s, 2H), 3.91 (s, 3H), 3.98 (s, 6H), 4.14 (q, 2H, J=7.0 Hz), 7.21 (d, 1H, J=4.9 Hz), 7.24 (s, 2H), 7.63 (s, 1H), 8.59 (d, 1H, J=5.1 Hz).


PREPARATION EXAMPLE 7
Synthesis of 1-[[2-(3,4,5-trimethoxyphenyl)pyridinyl]methyl]piperidine-4-carboxylic Acid



embedded image


To a solution of ethyl 1-[[2-(3,4,5-trimethoxyphenyl)prydine-4-yl]methyl] piperidine-4-carboxylate (760 mg) in ethanol (10 mL) was added 1 M sodium hydroxide (10 mL). The mixture was stirred at room temperature for 4 hours and evaporated. The residue was dissolved in water (20 mL) and 5% aqueous potassium hydrogen sulfate was added dropwise until pH of the solution became 7. Precipitates were collected and the product was used for the next steps without further purification.


Yield: 779 mg (theoretical amount).


EXAMPLE 1
Synthesis of 1-[[2-(3,4,5-trimethoxyphenyl)pyridinyl]methyl]-4-[[2-(3,4,5-trimethoxyphenyl)pyridin-4-yl]methylaminocarbonyl]piperidine Maleate



embedded image


To a solution of 1-[[2-(3,4,5-trimethoxyphenyl)pyridin-4-yl]methyl] piperidine-4-carboxylic acid (97 mg) and 4-aminomethyl-2-(3,4,5-trimethoxyphenyl) pyridine (68 mg) in acetonitrile (5 mL) was added HBTU (95 mg). The mixture was stirred at room temperature for 12 hours and evaporated. The residual oil was dissolved in chloroform, washed with saturated aqueous sodium hydrogen carbonate and brine, dried over anhydrous magnesium sulfate and evaporated. Resulting residue was applied to a column of silica gel and eluted using chloroform-methanol (40:1) and then chloroform-methanol (20:1). Fractions containing the product were collected and evaporated. The free base of the product was then converted to a maleate by the usual method.


Yield: 93 mg (49%).



1H-NMR (400 MHz, measured as a maleate, DMSO-d6) δ: 1.87-2.01 (m, 4H), 2.48-2.56 (m, 1H), 2.78-2.86 (m, 2H), 3.26-3.31 (m, 2H), 3.78 (s, 3H), 3.79 (s, 3H), 3.87 (s, 6H), 3.90 (s, 6H), 4.15 (s, 2H), 4.39 (d, 2H, J=5.9 Hz), 6.16 (s, 2H), 7.16 (d, 1H, J=5.9 Hz), 7.35 (s, 2H), 7.39 (d, 1H, J=5.9 Hz), 7.39 (s, 2H), 7.73 (s, 1H), 7.95 (s, 1H), 8.15 (d, 1H, J=5.9 Hz), 8.54 (d, 1H, J=4.9 Hz), 8.68 (d, 1H, J=4.9 Hz).


PREPARATION EXAMPLE 8
Synthesis of 1-(benzyloxycarbonyl)-4-[[2-(3,4,5-trimethoxyphenyl)pyridin-4-yl]methyloxy]piperidine



embedded image


To a solution of 1-(benzyloxycarbonyl)-4-hydroxypiperidine (1.00 g) in DMF (20 mL) was added sodium hydride (55% dispersion in mineral oil, 222 mg). The mixture was stirred at room temperature for 1 hour and then, 4-chlolromethyl-2-(3,4,5-trimethoxyphenyl)pyridine (1.37 g) and potassium iodide (755 mg) was added. The mixture was stirred at 70° C. overnight, poured into water and extracted with chloroform. The organic layer was washed with brine, dried over anhydrous sodium sulfate and evaporated. The residual oil was applied to a column of silica gel and column chromatography was performed using chloroform-methanol (99:1) as an eluent giving the title compound.


Yield: 213 mg (10%).



1H NMR (400 MHz, CDCl3) δ: 1.63 (br, 2H), 1.89 (br, 2H), 3.20-3.35 (m, 2H), 3.57-3.68 (m, 1H), 3.84-3.92 (m, 5H), 3.94 (s, 6H), 4.62 (s, 2H), 5.11 (s, 2H), 7.21-7.35 (m, 8H), 7.61 (s, 1H), 8.61 (d, 1H, J=5.0 Hz).


PREPARATION EXAMPLE 9
Synthesis of 4-[[2-(3,4,5-trimethoxyphenyl)pyridin-4-yl]methyloxy]piperidine



embedded image


To a solution of 1-(benzyloxycarbonyl)-4-[[2-(3,4,5-trimethoxyphenyl) pyridin-4-yl]methyloxy]piperidine (213 mg) in methanol (10 mL) was added 40% aqueous potassium hydroxide (10 mL). The mixture was stirred at 100° C. for 3 hours and evaporated. Water was added to the residue and extracted with chloroform. The organic layer was washed with brine, dried over anhydrous sodium sulfate and evaporated. The residual oil was subjected to column chromatography of silica gel using chloroform-ammonia saturated methanol (20:1) to give the title compound.


Yield: 93 mg (60%).



1H NMR (400 MHz, CDCl3) δ: 1.55-1.68 (m, 2H), 2.01 (br, 2H), 2.67-2.72 (m, 2H), 3.13-3.18 (m, 2H), 3.50-3.60 (m, 1H), 3.91 (s, 3H), 3.97 (s, 6H), 4.64 (s, 2H), 7.22 (d, 1H, J=4.3 Hz), 7.24 (s, 2H), 7.64 (s, 1H), 8.63 (d, 1H, J=5.1 Hz).


EXAMPLE 2
Synthesis of 1-[[2-(3,4,5-trimethoxyphenyl)pyridinyl]methyl]-4-[[2-(3,4,5-trimethoxyphenyl)pyridin-4-yl]methyloxy]piperidine Trihydrochloride



embedded image


4-[[2-(3,4,5-trimethoxyphenyl)pyridin-4-yl]methyloxy]piperidine (70 mg), 4-chloromethyl-2-(3,4,5-trimethoxyphenyl)pyridine (22 mg), potassium carbonate (56 mg) and potassium iodide (40 mg) were suspended in acetonitrile (5 mL). The mixture was stirred at room temperature for 5 hr and evaporated. Chloroform and water were added to the residual oil and the organic layer was separated. Aqueous layer was then extracted with chloroform and the organic layers were combined, dried over anhydrous magnesium sulfate and evaporated. The residue was applied to a column of silica gel using chloroform-methanol (40:1) as an eluent. Fractions containing the product were collected and evaporated. The title compound was obtained by converting the free base to a trihydrochloride.


Yield: 42 mg (39%).



1H NMR (400 MHz, measured as a free base, CDCl3) δ: 1.53-2.42 (m, 6H), 2.80 (br, 2H), 3.57 (br, 3H), 3.88 (s, 6H), 3.94 (s, 61H), 3.95 (s, 6H), 4.60 (s, 2H), 7.18-7.24(m, 6H), 7.61 (s, 2H), 8.58-8.61 (m, 2H).


PREPARATION EXAMPLE 10
Synthesis of (3S)-1-(tert-butoxycarbonyl)-3-[(2-nitrobenzene)sulfonylamino] Pyrrolidine



embedded image


To an ice-cooled solution of (3S)-3-amino-1-(tert-butoxycarbonyl) pyrrolidine (404 mg) and triethylamine (220 mg) in THF (5 mL) was added 2-nitrobenzenesulfonyl chloride (481 mg). The mixture was stirred at room temperature for 30 minutes and evaporated. Ethyl acetate was added to the residue. The solution was washed with water and brine, dried over anhydrous sodium sulfate and evaporated. The residual oil was subjected to a column of silica gel and column chromatography was performed using chroloform-methanol (20:1) as an eluent. Fractions containing the product were collected and evaporated to give the title compound as pale yellow amorphous.


Yield: 597 mg (74%).



1H-NMR (400 MHz, CDCl3) δ: 1.44 (s, 9H), 1.80-2.12 (m, 2H), 3.14-3.44 (m, 4H), 4.02 (br, 1H), 5.48 (d, 1H, J=7.2 Hz), 7.77 (t, 2H, J=4.4 Hz), 7.87-7.90 (m, 1H), 8.17-8.19 (m, 1H).


PREPARATION EXAMPLE 11
Synthesis of (3S)-1-(tert-butoxycarbonyl)-3-[N-methyl-N-(2-nitrobenzene) sulfonylamino]pyrrolidine



embedded image


To a suspension of (3S)-1-(tert-butoxycarbonyl)-3-[(2-nitrobenzene) sulfonylamino]pyrrolidine (371 mg) and potassium carbonate (141 mg) in acetonitrile (10 mL) was added methyl iodide (141 mg). The mixture was stirred at 60° C. for 2 hours and evaporated. Ethyl acetate was added to the mixture. The solution was washed with saturated aqueous sodium hydrogen carbonate and brine, dried over anhydrous sodium sulfate and evaporated. The residue was applied to a column of silica gel using hexane-ethyl acetate (2:1) as an eluent. Fractions containing the product were collected and evaporated to give the title compound as yellow syrup.


Yield: 365 mg (95%).



1H-NMR (400 MHz, CDCl3) δ: 1.44 (s, 9H), 1.95 (br, 1H), 2.09 (br, 1H), 2.87 (s, 3H), 3.20-3.31 (m, 2H), 3.53 (br, 2H), 4.58 (br, 1H), 7.65 (br, 1H), 7.71 (br, 2H), 8.04 (br, 1H).


PREPARATION EXAMPLE 12
Synthesis of (3S)-3-[N-methyl-N-(2-nitrobenzene)sulfonylamino]pyrrolidine



embedded image


To an ice-cooled solution of (3S)-1-(tert-butoxycarbonyl)-3-[N-methyl-N-(2-nitrobenzenesulfonyl)amino]pyrrolidine (365 mg) in dichloromethane (25 mL) was added trifluoroacetic acid (1 mL). The mixture was stirred at room temperature for 3 hours and evaporated. The residue was dissolved in chloroform. The solution was washed with saturated aqueous sodium hydrogen carbonate and brine, dried over anhydrous sodium sulfate and evaporated to give the title compound as yellow syrup.


Yield: 135 mg (50%).



1H-NMR (400 MHz, CDCl3) δ: 1.69-1.74 (m, 1H), 1.87 (br, 1H), 1.95-2.02 (m, 1H), 2.80 (dd, 1H, J=11.7 Hz, 5.7 Hz), 2.84-2.91 (m, 4H), 2.96-3.05 (m, 1H), 3.10 (dd, 1H, J=11.7 Hz, 8.2 Hz), 4.48-4.56 (m, 1H), 7.61-7.63 (m, 1H), 7.66-7.73 (m, 2H), 8.01-8.04 (m, 1H).


PREPARATION EXAMPLE 13
Synthesis of (3S)-3-[N-methyl-N-(2-nitrobenzene)sulfonylamino]-1-[[2-(3,4,5-trimethoxyphenyl)pyridin-4-yl]methyl]pyrrolidine



embedded image


(3S)-3-[N-methyl-N-(2-nitrobenzene)sulfonylamino]pyrrolidine (135 mg) and 4-chloromethyl-2-(3,4,5-trimethoxyphenyl)pyridine (139 mg) were coupled in the same manner as described in Example 2 to give the title compound as yellow amorphous.


Yield: 247 mg (96%).



1H-NMR (400 MHz, CDCl3) δ: 1.80-1.87 (m, 1H), 2.15-2.30 (m, 2H), 2.52 (dd, 1H, J=10.5 Hz, 8.2 Hz), 2.71 (dd, 1H, J=10.5 Hz, 8.2 Hz), 2.90 (dt, 1H, J=8.8 Hz, 2.9 Hz), 2.96 (s, 3H), 3.53 (d, 1H, J=13.9 Hz), 3.68 (d, 1H, J=13.9 Hz), 3.90 (s, 3H), 3.96 (s, 6H), 4.61-4.68 (m, 1H), 7.16 (dd, 1H, J=4.9 Hz, 1.2 Hz), 7.21 (s, 2H), 7.58-7.60 (m, 2H), 7.64-7.69 (m, 2H), 7.99-8.02 (m, 1H), 8.58 (d, 1H, J=4.9 Hz,).


PREPARATION EXAMPLE 14
Synthesis of (3S)-3-methylamino-1-[[2-(3,4,5-trimethoxyphenyl)-pyridin-4-yl]methyl]pyrrolidine



embedded image


To a solution of (3S)-3-[N-methyl-N-(2-nitrobenzene)sulfonylamino]-1-[[2-(3,4,5-trimethoxyphenyl)pyridin-4-yl]methyl]pyrrolidine (242 mg) in acetonitrile (5 mL) was added potassium carbonate (94 mg) and thiophenol (75 mg). The mixture was stirred at 80° C. for 3 hours and evaporated. Ethyl acetate was added to the mixture, the solution was washed with saturated aqueous sodium hydrogen carbonate, water, and brine, dried over anhydrous sodium sulfate and evaporated. The residual oil was subjected to preparative TLC using chloroform-methanol (20:1) as a solvent system giving yellow syrup of the title compound.


Yield: 104 mg (64%).



1H-NMR (400 MHz, CDCl3) δ: 1.32 (br, 1H), 1.56-1.64 (m, 1H), 2.11-2.17 (m, 1H), 2.38 (s, 3H), 2.44 (dd, 1H, J=7.4 Hz, 4.5 Hz), 2.50-2.55 (m, 1H), 2.66-2.75 (m, 2H), 3.20-3.26 (m, 1H), 3.66 (s, 2H), 3.90 (s, 3H), 3.97 (s, 6H), 7.21 (d, 1H, J=4.1 Hz), 7.25 (s, 2H), 7.64 (s, 1H), 8.59 (d, 1H, J=4.9 Hz).


EXAMPLE 3
Synthesis of (3S)-3-[N-methyl-N-[[2-(3,4,5-trimethoxyphenyl)pyridin-4-yl]methyl]amino]-1-[[2-(3,4,5-trimethoxyphenyl)pyridin-4-yl]methyl]pyrrolidine Tertrahydrochloride



embedded image


(3S)-3-methylamino-1-[[2-(3,4,5-trimethoxyphenyl)pyridin-4-yl]methyl] pyrrolidine (104 mg) and 4-chloromethyl-2-(3,4,5-trimethoxyphenyl)pyridine (85 mg) was condensed in the same manner as described in Example 2. Yellow syrup obtained was converted to a tetrahydrochloride by the usual method giving the title compound as yellow powder.


Yield: 151 mg (68%).



1H-NMR (400 MHz, measured as a free base, CDCl3) δ: 1.89-1.92 (m, 1H), 2.04-2.08 (m, 1H), 2.18 (s, 3H), 2.60-2.76 (m, 4H), 3.25-3.29 (m, 1H), 3.53 (d, 1H, J=14.3 Hz), 3.62 (d, 1H, J=14.3 Hz), 3.64 (d, 1H, J=13.9 Hz), 3.73 (d, 1H, J=13.9 Hz), 3.89 (s, 6H), 3.95 (s, 6H), 3.96 (s, 6H), 7.20-7.21 (m, 2H), 7.23 (s, 2H), 7.24 (s, 2H), 7.61 (s, 1H), 7.65 (s, 1H), 8.59 (d, 1H, J=5.7 Hz), 8.60 (d, 1H, J=5.3 Hz).


PREPARATION EXAMPLE 15
Synthesis of 1-[[2-(3,4,5-trimethoxyphenyl)pyridin-4-yl]methyl]piperidine-4-carboxamide



embedded image


Piperidine-4-carboxamide (385 mg) and 4-chloromethyl-2-(3,4,5-trimethoxyphenyl)pyridine (881 mg) were condensed by the same method as described in Example 2 to give the title compound as white needles.


Yield: 1.01 g (87%).



1H-NMR (400 MHz, CDCl3) δ: 1.70-1.88 (m, 4H), 2.01-2.23 (m, 3H), 2.95 (d, 2H, J=11.0 Hz), 3.56 (s, 2H), 3.90 (s, 3H), 3.98 (s, 6H), 5.46 (d, 2H, J=16.3 Hz), 7.21 (d, 1H, J=5.0 Hz), 7.24 (s, 2H), 7.64 (s, 1H), 8.59 (d, 1H, J=5.0 Hz).


PREPARATION EXAMPLE 16
Synthesis of 4-amino-1-[[2-(3,4,5-trimethoxyphenyl)pyridin-4-yl]methyl]piperidine Trihydrochloride



embedded image


To a solution of 1-[[2-(3,4,5-trimethoxypheyl)pyridin-4-yl]methyl]piperidine-4-carboxamide (192 mg) in a mixed solvent of water (50 mL) and acetonitrile (50 mL) was added [bis(trifluoroacetoxy)iodo]benzene (323 mg). The mixture was stirred at room temperature overnight and evaporated. Saturated aqueous sodium hydrogen carbonate was added to the residue and extracted with chloroform. The organic layer was washed with brine, dried over anhydrous magnesium sulfate and evaporated. Yellow syrup obtained was then converted to trihydrochloride which gave yellow powder. The title compound was used for next step without further purification.


Yield: 201 mg (theoretical amount).


PREPARATION EXAMPLE 17
Synthesis of 2-(3,4,5-trimethoxyphenyl)isonicotinic Acid



embedded image


To a solution of ethyl 2-(3,4,5-trimethoxyphenyl)isonicotinate (3.17 g) in ethanol (40 mL) was added 10% potassium hydroxide (2.42 g). The mixture was stirred at room temperature for 5 hours and evaporated. Water was added to the residue and pH was adjusted to 7. White precipitates of the title compound were collected by filtration and the compound was used for next step without further purification.


Yield: 2.60 g (90%).


EXAMPLE 4
Synthiesis of 4-[2-(3,4,5-trimethoxyphenyl)pyridin-4-carbonylamino]-1-[[2-(3,4,5-trimethoxyphenyl)pyridin-4-yl]methyl]piperidine Maleate



embedded image


2-(3,4,5-trimethoxyphenyl)isonicotinic acid (72 mg) and 4-amino-1-[[2-(3,4,5-trimethoxyphenyl)pyridin-4-yl]methyl]piperidine (117 mg) were condensed in the same manner as described in Example 1. The title compound was obtained as a maleate.


Yield: 173 mg (93%).



1H-NMR (400 MHz, measured as a maleate, DMSO-d6) δ: 1.82-1.94 (m, 2H), 2.03-2.08 (m, 2H), 2.77-2.83 (m, 2H), 3.20-3.27 (m, 2H), 3.79 (s, 6H), 3.90 (s, 12H), 4.00 (br, 1H), 4.06 (s, 2H), 6.15 (s, 2H), 7.36-7.38 (m, 1H), 7.39 (s, 2H), 7.41 (s, 2H), 7.61-7.63 (m, 1H), 7.90 (s, 1H), 8.12 (s, 1H), 8.27-8.32 (m, 1H), 8.67 (d, 1H, J=4.9 Hz), 8.74 (d, 1H, J=5.1 Hz).


PREPARATION EXAMPLE 18
Synthesis of 4-[(2-nitrobenzene)sulfonylamino]-1-[[2-(3,4,5-trimethoxyphenyl) pyridin-4-yl]methyl]piperidine



embedded image


4-amino-1-[[2-(3,4,5-trimethoxyphenyl)pyridin-4-yl]methyl]piperidine (467 mg) and 2-nitrobenzenesulfonyl chloride (244 mg) were condensed in the same manner as described in Preparation Example 10 to give the title compound.


Yield: 494 mg (91%).


PREPARATION EXAMPLE 19
Synthesis of 4-[N-(2-nitrobenzene)sulfonyl-N-[[2-(3,4,5-trimethoxyphenyl)pyridin-4-yl]methyl]amino]-1-[[2-(3,4,5-trimethoxyphneyl)pyridin-4-yl]methyl]piperidine



embedded image


4-[(2-nitrobenzene)sulfonylamino]-1-[[2-(3,4,5-trimethoxyphenyl)pyridin-4-yl]methyl]piperidine (494 mg) and 4-chloromethyl-2-(3,4,5-trimethoxyphenyl)pyridine (267 mg) were condensed in the same manner as described in Example 2 to give the title compound.


Yield: 443 mg (61%).


EXAMPLE 5
Synthesis of 1-[[2-(3,4,5-trimethoxyphenyl)pyridin-4-yl]methyl]-4-[[2-(3,4,5-trimethoxyphenyl)pyridin-4-yl]methylamino]piperidine Difumalate



embedded image


4-[N-(2-nitrobenzene)sulfonyl-N-[[2-(3,4,5-trimethoxyphenyl)pyridin-4-yl]methyl]amino]-1-[[2-(3,4,5-trimethoxyphneyl)pyridin-4-yl]methyl]piperidine (443 mg) was treated in the same manner as described in Preparation Example 14. The title compound was obtained after converting to a difumalate.


Yiled: 103 mg (24%).



1H-NMR (400 MHz, measured as a free base, CDCl3) δ: 1.44-1.53 (m, 2H), 1.87-1.91 (m, 2H), 2.15 (t, 2H, J=1.1 Hz), 2.57-2.64 (m, 1H), 2.82-2.85 (m, 2H), 3.59 (s, 2H), 3.78 (s, 6H), 3.89 (s, 12H), 3.90 (s, 2H), 6.63 (s, 4H), 7.24 (d, 1H, J=4.9 Hz), 7.29 (d, 1H, J=4.9 Hz), 7.35 (s, 2H), 7.37 (s, 2H), 7.76 (s, 1H), 7.85 (s, 1H), 8.53-8.56 (m, 2H).


PREPARATION EXAMPLE 20
Synthesis of 4-(ethoxycarbonylamino)-1-[[2-(3,4,5-trimethoxyphenyl)pyridin-4-yl]methyl]piperidine



embedded image


To a solution of 1-[[2-(3,4,5-trimethoxyphenyl)pyridin-4-yl]methyl] piperidine-4-carboxamide (528 mg) in a mixed solvent of ethanol (10 mL) and acetonitrile (10 mL) was added [bis(trifluoroacetoxy)iodo]benzene (884 mg). The mixture was stirred at room temperature overnight and evaporated. Saturated aqueous sodium hydrogen carbonate was added to the residue and extracted with chloroform. The organic layer was washed with brine, dried over anhydrous magnesium sulfate and evaporated. The residue was applied to a column of silica gel and purified using chloroform-methanol (20:1) as an eluent to give the title compound.


Yield: 566 mg (96%).



1H-NMR (400 MHz, CDCl3) δ: 1.21 (t, 3H, J=7.0 Hz), 1.40-1.51 (m, 2H), 1.92 (d, 2H, J=10.9 Hz), 2.15 (t, 2H, J=10.9 Hz), 2.78 (d, 2H, J=11.6 Hz), 3.52 (br, 3H), 3.87 (s, 3H), 3.94 (s, 6H), 4.07 (q, 2H, J=7.0 Hz), 4.56 (br, 1H), 7.17 (d, 1H, J=4.9 Hz), 7.21 (s, 2H), 7.59 (s, 1H), 8.56 (d, 1H, J=5.1 Hz).


PREPARATION EXAMPLE 21
Synthesis of 4-(methylamino)-1-[[2-(3,4,5-trimethoxyphenyl)pyridin-4-yl]methyl] piperidine



embedded image


To a suspension of lithium aluminum hydride (100 mg) in dry THF (50 mL) was added a solution of 4-(ethoxycarbonylamino)-1-[[2-(3,4,5-trimethoxyphenyl) pyridin-4-yl]methyl]piperidine (566 mg) in dry THF (50 mL) under an argon atmosphere. The mixture was then refluxed overnight, then cooled down. Saturated aqueous ammonium chloride was added to the mixture and extracted with ethyl acetate. The organic layer was washed with brine, dried over anhydrous sodium sulfate and evaporated. The residue was subjected to silica gel column chromatography using chloroform-ammonia saturated methanol (9:1) to give the title compound as yellow oil.


Yiled: 379 mg (78%).



1H-NMR (400 MHz, CDCl3) δ: 1.36-1.46 (m, 2H), 1.89 (d, 2H, J=12.5 Hz), 2.10 (dt, 2H, J=11.5 Hz, 1.1 Hz), 2.35-2.43 (m, 1H), 2.43 (s, 3H), 2.86 (d, 2H, J=11.6 Hz), 3.56 (s, 2H), 3.90 (s, 3H), 3.97 (s, 6H), 7.21 (d, 1H, J=5.1 Hz), 7.24 (s, 2H), 7.64 (s, 1H), 8.59(d, 1H, J=4.9 Hz).


PREPARATION EXAMPLE 22
Synthesis of 1-[[2-(3,4,5-trimethoxyphenyl)pyridin-4-yl]methyl]-4-piperidone Ethylene Ketal



embedded image


4-Piperidone ethylene ketal (12.0 g) and 4-chloromethyl-2-(3,4,5-trimethoxyphenyl)pyridine (12.3 g) was condensed in the same manner as described in Example 2 to give the title compound.


Yield: 19.0 g (theoretical amount).



1H-NMR (400 MHz, CDCl3) δ: 1.68 (t, 4H, J=5.6 Hz), 2.48 (br, 4H), 3.50 (s, 2H), 3.82 (s, 3H), 3.86 (s, 4H), 3.88 (s, 6H), 7.13 (d, 1H, J=4.9 Hz), 7.17 (s, 2H), 7.57 (s, 1H), 8.51 (d, 1H, J=4.9 Hz).


PREPARATION EXAMPLE 23
Synthesis of 1-[[2-(3,4,5-trimethoxyphenyl)pyridin-4-yl]methyl]-4-piperidone



embedded image


To a solution of 1-[[2-(3,4,5-trimethoxyphenyl)pyridin-4-yl]methyl]-4-piperidone ethylene ketal (19.0 g) in THF (200 mL) was added 1 M hydrochloric acid (200 mL). The mixture was stirred at 90° C. overnight, then neutralized with 2 M sodium hydroxide and extracted with ethyl acetate. The organic layer was washed with brine, dried over anhydrous sodium sulfate and evaporated. The residual oil was applied to a column of silica gel using chloroform-methanol (40:1) as an eluent. Fractions containing the product were collected and evaporated to give the title compound.


Yield: 15.0 g (75%).



1H-NMR (400 MHz, CDCl3) δ: 2.48 (t, 4H, J=6.1 Hz), 2.79 (t, 4H, J=6.0 Hz), 3.69 (s, 2H), 3.89 (s, 3H), 3.96 (s, 6H), 7.24 (s, 2H), 7.26 (d, 1H, J=4.9 Hz), 7.66 (s, 1H), 8.62 (d, 1H, J=4.9 Hz).


PREPARATION EXAMPLE 24
Synthesis of 1-[[2-(3,4,5-trimethoxyphenyl)pyridin-4-yl]methyl]-4-piperidone



embedded image


4-Piperidone hydrochloride monohydrate (3.07 g) and 4-chloromethyl-2-(3,4,5-trimethoxyphenyl)pyridine (2.94 g) were coupled by the same manner as described in Example 2 to give the title compound.


Yield: 3.55 g (99%).


PREPARATION EXAMPLE 25
Synthesis of

4-(methylamino)-1-[[2-(3,4,5-trimethoxyphenyl)pyridin-4-yl]methyl]piperidine:
embedded image


To a solution of 1-[[2-(3,4,5-trimethoxyphenyl)pyridin-4-yl]methyl]-4-piperidone (1.00 g) in 1,2-dichloroethane (60 mL) was added 30% solution of methylamine in ethanol (750 mg) and sodium triacetoxyborohydride (1.66 g). The mixture was stirred at room temperature for 3 hours, then small amount of water was added and evaporated. Water was added to the residue and extracted with chloroform. The organic layer was washed with brine, dried over anhydrous sodium sulfate and evaporated. The residue was subjected to silica gel column chromatography using chloroform-methanol (40:1) to give the title compound.


Yield: 640 mg (62%).


PREPARATION EXAMPLE 26
Synthesis of ethyl 3-(3,4,5-trimethoxyphenyl)benzoate



embedded image


3,4,5-Trimethoyphenylboronic acid (3.7 g) and ethyl 3-bromobenzoate (4.02 g) were condensed in the same manner as described in Preparation Example 1 to give the title compound.


Yield: 5.09 g (92%).



1H-NMR (400 MHz, CDCl3) δ: 1.42 (t, 3H, J=7.1 Hz), 3.90 (s, 3H), 3.94 (s, 6H), 4.41 (q, 2H, J=7.1 Hz), 6.79 (s, 2H), 7.50 (t, 1H, J=7.8 Hz), 7.73 (dt, 1H, J=7.1 Hz, 1.5 Hz), 8.01 (dt, 1H, J=7.8 Hz, 1.4 Hz), 8.23 (t, 1H, J=1.8 Hz).


PREPARATION EXAMPLE 27
Synthesis of 3-(3,4,5-trimethoxyphenyl)benzoic Acid



embedded image


Ethyl 3-(3,4,5-trimethoxyphenyl)benzoate (1.19 g) was treated in the same manner as described in Preparation Example 17 to give the title compound.


Yield: 986 mg (91%).


EXAMPLE 6
Synthesis of 4-[N-methyl-N-[3-(3,4,5-trimethoxyphenyl)]benzoylamino]-1-[[2-(3,4,5-trimethoxyphenyl)pyridin-4-yl]methyl]piperidine Dihydrochloride



embedded image


3-(3,4,5-trimethoxyphenyl)benzoic acid (1.03 g) and 4-(methylamino)-1-[[2-(3,4,5-trimethoxyphenyl)pyridin-4-yl]methyl]piperidine (1.32 g) were condensed in the same method as described in Example 1. The title compound was obtained after converting a free amine to a dihydrochloride.


Yield: 1.44 g (57%).



1H-NMR (400 MHz, measured as a dihydrochloride, DMSO-d6) δ: 1.89 (d, 2H, J=11.7 Hz), 2.54-2.62 (m, 2H), 2.89 (s, 3H), 3.09 (t, 2H, J=12.7 Hz), 3.43 (d, 2H, J=14.4 Hz), 3.76 (s, 3H), 3.78 (s, 3H), 3.88 (s, 6H), 3.91 (s, 6H), 4.34 (br, 3H), 6.91 (s, 2H), 7.33 (d, 1H, J=7.6 Hz), 7.47-7.51 (m, 2H), 7.54 (s, 2H), 7.60 (s, 1H), 7.71 (d, 1H, J=7.8 Hz), 8.55 (s, 1H), 8.68 (d, 1H, J=5.1 Hz).


EXAMPLE 7
Synthesis of 4-[N-methyl-N-[[5-(3,4,5-trimethoxyphenyl)pyridin-3-yl]methyl]amino]-1-[[2-(3,4,5-trimethoxyphenyl)pyridin-4-yl]methyl]piperidine Difumarate



embedded image


4-methylamino-1-[[2-(3,4,5-trimethoxyphenyl)pyridin-4-yl]methyl]piperidine (135 mg) and 3-chloromethyl-5-(3,4,5-trimethoxypyenyl)pyridine (107 mg) were condensed by the same method as described in Example 2. White powder of the title compound was obtained after converting a free base to a difumarate.


Yield: 180 mg (58%).



1H-NMR (400 MHz, measured as a free base, CDCl3) δ: 1.69-1.73 (m, 2H), 1.82-1.85 (m, 2H), 2.03-2.08 (m, 2H), 2.25 (s, 3H), 2.48-2.51 (m, 1H), 2.97-2.99 (m, 2H), 3.56 (s, 2H), 3.67 (s, 2H), 3.90 (s, 3H), 3.91 (s, 3H), 3.94 (s, 6H), 3.98 (s, 6H), 6.76 (s, 2H), 7.22 (d, 1H, J=5.1 Hz), 7.24 (s, 2H), 7.62 (s, 1H), 7.80 (s, 1H), 8.50 (d, 1H, J=2.0 Hz), 8.60 (d, 1H, J=4.3 Hz), 8.69 (d, 1H, J=5.1 Hz).


PREPARATION EXAMPLE 28
Synthesis of 1-bromo-4-chloro-3,5-dimethoxybenzene



embedded image


A solution of sodium nitrite (97 mg) in water (2.0 mL) was added dropwise to an ice-cold suspension of 4-bromo-2,6-dimethoxyaniline (232 mg) in 6.0 M hydrochloric acid (2.5 mL). After stirring in ice for 30 minutes, a solution of cupric chloride (495 mg) in concentrated hydrochloric acid (2.0 mL) was added. The reaction mixture was stirred at room temperature for 30 minutes, then at 100° C. for 2 hours, and extracted with ethyl acetate. The organic layer was washed with a saturated aqueous sodium hydrogencarbonate and water, dried over anhydrous sodium sulfate, and evaporated. The residue was subjected to a column of silica gel using hexane-ethyl acetate (10:1) as an eluent to give the title compound as white powder.


Yield: 230 mg (92%).


PREPARATION EXAMPLE 29
Synthesis of 4-chloro-3,5-dimethoxyphenylboronic Acid



embedded image


Under an argon atomsphere, to dry THF (2 mL) stirred in a dry ice-methanol bath was gradually added a 1.57 M solution of n-butyllithium in hexane (0.8 mL), followed by the dropwise addition of a solution of 1-bromo-4-chloro-3,5-dimethoxybenzene (160 mg) in dry THF (2 mL). After the mixture was stirred for 20 minutes in the dry ice-methanol bath, triisopropyl borate (0.18 mL) was added and the mixture was additionally stirred for 20 minutes. The reaction mixture was then stirred at room temperature for 1 hour and pH of the mixture was adjusted at 3 using 4 M hydrochloric acid. The mixture was stirred at 0° C. for 1 hour and extracted with ethyl acetate. The organic layer was washed with brine, dried over anhydrous sodium sulfate and evaporated. The residue was recrystallized from ethyl acetate-hexane giving the title compound as white powder.


Yield: 90 mg (66%).


PREPARATION EXAMPLE 30
Synthesis of ethyl 2-(4-chloro-3,5-dimethoxyphenyl)isonicotinate



embedded image


4-Chloro-3,5-dimethoxyphenylboronic acid (7.45 g) and ethyl 2-chloroisonicotinate (6.39 g) were condensedn in the same manner as described in Preparation Example 1 to give the title compound.


Yield: 8.55 g (77%).



1H-NMR (400 MHz, CDCl3) δ: 1.45 (t, 3H, J=7.3 Hz), 4.03 (s, 6H), 4.45 (q, 2H, J=7.3 Hz), 7.32 (s, 2H), 7.80 (d, 1H, J=5.1 Hz), 8.27 (s, 1H), 8.83 (d, 1H, J=5.0 Hz).


PREPARATION EXAMPLE 31
Synthesis of 2-(4-chloro-3,5-dimethoxyphenyl)isonicotinic Acid



embedded image


To a solution of ethyl 2-(4-chloro-3,5-diethoxyphenyl)isonicotinate (8.55 g) in ethanol (80 mL) was added 2 M sodium hydroxide (100 mL). The mixture was refluxed for 30 min and evaporated. The aqueous layer was neutralized by 1 M hydrochloric acid and precipitates were dissolved in a mixed solvent of ethyl acetate-THF (3:1). After drying over anhydrous sodium sulfate, the solvent was evaporated to give the title compound.


Yield: 7.20 g (92%).



1H-NMR (400 MHz, CDCl3) δ: 4.02 (s, 6H), 7.34 (s, 2H), 7.83 (d, 1H, J=4.9 Hz), 7.84 (s, 1H), 8.82 (d, 1H, J=4.9 Hz).


PREPARATION EXAMPLE 32
Synthesis of 2-(4-chloro-3,5-dimethoxyphenyl)-4-hydroxymethylpyridine



embedded image


To an ice-cooled solution of 2-(4-chloro-3,5-dimethoxyphenyl)isonicotinic acid (7.20 g) and triethylamine (5.6 mL) in THF (70 mL) was added ethyl chloroformate (2.8 mL). The mixture was stirred at room temperature for 1 hour and filtered. To the filtrate was then added a solution of sodium borohydride (1.25 g) in water (4 mL). The mixture was stirred at room temperature for another hour and evaporated. Water was added to the residue and extracted with chloroform. The organic layer was washed with brine, dried over anhydrous sodium sulfate and evaporated. The residue was subjected to silica gel column chromatography using chloroform-methanol (20:1) and then chloroform-methanol (15:1) to give the title compound.


Yield: 4.10 g (60%).



1H-NMR (400 Liz, CDCl3+DMSO-d6) δ: 4.01 (s, 6H), 4.76 (s, 2H), 7.20-7.35 (m, 3H), 7.78 (s, 1H), 8.62 (s, 1H).


PREPARATION EXAMPLE 33
Synthesis of 2-(4-chloro-3,5-dimethoxyphenyl)-4-chloromethylpyridine



embedded image


2-(4-Chloro-3,5-dimethoxyphenyl)-4-hydroxymethylpyridine (4.10 g) was treated in the same manner as described in Preparation Example 3 to give the title compound.


Yield: 4.20 g (96%).



1H-NMR (400 MHz, CDCl3) δ: 4.02 (s, 6H), 4.63 (s, 2H), 7.26 (s, 2H), 7.29 (d, 1H, J=4.9 Hz), 7.72 (s, 1H), 8.69 (d, 1H, J=4.9 Hz).


PREPARATION EXAMPLE 34
Synthesis of 1-[[2-(4-chloro-3,5-dimethoxyphenyl)pyridin-4-yl]methyl]piperidine-4-carboxamide



embedded image


Piperidine-4-carboxamide (301 mg) and 2-(4-chloro-3,5-dimethoxyphenyl)-4-chloromethylpyridine (600 mg) were coupled in the same manner as described in Example 2 to give the title compound.


Yield: 743 mg (95%).



1H-NMR (400 MHz, CDCl3) δ: 1.75-1.90 (m, 4H), 2.07-2.25 (m, 3H), 2.94 (d, 2H, J=11.6 Hz), 3.57 (s, 2H), 4.02(s, 6H), 7.24-7.31 (m, 3H), 7.67 (s, 1H), 8.61 (d, 1H, J=5.1 Hz).


PREPARATION EXAMPLE 35
Synthesis of 1-[[2-(4-chloro-3,5-dimethoxyphenyl)pyridin-4-yl]methyl]-4-(ethoxycarbonylamino)piperidine



embedded image


1-[[2-(4-chloro-3,5-dimethoxyphenyl)pyridin-4-yl]methyl]piperidine-4-carboxamide (743 mg) was treated in the same manner as described in Preparation Example 20 to give the title compound.


Yield: 887 mg (theoretical amount).



1H-NMR (400 MHz, CDCl3) δ: 1.24 (t, 3H, J=7.1 Hz), 1.43-1.59 (m, 2H), 1.96 (d, 2H, J=11.4 Hz), 2.19 (t, 2H, J=11.0 Hz), 2.82 (d, 2H, J=11.5 Hz), 3.56 (s, 2H), 4.02 (s, 6H), 4.10 (q, 2H, J=7.1 Hz), 7.26 (s, 2H), 7.66 (s, 1H), 7.71 (dd, 1H, J=5.6 Hz, 1.0 Hz), 8.6 (dd, 1H, J=4.9 Hz, 0.5 Hz).


PREPARATION EXAMPLE 36
Synthesis of 1-[[2-(4-chloro-3,5-dimethoxyphenyl)pyridin-4-yl]methyl]4-methylaminopiperidine



embedded image


1-[[2-(4-chloro-3,5-diemthoxyphenyl)pyridin-4-yl]methyl]-4-(ethoxy-carbonylamino)piperidine (887 mg) was treated in the same manner as described in Preparation Example 21 to give the title compound.


Yield: 195 mg (27%).



1H-NMR (400 MHz, CDCl3) δ: 1.35-1.49 (m, 2H), 1.89 (d, 2H, J=12.3 Hz), 2.11 (t, 2H, J=9.4 Hz), 2.38-2.45 (m, 1H), 2.44 (s, 3H), 2.87 (d, 2H, J=10.7 Hz), 3.57 (s, 2H), 4.02 (s, 6H), 7.23-7.29 (m, 3H), 7.68 (s, 1H), 8.61 (d, 1H, J=4.9 Hz).


EXAMPLE 8
Synthesis of 1-[[2-(4-chloro-3,5-dimethoxyphenyl)pyridin-4-yl]methyl]-4-[N-[[2-(4-chloro-3,5-dimethoxyphenyl)pyridin-4-yl]methyl]-N-methylamino]piperidine Tetrahydrochloride



embedded image


1-[[2-(4-chloro-3,5-dimethoxyphenyl)pyridin-4-yl]methyl]methylamino-piperidine (195 mg) and 2-(4-chloro-3,5-dimethoxyphenyl)-4-chloromethylpyridine (152 mg) were condensed in the same manner as described in Example 2. A free base obtained was converted to a tetrahydrochloride giving yellow powder.


Yield: 300 mg (75%).



1H-NMR (400 MHz, CDCl3) δ: 1.60-1.90 (m, 4H), 2.06 (t, 2H, J=11.7 Hz), 2.26 (s, 3H), 2.45-2.55 (m, 1H), 2.97 (d, 2H, J=11.3 Hz), 3.57 (s, 2H), 3.67 (s, 2H), 4.01 (s, 6H), 4.02 (s, 6H), 7.24-7.28 (m, 6H), 7.65 (s, 1H), 7.67 (s, 1H), 8.61 (d, 1H, J=5.4 Hz), 8.62 (d, 1H, J=5.4 Hz).


PREPARATION EXAMPLE 37
Synthesis of 4-(p-anisidino)-1-[[2-(3,4,5-trimethoxyphenyl)pyridin-4-yl]methyl]-piperidine



embedded image


To a solution of 1-[[2-(3,4,5-trimethoxyphenyl)pyridin-4-yl]methyl]4-piperidone (2.17 g) in toluene (40 mL) was added p-anisidine (900 mg) and molecular sieves 4A (6.0 g). The mixture was refluxed overnight, then filtered and the filtrate was evaporated. The residual oil was dissolved in ethanol (40 mL) and sodium borohydride (276 mg) was added. The mixture was stirred at room temperature for 2 hours before concentration in vacuo. The residue was dissolved in ethyl acetate, washed with brine, dried over anhydrous sodium sulfate and evaporated. The residual oil was subjected to silica gel column chromatography using chloroform-methanol (50:1) to give the title compound as yellow amorphous.


Yield: 1.56 g (55%).



1H-NMR (400 MHz, CDCl3) δ: 1.48 (br, 2H), 2.05 (br, 2H), 2.20 (br, 2H), 2.86 (br, 2H), 3.23 (s, 1H), 3.58 (s, 2H), 3.74 (s, 3H), 3.91 (s, 3H), 3.97 (s, 6H), 6.58 (d, 2H, J=8.8 Hz), 6.77 (d, 2H, J=9.0 Hz), 7.22 (d, 1H, J=5.1 Hz), 7.26 (s, 2H), 7.64 (s, 1H), 8.59 (d, 1H, J=4.9 Hz).


PREPARATION EXAMPLE 38
Synthesis of ethyl 2-(3,4,5-trimethoxyphenyl)nicotinate



embedded image


3,4,5-Trimethoxyphenylboronic acid (694 mg) and ethyl 2-chloronicotinate (608 mg) were reacted in the same manner as described in Preparation Example 1 to give the title compound.


Yield: 799 mg (77%).



1H-NMR (400 MHz, CDCl3) δ: 1.10 (t, 3H, J=7.2 Hz), 3.89 (s, 9H), 4.19 (q, 2H, J=7.2 Hz), 6.79 (s, 2H), 7.34 (dd, 1H, J=7.8 Hz, 4.8 Hz), 8.06 (dd, 1H, J=7.8 Hz, 1.7 Hz), 8.75 (dd, 1H, J=4.8 Hz, 1.7 Hz).


PREPARATION EXAMPLE 39
Synthesis of 3-hydroxymethyl-2-(3,4,5-trimethoxyphenyl)pyridine



embedded image


Ethyl 2-(3,4,5-trimethoxyphenyl)nicotinate (468 mg) was treated in the same manner as described in Preparation Example 2 to give the title compound.


Yield: 293 mg (72%).



1H-NMR (400 MHz, CDCl3) δ: 3.90 (s, 9H), 4.72 (s, 2H), 6.83 (s, 2H), 7.32 (dd, 1H, J=7.9 Hz, 4.8 Hz), 7.92 (dd, 1H, J=7.9 Hz, 1.7 Hz), 8.62 (dd, 1H, J=4.8 Hz, 1.7 Hz).


PREPARATION EXAMPLE 40
Synthesis of 3-chloromethyl-2-(3,4,5-trimethoxyphenyl)pyridine



embedded image


3-Hydroxymethyl-2-(3,4,5-trimethoxyphenyl)pyridine (293 mg) was treated in the same manner as described in the Preparation Example 3 to give the title compound.


Yield: 311 mg (theoretical amount).


EXAMPLE 9
Synthesis of 4-[N-(4-methoxyphenyl)-N-[[2-(3,4,5-trimethoxyphenyl)pyridin-3-yl]methyl]amino]-1-[[2-(3,4,5-trimethoxyphenyl)pyridin-4-yl]methyl]piperidine Trihydrochloride



embedded image


To a solution of 4-(p-anisidino)-1-[[2-(3,4,5-trimethoxyphenyl)pyridin-4-yl]methyl]piperidine (139 mg) and 3-chloromethyl-2-(3,4,5-trimethoxyphenyl)pyridine (114 mg) in acetonitrile (5 ml) was added potassium carbonate (83 mg) and potassium iodide (63 mg). The mixture was stirred at 70° C. overnight and evaporated. The residue was dissolved in chloroform, washed with water and brine, dried over anhydrous magnesium sulfate and evaporated. The residual oil was applied to a column of silica gel using diethylether-metanol (20:1) as an eluent. A free base obtained was converted to a trihydrochloride to give the title compound as yellow powder.


Yield: 16 mg, (8%).



1H-NMR (400 MHz, measured as a free base, CDCl3) δ: 1.60 (br, 2H), 1.77 (br, 21), 2.09 (br, 2H), 2.93 (br, 2H), 3.45 (br, 1H), 3.54 (s, 2H), 3.73 (s, 3H), 3.90 (s, 6H), 3.91 (s, 6H), 3.96 (s, 6H), 4.34 (s, 2H), 6.65 (d, 2H, J=9.0 Hz), 6.71 (s, 2H), 6.74 (d, 2H, J=9.0 Hz), 7.16-7.19 (m, 2H), 7.22 (s, 21), 7.55 (s, 1H), 7.79 (d, 1H, J=7.0 Hz), 8.50 (br, 1H), 8.58 (d, 1H, J=4.9 Hz).


EXAMPLE 10
Synthesis of 4-[N-(4-methoxyphenyl)-N-[[2-(3,4,5-trimethoxypheny)pyridin-4-yl]methyl]amino]-1-[[2-(3,4,5-trimethoxyphenyl)pyridin-4-yl]methyl]piperidine Trihydrochloride



embedded image


4-(p-Anisidino)-1-[[2-(3,4,5-trimethoxyphenyl)pyridin-4-yl]methyl]piperidine (1.56 g) and 4-chloromethyl-2-(3,4,5-trimethoxyphenyl)pyridine (1.08 g) were condensed by the same manner as described in Example 9. Yellow oil of a free base was converted to a trihydrochloride which gave the title compound as yellow powder.


Yield: 1.17 g (40%).



1H-NMR (400 MHz, measured as a free base, CDCl3) δ: 1.68-1.97 (m, 4H), 2.09-2.23 (m, 2H), 2.98 (br, 2H), 3.54-3.66 (m, 3H), 3.73 (s, 3H), 3.89 (s, 3H), 3.90 (s, 3H), 3.93 (s, 6H), 3.96 (s, 6H), 4.45 (s, 2H), 6.74 (d, 2H, J=9.2 Hz), 6.79 (d, 2H, J=9.2 Hz), 7.15 (s, 2H), 7.16-7.21 (m, 2H), 7.23 (s, 2H), 7.57 (s, 1H), 7.60 (s, 1H), 8.54 (d, 1H, J=5.1 Hz), 8.59 (d, 1H, J=4.9 Hz).


PREPARATION EXAMPLE 41
Synthesis of 3-(3,4,5-trimethoxyphenyl)benzyl Alcohol



embedded image


Ethyl 3-(3,4,5-trimethoxyphenyl)benzoate (5.09 g) was treated in the same manner as described in Preparation Example 2 to give the title compound.


Yield: 4.25 g (97%).



1H-NMR (400 MHz, CDCl3)δ: 1.87 (t, 1H, J=6.0 Hz), 3.89 (s, 3H), 3.92 (s, 6H), 4.76 (d, 1H, J=5.6 Hz), 6.77 (s, 2H), 7.34 (d, 1H, J=7.4 Hz), 7.42 (t, 1H, J=7.5 Hz), 7.48 (d, 1H, J=7.6 Hz), 7.55 (s, 1H).


PREPARATION EXAMPLE 42
Synthesis of 3-(3,4,5-trimethoxyphenyl)benzyl Chloride



embedded image


3-(3,4,5-Trimethoxyphenyl)benzyl alcohol (1.21 g) was treated in the same manner as described in Preparation Example 3 to give the title compound.


Yield: 893 mg (69%).



1H-NMR (400 MHz, CDCl3) δ: 3.87 (s, 3H), 3.90 (s, 6H), 4.62 (s, 2H), 6.75 (s, 2H), 7.33 (d, 1H, J=7.6 Hz), 7.39 (t, 1H, J=7.7 Hz), 7.48 (d, 1H, J=7.6 Hz), 7.54 (s, 1H).


EXAMPLE 11
Synthesis of 4-[N-(4-methoxyphenyl)-N-[3-(3,4,5-trimethoxyphenyl)benzyl]amino]-1-[[2-(3,4,5-trimethoxyphenyl)pyridin-4-yl]methyl]piperidine Dihydrochloride



embedded image


4-p-Anisidino)-1-[[2-(3,4,5-trimethoxyphenyl)pyridin-4-yl]methyl]piperidine (139 mg) and 3-(3,4,5-trimethoxyphenyl)benzyl chloride (114 mg) were condensed by the same manner as described in Example 9. Yellow oil of a free base was converted to a dihydrochloride which gave the title compound as yellow powder.


Yield: 52 mg (22%).



1H-NMR (400 MHz, measured as a free base, CDCl3) δ: 1.77-1.92 (m, 5H), 2.14-2.20 (m, 2H), 2.95-3.00 (m, 2H), 3.58 (s, 2H), 3.72 (s, 3H), 3.88 (s, 3H), 3.89 (s, 6H), 3.90 (s, 3H), 3.96 (s, 6H), 4.47 (s, 2H), 6.70 (s, 2H), 6.74-6.83 (m, 4H), 7.20 (d, 1H, J=7.4 Hz), 7.23 (s, 2H), 7.25-7.27 (m, 1H), 7.33 (t, 1H, J=7.4 Hz), 7.38 (d, 1H, J=8.7 Hz), 7.43 (s, 1H), 7.62 (s, 1H), 8.59 (d, 1H, J=5.1 Hz).


PREPARATION EXAMPLE 43
Synthesis of ethyl 6-(3,4,5-trimethoxyphenyl)nicotinate



embedded image


3,4,5-Trimethoxyphneylboronic acid (1.16 g) and ethyl 6-chloronitotinate (1.02 g) were coupled in the same manner as described in the Preparation Example 1 to give the title compound.


Yield: 1.42 g (82%)



1H-NMR (400 MHz, CDCl3) δ: 1.43 (t, 3H, J=7.2 Hz), 3.92 (s, 3H), 3.98 (s, 6H), 4.44 (q, 2H, J=7.2 Hz), 7.32 (s, 2H), 7.76 (d, 1H, J=8.3 Hz), 8.33 (dd, 1H, J=8.2 Hz, 2.2 Hz), 9.26 (d, 1H, J=2.2 Hz).


PREPARATION EXAMPLE 44
Synthesis of 5-hydroxymethyl-2-(3,4,5-trimethoxyphenyl)pyridine



embedded image


Ethyl 6-(3,4,5-trimethoxyphenyl)nicotinate (658 mg) was treated in the same manner as described in Preparation Example 2 to give the title compound.


Yield: 482 mg (85%).



1H-NMR (400 MHz, CDCl3) δ: 3.91 (s, 3H), 3.97 (s, 6H), 4.76 (s, 2H), 7.23 (s, 2H), 7.68 (d, 1H, J=7.4 Hz), 7.78 (dd, 1H, J=7.4 Hz, 2.3 Hz), 8.63 (d, 1H, J=2.3 Hz).


PREPARATION EXAMPLE 45
Synthesis of 5-chloromethyl-2-(3,4,5-trimethoxyphenyl)pyridine



embedded image


5-Hydroxymethyl-2-(3,4,5-trimethoxyphenyl)pyridine (685 mg) was treated in the same manner as described in Preparation Example 3 to give the title compound.


Yield: 717 mg (theoretical amount).


EXAMPLE 12
Synthesis of 4-[N-(4-methoxyphenyl)-N-[[2-(3,4,5-trimethoxyphenyl)pyridin-5-yl]methyl]amino]-1-[[2-(3,4,5-trimethoxyphenyl)pyridin-4-yl]methyl]piperidine Trihydrochloride



embedded image


4-(p-Anisidino)-1-[[2-(3,4,5-trimethoxyphenyl)pyridin-4-yl]methyl]piperidine (139 mg) and 5-chloromethyl-2-(3,4,5-trimethoxyphenyl)pyridine (114 mg) were condensed by the same manner as described in Example 9. Yellow oil of a free base was converted to a trihydrochloride which gave the title compound as yellow powder.


Yield: 13 mg (5%).



1H-NMR (400 MHz, measured as a free base, CDCl3) δ: 1.76 (br, 2H), 1.88 (br, 2H), 2.14 (br, 2H), 2.97 (br, 2H), 3.51 (br, 1H), 3.57 (s, 2H), 3.73 (s, 3H), 3.89 (s, 3H), 3.90 (s, 3H), 3.94 (s, 6H), 3.96 (s, 6H), 4.42 (s, 2H), 6.78 (br, 4H), 7.20 (br, 3H), 7.23 (s, 2H), 7.57-7.70 (m, 3H), 8.58-8.60 (m, 2H).


PREPARATION EXAMPLE 46
Synthesis of Ethyl 5-(3,4,5-trimethoxyphenyl)nicotinate



embedded image


3,4,5-Trimethoxyphenylboronic acid (6.36 g) and ethyl 5-bromonicotinate (6.90 g) were reacted in the same manner as described in Preparation Example 1 to give the title compound.


Yield: 7.19 g (76%).



1H-NMR (400 MHz, CDCl3) δ: 1.44 (t, 3H, J=7.1 Hz), 3.91 (s, 3H), 3.95 (s, 6H), 4.46 (q, 2H, J=7.1 Hz), 6.79 (s, 2H), 8.44 (t, 1H, J=2.1 Hz), 8.96 (d, 1H, J=2.1 Hz), 9.18 (d, 1H, J=1.8 Hz).


PREPARATION EXAMPLE 47
Synthesis of 3-hydroxymethyl-5-(3,4,5-trimethoxyphenyl)pyridine



embedded image


Ethyl 5-(3,4,5-trimethoxyphenyl)nicotinate (7.19 g) was treated in the same manner as described in the Preparation Example 2 to give the title compound.


Yield; 3.83 g (61%).



1H-NMR (400 MHz, CDCl3) δ: 3.88 (s, 3H), 3.89 (s, 6H), 4.39 (br, 1H), 4.80 (s, 2H), 6.72 (s, 2H), 7.89 (t, 1H, J=1.2 Hz), 8.47 (d, 1H, J=2.1 Hz), 8.63 (d, 1H, J=2.2 Hz).


PREPARATION EXAMPLE 48
Synthesis of 3-chloromethyl-5-(3,4,5-trimethoxyphenyl)pyridine



embedded image


3-Hydroxymethyl-5-(3,4,5-trimethoxyphenyl)pyridine (2.85 g) was treated in the same manner as described in Preparation Example 3 to give the title compound.


Yield: 1.97 g (65%).



1H-NMR (400 MHz, CDCl3) δ: 3.90 (s, 3H), 3.94 (s, 6H), 4.67 (s, 2H), 6.75 (s, 2H), 7.87 (t 1H, J=2.1 Hz), 8.59 (d, 1H, J=2.0 Hz), 8.76 (d, 1H, J=2.1 Hz).


EXAMPLE 13
Synthesis of 4-[N-(4-methoxyphenyl)-N-[[5-(3,4,5-trimethoxyphenyl)pyridin-3-yl]methyl]amino]-1-[[2-(3,4,5-trimethoxyphenyl)pyridin-4-yl]methyl]piperidine Trihydrochloride



embedded image


4-(p-Anisidino)-1-[[2-(3,4,5-trimethoxyphenyl)pyridin-4-yl]methyl]piperidine (139 mg) and 3-chloromethyl-5-(3,4,5-trimethoxyphenyl)pyridine (114 mg) were condensed by the same manner as described in Example 9. Yellow oil of a free base was converted to a trihydrochloride which gave the title compound as yellow powder.


Yield: 14 mg (5%).



1H-NMR (400 MHz, measured as a free base, CDCl3) δ: 1.73-1.75 (m, 2H), 1.88 (d, 2H, J=11.3 Hz), 2.13 (t, 2H, J=11.3 Hz), 2.96 (d, 2H, J=11.5 Hz), 3.50 (br, 1H), 3.55 (s, 2H), 3.72 (s, 3H), 3.88 (s, 3H), 3.89 (s, 9H), 3.96 (s, 6H), 4.45 (s, 2H), 6.65 (s, 2H), 6.76 (d, 2H, J=9.6 Hz), 6.80 (d, 2H, J=9.4 Hz), 7.20 (d, 1H, J=5.3 Hz), 7.22 (s, 2H), 7.59 (s, 1H), 7.67 (s, 1H), 8.50 (s, 1H), 8.59 (d, 1H, J=4.7 Hz), 8.62 (s, 1H).


PREPARATION EXAMPLE 49
Synthesis of 2,6-dimethoxy-4-iodophenol



embedded image


To a solution of 5-iodo-1,2,3-trimethoxybenzene (3.2 g) in 1,2-dichloroethane (40 mL) was added aluminum chloride (1.6 g). The mixture was stirred at 60° C. for 4 hours and evaporated. The residue was dissolved in 1 M aqueous sodium hydroxide solution and washed with ether. The aqueous layer was then acidified and extracted with chloroform. The organic layer was washed with brine, dried over anhydrous magnesium sulfate and evaporated to give the title compound as white crystalline powder.


Yield: 1.0 g (31%)


PREPARATION EXAMPLE 50
Synthesis of 1,3-dimethoxy-5-iodo-2-isopropoxybenzene



embedded image


To a suspension of 2,6-dimethoxy-4-iodophenol (1.0 g) and potassium carbonate (938 mg) in DMF (10 mL) was added isopropyl iodide (507 μL). The mixture was stirred at 60° C. for 3 hours and evaporated. Ethyl acetate and water were added to the residue, the organic layer was separated, washed with brine, dried over anhydrous sodium sulfate and evaporated. The residue was applied to a column of silica gel using hexane-ethyl acetate (5:1) as an eluent to give the title compound.


Yield: 788 mg (72%).


PREPARATION EXAMPLE 51
Synthesis of 3,5-dimethoxy-4-isopropoxyphenylboronic Acid



embedded image


1,3-Dimethoxy-5-iodo-2-isopropoxybenzene (2.25 g) was treated in the same manner as described in Preparation Example 27 to give the title compound.


Yield: 1.23 g (74%).


PREPARATION EXAMPLE 52
Synthesis of ethyl 2-(3,5-dimethoxy-4-isopropoxyphenyl)isonicotinate



embedded image


To a solution of 3,5-dimethoxy-4-isopropoxyphenylboronic acid (1.23 g) and ethyl 2-chloroisonicotinate (0.95 g) were condensed in the same manner as described in Preparation Example 1 to give the title compound.


Yield: 1.57 g (89%).



1H-NMR (400 MHz, CDCl3) δ: 1.33 (d, 6H, J=4.9 Hz), 1.44 (t, 3H, J=7.1 Hz), 3.95 (s, 6H), 4.42-4.49 (m, 3H), 7.29 (s, 2H), 7.75 (dd, 1H, J=4.9 Hz, 1.4 Hz), 8.24 (s, 1H), 8.80 (d, 1H, J=4.9 Hz).


PREPARATION EXAMPLE 53
Synthesis of 2-(3,5-dimethoxy-4-isopropoxyphenyl)-4-hydroxymethylpyridine



embedded image


Ethyl 2-(3,5-dimethoxy-4-isopropoxyphenyl)isonicotinate (1.57 g) was treated in the same manner as described in the Preparation Example 2 to give the title compound.


Yield: 1.27 g (92%).



1H-NMR (400 MHz, CDCl3) δ: 1.32 (d, 6H, J=6.1 Hz), 3.93 (s, 6H), 4.45 (quint, 1H, J=6.1 Hz), 4.81 (s, 2H), 7.20 (d, 1H, J=5.1 Hz), 7.23 (s, 2H), 7.68 (s, 1H), 8.62 (d, 1H, J=5.1 Hz).


PREPARATION EXAMPLE 54
Synthesis of 4-chloromethyl-2-(3,5-dimethoxy-4-isopropoxyphenyl)pyridine



embedded image


2-(3,5-Dimethoxy-4-isopropoxyphenyl)-4-hydroxymethylpyridine (1.49 g) was treated in the same manner as described in Preparation Example 3 to give the title compound.


Yield: 1.33 g (84%).



1H-NMR (400 MHz, CDCl3) δ: 1.32 (d, 6H, J=6.2 Hz), 3.94 (s, 6H), 4.45 (quint, 1H, J=6.1 HZ), 4.61 (s, 2H), 7.23-7.26 (m, 3H), 7.69 (s, 1H), 8.66 (d, 1H, J=5.1 Hz).


PREPARATION EXAMPLE 55
Synthesis of 1-[[2-(3,5-dimethoxy-4-isopropoxyphenyl)pyridin-4-yl]methyl]-4-piperidone Ethylene Ketal



embedded image


4-Chloromethyl-2-(3,5-dimethoxy-4-isopropoxyphenyl)pyridine (643 mg) and 4-piperidone ethylene ketal (287 mg) were coupled in the same manner as described in Example 2 to give the title compound.


Yield: 818 mg (95%).



1H-NMR (400 MHz, CDCl3) δ: 1.32 (d, 6H, J=6.1 Hz), 1.78 (t, 4H, J=5.7 Hz), 2.57 (br, 4H), 3.49 (s, 4H), 3.59 (s, 2H), 3.94 (s, 6H), 4.44 (quint, 1H, J=6.1 Hz), 7.21 (d, 1H, J=5.1 Hz), 7.23 (s, 2H), 7.65 (s, 1H), 8.59 (d, 1H, J=5.1 Hz).


PREPARATION EXAMPLE 56
Synthesis of 1-[[2-(3,5-dimethoxy-4-isopropoxyphenyl)pyridin-4-yl]methyl]-4-piperidone



embedded image


1-[[2-(3,5-Dimethoxy-4-isopropoxyphenyl)pyridin-4-yl]methyl]-4-piperidone ethylene ketal (818 mg) was treated in the same manner as described in Preparation Example 23 to give the title compound.


Yield: 717 mg (98%).



1H-NMR (400 MHz, CDCl3) δ: 1.32 (d, 6H, J=6.2 Hz), 2.50 (t, 4H, J=6.1 Hz), 2.81 (t, 4H, J=6.1 Hz), 3.69 (s, 2H), 3.95 (s, 6H), 4.45 (quint, 1H, J=6.2 Hz), 7.24 (s, 2H), 7.25-7.27 (m, 1H), 7.68 (s, 1H), 8.63 (d, 1H, J=5.1 Hz).


PREPARATION EXAMPLE 57
Synthesis of 4-(p-anisidino)-1-[[2-(3,5-dimethoxy-4-isopropoxyphenyl)pyridin-4-yl]methyl]piperidine



embedded image


1-[[2-(3,5-dimethoxy-4-isopropoxyphenyl)pyridin-4-yl]methyl]-4-piperidone (350 mg) and p-anisidine (123 mg) were condensed in the same manner as described in Preparation Example 37 to give the title compound.


Yield: 307 mg (69%).



1H-NMR (400 MHz, CDCl3) δ: 1.32 (d, 6H, J=6.3 Hz), 1.46-1.52 (m, 2H), 2.00-2.24 (m, 2H), 2.22 (t, 2H, J=11.1 Hz), 2.86 (d, 2H, J=12.1 Hz), 3.18-3.28 (m, 1H), 3.58 (s, 2H), 3.74 (s, 3H), 3.94 (s, 6H), 4.40 (quint, 1H, J=6.3 Hz), 6.58 (d, 2H, J=6.6 Hz), 6.78 (d, 2H, J=6.6 Hz), 7.20 (d, 1H, J=5.1 Hz), 7.24 (s, 2H), 7.64 (s, 1H), 8.59 (d, 1H, J=5.1 Hz).


EXAMPLE 14
Synthesis of 1-[[2-(3,5-dimethoxy-4-isopropoxyphenyl)pyridin-4-yl]methyl]-4-[N-[[2-(3,5-dimethoxy-4-isopropoxyphenyl)pyridin-4-yl]methyl]-N-(4-methoxyphenyl) amino]piperidine Trihydrochloride



embedded image


4-p-anisidino)-1-[[2-(3,5-dimethoxy-4-isopropoxyphenyl)pyridin-4-yl]methyl] piperidine (307 mg) and 4-chloromethyl-2-(3,5-dimethoxy-4-isopropoxyphenyl) pyridine (201 mg) were condensed in the same manner as described in Example 9. A free base obtained was converted to a trihydrochloride giving the title compound as yellow powder.


Yield: 230 mg (46%).



1H-NMR (400 MHz, CDCl3) δ: 1.31 (d, 6H, J=3.3 Hz), 1.32 (d, 6H, J=6.8 Hz), 1.70-1.92 (m, 4H), 2.10-2.20 (m, 2H), 2.92-3.01 (m, 2H), 3.56 (s, 2H), 3.73 (s, 3H), 3.85-3.95 (m, 1H), 3.90 (s, 6H), 3.93 (s, 6H), 4.39-4.49 (m, 4H), 6.73 (d, 2H, J=4.8 Hz), 6.78 (d, 2H, J=4.8 Hz), 7.14 (s, 2H), 7.15-7.20 (m, 2H), 7.23 (s, 2H), 7.58 (s, 1H), 7.60 (s, 1H), 8.53 (d, 1H, J=5.1 Hz), 8.58 (d, 1H, J=5.1 Hz).


PREPARATION EXAMPLE 58
Synthesis of 4-benzylamino-1-[[2-(3,4,5-trimethoxyphenyl)pyridin-4-yl]-methyl] Piperidine



embedded image


1-[[2-(3,4,5-Trimethoxyphenyl)pyridin-4-yl]methyl-4-piperidone (1.40 g) and benzylamine (0.51 g) was condensed in the same manner as described in Preparation Example 37 to give the title compound as yellow amorphous.


Yield: 1.20 g (68%).



1H-NMR (400 MHz, CDCl3) δ: 1.40-1.60 (m, 2H), 1.88-2.09 (m, 5H), 2.54 (br, 1H), 2.82-2.85 (m, 2H), 3.52 (s, 2H), 3.80 (s, 2H), 3.89 (s, 3H), 3.95 (s, 6H), 7.18-7.31 (m, 8H), 7.64 (s, 1H), 8.57 (d, 1H, J=5.1 Hz).


EXAMPLE 15
Synthesis of 4-[N-benzyl-N-[[2-(3,4,5-trimethoxypheny)pyridin-3-yl]-methyl]amino]-1-[[2-(3,4,5-trimethoxyphenyl)pyridinyl]methyl]piperidine Tetrahydrochloride



embedded image


4-Benzylamino-1-[[2-(3,4,5-trimethoxyphenyl)pyridin-4-yl]methyl]piperidine (134 mg) and 3-chloromethyl-2-(3,4,5-trimethoxyphenyl)pyridine (114 mg) were condensed in the same manner as described in Example 9. A free base obtained was converted to a tetrahydrochloride to give the title compound as yellow powder.


Yield: 43 mg, (17%).



1H-NMR (400 MHz, measured as a free base, CDCl3) δ: 1.63 (br, 4H), 1.87 (br, 2H), 2.39 (br, 1H), 2.88 (br, 2H), 3.49 (s, 2H), 3.57 (s, 2H), 3.68 (s, 2H), 3.86 (s, 6H), 3.88 (s, 3H), 3.90 (s, 3H), 3.96 (s, 6H), 6.60 (s, 2H), 7.17 (d, 1H, J=5.1 Hz), 7.22-7.29 (m, 8H), 7.56 (s, 1H), 8.02 (d, 1H, J=8.0 Hz), 8.50 (d, 1H, J=6.4 Hz), 8.58 (d, 1H, J=5.1 Hz).


EXAMPLE 16
Synthesis of 4-[N-benzyl-N-[[2-(3,4,5-trimethoxyphenyl)pyridin-4-yl]methyl]amino]-1-[[2-(3,4,5-trimethoxyphenyl)pyridin-4-yl]methyl]piperidine Tetrahydrochloride



embedded image


4-Benzylamino-1-[[2-(3,4,5-trimethoxyphenyl)pyridin-4-yl]methyl]piperidine (230 mg) and 4-chloromethyl-2-(3,4,5-trimethoxyphenyl)pyridine (158 mg) were condensed by the same manner as described in Example 9. Yellow oil of a free base was converted to a tetrahydrochloride which gave the title compound as yellow powder.


Yield: 172 mg (47%).



1H-NMR (400 MHz, measured as a free base, CDCl3) δ: 1.69-1.85 (m, 4H), 1.93-1;99 (m, 2H), 2.56 (br, 1H), 2.93-3.00 (m, 2H), 3.51 (s, 2H), 3.71 (s, 2H), 3.74 (s, 2H), 3.90 (s, 6H), 3.96 (s, 6H), 7.18-7.32 (m, 9H), 7.38 (d, 2H, J=7.1 Hz), 7.59 (s, 1H), 7.68 (s, 1H), 8.56 (d, 1H, J=5.1 Hz), 8.60 (d, 1H, J=5.1 Hz).


EXAMPLE 17
Synthesis of 4-[N-benzyl-N-[3-(3,4,5-trimethoxyphenyl)benzyl]amino]-1-[[2-(3,4,5-trimethoxyphenyl)pyridin-4-yl]methyl]piperidine Trihydrochloride



embedded image


4-Benzylamino-1-[[2-(3,4,5-trimethoxyphenyl)pyridin-4-yl]methyl]piperidine (134 mg) and 3-(3,4,5-trimethoxyphenyl)benzyl chloride (114 mg) were condensed by the same manner as described in Example 9. Yellow oil of a free base was converted to a trihydrochloride which gave the title compound as yellow powder.


Yield: 47 mg (18%).



1H-NMR (400 MHz, measured as a free base, CDCl3) δ: 1.70-1.86 (m, 4H), 1.96 (br, 2H), 2.59 (br, 1H), 2.94 (br, 2H), 3.51 (s, 2H), 3.70 (s, 2H), 3.74 (s, 2H), 3.89 (s, 3H), 3.90 (s, 3H), 3.92 (s, 6H), 3.96 (s, 6H), 6.75 (s, 2H), 7.18-7.30 (m, 6H), 7.35-7.40 (m, 5H), 7.56 (s, 1H), 7.60 (s, 1H), 8.58 (d, 1H, J=5.1 Hz).


EXAMPLE 18
Synthesis of 4-[N-benzyl-N-[[2-(3,4,5-trimethoxyphenyl)pyridin-5-yl]methyl]amino]-1-[[2-(3,4,5-trimethoxyphenyl)pyridin-4-yl]methyl]piperidine Tetrahydrochloride



embedded image


4-Benzylamino-1-[[2-(3,4,5-trimethoxyphenyl)pyridin-4-yl]methyl]piperidine (134 mg) and 5-chloromethyl-2-(3,4,5-trimethoxyphenyl)pyridine (114 mg) were condensed by the same manner as described in Example 9. Yellow oil of a free base was converted to a tetrahydrochloride which gave the title compound as yellow powder.


Yield: 44 mg (17%).



1H-NMR (400 MHz, measured as a free base, CDCl3) δ: 1.81 (br, 4H), 1.96 (br, 2H), 2.55 (br, 1H), 2.96 (br, 2H), 3.52 (s, 2H), 3.69 (s, 4H), 3.89 (s, 6H), 3.95 (s, 6H), 3.96 (s, 6H), 7.19-7.32 (m, 8H), 7.36-7.38 (m, 2H), 7.61 (d, 2H, J=7.6 Hz), 7.69-7.73 (m, 1H), 8.59 (d, 1H, J=4.9 Hz), 8.63 (s, 1H).


EXAMPLE 19
Synthesis of 4N-benzyl-N-[[5-(3,4,5-trimethoxypheny)pyridin-3-yl]methyl]amino]1-[[2-(3,4,5-trimethoxyphenyl)pyridin-4-yl]methyl]piperidine Tetrahydrochloride



embedded image


4-Benzylamino-1-[[2-(3,4,5-trimethoxyphenyl)pyridin-4-yl]methyl]piperidine (134 mg) and 3-chloromethyl-5-(3,4,5-trimethoxyphenyl)pyridine (114 mg) were condensed by the same manner as described in Example 9. Yellow oil of a free base was converted to a tetrahydrochloride which gave the title compound as yellow powder.


Yield: 26 mg (10%).



1H-NMR (400 MHz, measured as a free base, CDCl3) δ: 1.83 (br, 4H), 1.97 (br, 2H), 2.58 (br, 1H), 2.95 (br, 2H), 3.53 (s, 2H), 3.71 (s, 2H), 3.75 (s, 2H), 3.90 (s, 6H), 3.93 (s, 6H), 3.96 (s, 6H), 6.74 (s, 2H), 7.19-7.30 (m, 6H), 7.36 (d, 2H, J=6.8 Hz), 7.60 (s, 1H), 7.79 (s, 1H), 8.54 (s, 1H), 8.59 (d, 1H, J=5.1 Hz), 8.64 (s, 1H).


PREPARATION EXAMPLE 59
Synthesis of 1-(tert-butoxycarbonyl)-4-[N-[[2-(3,4,5-trmethoxyphenyl)pyridin-4-yl]methyl]aminomethyl]piperidine



embedded image


1-(tert-Butoxycarbonyl)-4-aminomethylpiperidine (200 mg) and 4-chloromethyl-2-(3,4,5-trimethoxyphenyl)pyridine (183 mg) were condensed in the same manner as described in Example 2 to give the title compound as yellow syrup.


Yield: 264 mg (90%).



1H-NMR (400 MHz, CDCl3) δ: 1.12-1.27 (m, 3H), 1.45 (s, 9H), 1.60 (br, 1H), 1.74 (d, 2H, J=12.9 Hz), 2.54 (d, 2H, J=6.6 Hz), 2.69 (br, 2H), 3.87 (s, 2H), 3.90 (s, 3H), 3.97 (s, 6H), 4.03-4.14 (m, 2H), 7.20 (d, 1H, J=3.9 Hz), 7.24 (s, 2H), 7.65 (s, 1H), 8.60 (d, 1H, J=4.9 Hz).


PREPARATION EXAMPLE 60
Synthesis of 1-(tert-butoxycarbonyl)-4-[N-methyl-N-[[2-(3,4,5-trimethoxyphenyl) pyridin-4-yl]methyl]aminomethyl]piperidine



embedded image


1-(tert-butoxycarbonyl)-4-[N-[[2-(3,4,5-trimethoxyphenyl)pyridin-4-yl]methyl]aminomethyl]piperidine (264 mg) was treated in the same manner as described in Preparation Example 11 to give the title compound as yellow syrup.


Yield: 157 mg (58%).



1H-NMR (400 MHz, CDCl3) δ: 1.00-1.09 (m, 2H), 1.43 (s, 9H), 1.65-1.70 (m, 1H), 1.79 (d, 2H, J=12.7 Hz), 2.21 (d, 2H, J=7.4 Hz), 2.23 (s, 3H), 2.69 (br, 2H), 3.52 (s, 2H), 3.89 (s, 3H), 3.96 (s, 6H), 4.07-4.13 (m, 2H), 7.20 (d, 1H, J=4.9 Hz), 7.24 (s, 2H), 7.64 (s, 1H), 8.58 (d, 1H, J=5.1 Hz).


PREPARATION EXAMPLE 61
Synthesis of 4-[N-methyl-N-[[2-(3,4,5-trimethoxyphenyl)pyridin-4-yl]methyl]aminomethyl] Piperidine



embedded image


1-(tert-Butoxycarbonyl)-4-[N-methyl-N-[[2-(3,4,5-trimethoxyphenyl)pyridin-4-yl]methyl]aminomethyl]piperidine (152 mg) was treated in the same manner as described in Preparation Example 12 to give the title compound as yellow crystals.


Yield: 105 mg (88%).



1H-NMR (400 MHz, CDCl3) δ: 1.00-1.10 (m, 2H), 1.60-1.68 (m, 1H), 1.80 (d, 2H, J=12.5 Hz), 2.03 (br, 1H), 2.20 (d, 2H, J=8.4 Hz), 2.21 (s, 3H), 2.58 (dt, 2H, J=12.1 Hz, 2.1 Hz), 3.05 (d, 2H, J=12.1 Hz), 3.51 (s, 2H), 3.89 (s, 3H), 3.95 (s, 6H), 7.20 (d, 1H, J=5.1 Hz), 7.24 (s, 2H), 7.65 (s, 1H), 8.57 (d, 1H, J=5.9 Hz).


EXAMPLE 20
Synthesis of 4-[N-methyl-N-[[2-(3,4,5-trimethoxyphenyl)pyridin-4-yl]methyl]aminomethyl]-1-[[2-(3,4,5-trimethoxyphenyl)pyridin-4-yl]methyl]piperidine Dioxalate



embedded image


4-[N-methyl-N-[[2-(3,4,5-trimethoxyphenyl)pyridin-4-yl]methyl]amino-methyl] piperidine (96 mg) and 4-chloromethyl-2-(3,4,5-trimethoxyphenyl)pyridine (73 mg) were condensed in the same manner as described in Example 2. The title compound was obtained as white powder after converting a free base to a dioxalate.


Yield: 109 mg (40%).



1H-NMR (400 MHz, measured as a free base, CDCl3) δ: 1.19-1.27 (m, 2H), 1.56 (br, 1H), 1.81 (d, 2H, J=11.1 Hz), 1.99-2.04 (m, 2H), 2.23 (s, 5H), 2.88 (d, 2H, J=11.1 Hz), 3.53 (s, 4H), 3.89 (s, 3H), 3.90 (s, 3H), 3.94 (s, 6H), 3.96 (s, 6H), 7.20 (br, 2H), 7.23 (s, 4H), 7.61 (s, 1H), 7.64 (s, 1H), 8.58 (d, 2H, J=4.9 Hz).


PREPARATION EXAMPLE 62
Synthesis of 4-(3,5-dimethoxyphenylamino)-1-[[2-(3,4,5-trimethoxyphenyl)pyridin-4-yl]methyl]piperidine



embedded image


1-[[2-(3,4,5-Trimethoxyphenyl)pyridinyl]methyl-4-piperidone (1.40 g) and 3,5-dimethoxyaniline (722 mg) were treated in the same manner as described in Preparation Example 37 to give the title compound.


Yield: 800 mg (41%).



1H-NMR (400 MHz, CDCl3) δ: 1.40-1.90 (m, 2H), 1.95-2.50 (m, 4H), 2.93 (br, 2H), 3.31 (br, 1H), 3.65 (br, 2H), 3.72 (s, 6H), 3.88 (s, 3H), 3.96 (s, 6H), 5.76 (s, 2H), 5.85 (s, 1H), 7.20-7.35 (m, 3H), 7.73 (br, 1H), 8.60 (d, 1H, J=4.9 Hz).


EXAMPLE 21
Synthesis of 4-[N-(3,5-dimethoxyphenyl)-N-[[2-(3,4,5-trimethoxyphenyl)pyridin-3-yl]methyl]amino]-1-[[2-(3,4,5-trimethoxyphenyl)pyridin-4-yl]methyl]piperidine Trihydrochloride



embedded image


4-(3,5-Dimethoxyphenylamino)-1-[[2-(3,4,5-trimethoxyphenyl)pyridin-4-yl]m ethyl]piperidine (148 mg) and 3-chloromethyl-2-(3,4,5-trimethoxyphenyl)pyridine (114 mg) were condensed in the same manner as described in Example 9. Yellow syrup obtained was converted to a trihydrochloroide to give the title compound as yellow powder.


Yield: 29 mg, (11%).



1H-NMR (400 MHz, measured as a free base, CDCl3) δ: 1.60-1.63 (m, 2H), 1.79 (d, 2H, J=11.7 Hz), 2.13 (t, 2H, J=11.4 Hz), 2.94 (d, 2H, J=11.3 Hz), 3.54 (s, 2H), 3.71 (s, 6H), 3.78-3.84 (m, 1H), 3.90 (s, 3H), 3.91 (s, 6H), 3.92 (s, 3H), 3.96 (s, 6H), 4.41 (s, 2H), 5.84 (s, 2H), 6.72 (s, 2H), 7.09-7.24 (m, 5H), 7.53 (s, 1H), 7.71 (d, 1H, J=6.6 Hz), 8.51 (dd, 1H, J=4.7 Hz, 1.6 Hz), 8.59 (d, 1H, J=4.9 Hz).


PREPARATION EXAMPLE 63
Synthesis of ethyl 2-(3,4,5-trimethoxyphenyl)benzoate



embedded image


3,4,5-Trimethoxyphenylboronic acid (639 mg) and ethyl 2-bromobenzoate (479 mg) were condensed in the same manner as described in Preparation Example 1 to give the title compound.


Yield: 655 mg (69%).



1H-NMR (400 MHz, CDCl3) δ: 1.04 (t, 3H, J=7.2 Hz), 3.86 (s, 6H), 3.89 (s, 3H), 4.12 (q, 2H, J=7.2 Hz), 6.54 (s, 2H), 7.40-7.42 (m, 2H), 7.51 (t, 1H, J=7.8 Hz), 7.77 (d, 1H, J=6.8 Hz).


PREPARATION EXAMPLE 64
Synthesis of 2-(3,4,5-trimethoxyphenyl)benzyl Alcohol



embedded image


Ethyl 2-(3,4,5-trimethoxyphenyl)benzoate (655 mg) was treated in the same manner as described in Preparation Example 2 to give the title compound.


Yield: 630 mg (theoretical amount).



1H-NMR (400 MHz, CDCl3) δ: 3.85 (s, 6H), 3.90 (s, 3H), 4.61 (s, 2H), 6.61 (s, 2H), 7.26-7.39 (m, 3H), 7.53 (d, 1H, J=6.8 Hz).


PREPARATION EXAMPLE 65
Synthesis of 2-(3,4,5-trimethoxyphneyl)benzyl Chloride



embedded image


2-(3,4,5-Trimethoxyphenyl)benzyl alcohol (630 mg) was treated in the same manner as described in Preparation Example 3 to give the title compound.


Yield: 615 mg (theoretical amount).



1H-NMR (400 MHz, CDCl3) δ: 3.87 (s, 6H), 3.90 (s, 3H), 4.53 (s, 2H), 6.66 (s, 2H), 7.29-7.32 (m, 1H), 7.34-7.39 (m, 2H), 7.50-7.52 (m, 1H).


EXAMPLE 22
Synthesis of 4-[N-(3,5-dimethoxyphenyl)-N-[2-(3,4,5-trimethoxyphenyl)benzyl]amino]-1-[[2-(3,4,5-trimethoxyphenyl)pyridin-4-yl]methyl]piperidine Dihydrochloride



embedded image


4-(3,5-Dimethoxyphenylamino)-1-[[2-(3,4,5-trimethoxyphenyl)pyridin-4-yl]methyl]piperidine (148 mg) and 2-(3,4,5-trimethoxyphenyl)benzyl chloride (114 mg) were condensed in the same manner as described in Example 9. A free base obtained was converted to a dihydrochloroide to give the title compound as yellow powder.


Yield: 20 mg, (8%).



1H-NMR (400 MHz, measured as a free base, CDCl3) δ: 1.50-1.90 (m, 4H), 2.05-2.20 (m, 2H), 2.92 (br, 2H), 3.52 (br, 3H), 3.68 (s, 6H), 3.85 (s, 6H), 3.88 (s, 3H), 3.89 (s, 3H), 3.94 (s, 6H), 4.31 (s, 2H), 5.85 (br, 3H), 6.52 (s, 2H), 7.05-7.27 (m, 6H), 7.34 (s, 1H), 7.51 (s, 1H), 8.56 (s, 1H).


EXAMPLE 23
Synthesis of 4-[N-(3,5-dimethoxyphenyl)-N-[[2-(3,4,5-trimethoxyphenyl)pyridin-4-yl]methyl]amino]-1-[[2-(3,4,5-trimethoxyphenyl)pyridin-4-yl]methyl]piperidine Trihydrochloride



embedded image


4-(3,5-Dimethoxyphenylamino)-1-[[2-(3,4,5-trimethoxyphenyl)pyridin-4-yl]methyl]piperidine (148 mg) and 4-chloromethyl-2-(3,4,5-trimethoxyphenyl)pyridine (114 mg) were condensed by the same manner as described in Example 9. Yellow oil of a free base was converted to a trihydrochloride which gave the title compound as yellow powder.


Yield: 40 mg (18%).



1H-NMR (400 MHz, measured as a free base, CDCl3) δ: 1.68-1.90 (m, 4H), 2.12-2.22 (m, 2H), 2.94-3.02 (m, 2H), 3.57 (s, 2H), 3.71 (s, 6H), 3.81-3.83 (m, 1H), 3.89 (s, 3H), 3.90 (s, 3H), 3.93 (s, 6H), 3.96 (s, 6H), 4.52 (s, 2H), 5.89-5.94 (m, 3H), 7.14 (d, 1H, J=5.3 Hz), 7.16 (s, 2H), 7.20 (d, 1H, J=3.7 Hz), 7.22 (s, 2H), 7.54-7.60 (m, 2H), 8.55 (d, 1H, J=5.1 Hz), 8.59 (d, 1H, J=5.1 Hz).


EXAMPLE 24
Synthesis of 4-[N-(3,5-dimethoxyphenyl)-N-[3-(3,4,5-trimethoxyphenyl)benzyl]amino]-1-[[2-(3,4,5-trimethoxyphenyl)pyridin-4-yl]methyl]piperidine Dihydrochloride



embedded image


4-(3,5-Dimethoxyphenylamino)-1-[[2-(3,4,5-trimethoxyphenyl)pyridin-4-yl]methyl]piperidine (148 mg) and 3-(3,4,5-trimethoxyphenyl)benzyl chloride (114 mg) were condensed by the same manner as described in Example 9. Yellow oil of a free base was converted to a dihydrochloride which gave the title compound as yellow powder.


Yield: 41 mg (16%).



1H-NMR (400 MHz, measured as a free base, CDCl3) δ: 1.78-1.88 (m, 4H), 2.16 (t, 2H, J=10.7 Hz), 2.96 (d, 2H, J=11.3 Hz), 3.56 (s, 2H), 3.70 (s, 6H), 3.73-3.84 (m, 1H), 3.87 (s, 3H), 3.89 (s, 6H), 3.90 (s, 3H), 3.95 (s, 6H), 4.54 (s, 2H), 5.95 (s, 2H), 6.71 (s, 2H), 7.19-7.26 (m, 4H), 7.31-7.39 (m, 3H), 7.42 (s, 1H), 7.59 (s, 1H), 8.58 (d, 1H, J=4.9 Hz).


EXAMPLE 25
Synthesis of 4-[N-(3,5-dimethoxyphenyl)-N-[[2-(3,4,5-trimethoxyphenyl)pyridin-5-yl]methyl]amino]-1-[[2-(3,4,5-trimethoxyphenyl)pyridin-4-yl]methyl]piperidine Trihydrochloride



embedded image


4-(3,5-Dimethoxyphenylamino)-1-[[2-(3,4,5-trimethoxyphenyl)pyridin-4-yl]methyl]piperidine (148 mg) and 5-chloromethyl-2-(3,4,5-trimethoxyphenyl)pyridine (114 mg) were condensed by the same manner as described in Example 9. Yellow oil of a free base was converted to a trihydrochloride which gave the title compound as yellow powder.


Yield: 23 mg (10%).



1H-NMR (400 MHz, measured as a free base, CDCl3) δ: 1.64 (br, 2H), 1.82 (br, 2H), 2.10 (br, 2H), 2.94 (br, 2H), 3.48-3.60 (m, 3H), 3.64 (s, 6H), 3.82 (s, 3H), 3.83 (s, 3H), 3.87 (s, 6H), 3.90 (s, 6H), 4.46 (s, 2H), 5.85 (br, 3H), 7.05-7.24 (m, 6H), 7.53-7.54 (m, 2H), 8.51 (s, 1H), 8.54 (br, 1H).


PREPARATION EXAMPLE 66
Synthesis of Ethyl 4-(3,4,5-trimethoxyphenyl)benzoate



embedded image


3,4,5-Trimethoxyphenylboronic acid (2.01 g) and ethyl 4-bromobenzoate (2.29 g) were condensed in the same manner as described in Preparation Example 1 to give the title compound.


Yield: 2.99 g (95%).



1H-NMR (400 MHz, CDCl3) δ: 1.42 (t, 3H, J=7.2 Hz), 3.90 (s, 3H), 3.94 (s, 6H), 4.38 (q, 2H, J=7.2 Hz), 6.81 (s, 2H), 7.62 (d, 2H, J=8.2 Hz), 8.10 (d, 2H, J=8.2 Hz).


PREPARATION EXAMPLE 67
Synthesis of 4-(3,4,5-trimethoxyphenyl)benzyl Alcohol



embedded image


Ethyl 4-(3,4,5-trimethoxyphenyl)benzoate (2.99 g) was treated in the same manner as described in Preparation Example 2 to give the title compound.


Yield: 1.83 g (71%)


PREPARATION EXAMPLE 68
Synthesis of 4-(3,4,5-trimethoxyphenyl)benzyl Chloride



embedded image


4-(3,4,5-Trimethoxyphenyl)benzyl alcohol (1.83 g) was treated in the same manner as describe in Preparation Example 3 to give the title compound.


Yield: 1.65 g (84%)



1H-NMR (400 MHz, CDCl3) δ: 3.90 (s, 3H), 3.93 (s, 6H), 4.65 (s, 2H), 6.77 (s, 2H), 7.46 (d, 2H, J=8.0 Hz), 7.55 (d, 2H, J=8.0 Hz).


EXAMPLE 26
Synthesis of 4-[N-(3,5-dimethoxyphenyl)-N-[4-(3,4,5-trimethoxypheny)benzyl]amino]-1-[[2-(3,4,5-trimethoxyphenyl)pyridin-4-yl]methyl]piperidine Dihydrochloride



embedded image


4-(3,5-Dimethoxyphenylamino)-1-[[2-(3,4,5-trimethoxyphenyl)pyridin-4-yl]methyl]piperidine (148 mg) and 4-(3,4,5-trimethoxyphenyl)benzyl chloride (114 mg) were condensed by the same manner as described in Example 9. Yellow oil of a free base was converted to a dihydrochloride which gave yellow powder of the title compound.


Yield: 35 mg (14%).



1H-NMR (400 MHz, measured as a free base, CDCl3) δ; 1.80-1.89 (m, 4H), 2.17 (br, 2H), 2.97 (d, 2H, J=10.5 Hz), 3.57 (s, 2H), 3.70 (s, 6H), 3.77-3.84 (m, 1H), 3.87 (s, 3H), 3.90 (s, 3H), 3.91 (s, 6H), 3.96 (s, 6H), 4.52 (s, 2H), 5.93 (s, 2H), 6.74 (s, 2H), 7.19-7.22 (m, 4H), 7.31 (d, 2H, J=8.2 Hz), 7.46 (d, 2H, J=8.2 Hz), 7.60 (s, 1H), 8.59 (d, 1H, J=5.1 Hz).


PREPARATION EXAMPLE 69
Synthesis of 4-(3,4-methylenedioxyphenylamino)-1-[[2-(3,4,5-trimethoxyphenyl) pyridin-4-yl]methyl]piperidine



embedded image


1-[[2-(3,4,5-Trimethoxyphenyl)pyridin-4-yl]methyl-4-piperidone (1.40 g) and 3,4-methylenedioxyaniline (646 mg) were treated in the same manner as described in Preparation Example 29 to give the title compound.


Yield: 810 mg (43%).



1H-NMR (400 MHz, CDCl3) δ: 1.63 (br, 2H), 2.02-2.60 (m, 4H), 2.80-3.15 (m, 2H), 3.25 (br, 1H), 3.70 (br, 2H), 3.88 (s, 3H), 3.96 (s, 6H), 5.83 (s, 2H), 6.02 (d, 1H, J=8.3 Hz), 6.22 (s, 1H), 6.61 (d, 1H, J=8.3 Hz), 7.18-7.28 (m, 3H), 7.64 (br, 1H), 8.60 (d, 1H, J=4.9 Hz).


EXAMPLE 27
Synthesis of 4-[N-(3,4-methylenedioxyphenyl)-N-[[2-(3,4,5-trimethoxypheny) pyridin-3-yl]methyl]amino]-1-[[2-(3,4,5-trimethoxyphenyl)pyridin-4-yl]methyl] piperidine Trihydrochloride



embedded image


4-(3,4-Methylenedioxyphenylamino)-1-[[2-(3,4,5-trimethoxyphenyl)pyridin-4-yl]methyl]piperidine (119 mg) and 3-chloromethyl-2-(3,4,5-trimethoxyphenyl)pyridine (114 mg) were condensed in the same manner as described in Example 9. Yellow syrup obtained was converted to a trihydrochloroide to give the title compound as yellow powder.


Yield: 30 mg (14%).



1H-NMR (400 MHz, measured as a free base, CDCl3) δ: 1.45-2.25 (m, 6H), 2.90 (br, 2H), 3.40 (br, 1H), 3.55 (br, 2H), 3.87 (s, 3H), 3.88 (s, 9H), 3.93 (s, 6H), 4.28 (s, 2H), 5.82 (s, 2H), 6.10 (br, 1H), 6.28 (s, 1H), 6.58 (d, 1H, J=8.4 Hz), 6.67 (s, 2H), 7.12-7.30 (m, 4H), 7.52 (br, 1H), 7.75 (br, 1H), 8.51 (br, 1H), 8.57 (br, 1H).


EXAMPLE 28
Synthesis of 4-[N-(3,4-methylenedioxyphenyl)-N-[2-(3,4,5-trimethoxyphenyl) benzyl]amino]-1-[[2-(3,4,5-trimethoxyphenyl)pyridin-4-yl]metyl]piperidine Dihydrochloride



embedded image


4-(3,4-Methylenedioxyphenylamino)-1-[[2-(3,4,5-trimethoxyphenyl)pyridin-4-yl]methyl]piperidine (119 mg) and 2-(3,4,5-trimethoxyphenyl)benzyl chloride (114 mg) were condensed in the same manner as described in Example 9. A free base obtained was converted to a dihydrochloroide to give the title compound as yellow powder.


Yield: 13 mg (6%).



1H-NMR (400 MHz, measured as a free base, CDCl3) δ: 1.61 (br, 2H), 1.78 (br, 2H), 2.10 (br, 2H), 2.91 (br, 2H), 3.50-3.54 (m, 3H), 3.87 (s, 6H), 3.90 (s, 3H), 3.92 (s, 3H), 3.99 (s, 6H), 4.26 (s, 2H), 5.82 (s, 2H), 6.12 (d, 1H, J=8.6 Hz), 6.32 (s, 1H), 6.53 (s, 2H), 6.62 (d, 1H, J=8.6 Hz), 7.17-7.26 (m, 6H), 7.42 (br, 1H), 7.55 (s, 1H), 8.58 (d, 1H, J=4.9 Hz).


EXAMPLE 29
Synthesis of 4-[N-(3,4-methylenedioxyphenyl)-N-[[2-(3,4,5-trimethoxyphenyl) pyridin-4-yl]methyl]amino]-1-[[2-(3,4,5-trimethoxyphenyl)pyridin-4-yl]methyl] piperidine Trihydrochloride



embedded image


4-(3,4-Methylenedioxyphenylamino)-1-[[2-(3,4,5-trimethoxyphenyl)pyridin-4-yl]methyl]piperidine (119 mg) and 4-chloromethyl-2-(3,4,5-trimethoxyphenyl) pyridine (114 mg) were condensed by the same manner as described in Example 9. Yellow oil of a free base was converted to a trihydrochloride which gave the title compound as yellow powder.


Yield: 52 mg (25%).



1H-NMR (400 MHz, measured as a free base, CDCl3) δ: 1.60-1.95 (m, 4H), 2.20 (br, 2H), 3.00 (br, 2H), 3.58 (br, 3H), 3.86 (s, 3H), 3.87 (s, 3H), 3.91 (s, 6H), 3.94 (s, 6H), 4.41 (s, 2H), 5.82 (s, 2H), 6.17 (d, 1H, J=8.4 Hz), 6.39 (s, 1H), 6.62 (d, 1H, J=8.4 Hz), 7.12-7.13 (m, 3H), 7.18 (d, 1H, J=4.1 Hz), 7.23 (br, 2H), 7.54 (br, 2H), 8.51 (d, 1H, J=5.1 Hz), 8.57 (d, 1H, J=4.9 Hz).


EXAMPLE 30
Synthesis of 4-[N-(3,4-methylenedioxyphenyl)-N-[3-(3,4,5-trimethoxyphenyl) benzyl]amino]-1-[[2-(3,4,5-trimethoxyphenyl)pyridin-4-yl]methyl]piperidine Dihydrochloride



embedded image


4-(3,4-Methylenedioxyphenylamino)-1-[[2-(3,4,5-trimethoxyphenyl)pyridin-4-yl]methyl]piperidine (119 mg) and 3-(3,4,5-trimethoxyphenyl)benzyl chloride (114 mg) were condensed by the same manner as described in Example 9. Yellow oil of a free base was converted to a dihydrochloride which gave the title compound as yellow powder.


Yield: 58 mg (29%).



1H-NMR (400 MHz, measured as a free base, CDCl3) δ: 1.60-1.97 (m, 4H), 2.15 (br, 2H), 3.00 (br, 2H), 3.58 (br, 3H), 3.86 (s, 3H), 3.88 (s, 9H), 3.94 (s, 6H), 4.43 (s, 2H), 5.81 (s, 2H), 6.21 (br, 1H), 6.42 (s, 1H), 6.62 (d, 1H, J=8.4 Hz), 6.69 (s, 2H), 7.18 (d, 1H, J=4.9 Hz), 7.22-7.39 (m, 6H), 7.60 (br, 1H), 8.57 (d, 1H, J=4.9 Hz).


EXAMPLE 31
Synthesis of 4-[N-(3,4-methylenedioxyphenyl)-N-[[2-(3,4,5-trimethoxyphenyl) pyridin-5-yl]methyl]amino]-1-[[2-(3,4,5-trimethoxyphenyl)pyridinyl]methyl] Piperidine Trihydrochloride



embedded image


4-(3,4-Methylenedioxyphenylamino)-1-[[2-(3,4,5-trimethoxyphenyl)pyridin-4-yl]methyl]piperidine (119 mg) and 5-chloromethyl-2-(3,4,5-trimethoxyphenyl) pyridine (114 mg) were condensed by the same manner as described in Example 9. Yellow oil of a free base was converted to a trihydrochloride which gave the title compound as yellow powder.


Yield: 69 mg (27%).



1H-NMR (400 MHz, measured as a free base, CDCl3) δ: 1.71-1.88 (m, 4H), 2.14 (d, 2H, J=11.2 Hz), 2.97 (d, 2H, J=11.5 Hz), 3.45-3.52 (m, 1H), 3.56 (s, 2H), 3.89 (s, 3H), 3.90 (s, 3H), 3.94 (s, 6H), 3.96 (s, 6H), 4.12 (s, 2H), 5.85 (s, 2H), 6.24 (dd, 1H, J=8.5 Hz, 2.5 Hz), 6.45 (d, 1H, J=2.4 Hz), 6.64 (d, 1H, J=8.5 Hz), 7.20-7.21 (m, 1H), 7.21 (s, 2H), 7.23 (s, 2H), 7.58-7.65 (m, 3H), 8.57 (d, 1H, J=1.5 Hz), 8.59 (d, 1H, J=4.9 Hz).


EXAMPLE 32
Synthesis of 4-[N-(3,4-Methylenedioxyphenyl)-N-[4-(3,4,5-trimethoxyphenyl) benzyl]amino]-1-[[2-(3,4,5-trimethoxyphenyl)pyridin-4-yl]methyl]piperidine Dihydrochloride



embedded image


4-(3,4-Methylenedioxyphenylamino)-1-[[2-(3,4,5-trimethoxyphenyl)pyridin-4-yl]methyl]piperidine (119 mg) and 4-(3,4,5-trimethoxyphenyl)benzyl chloride (114 mg) were condensed by the same manner as described in Example 9. Yellow oil of a free base was converted to a dihydrochloride which gave the title compound as yellow powder.


Yield: 29 mg (14%).



1H-NMR (400 MHz, measured as a free base, CDCl3) δ; 1.62-2.00 (m, 4H), 2.20 (br, 2H), 2.99 (br, 2H), 3.58 (br, 3H), 3.86 (s, 3H), 3.87 (s, 3H), 3.88 (s, 6H), 3.89 (s, 6H), 4.41 (s, 2H), 5.82 (s, 2H), 6.19 (d, 1H, J=8.6 Hz), 6.39 (s, 1H), 6.63 (d, 1H, J=8.4 Hz), 6.72 (s, 2H), 7.18 (d, 1H, J=5.1 Hz), 7.23 (s, 2H), 7.29 (d, 2H, J=8.0 Hz), 7.43 (d, 2H, J=8.2 Hz), 7.60 (br, 1H), 8.57 (d, 1H, J=4.9 Hz).


PREPARATION EXAMPLE 70
Synthesis of 4-[N-methyl-N-[(2-nitrobenzene)sulfonyl]aminomethyl]-2-(3,4,5-trimethoxyphenyl)pyridine



embedded image


4-Chloromethyl-2-(3,4,5-trimethoxyphenyl)pyridine (232 mg), N-methyl-2-nitrobenzenesulfonamide (171 mg) and potassium carbonate (138 mg) were suspended in acetonitrile (10 mL). The mixture was stirred at room temperature overnight and evaporated. To the residue was added chloroform and water. The organic layer was separated, washed with saturated aqueous sodium hydrogencarbonate and brine, dried over anhydrous magnesium sulfate and evaporated to give the title compound.


Yield: 362 mg (97.0%).


PREPARATION EXAMPLE 71
Synthesis of 4-(methylaminomethyl)-2-(3,4,5-trimethoxyphenyl)pyridine



embedded image


To a suspension of 4-[N-methyl-N-[(2-nitrobenzene)sulfonyl]aminomethyl]-2-(3,4,5-trimethoxyphenyl)pyridine (691 mg) and potassium carbonate (203 mg) in acetonitrile (20 mL) was added thiophenol (228 μL). The mixture was stirred at 50° C. overnight and evaporated. To the residue was added chloroform and water. The organic layer was separated, washed with saturated aqueous sodium hydrogencarbonate and brine, dried over anhydrous magnesium sulfate and evaporated. The residue was subjected to a column of silica gel using chloroform-methanol (40:1) and then chloroform-methanol (10:1) as eluents. Fractions containing the product were collected and evaporated to give the title compound.


Yield: 356 mg (84%).


EXAMPLE 33
Synthesis of 4-[N-methyl-N-[[2-(3,4,5-trimethoxyphenyl)pyridin-4-yl]methyl]aminocarbonyl]-1-[[2-(3,4,5-trimethoxyphenyl)pyridin-4-yl]methyl]piperidine Maleate



embedded image


1-[[2-(3,4,5-trimethoxyphenyl)pyridin-4-yl]methyl]piperidine-4-caroxylic acid (98 mg) and 4-(methylaminomethyl)-2-(3,4,5-trimethoxyphenyl)pyridine (73 mg) were condensed by the same manner as described in Example 1 giving a maleate of the title compound as white powder.


Yield: 145 mg (75%).



1H-NMR (400 MHz, measured as a maleate, DMSO-d6)δ: 1.89-1.97 (m, 4H), 2.75-2.96 (m, 3H), 3.03 (s, 3H), 3.27 (d, 2H, J=12.0 Hz), 3.78 (s, 3H), 3.79 (s, 3H), 3.87 (s, 6H), 3.90 (s, 6H), 4.09 (s, 2H), 4.64 (s, 2H), 6.14 (s, 2H), 7.09 (d, 1H, J=5.0 Hz), 7.33 (s, 2H), 7.37 (d, 1H, J=5.0 Hz), 7.38 (s, 2H), 7.65 (s, 1H), 7.90 (s, 1H), 8.57 (d, 1H, J=5.0 Hz), 8.67 (d, 1H, J=5.0 Hz).


PREPARATION EXAMPLE 72
Synthesis of (3S)-1-(tert-butoxycarbonyl)-3-[N-[(2-nitrobenzene)sulfonyl]-N-[[2-(3,4,5-trimethoxyphenyl)pyridinyl]methyl]amino]pyrrolidine



embedded image


(3S)-1-(tert-Butoxycarbonyl)-3-[(2-nitrobenzene)sulfonylamino]pyrrolidine (72 mg) and 4-chloromethyl-2-(3,4,5-trimethoxyphenyl)pyridine (57 mg) were condensed in the same manner as described in Example 2 to give colorless amorphous of the title compound.


Yield: 103 mg (85%).


PREPARATION EXAMPLE 73
Synthesis of (3S)-3-[N-[(2-nitrobenzene)sulfonyl]-N-[[2-(3,4,5-trimethoxyphenyl)pyridin-4-yl]methyl]amino]pyrrolidine



embedded image


(3S)-1-(tert-butoxycarbonyl)-3-[N-[(2-nitrobenzene)sulfonyl]-N-[[2-(3,4,5-tri methoxyphenyl)pyridin-4-yl]methyl]amino]pyrrolidine (103 mg) was treated in the same manner as described in Preparation Example 12 to give yellow amorphous of the title compound.


Yield: 72 mg (84%).



1H-NMR (400 MHz, CDCl3)δ: 1.66-1.75 (m, 1H), 2.03-2.05 (m, 1H), 2.78-2.85 (m, 2H), 3.00-3.10 (m, 2H), 3.39 (br, 1H), 3.90 (s, 3H), 3.96 (s, 6H), 4.59-4.67 (m, 1H), 4.70 (s, 2H), 7.13-7.18 (m, 1H), 7.20 (s, 2H), 7.52-7.64 (m, 4H), 7.95 (dd, 1H, J=7.9 Hz, 1.1 Hz), 8.52 (d, 1H, J=5.1 Hz).


PREPARATION EXAMPLE 74
Synthesis of (3S)-3-[N-[(2-nitrobenzene)sulfonyl]-N-[[2-(3,4,5-trimethoxyphenyl)pyridin-4-yl]methyl]amino]-1-[[2-(3,4,5-trimethoxyphenyl)pyridin-4-yl]methyl]pyrrolidine



embedded image


(3S)-3-[N-[(2-Nitrobenzene)sulfonyl]-N-[[2-(3,4,5-trimethoxyphenyl)pyridin-4-yl]methyl]amino]pyrrolidine (72 mg) and 4-chloromethyl-2-(3,4,5-trimethoxyphenyl)pyridine (40 mg) were treated in the same manner as described in Example 2 to give a yellow amorphous of the title compound.


Yield: 97 mg (91%).



1H-NMR (400 MHz, CDCl3)δ: 1.59 (br, 1H), 1.80-1.90 (m, 1H), 2.20-2.30 (m, 2H), 2.55 (dd, 1H, J=10.5 Hz, 8.2 Hz), 2.78 (dd, 1H, J=10.6 Hz, 3.2 Hz), 2.87 (t, 1H, J=7.2 Hz), 3.50 (d, 1H, J=13.7 Hz), 3.64 (d, 1H, J=13.7 Hz), 3.89 (s, 3H), 3.90 (s, 3H), 3.92 (s, 6H), 3.93 (s, 6H), 4.83 (d, 2H, J=4.5 Hz), 7.07 (d, 1H, J=5.1 Hz), 7.10 (d, 1H, J=4.9 Hz), 7.15 (s, 2H), 7.17 (s, 2H), 7.41-7.45 (m, 1H), 7.50-7.55 (m, 3H), 7.61 (s, 1H), 7.81 (d, 1H, J=7.4 Hz), 8.45 (d, 1H, J=4.9 Hz), 8.51 (d, 1H, J=5.1 Hz).


EXAMPLE 34
Synthesis of (3S)-1-[[2-(3,4,5-trimethoxyphenyl)pyridinyl]methyl]-3-[[2-(3,4,5-trimethoxyphenyl)pyridin-4-yl]methylamino]pyrrolidine Trihydrochloride



embedded image


(3S)-3-[N-[(2-nitrobenzene)sulfonyl]-N-[[2-(3,4,5-trimethoxyphenyl)pyridin-4-yl]methyl]amino]-1-[[2-(3,4,5-trimethoxyphenyl)pyridin-4-yl]methyl]pyrrolidine (97 mg) was treated in the same manner as described in Preparation Example 11 to give yellow amorphous of the title compound, which was converted to a trihydrochloride.


Yield: 80 mg (89%).



1H-NMR (400 MHz, measured as a free base, CDCl3)δ: 1.71 (br, 2H), 2.19-2.21 (m, 1H), 2.52-2.55 (m, 2H), 2.73-2.77 (m, 2H), 3.39 (br, 1H), 3.66 (d, 1H, J=13.7 Hz), 3.71 (d, 1H, J=13.7 Hz), 3.82 (s, 2H), 3.90 (s, 6H), 3.95 (s, 12H), 7.18-7.21 (m, 2H), 7.23 (s, 2H), 7.24 (s, 2H), 7.63 (s, 2H), 8.59 (d, 1H, J=4.3 Hz), 8.60 (d, 1H, J=4.3 Hz).


EXAMPLE 35
Synthesis of 4-[3-(3,4,5-trimethoxyphenyl)benzoylamino]-1-[[2-(3,4,5-trimethoxyphenyl)pyridin-4-yl]methyl]piperidine Maleate



embedded image


3-(3,4,5-trimethoxyphenyl)benzoic acid (69 mg) and 4-amino-1-[[2-(3,4,5-trimethoxyphenyl)pyridin-4-yl]methyl]piperidine (114 mg) were condensed in the same manner as described in Example 1. The title compound was obtained after converting the product to a maleate.


Yield: 100 mg (56%)



1H-NMR (400 MHz, measured as a maleate, DMSO-d6)δ: 1.85-2.10 (m, 4H), 2.77-2.93 (m, 2H), 3.20-3.31 (m, 2H), 3.77 (s, 3H), 3.79 (s, 3H), 3.89 (s, 6H), 3.91 (s, 6H), 3.98-4.07 (m, 1H), 4.13 (s, 2H), 6.15 (s, 2H), 6.94 (s, 2H), 7.40-7.52 (m, 4H), 7.73-7.80 (m, 2H), 8.02-8.10 (m, 3H), 8.67-8.68 (m, 1H).


EXAMPLE 36
Synthesis of 4-[N-methyl-N-[[2-(3,4,5-trimethoxyphenyl)pyridin-4-yl]methyl]amino]-1-[[2-(3,4,5-trimethoxyphenyl)pyridin-4-yl]methyl]piperidine Tetrahydrochloride



embedded image


4-(methylamino)-1-[[2-(3,4,5-trimethoxyphenyl)pyridin-4-yl]methyl]piperidine (2.67 g) and 4-chloromethyl-2-(3,4,5-trimethoxyphenyl)pyridine (2.12 g) were condensed in the same manner as described in Example 2. The title compound was obtained after converting a free base to a tetrahydrochloride.


Yield: 2.55 g (46%).



1H-NMR (400 MHz, measured as a free base, CDCl3)δ: 1.66-1.74 (m, 2H), 1.82 (d, 2H, J=10.7 Hz), 2.04 (t, 2H, J=11.0 Hz), 2.25 (s, 3H), 2.45-2.51 (m, 1H), 2.98 (d, 2H, J=11.7 Hz), 3.55 (s, 2H), 3.66 (s, 2H), 3.90 (s, 3H), 3.91 (s, 3H), 3.96 (s, 6H), 3.97 (s, 6H), 7.21-7.23 (m, 2H), 7.24 (s, 2H), 7.25 (s, 2H), 7.62 (s, 1H), 7.63 (s, 1H), 8.59 (d, 1H, J=5.1 Hz), 8.60 (d, 1H, J=5.3 Hz).


PREPARATION EXAMPLE 75
Synthesis of 1-(ethoxycarbonyl)-4-[[2-(3,4,5-trimethoxyphenyl)pyridin-4-yl]methylamino]piperidine



embedded image


4-Amino-1-(ethoxycarbonyl)piperidine (341 mg) and 4-chloromethyl-2-(3,4,5-trimethoxyphenyl)pyridine (300 mg) were condensed in the same manner as described in Example 2 to give the title compound.


Yield: 438 mg (theoretical yield).



1H-NMR (400 MHz, CDCl3)δ: 1.25 (t, 3H, J=7.1 Hz), 1.27-1.34 (m, 2H), 1.60 (br, 1H), 1.90 (d, 2H, J=10.9 Hz), 2.67-2.72 (m, 1H), 2.87 (t, 2H, J=11.5 Hz), 3.90 (s, 3H), 3.91 (br, 2H), 3.96 (s, 6H), 4.09 (br, 2H), 4.12 (q, 2H, J=7.0 Hz), 7.21 (d, 1H, J=3.5 Hz), 7.24 (s, 2H), 7.65 (s, 1H), 8.59 (d, 1H, J=4.9 Hz).


PREPARATION EXAMPLE 76
Synthesis of 1-(ethoxycarbonyl)-4-[N-methyl-N-[[2-(3,4,5-trimethoxyphenyl)pyridin-4-yl]methyl]amino]piperidine



embedded image


To a solution of 1-(ethoxycarbonyl)-4-[[2-(3,4,5-trimethoxyphenyl)pyridin-4-yl]methylamino]piperidine (438 mg) was treated in the same manner as described in Preparation Example 11 to give the title compound as yellow syrup.


Yield: 235 mg (52%).



1H-NMR (400 MHz, CDCl3)δ: 1.26 (t, 3H, J=7.1 Hz), 1.42-1.57 (m, 2H), 1.82 (d, 2H, J=11.9 Hz), 2.24 (s, 3H), 2.59-2.65 (m, 1H), 2.75 (t, 2H, J=12.0 Hz), 3.65 (s, 2H), 3.90 (s, 3H), 3.97 (s, 6H), 4.13 (q, 2H, J=7.0 Hz), 4.23 (br, 2H), 7,22 (dd, 1H, J=5.0 Hz, 1.3 Hz), 7.24 (s, 2H), 7.63 (s, 1H), 8.59 (d, 1H, J=4.5 Hz).


PREPARATION EXAMPLE 77
Synthesis of 4-[N-methyl-N-[[2-(3,4,5-trimethoxyphenyl)pyridin-4-yl]methyl]amino]piperidine



embedded image


To a solution of 1-(ethoxycarbonyl)-4[N-methyl-N-[[2-(3,4,5-trimethoxyphenyl)pyridin-4-yl]methyl]amino]piperidine (100 mg) in ethanol (2 mL) was added 4 M sodium hydroxide (8 mL). The mixture was refluxed overnight and extracted with chloroform. The organic layer was washed with water and brine, dried over anhydrous sodium sulfate and evaporated. The residue was subjected to a column of silica gel and liquid chromatography was performed using chloroform-methanol (20:1) to give the title compound as yellow syrup.


Yield: 73 mg (88%).



1H-NMR (400 MHz, CDCl3)δ: 1.50-1.55 (m, 2H), 1.84 (d, 2H, J=12.0 Hz), 1.99 (br, 1H), 2.25 (s, 3H), 2.55-2.63 (m, 3H), 3.16 (d, 2H, J=12.2 Hz), 3.65 (s, 2H), 3.90 (s, 3H), 3.97 (s, 6H), 7.22 (d, 1H, J=6.1 Hz), 7.24 (s, 2H), 7.64 (s, 1H), 8.58 (d, 1H, J=5.1 Hz).


EXAMPLE 37
Synthesis of 4-[N-methyl-N-[[2-(3,4,5-trimethoxyphenyl)pyridin-4-yl]methyl]amino]-1-[[2-(3,4,5-trimethoxyphenyl)pyridin-4-yl]methyl]piperidine Tetrahydrochloride



embedded image


4-[N-methyl-N-[[2-(3,4,5-trimethoxyphenyl)pyridin-4-yl]methyl]amino]piperidine (73 mg) and 4-chloromethyl-2-(3,4,5-trimethoxyphenyl)pyridine (58 mg) were condensed in the same manner as described in Example 2. The title compound was obtained after converting a free base to a tetrahydrochloride.


Yield: 126 mg (84%).


EXAMPLE 38
Synthesis of 4-[N-methyl-N-[3-(3,4,5-trimethoxyphenyl)benzyl]amino]-1-[[2-(3,4,5-trimethoxyphenyl)pyridin-4-yl]methyl]piperidine Difurmarate



embedded image


4-(methylamino)-1-[[2-(3,4,5-trimethoxyphenyl)pyridin-4-yl]methyl]piperidine (111 mg) and 3-(3,4,5-trimethoxyphenyl)benzyl chloride (88 mg) were condensed in the same manner as described in Example 2. The title compound was obtained as white powder after converting a free base to a difumarate.


Yield: 59 mg (46%).



1H-NMR (400 MHz, measured as a free base, CDCl3)δ: 1.70-1.77 (m, 2H), 1.85-1.87 (m, 2H), 2.03-2.08 (m, 2H), 2.27 (s, 3H), 2.55-2.59 (m, 1H), 2.98 (d, 2H, J=11.3 Hz), 3.56 (s, 2H), 3.69 (s, 2H), 3.89 (s, 3H), 3.90 (s, 3H), 3.93 (s, 6H), 3.98 (s, 6H), 6.79 (s, 2H), 7.22 (d, 1H, J=4.9 Hz), 7.28 (s, 2H), 7.31 (d, 1H, J=7.6 Hz), 7.38 (t, 1H, J=7.4 Hz), 7.45 (d, 1H, J=7.6 Hz), 7.51 (s, 1H), 7.63 (s, 1H), 8.60 (d, 1H, J=5.1 Hz).


EXAMPLE 39
Synthesis of 4-[N-methyl-N-[[2-(3,5-dimethoxy-4-hydroxyphenyl)pyridin-4-yl]methyl]amino]-1-[[2-(3,5-dimethoxy-4-hydroxyphenyl)pyridin-4-yl]methyl]piperidine Tetrahydrochloride



embedded image


To an ice-cooled solution of 4-[N-methyl-N-[[2-(3,4,5-trimethoxyphenyl)pyridin-4-yl]methyl]amino]-1-[[2-(3,4,5-trimethoxyphenyl)pyridin-4-yl]methyl]piperidine (100 mg) in dichloromethane (5 mL) was added iodotrimethylsilane (173 μL). The mixture was stirred at 0° C. for 2 hours and then at room temperature overnight. A small amount of water, ethyl acetate and saturated aqueous sodium hydrogencarbonate were added to the mixture at 0° C. and the organic layer was separated. The organic layer was washed with brine, dried over anhydrous magnesium sulfate and evaporated. The residue was applied to a preparative TLC using chloroform-ammonia saturated methanol (15:1) to give a free base of the title compound which was converted to a tetrahydrochloride by the conventional method.


Yield: 50 mg (52.3%).



1H-NMR (400 MHz, measured as a free base, CDCl3)δ: 1.68-1.89 (m, 4H), 2.03-2.12 (m, 2H), 2.26 (s, 3H), 2.48-2.60 (m, 1H), 2.98-3.05 (m, 2H), 3.57 (s, 2H), 3.65 (s, 2H), 3.94 (s, 6H), 3.95 (s, 6H), 7.16-7.19 (m, 2H), 7.26 (s, 2H), 7.27 (s, 2H), 7.62-7.68 (m, 2H), 8.56 (d, 1H, J=5.3 Hz), 8.58 (d, 1H, J=5.2 Hz).


PREPARATION EXAMPLE 78
Synthesis of 1-(ethoxycarbonyl)-4-[N-ethyl-N-[[2-(3,4,5-trimethoxyphenyl)pyridin-4-yl]methyl]amino]piperidine



embedded image


To a solution of 1-(ethoxycarbonyl)-4-[[2-(3,4,5-trimethoxyphenyl)pyridin-4-yl]methylamino]piperidine (400 mg) in acetonitrile (5 mL) was added potassium carbonate (13 mg) and iodoethane (145 mg). The mixture was placed in sealed vessel and stirred at 80° C. for 2 hours. After removing the solvent in vacuo, ethyl acetate was added, washed with water and brine, dried over anhydrous sodium sulfate and evaporated. The residue was subjected to a column of silica gel using chloroform-methanol (30:1) as an eluent. Fractions containing the product were collected and evaporated to give the title compound as yellow syrup.


Yield: 242 mg (57%).



1H-NMR (400 MHz, CDCl3)δ: 1.04 (t, 3H, J=7.1 Hz), 1.25 (t, 3H, J=7.1 Hz), 1.43-1.52 (m, 2H), 1.79 (d, 2H, J=11.5 Hz), 2.60 (q, 2H, J=7.0 Hz), 2.66-2.76 (m, 3H), 3.70 (s, 2H), 3.90 (s, 3H), 3.97 (s, 6H), 4.12 (q, 2H, J=7.0 Hz), 4.20 (br, 2H), 7.23 (s, 2H), 7.26 (d, 1H, J=5.7 Hz), 7.67 (s, 1H), 8.58 (d, 1H, J=4.9 Hz).


PREPARATION EXAMPLE 79
Synthesis of 4-[N-ethyl-N-[[2-(3,4,5-trimethoxyphenyl)pyridin-4-yl]methyl]amino]piperidine



embedded image


1-(ethoxycarbonyl)-4[N-ethyl-N-[[2-(3,4,5-trimethoxyphenyl)pyridin-4-yl]m ethyl]amino]piperidine (242 mg) was treated in the same manner as described in Preparation Example 77 to give the title compound as yellow syrup.


Yield: 150 mg (74%).



1H-NMR (400 MHz, CDCl3)δ: 1.03 (t, 3H, J=7.0 Hz), 1.43-1.52 (m, 2H), 1.70 (br, 1H), 1.79 (d, 2H, J=12.3 Hz), 2.53-2.67 (m, 5H), 3.13 (d, 2H, J=11.9 Hz), 3.71 (s, 2H), 3.90 (s, 3H), 3.97 (s, 6H), 7.24 (s, 2H), 7.27 (d, 1H, J=5.1 Hz), 7.68 (s, 1II), 8.57 (d, 1H, J=4.3 Hz).


EXAMPLE 40
Synthesis of 4-[N-ethyl-N-[[2-(3,4,5-trimethoxyphenyl)pyridin-4-yl]methyl]amino]-1-[[2-(3,4,5-trimethoxyphenyl)pyridinyl]methyl]piperidine Tetrahydrochloride



embedded image


4-[N-ethyl-N-[[2-(3,4,5-trimethoxyphenyl)pyridin-4-yl]methyl]amino]piperidine (65 mg) and 4-chloromethyl-2-(3,4,5-trimethoxyphenyl)pyridine (50 mg) were condensed in the same manner as described in Example 2. The title compound was obtained after converting a free base to a tetrahydrochloride.


Yield: 121 mg (90%).



1H-NMR (400 MHz, measured as a free base, CDCl3)δ: 1.03 (t, 3H, J=7.1 Hz), 1.64-1.69 (m, 2H), 1.77 (d, 2H, J=10.7 Hz), 2.01 (t, 2H, J=10.8 Hz), 2.55-2.64 (m, 3H), 2.95 (d, 2H, J=11.1 Hz), 3.53 (s, 2H), 3.71 (s, 2H), 3.90 (s, 6H), 3.97 (s, 12H), 7.20-7.27 (m, 6H), 7.60 (s, 1H), 7.68 (s, 1H), 8.57 (d, 1H, J=4.9 Hz), 8.59 (d, 1H, J=5.1 Hz).


PREPARATION EXAMPLE 80
Synthesis of 4-(cyclohexylamino)-1-[[2-(3,4,5-trimethoxyphenyl)pyridin-4-yl]methyl]piperidine



embedded image


1-[[2-(3,4,5-trimethoxyphenyl)pyridin-4-yl]methyl]-4-pieridone (400 mg) and cyclohexylamine (134 mg) were reacted in the same manner as described in Preparation Example 37 to give the title compound.


Yield: 342 mg (69%).



1H-NMR (400 MHz, CDCl3) δ: 1.05-1.30 (m, 6H), 1.38-1.52 (m, 2H), 1.53-1.80 (m, 3H), 1.87 (br, 4H), 2.07 (t, 2H, J=10.7 Hz), 2.59(br, 2H), 2.86 (br, 2H), 3.54 (s, 2H), 3.90 (s, 3H), 3.97 (s, 6H), 7.19 (d, 1H, J=4.9 Hz), 7.24 (s, 2H), 7.64 (s, 1H), 8.58 (d, 1H, J=4.9 Hz).


EXAMPLE 41
Synthesis of 4-[N-cyclohexyl-N-[[2-(3,4,5-trimethoxyphenyl)pyridin-4-yl]methyl]amino]-1-[[2-(3,4,5-trimethoxyphenyl)pyridin-4-yl]methyl]piperidine Tetrahydrochloride



embedded image


4-(Cyclohexylamino)-1-[[2-(3,4,5-trimethoxyphenyl)pyridin-4-yl]methyl]piperidine (342 mg) and 4-chloromethyl-2-(3,4,5-trimethoxyphenyl)pyridine (252 mg) were reacted in the same manner as described in Preparation Example 6. The title compound was obtained after converting the product to a tetrahydrochloride.


Yield: 55 mg (8%).



1H-NMR (400 MHz, measured as a free base, CDCl3)δ: 1.00-1.39 (m, 6H), 1.58-1.88 (m, 8H), 2.07 (br, 2H), 2.61 (br, 2H), 2.96 (br, 2H), 3.57 (br, 2H), 3.85 (s, 2H), 3.90 (s, 3H), 3.91 (s, 3H), 3.97 (s, 12H), 7.19-7.28 (m, 6H), 7.70 (br, 2H), 8.56 (d, 1H, J=5.1 Hz), 8.60 (d, 1H, J=5.1 Hz).


PREPARATION EXAMPLE 81
Synthesis of 4-anilino-1-[[2-(3,4,5-trimethoxyphenyl)pyridin-4-yl]methyl]piperidine



embedded image


1-[[2-(3,4,5-trimethoxyphenyl)pyridin-4-yl]methyl]4-piperidone (1.1 g) and aniline (344 mg) were reacted in the same manner as described in Preparation Example 37 to give the title compound.


Yield: 1.09 g (81%).



1H-NMR (400 MHz, CDCl3)δ: 1.53 (br, 2H), 2.02-2.13 (m, 2H), 2.16-2.32 (m, 2H), 2.86 (br, 2H), 3.32 (br, 1H), 3.59 (s, 2H), 3.88 (s, 3H), 3.95 (s, 6H), 6.57 (d, 2H, J=8.6 Hz), 6.66 (t, 1H, J=7.3 Hz), 7.14 (t, 2H, J=7.9 Hz), 7.20-7.24 (m, 5H), 7.65 (br, 1H), 8.59 (d, 1H, J=5.1 Hz).


EXAMPLE 42
Synthesis of 4-[N-phenyl-N-[[2-(3,4,5-trimethoxyphenyl)pyridin-4-yl]methyl]amino]-1-[[2-(3,4,5-trimethoxyphenyl)pyridin-4-yl]methyl]piperidine Trihydrochloride



embedded image


4-Anilino-1-[[2-(3,4,5-trimethoxyphenyl)pyridin-4-yl]methyl]piperidine (1.64 g) and 4-chloromethyl-2-(3,4,5-trimethoxyphenyl)pyridine (1.64 g) were reacted in the same manner as described in Preparation Example 9. The title compound was obtained after converting the product to a trihydrochloride.


Yield: 635 mg (20%).



1H-NMR (400 MHz, measured as a free base, CDCl3)δ: 1.60-2.00 (m, 4), 2.10-2.35 (m, 2H), 2.99 (br, 2H), 3.58 (br, 3H), 3.86 (s, 3H), 3.88 (s, 3H), 3.90 (s, 6H), 3.94 (s, 6H), 4.52 (s, 2H), 6.66-6.78 (m, 3H), 7.13-7.28 (m, 8H), 7.54 (br, 2H), 8.53 (d, 1H, J=5.1 Hz), 8.58 (d, 1H, J=4.9 Hz).


PREPARATION EXAMPLE 82
Synthesis of 1-[[2-(4-chloro-3,5-dimethoxyphenyl)pyridin-4-yl]methyl]-4-piperidone Ethylene Ketal



embedded image


4-Piperidone ethylene ketal (573 mg) and 2-(4-chloro-3,5-dimetoxyphenyl)-4-chloromethylpyridine (1.19 g) were condensed in the same manner as described in Example 2 to give the title compound.


Yield: 1.67 g (theoretical amount).



1H-NMR (400 MHz, CDCl3)δ: 1.78 (t, 4H, J=5.6 Hz), 2.58 (br, 4H), 3.61 (s, 2H), 3.67 (s, 4H), 4.02 (s, 6H), 7.25-7.29 (m, 3H), 7.68 (s, 1H), 8.61 (d, 1H, J=4.9 Hz).


PREPARATION EXAMPLE 83
Synthesis of 1-[[2-(4-chloro-3,5-dimethoxyphenyl)pyridin-4-yl]methyl]-4-piperidone



embedded image


1-[[2-(4-Chloro-3,5-dimethoxyphenyl)pyridin-4-yl]methyl]-4-piperidone ethylene ketal (1.67 g) was treated in the same manner as described in Preparation Example 23 to give the title compound.


Yield: 1.29 g (89%).



1H-NMR (400 MHz, CDCl3) δ: 2.50 (t, 4H, J=5.8 Hz), 2.81 (t, 4H, J=5.8 Hz), 3.71 (s, 2H), 4.02 (s, 6H), 7.26 (s, 2H), 7.33 (d, 1H, J=4.3 Hz), 7.70 (s, 1H), 8.66 (d, 1H, J=4.9 Hz).


PREPARATION EXAMPLE 84
Synthesis of 4-anilino-1-[[2-(4-chloro-3,5-dimethoxyphenyl)pyridin-4-yl]methyl]piperidine



embedded image


1-[[2-(4-Chloro-3,5-dimethoxyphenyl)pyridin-4-yl]methyl]-4-piperidone (600 mg) and aniline (0.18 mL) were reacted in the same manner as described in Preparation Example 37 to give the title compound.


Yield: 465 mg (63%).



1H-NMR (400 MHz, CDCl3)δ: 1.49-1.69 (m, 2H), 2.08 (d, 2H, J=7.8 Hz), 2.23 (t, 2H, J=9.3 Hz), 2.87 (d, 2H, J=7.8 Hz), 3.34 (br, 1H), 3.60 (s, 2H), 4.02 (s, 6H), 6.60 (d, 2H, J=7.6 Hz), 6.69 (t, 1H, J=7.3 Hz), 7.10-7.20 (m, 2H), 7.20-7.30 (m, 3H), 7.67 (s, 1H), 8.62 (d, 1H, J=5.2 Hz).


EXAMPLE 43
Synthesis of 1-[[2-(4-chloro-3,5-dimethoxyphenyl)pyridin-4-yl]methyl]-4-[N-[[2-(4-chloro-3,5-dimethoxyphenyl)pyridin-4-yl]methyl]-N-phenylamino] Piperidine Trihydrochloride



embedded image


4-Anilino-1-[[2-(4-chloro-3,5-dimethoxyphenyl)pyridin-4-yl]methyl]piperidine (230 mg) and 2-(4-chloro-3,5-dimethoxyphenyl)-4-chloromethylpyridine (157 mg) were condensed in the same manner as described in Example 9. The title compound was obtained as yellow powder after converting a free base to a trihydrochloride.


Yield: 104 mg (24%).



1H-NMR (400 MHz, measured as a free base, CDCl3)δ: 1.70-1.85 (m, 4H), 2.20 (t, 2H, J=2.3 Hz), 3.00 (d, 2H, J=1.3 Hz), 3.59 (s, 2H), 3.96 (s, 6H), 4.00 (s, 6H), 4.56 (s, 2H), 6.65-6.78 (m, 3H), 7.16 (s, 2H), 7.18-7.28 (m, 6H), 7.59 (s, 1H), 7.62 (s, 1H), 8.57 (d, 1H, J=5.1 Hz), 8.57 (d, 1H, J=4.8 Hz).


PREPARATION EXAMPLE 85
Synthesis of 4-(p-anisidino)-1-[[2-(4-chloro-3,5-dimethoxyphenyl)pyridin-4-yl]methyl]piperidine



embedded image


1-[[2-(4-Chloro-3,5-dimethoxyphenyl)pyridin-4-yl]methyl]-4-piperidone (690 mg) and p-anisidine (283 mg) were reacted in the same manner as described in Preparation Example 37 to give the title compound.


Yield: 646 mg (72%).



1H-NMR (400 MHz, CDCl3)δ: 1.45-1.55 (m, 2H), 2.05 (d, 2H, J=11.7 Hz), 2.20 (t, 241, J=11.2 Hz), 2.87 (d, 2H, J=11.7 Hz), 3.20-3.35 (m, 1H), 3.59 (s, 2H), 3.74 (s, 3H), 4.02 (s, 6H), 6.58 (d, 2H, J=8.7 Hz), 6.77 (d, 2H, J=8.7 Hz), 7.25-7.28 (m, 3H), 7.67 (s, 1H), 8.62 (d, 1H, J=4.9 Hz).


EXAMPLE 44
Synthesis of 1-[[2-(4-chloro-3,5-dimethoxyphenyl)pyridin-4-yl]methyl]4-[N-[[2-(4-chloro-3,5-dimethoxyphenyl)pyridin-4-yl]methyl]-N-(4-methoxyphenyl)amino] Piperidine Trihydrochloride



embedded image


4-(p-Anisidino)-1-[[2-(4-chloro-3,5-dimethoxyphenyl)pyridin-4-yl]methyl]piperidine (271 mg) and 2-(4-chloro-3,5-dimethoxyphenyl)-4-chloromethylpyridine (173 mg) were condensed in the same manner as described in Example 9. The title compound was obtained as yellow powder after converting a free base to a trihydrochloride.


Yield: 324 mg (67%).



1H-NMR (400 MHz, measured as a free base, CDCl3)δ: 1.65-1.90 (m, 4H), 2.16 (t, 2H, J=10.4 Hz), 2.97 (d, 2H, J=7.5 Hz), 3.54-3.60 (m, 1H), 3.58 (s, 2H), 3.73 (s, 3H), 3.97 (s, 6H), 4.00 (s, 6H), 4.46 (s, 2H), 6.74 (d, 2H, J=9.4 Hz), 6.79 (d, 2H, J=9.4 Hz), 7.16 (s, 2H), 7.20-7.29 (m, 4H), 7.59 (s, 1H), 7.62 (s, 1H), 8.56 (d, 1H, J=4.8 Hz), 8.60 (d, 1H, J=4.8 Hz).


PREPARATION EXAMPLE 86
Synthesis of 4-(3-methylthioanilino)-1-[[2-(3,4,5-trimethoxyphenyl)pyridin-4-yl]methyl]piperidine



embedded image


1-[[2-(3,4,5-trimethoxyphenyl)pyridin-4-yl]methyl]-4-piperidone (1.40 g) and 3-methylthioaniline (655 mg) were reacted in the same manner as described in Preparation Example 37 to give the title compound.


Yield: 1.01 g (54%).



1H-NMR (400 MHz, CDCl3)δ: 1.44-1.60 (m, 2H), 1.98-2.10 (m, 2H), 2.23 (br, 2H), 2.42 (s, 3H), 2.88 (br, 2H), 3.30 (br, 1H), 3.59 (s, 2H), 3.88 (s, 3H), 3.95 (s, 6H), 6.35 (d, 1H, J=7.6 Hz), 6.47 (s, 1H), 6.55 (d, 1H, J=8.6 Hz), 7.05 (t, 1H, J=7.9 Hz), 7.20 (d, 1H, J=4.9 Hz), 7.24 (s, 2H), 7.68 (br, 1H), 8.58 (d, 1H, J=4.9 Hz).


EXAMPLE 45
Synthesis of 4-[N-(3-methylthiophenyl)-N-[[2-(3,4,5-trimethoxyphenyl)pyridin-3-yl]methyl]amino]-1-[[2-(3,4,5-trimethoxyphenyl)pyridin-4-yl]methyl]piperidine Trihydrochloride



embedded image


4-(3-Methylthioanilino)-1-[[2-(3,4,5-trimethoxyphenyl)pyridin-4-yl]methyl]piperidine (143 mg) and 3-chloromethyl-2-(3,4,5-timethoxyphenyl)pyridine (114 mg) were condensed in the same manner as described in Example 9. The title compound was obtained as yellow powder after converting a free base to a trihydrochloride.


Yield: 45 mg (18%).



1H-NMR (400 MHz, measured as a free base, CDCl3)δ: 1.58-1.71 (s, 2H), 1.79 (d, 2H, J=10.7 Hz), 2.16 (t, 2H, J=11.2 Hz), 2.38 (s, 3H), 2.96 (d, 2H, J=11.2 Hz), 3.56 (s, 3H), 3.68-3.97 (m, 1H), 3.90 (s, 3H), 3.92 (s, 9H), 3.96 (s, 9H), 4.42 (s, 2H), 6.45 (d, 1H, J=8.3 Hz), 6.52 (s, 1H), 6.61 (d, 1H, J=7.3 Hz), 6.74 (s, 2H), 7.11 (t; 1H, J=8.1 Hz), 7.15-7.26 (m, 4H), 7.54 (s, 1H), 7.68 (d, 1H, J=7.8 Hz), 8.53 (d, 1H, J=3.2 Hz), 8.59 (d, 1H, J=4.8 Hz).


EXAMPLE 46
Synthesis of 4-[N-(3-methylthiophenyl)-N-[2-(3,4,5-trimethoxyphenyl)benzyl]amino]-1-[[2-(3,4,5-trimethoxyphenyl)pyridin-4-yl]methyl]piperidine Dihydrochloride



embedded image


4-(3-Methylthioanilino)-1-[[2-(3,4,5-trimethoxyphenyl)pyridin-4-yl]methyl]piperidine (143 mg) and 2-(3,4,5-trimethoxyphenyl)benzyl chloride (114 mg) were condensed in the same manner as described in Example 9. The title compound was obtained as yellow powder after converting a free base to a dihydrochloride.


Yield: 51 mg (23%).



1H-NMR (400 MHz, measured as a free base, CDCl3)δ: 1.56-1.73 (m, 2H), 1.78-1.87 (m, 2H), 2.10-2.20 (m, 2H), 2.38 (s, 3H), 2.91-2.98 (m, 2H), 3.55 (s, 2H), 3.70-3.80 (m, 1H), 3.88 (s, 6H), 3.90 (s, 3H), 3.92 (s, 3H), 3.96 (s, 6H), 4.35 (s, 2H), 6.47 (d, 1H, J=8.2 Hz), 6.53-6.62 (m, 5H), 7.09 (t, 1H, J=8.0 Hz), 7.18-7.40 (m, 6H), 7.54 (s, 1H), 8.58 (d, 1H, J=4.7 Hz).


EXAMPLE 47
Synthesis of 4-[N-(3-methylthiophenyl)-N-[[2-(3,4,5-trimethoxyphenyl)pyridin-4-yl]methyl]amino]-1-[[2-(3,4,5-trimethoxyphenyl)pyridin-4-yl]methyl]piperidine Fumarate



embedded image


4-(3-Methylthioanilino)-1-[[2-(3,4,5-trimethoxyphenyl)pyridin-yl]methyl]piperidine (143 mg) and 4-chloromethyl-2-(3,4,5-trimethoxyphenyl)pyridine (114 mg) were condensed in the same manner as described in Example 9. The title compound was obtained as white powder after converting a free base to a fumarate.


Yield: 14 mg (5%).



1H-NMR (400 MHz, measured as a free base, CDCl3)δ: 1.76-1.86 (m, 5H), 2.17-2.23 (m, 2H), 2.39 (s, 3H), 2.97-3.00 (m, 2H), 3.58 (s, 2H), 3.89 (s, 3H), 3.90 (s, 3H), 3.93 (s, 6H), 3.96 (s, 6H), 4.54 (s, 2H), 6.47-6.50 (m, 1H), 6.63 (s, 1H), 6.64 (s, 1H), 7.10-7.15 (m, 2H), 7.15 (s, 2H), 7.20-7.21 (m, 1H), 7.22 (s, 2H), 7.55 (s, 1H), 7.59 (s, 1H), 8.56 (d, 1H, J=5.1 Hz), 8.59 (d, 1H, J=5.1 Hz).


EXAMPLE 48
Synthesis of 4-[N-(3-methylthiophenyl)-N-[3-(3,4,5-trimethoxyphenyl)benzyl]amino]-1-[[2-(3,4,5-trimethoxyphenyl)pyridin-4-yl]methyl]piperidine Dihydrochloride



embedded image


4-(3-Methylthioanilino)-1-[[2-(3,4,5-trimethoxyphenyl)pyridin-4-yl]methyl]piperidine (143 mg) and 3-(3,4,5-trimethoxyphenyl)benzyl chloride (114 mg) were condensed in the same manner as described in Example 9. The title compound was obtained as yellow powder after converting a free base to a dihydrochloride.


Yield: 60 mg (24%).



1H-NMR (400 MHz, measured as a free base, CDCl3)δ: 1.65-1.91 (m, 4H), 2.18 (t, 2H, J=10.5 Hz), 2.38 (s, 3H), 2.97 (d, 2H, J=10.9 Hz), 3.58 (s, 2H), 3.70-3.85 (m, 1H), 3.88 (s, 3H), 3.89 (s, 6H), 3.90 (s, 3H), 3.96 (s, 6H), 4.56 (s, 2H), 6.52 (d, 1H, J=8.4 Hz), 6.59 (d, 1H, J=7.6 Hz), 6.65 (s, 1H), 6.72 (s, 2H), 7.10 (t, 2H, J=8.0 Hz), 7.19-7.25 (m, 4H), 7.31-7.42 (m, 3H), 7.60 (s, 1H), 8.59 (d, 1H, J=7.8 Hz).


EXAMPLE 49
Synthesis of 4-[N-(3-methylthiophenyl)-N-[[2-(3,4,5-trimethoxyphenyl)pyridin-5-yl]methyl]amino]-1-[[2-(3,4,5-trimethoxyphenyl)pyridin-4-yl]methyl]piperidine Trihydrochloride



embedded image


4-(3-Methylthioanilino)-1-[[2-(3,4,5-trimethoxyphenyl)pyridin-4-yl]methyl]piperidine (143 mg) and 5-chloromethyl-2-(3,4,5-trimethoxyphenyl)pyridine (114 mg) were condensed in the same manner as described in Example 9. The title compound was obtained as yellow powder after converting a free base to a trihydrochloride.


Yield: 22 mg (9%).



1H-NMR (400 MHz, measured as a free base, CDCl3)δ: 1.50-2.05 (m, 4H), 2.20 (br, 2H), 2.37 (s, 3H), 3.05 (br, 2H), 3.50-3.70 (br, 3H), 3.86 (s, 3H), 3.87 (s, 3H), 3.92 (s, 6H), 3.95 (s, 6H), 4.52 (s, 2H), 6.49 (d, 1H, J=8.3 Hz), 6.62 (br, 2H), 7.09 (t, 1H, J=8.2 Hz), 7.18-7.30 (m, 6H), 7.58 (s, 2H), 8.54 (br, 1H), 8.60 (br, 1H).


EXAMPLE 50
Synthesis of 4-[N-(3-methylthiophenyl)-N-[4-(3,4,5-trimethoxyphenyl)benzyl]amino]-1-[[2-(3,4,5-trimethoxyphenyl)pyridin-4-yl]methyl]piperidine Dihydrochloride



embedded image


4-(3-Methylthioanilino)-1-[[2-(3,4,5-trimethoxyphenyl)pyridin-4-yl]methyl]piperidine (143 mg) and 4-(3,4,5-trimethoxyphenyl)benzyl chloride (114 mg) were condensed in the same manner as described in Example 9. The title compound was obtained as yellow powder after converting a free base to a dihydrochloride.


Yield: 57 mg (22%).



1H-NMR (400 MHz, measured as a free base, CDCl3)δ: 1.58-1.83 (m, 4H), 2.20 (t, 2H, J=11.3 Hz), 2.39 (s, 3H), 2.98 (d, 2H, J=111.1 Hz), 3.58 (s, 2H), 3.88 (s, 3H), 3.90 (s, 3H), 3.91 (s, 6H), 3.96 (s, 6H), 4.53 (s, 2H), 6.51 (dd, 1H, J=8.4 Hz, 2.4 Hz), 6.60 (d, 1H, J=8.0 Hz), 6.64 (s, 1H), 6.75 (s, 2H), 7.10 (t, 1H, J=8.1 Hz), 7.24-7.33 (m, 4H), 7.47 (d, 2H, J=8.0 Hz), 7.61 (s, 1H), 8.59 (d, 1H, J=5.0 Hz).


PREPARATION EXAMPLE 87
Synthesis of 4-propargylamino-1-[[2-(3,4,5-trimethoxyphenyl)pyridin-4-yl]methyl]piperidine



embedded image


1-[[2-(3,4,5-trimethoxyphenyl)pyridin-4-yl]methyl]-4-piperidone (400 mg) and propargylamine (80 mg) were reacted in the same manner as described in Preparation Example 25 to give the title compound.


Yield: 227 mg (63%).



1H-NMR (400 MHz, CDCl3)δ: 1.38-1.51 (m, 2H), 1.83-1.86 (m, 3H), 2.10-2.15 (m, 2H), 2.21 (s, 1H), 2.74 (br, 1H), 2.83-2.87 (m, 2H), 3.45 (s, 2H), 3.56 (s, 2H), 3.89 (s, 3H), 3.96 (s, 6H), 7.19 (d, 1H, J=4.9 Hz), 7.24 (s, 2H), 7.65 (s, 1H), 8.58 (d, 1H, J=4.9 Hz).


EXAMPLE 51
Synthesis of 4-[N-propargyl-N-[[2-(3,4,5-trimethoxyphenyl)pyridin-4-yl]methyl]amino]-1-[[2-(3,4,5-trimethoxyphenyl)pyridin-4-yl]methyl]piperidine Tetrahydrochloride



embedded image


4-Propargylamino-1-[[2-(3,4,5-trimethoxyphenyl)pyridin-4-yl]methyl]piperidine (227 mg) and 4-chloromethyl-2-(3,4,5-trimethoxyphenyl)pyridine (226 mg) were condensed in the same manner as described in Example 9. The title compound was obtained as yellow powder after converting a free base to a tetrahydrochloride.


Yield: 128 mg (23%).



1H-NMR (400 MHz, measured as a free base, CDCl3)δ: 1.48-2.40 (m, 7H), 2.72 (br, 1H), 3.02 (br, 2H), 3.39 (s, 2H), 3.64 (br, 2H), 3.84 (s, 2H), 3.91 (s, 6H), 3.98 (s, 6H), 3.99 (s, 6H), 7.22-7.29 (m, 6H), 7.66 (br, 2H), 8.60 (d, 1H, J=4.9 Hz), 8.62 (d, 1H, J=4.9 Hz).


PREPARATION EXAMPLE 88
Synthesis of 4-(5-indanylamino)-1-[[2-(3,4,5-trimethoxyphenyl)pyridin-4-yl]methyl]piperidine



embedded image


1-[[2-(3,4,5-trimethoxyphenyl)pyridin-4-yl]methyl]-4-piperidone (1.40 g) and 5-aminoindan (680 mg) were reacted in the same manner as described in Preparation Example 37 to give the title compound.


Yield: 1.22 g (59%).



1H-NMR (400 MHz, CDCl3)δ: 1.40-1.57 (m, 2H), 2.00-2.15 (m, 5H), 2.19-2.25 (m, 2H), 2.77-2.93 (m, 6H), 3.30 (br, 1H), 3.58 (s, 2H), 3.91 (s, 3H), 3.97 (s, 6H), 6.41 (d, 1H, J=8.0 Hz), 6.52 (s, 1H), 7.01 (d, 1H, J=8.0 Hz), 7.21-7.26 (m, 3H), 7.64 (s, 1H), 8.60 (d, 1H, J=4.9 Hz).


EXAMPLE 52
Synthesis of 4-[N-(indan-5-yl)-N-[[2-(3,4,5-trimethoxyphenyl)pyridin-3-yl]methyl]amino]-1-[[2-(3,4,5-trimethoxyphenyl)pyridin-4-yl]methyl]piperidine Trihydrochloride



embedded image


4-(5-Indanylamino)-1-[[2-(3,4,5-trimethoxyphenyl)pyridin-4-yl]methyl]piperidine (142 mg) and 3-chloromethyl-2-(3,4,5-trimethoxyphenyl)pyridine (114 mg) were condensed in the same manner as described in Example 9. The title compound was obtained as yellow powder after converting a free base to a trihydrochloride.


Yield: 90 mg (41%).



1H-NMR (400 MHz, measured as a free base, CDCl3)δ: 1.54-1.67 (m, 2H), 1.74-1.83 (m, 2H), 1.98-2.07 (m, 2H), 2.09-2.98 (m, 2H), 3.55 (s, 2H), 3.64-3.74 (m, 1H), 3.90 (s, 3H), 3.91 (s, 6H), 3.92 (s, 3H), 3.96 (s, 6H), 4.41 (s, 2H), 6.49 (dd, 1H, J=8.2 Hz, 2.4 Hz), 6.59 (s, 1H), 6.74 (s, 2H), 7.04 (d, 1H, J=8.2 Hz), 7.15-7.20 (m, 2H), 7.22 (s, 2H), 7.54 (s, 1H), 7.77 (dd, 1H, J=7.8 Hz, 1.4 Hz), 8.52 (dd, 1H, J=4.7 Hz, 1.8 Hz), 8.59 (d, 1H, J=5.1 Hz).


EXAMPLE 53
Synthesis of 4-[N-(indan-5-yl)-N-[2-(3,4,5-trimethoxyphenyl)benzyl]amino]-1-[[2-(3,4,5-trimethoxyphenyl)pyridin-4-yl]methyl]piperidine Dihydrochloride



embedded image


45-Indanylamino)-1-[[2-(3,4,5-trimethoxyphenyl)pyridin-4-yl]methyl]piperidine (142 mg) and 2-(3,4,5-trimethoxyphenyl)benzyl chloride (114 mg) were condensed in the same manner as described in Example 9. The title compound was obtained as yellow powder after converting a free base to a dihydrochloride.


Yield: 115 mg (47%).



1H-NMR (400 MHz, measured as a free base, CDCl3)δ: 1.56-1.66 (m, 2H), 1.80-1.83 (m, 2H), 2.00-2.05 (m, 2H), 2.11-2.18 (m, 2H), 2.77-2.83 (m, 4H), 2.92-2.95 (m, 2H), 3.55 (s, 2H), 3.72 (br, 1H), 3.87 (s, 6H), 3.90 (s, 3H), 3.92 (s, 3H), 3.96 (s, 6H), 4.34 (s, 2H), 6.49 (d, 1H, J=8.3 Hz), 6.56 (s, 2H), 6.60 (s, 1H), 7.02 (d, 1H, J=8.3 Hz), 7.17-7.27 (m, 5H), 7.42-7.45 (m, 1H), 7.54 (s, 1H), 8.58 (d, 1H, J=4.9 Hz).


EXAMPLE 54
Synthesis of 4-[N-(indan-5-yl)-N-[[2-(3,4,5-trimethoxyphenyl)pyridin-4-yl]methyl]amino]-1-[[2-(3,4,5-trimethoxyphenyl)pyridin-4-yl]methyl]piperidine Trihydrochloride



embedded image


4-(5-Indanylamino)-1-[[2-(3,4,5-trimethoxyphenyl)pyridin-4-yl]methyl]piperidine (142 mg) and 4-chloromethyl-2-(3,4,5-trimethoxyphenyl)pyridine (114 mg) were condensed in the same manner as described in Example 9. The title compound was obtained as white powder after converting a free base to a trihydrochloride.


Yield: 23 mg (9%).



1H-NMR (400 MHz, measured as a free base, CDCl3)δ: 1.60-1.95 (m, 4H), 2.00 (quint, 2H, J=7.3 Hz), 2.20 (br, 2H), 2.75-2.81 (m, 4H), 2.99 (br, 2H), 3.58 (br, 2H), 3.77 (s, 1H), 3.86 (s, 3H), 3.87 (s, 3H), 3.91 (s, 6H), 3.94 (s, 6H), 4.49 (s, 2H), 6.51 (d, 1H, J=8.3 Hz), 6.62 (s, 1H), 7.02 (d, 1H, J=8.0 Hz), 7.16 (s, 2H), 7.18-7.22 (m, 4H), 7.57 (br, 2H), 8.52 (d, 1H, J=4.9 Hz), 8.57 (d, 1H, J=4.9 Hz).


EXAMPLE 55
Synthesis of 4-[N-(indan-5-yl)-N-[3-(3,4,5-trimethoxyphenyl)benzyl]amino]-1-[[2-(3,4,5-trimethoxyphenyl)pyridin-4-yl]methyl]piperidine Dihydrochloride



embedded image


4-(5-Indanylamino)-1-[[2-(3,4,5-trimethoxyphenyl)pyridin-4-yl]methyl]piperidine (60 mg) and 3-(3,4,5-trimethoxyphenyl)benzyl chloride (114 mg) were condensed in the same manner as described in Example 9. The title compound was obtained as yellow powder after converting a free base to a dihydrochloride.


Yield: 18 mg (19%).



1H-NMR (400 MHz, measured as a free base, CDCl3)δ: 1.60-1.95 (m, 4H), 2.00 (quint, 2H, J=7.2 Hz), 2.20 (br, 2H), 2.75-2.81 (m, 4H), 2.95 (br, 2H), 3.60 (br, 2H), 3.85 (br, 1H), 3.86 (s, 3H), 3.87 (s, 6H), 3.88 (s, 3H), 3.94 (s, 6H), 4.51 (s, 2H), 6.54 (d, 1H, J=8.2 Hz), 6.66 (s, 1H), 6.70 (s, 2H), 7.01 (d, 1H, J=8.4 Hz), 7.19 (d, 1H, J=4.9 Hz), 7.19-7.42 (m, 6H), 7.60 (br, 1H), 8.59 (br, 1H).


EXAMPLE 56
Synthesis of 4-[N-(indan-5-yl)-N-[[2-(3,4,5-trimethoxyphenyl)pyridin-5-yl]methyl]amino]-1-[[2-(3,4,5-trimethoxyphenyl)pyridin-5-yl]methyl]piperidine Trihydrochloride



embedded image


4-(5-Indanylamino)-1-[[2-(3,4,5-trimethoxyphenyl)pyridin-4-yl]methyl]piperidine (143 mg) and 5-chloromethyl-2-(3,4,5-trimethoxyphenyl)pyridine (114 mg) were condensed in the same manner as described in Example 9. The title compound was obtained as yellow powder after converting a free base to a trihydrochloride.


Yield: 138 mg (63%).



1H-NMR (400 MHz, measured as a free base, CDCl3)δ: 1.71-1.91 (m, 4H), 1.98-2.06 (m, 2H), 2.13-2.22 (m, 2H), 2.76-2.84 (m, 4H), 2.94-3.05 (m, 2H), 3.57 (s, 2H), 3.69-3.78 (m, 1H), 3.89 (s, 3H), 3.90 (s, 3H), 3.94 (s, 6H), 3.96 (s, 6H), 4.50 (s, 2H), 6.57 (dd, 1H, J=8.2 Hz, 2.3 Hz), 6.67 (s, 1H), 7.04 (d, 1H, J=8.4 Hz), 7.20-7.22 (m, 1H), 7.22 (s, 2H), 7.23 (s, 2H), 7.57-7.62 (m, 1H), 7.60 (s, 1H), 7.65 (dd, 1H, J=8.2 Hz, 2.2 Hz), 8.58-8.62 (m, 2H).


EXAMPLE 57
Synthesis of 4-[N-(indan-5-yl)-N-[4-(3,4,5-trmethoxyphenyl)benzyl]amino]-1-[[2-(3,4,5-trimethoxyphenyl)pyridin-4-yl]methyl]piperidine Dihydrochloride



embedded image


4-(5-Indanylamino)-1-[[2-(3,4,5-trimethoxyphenyl)pyridin-4-yl]methyl]piperidine (143 mg) and 4-(3,4,5-trimethoxyphenyl)benzyl chloride (114 mg) were condensed in the same manner as described in Example 9. The title compound was obtained as yellow powder after converting a free base to a dihydrochloride.


Yield: 95 mg (39%).



1H-NMR (400 MHz, measured as a free base, CDCl3)δ: 1.74-1.90 (m, 4H), 2.01-2.06 (m, 2H), 2.16-2.22 (m, 2H), 2.78-2.84 (m, 41), 2.96-2.99 (m, 2H), 3.58 (s, 2H), 3.72 (br, 1H), 3.88 (s, 3H), 3.90 (s, 3H), 3.91 (s, 6H), 3.96 (s, 6H), 4.51 (s, 2H), 6.55 (d, 1H, J=8.3 Hz), 6.67 (s, 1H), 6.72 (s, 2H), 7.04 (d, 1H, J=8.3 Hz), 7.20 (d, 1H, J=5.1 Hz), 7.23 (s, 2H), 7.35 (d, 2H, J=8.1 Hz), 7.47 (d, 2H, J=8.1 Hz), 7.61 (s, 1H), 8.59 (d, 1H, J=4.9 Hz).


PREPARATION EXAMPLE 89
Synthesis of 4-(4-butylanilino)-1-[[2-(3,4,5-trimethoxyphenyl)pyridin-4-yl]methyl]piperidine



embedded image


1-[[2-(3,4,5-trimethoxyphenyl)pyridin-4-yl]methyl]-4-piperidone (1.24 g) and 4-butylaniline (149 mg) were reacted in the same manner as described in Preparation Example 37 to give the title compound.


Yield: 1.23 g (72%).



1H-NMR (400 MHz, CDCl3)δ: 0.82 (t, 3H, J=7.3 Hz), 1.20-1.30 (m, 2H), 1.38-1.50 (m, 4H), 1.92-2.25 (m, 4H), 2.40 (t, 2H, J=7.7 Hz), 2.77 (br, 2H), 3.21 (br, 1H), 3.50 (s, 2H), 3.82 (s, 3H), 3.89 (s, 6H), 6.45 (d, 2H, J=7.8 Hz), 6.89 (d, 2H, J=8.0 Hz), 7.13 (d, 1H, J=4.9 Hz), 7.18 (s, 2H), 7.58 (s, 1H), 8.52 (d, 1H, J=4.9 Hz).


EXAMPLE 58
Synthesis of 4-[N-(4-butylphenyl)-N-[[2-(3,4,5-trimethoxyphenyl)pyridin-3-yl]methyl]amino]-1-[[2-(3,4,5-trimethoxyphenyl)pyridin-4-yl]methyl]piperidine Trihydrochloride



embedded image


4-(4-Butylanilino)-1-[[2-(3,4,5-trimethoxyphenyl)pyridin-4-yl]methyl]piperidine (147 mg) and 3-chloromethyl-2-(3,4,5-trimethoxyphenyl)pyridine (114 mg) were condensed in the same manner as described in Example 9. The title compound was obtained as yellow powder after converting a free base to a trihydrochloride.


Yield: 58 mg (27%).



1H-NMR (400 MHz, measured as a free base, CDCl3)δ: 0.91 (t, 3H, J=7.3 Hz), 1.32-1.35 (m, 2H), 1.50-1.70 (m, 4H), 1.75 (br, 2H), 2.10-2.20 (m, 2H), 2.49 (t, 2H, J=7.6 Hz), 2.95 (br, 21), 3.55 (s, 2H), 3.70 (br, 1H), 3.90 (s, 3H), 3.91 (s, 6H), 3.92 (s, 3H), 3.96 (s, 6H), 4.41 (s, 2H), 6.59 (d, 2H, J=8.8 Hz), 6.74 (s, 2H), 7.00 (d, 2H, J=8.6 Hz), 7.16-7.17 (m, 1H), 7.19 (d, 1H, 3=4.9 Hz), 7.22 (s, 2H), 7.54 (s, 1H), 8.59 (d, 1H, J=7.5 Hz), 8.52 (br, 1H), 8.59 (d, 1H, J=4.9 Hz).


EXAMPLE 59
Synthesis of 4-[N-(4-butylphenyl)-N-[2-(3,4,5-trimethoxyphenyl)benzyl]amino]-1-[[2-(3,4,5-trimethoxyphenyl)pyridin-4-yl]methyl]piperidine Dihydrochloride



embedded image


4-(4-Butylanilino)-1-[[2-(3,4,5-trimethoxyphenyl)pyridin-4-yl]methyl]piperidine (147 mg) and 2-(3,4,5-trimethoxyphenyl)benzyl chloride (114 mg) were condensed in the same manner as described in Example 9. The title compound was obtained as yellow powder after converting a free base to a dihydrochloride.


Yield: 59 mg (24%).



1H-NMR (400 MHz, measured as a free base, CDCl3)δ: 0.90 (t, 3H, J=7.4 Hz), 1.25-1.41 (m, 2H), 1.48-1.75 (m, 4H), 1.81 (d, 2H, J=11.7 Hz), 2.13 (t, 2H, J=11.2 Hz), 2.48 (t, 2H, J=7.5 Hz), 2.93 (d, 2H, J=11.2 Hz), 3.55 (s, 2H), 3.65-3.80 (m, 1H), 3.87 (s, 6H), 3.90 (s, 3H), 3.92 (s, 1H), 3.96 (s, 6H), 4.33 (s, 2H), 6.56 (s, 2H), 6.60 (d, 2H, J=8.5 Hz), 6.98 (d, 2H, J=8.5 Hz), 7.18 (d, 1H, J=4.9 Hz), 7.21 (s, 2H), 7.20-7.37 (m, 3H), 7.41 (br, 1H), 7.54 (s, 1H), 8.58 (d, 1H, J=4.9 Hz).


EXAMPLE 60
Synthesis of 4-[N-(4-buthylphenyl)-N-[[2-(3,4,5-trimethoxyphenyl)pyridin-4-yl]methyl]amino]-1-[[2-(3,4,5-trimethoxyphenyl)pyridin-4-yl]methyl]piperidine Trihydrochloride



embedded image


4-(4-Butylanilino)-1-[[2-(3,4,5-trimethoxyphenyl)pyridin-4-yl]methyl]piperidine (196 mg) and 4-chloromethyl-2-(3,4,5-trimethoxyphenyl)pyridine (129 mg) were condensed in the same manner as described in Example 9. The title compound was obtained as white powder after converting a free base to a trihydrochloride.


Yield: 20 mg (6%).



1H-NMR (400 MHz, measured as a free base, CDCl3)δ: 0.88 (t, 3H, J=7.3 Hz), 1.20-1.35 (m, 2H), 1.49-1.60 (it, 2H), 1.62-2.02 (m, 4H), 2.20 (br, 2H), 2.46 (t, 2H, J=7.3 Hz), 3.05 (br, 2H), 3.60 (br, 3H), 3.87 (s, 3H), 3.88 (s, 3H), 3.90 (s, 6H), 3.94 (s, 6H), 4.49 (s, 2H), 6.62 (d, 2H, J=8.3 Hz), 6.98 (d, 2H, J=8.3 Hz), 7.13 (s, 2H), 7.15-7.40 (m, 4H), 7.55 (br, 2H), 8.52 (d, 1H, J=4.9 Hz), 8.60 (br, 1H).


EXAMPLE 61
Synthesis of 4-[N-(4-butylphenyl)-N-[3-(3,4,5-trimethoxyphenyl)benzyl]amino]-1-[[2-(3,4,5-trimethoxyphenyl)pyridin-4-yl]methyl]piperidine Dihydrochloride



embedded image


4-(4-Butylanilino)-1-[[2-(3,4,5-trimethoxyphenyl)pyridin-4-yl]methyl]piperidine (147 mg) and 3-(3,4,5-trimethoxyphenyl)benzyl chloride (114 mg) were condensed in the same manner as described in Example 9. The title compound was obtained as yellow powder after converting a free base to a dihydrochloride.


Yield: 102 mg (42%).



1H-NMR (400 MHz, measured as a free base, CDCl3)δ: 0.90 (t, 3H, J=7.4 Hz), 1.30-1.36 (m, 2H), 1.48-1.56 (m, 2H), 1.76-1.89 (m, 4H), 2.19 (br, 2H), 2.48 (t, 2H, J=7.8 Hz), 2.97 (br, 2H), 3.58 (s, 2H), 3.86 (br, 1H), 3.88 (s, 3H), 3.90 (s, 3H), 3.95 (s, 6H), 4.54 (s, 2H), 6.68 (d, 2H, J=8.6 Hz), 6.72 (s, 2H), 7.00 (d, 2H, J=8.6 Hz), 7.20-7.27 (m, 2H), 7.23 (s, 2H), 7.32-7.40 (m, 2H), 7.44 (s, 1H), 7.62 (s, 1H), 8.59 (d, 1H, J=5.1 Hz).


EXAMPLE 62
Synthesis of 4-[N-(4-butylphenyl)-N-[[2-(3,4,5-trimethoxyphenyl)pyridin-5-yl]methyl]amino]-1-[[2-(3,4,5-trimethoxyphenyl)pyridin-4-yl]methyl]piperidine Trihydrochloride



embedded image


4-(4-Butylanilino)-1-[[2-(3,4,5-trimethoxyphenyl)pyridin-4-yl]methyl]piperidine (147 mg) and 5-chloromethyl-2-(3,4,5-trimethoxyphenyl)pyridine (114 mg) were condensed in the same manner as described in Example 9. The title compound was obtained as yellow powder after converting a free base to a trihydrochloride.


Yield: 65 mg (21%).



1H-NMR (400 MHz, measured as a free base, CDCl3)δ: 0.90 (t, 3H, J=7.3 Hz), 1.32-1.36 (m, 2H), 1.50-1.54 (m, 2H), 1.70-1.95 (m, 4H), 2.17 (br, 2H), 2.49 (t, 2H, J=7.7 Hz), 2.96 (br, 2H), 3.58 (s, 2H), 3.75 (br, 1H), 3.89 (s, 3H), 3.90 (s, 3H), 3.94 (s, 6H), 3.96 (s, 6H), 4.50 (s, 21), 6.68 (d, 2H, J=8.6 Hz), 7.00 (d, 2H, J=8.6 Hz), 7.20-7.22 (m, 3H), 7.23 (s, 2H), 7.58-7.66 (m, 3H), 8.59 (br, 1H), 8.60 (br, 1H).


EXAMPLE 63
Synthesis of 4-[N-(4-butylphenyl)-N-[4-(3,4,5-trimethoxyphenyl)benzyl]amino]-1-[[2-(3,4,5-trimethoxyphenyl)pyridin-4-yl]methyl]piperidine Dihydrochloride



embedded image


4-(4-Butylanilino)-1-[[2-(3,4,5-trimethoxyphenyl)pyridin-4-yl]methyl]piperidine (147 mg) and 4-(3,4,5-trimethoxyphenyl)benzyl chloride (114 mg) were condensed in the same manner as described in Example 9. The title compound was obtained as yellow powder after converting a free base to a dihydrochloride.


Yield: 82 mg (33%).



1H-NMR (400 MHz, measured as a free base, CDCl3)δ: 0.90 (t, 3H, J=7.3 Hz), 1.30-1.36 (m, 2H), 1.51-1.55 (m, 2H), 1.79-1.90 (m, 4H), 2.18 (br, 2H), 2.48 (t, 2H, J=7.7 Hz), 2.98 (d, 2H, J=10.7 Hz), 3.57 (s, 2H), 3.72-3.85 (m, 1H), 3.88 (s, 3H), 3.90 (s, 3H), 3.91 (s, 61), 3.96 (s, 6H), 4.50 (s, 2H), 6.66 (d, 2H, J=8.8 Hz), 6.75 (s, 2H), 7.00 (d, 2H, J=8.8 Hz), 7.20 (d, 1H, J=4.9 Hz), 7.22 (s, 2H), 7.33 (d, 2H, J=8.2 Hz), 7.47 (d, 2H, J=8.2 Hz), 7.61 (s, 1H), 8.59 (d, 1H, J=5.1 Hz).


PREPARATION EXAMPLE 90
Synthesis of 1-(4-pycolyl)-4-piperidone



embedded image


4-piperidone hydrochloride monohydrate (922 mg) and 4-picolyl chloride hydrochloride (820 mg) were reacted in the same manner as described in Example 9 to give the title compound.


Yield: 870 mg (92%).



1H-NMR (400 MHz, CDCl3)δ: 2.46 (t, 4H, J=5.9 Hz), 2.74 (t, 4H, J=6.2 Hz), 3.61 (s, 2H), 7.29 (d, 2H, J=6.2 Hz), 8.55 (dd, 2H, J=6.2 Hz, 1.1 Hz).


PREPARATION EXAMPLE 91
Synthesis of 1-(4-pycolyl)-4-(4-pycolylamino)piperidine Tetrahydrochloride



embedded image


1-(4-pycolyl)-4-piperidone (870 mg) and 4 picolylamine (497 mg) were coupled in the same manner as described in Preparation Example 37. The title compound was obtained as pale brown powder after converting a free base to tetrahydrochloride.


Yield: 363 mg (19%).



1H-NMR (400 MHz, measured as a free base, CDCl3)δ: 1.37-1.51 (m, 2H), 1.82-1.90 (m, 2H), 2.04 (dt, 2H, J=11.6 Hz, 2.7 Hz), 2.44-2.55 (m, 1H), 2.76-2.82 (m, 2H), 3.47 (s, 2H), 3.82 (s, 2H), 7.23-7.26 (m, 4H), 8.50-8.53 (m, 4H).


PREPARATION EXAMPLE 92
Synthesis or 4-(p-anisidino)-1-(tert-butoxycarbonyl)piperidine



embedded image


1-(tert-Butoxycarbonyl)-4-piperidone (116 g) and p-anisidine (68.3 g) were condensed in the same manner as described in Preparation Example 37 to give the title compound.


Yield: 125 g (74%).



1H-NMR (400 MHz, CDCl3) δ: 1.23-1.35 (m, 2H), 1.46 (s, 9H), 1.96-2.06 (m, 2H), 2.83-2.96 (m, 2H), 3.27-3.38 (m, 1H), 3.74 (s, 9H), 3.94-4.12 (m, 2H), 6.58 (d, 2H, J=9.0 Hz), 6.77 (d, 2H, J=9.0 Hz).


PREPARATION EXAMPLE 93
Synthesis of

1-(tert-butoxycarbonyl)-4-[N-(4-methoxyphenyl)-N-[3-(3,4,5-trimethoxyphenyl)benzoylamino]piperidine:
embedded image


4-(p-Anisidino)-1-(tert-butoxycarbonyl)piperidine (613 mg) and 3-(3,4,5-trimethoxyphenyl)benzoic acid (577 mg) were condensed in the same manner as described in Example 1 to give the title compound.


Yield: 416 mg (36%).


PREPARATION EXAMPLE 94
Synthesis of

4-[N-(4-methoxyphenyl)-N-[3-(3,4,5-trimethoxyphenyl)benzoylamino]piperidine Hydrochloride:
embedded image


To a solution of 1-(tert-butoxycarbonyl)-4-[N-(4-methoxyphenyl)-N-[3-(3,4,5-trimethoxyphenyl)benzoylamino]piperidine (416 mg) in ethyl acetate (5 mL) was added 4 M hydrogen chloride in ethyl acetate (5 mL). The mixture was stirred at room temperature for 4 hr, resulting precipitates were collected and washed with ethyl acetate on a funnel to give the title compound.


Yield: 315 mg (85%)


EXAMPLES 64 TO 66

These compounds were prepared by the condensation of 4-[N-(4-methoxyphenyl)-N-[3-(3,4,5-trimethoxyphenyl)benzoylamino]]piperidine hydrochloride with chloride derivatives obtained in Preparation Examples 3, 42 and 48. Free bases obtained were then converted to the corresponding hydrochlorides. Yields and NMR data of their free bases are listed below.

Ex-NMR data (400 MHz, measuredampleStructureYieldas free bases, CDCl3) δ64embedded image68%1.53-1.55(m, 2H), 1.89(d, 2H, J=12.0Hz), 2.23(t, 2H, J=12.0Hz), 2.91(d, 2H, J=11.0Hz), 3.51(s, 2H), 3.70(s, 3H), 3.84(s, 3H), 3.87(s, 9H), 3.92(s, 6H), 4.78(br, 1H), 6.54(s, 2H), 6.72(d, 2H, J=8.5Hz), 6.94(d, 2H, J=8.5Hz), 7.13-7.20(m, 4H), 7.18(s, 2H), 7.32(d, 1H, J=5.3Hz), 7.45(s, 1H), 8.19(d, 1H, J=4.9Hz).65embedded image52%1.66-1.89(m, 4H), 2.05-2.17(m, 2H), 2.97(d, 2H, J=10.3Hz), 3.43-3.60(m, 1H), 3.57(s, 2H), 3.86(s, 3H), 3.87(s, 6H), 3.91(s, 6H), 4.42(s, 2H), 6.63(s, 2H), 6.72-6.79(m, 6H), 7.64(s, 1H), 7.78(br, 1H), 8.46(d, 2H, J=1.6Hz), 8.59(d, 1H, J=2.4Hz), 8.68(d, 1H, J=2.2Hz).66embedded image75%1.42-2.58(m, 2H), 1.85-1.92(m, 2H), 2.14-2.23(m, 2H), 2.93-3.03(m, 2H), 3.56(s, 2H), 3.70(s, 3H), 3.85(s, 3H), 3.87(s, 3H), 3.87(s, 6H), 3.90(s, 6H), 4.79(br, 1H), 6.54(s, 2H), 6.70(d, 2H, J=8.9Hz), 6.74(s, 2H), 6.93(d, 2H, J=8.9Hz), 7.17-7.23(m, 3H), 7.31-7.43(m, 5H).


PREPARATION EXAMPLE 95
Synthesis of 1-(tert-butoxycarbonyl)-4-[N-(4-methoxyphenyl)-N-[[2-(3,4,5-trimethoxyphenyl)pyridin-4-yl]methyl]amino]piperidine



embedded image


4-(p-Anisidino)-1-(tert-butoxycarbonyl)piperidine (2.21 g) and 4-chloromethyl-2-(3,4,5-trimethoxyphenyl)pyridine (2.12 g) were condensed in the same manner as described in Example 9 to give the title compound.


Yield: 3.76 g (93%)



1H-NMR (400 MHz, CDCl3) δ: 1.40-1.64 (m, 2H), 1.44 (s, 9H), 1.82-1.91 (m, 2H), 2.71-2.84 (m, 2H), 3.62-3.73 (m, 1H), 3.74 (s, 3H), 3.89 (s, 3H), 3.94 (s, 6H), 4.10-4.30 (m, 2H), 4.40 (s, 2H), 6.76 (d, 2H, J=9.4 Hz), 6.79 (d, 2H, J=9.8 Hz), 7.14-7.19 (m, 3H), 7.56 (s, 1H), 8.55 (d, 1H, J=5.1 Hz).


PREPARATION EXAMPLE 96
Synthesis of

4-[N-(4-methoxyphenyl)-N-[[2-(3,4,5-trimethoxyphenyl)pyridin-4-yl]methyl]amino]piperidine Dihydrochloride:
embedded image


1-(tert-Butoxycarbonyl)-4-[N-(4-methoxyphenyl)-N-[[2-(3,4,5-trimethoxyphenyl)pyridin-4-yl]methyl]amino]piperidine (3.76 g) was treated in the same manner as described in Preparation Example 94 to give the title compound.


Yield: 3.77 g (theoretical yield).


PREPARATION EXAMPLE 97
Synthesis of

1-(tert-butoxycarbonyl)-4-[N-(4-methoxyphenyl)-N-[[3-(3,4,5-trimethoxyphenyl)pyridin-5-yl]methyl]amino]piperidine:
embedded image


4-p-anisidino)-1-(tert-butoxycarbonyl)piperidine (613 mg) and 5-chloromethyl-3-(3,4,5-trimethoxyphenyl)pyridine (588 mg) was treated in the same manner as described in Preparation Example 9 to give pale yellow amorphous of the title compound.


Yield: 159 mg (14%).



1H-NMR (400 MHz, CDCl3) δ: 1.44 (s, 9H), 1.50-1.65 (m, 2H), 1.83-1.91 (m, 2H), 2.70-2.84 (m, 2H), 3.53-3.62 (m, 1H), 3.73 (s, 3H), 3.89 (s, 3H), 3.91 (s, 6H), 4.10-4.29 (m, 2H), 4.41 (s, 2H), 6.66 (s, 2H), 6.76-6.84 (m, 4H), 7.70 (s, 1H), 8.49 (s, 1H), 8.63 (d, 1H, J=2.1 Hz).


PREPARATION EXAMPLE 98
Synthesis of

4-[N-(4-methoxyphenyl)-N-[[3-(3,4,5-trimethoxyphenyl)pyridin-5-yl]methyl]amino]piperidine Dihydrochloride:
embedded image


1-(tert-Butoxycarbonyl)-4-[N-(4-methoxyphenyl)-N-[[3-(3,4,5-trimethoxyphenyl)pyridin-5-yl]methyl]amino]piperidine (159 mg) was treated in the same manner as described in Preparation Example 94 to give pale yellow powder of the title compound.


Yield: 142 mg (94%).


PREPARATION EXAMPLE 99
Synthesis of

1-(tert-butoxycarbonyl)-4[N-(4-methoxyphenyl)-N-[3-(3,4,5-trimethoxyphenyl)benzyl]amino]piperidine:
embedded image


4-(p-Anisidino)-1-(tert-butoxycarbonyl)piperidine (613 mg) and 3-(3,4,5-trimethoxyphenyl)benzyl chloride (586 mg) was treated in the same manner as described in Example 9 to give pale yellow amorphous of the title compound.


Yield: 1.12 g (90%).



1H-NMR (400 MHz, CDCl3) δ: 1.44 (s, 9H), 1.50-1.63 (m, 2H), 1.82-1.91 (m, 2H), 2.71-2.83 (m, 2H), 3.69 (tt, 1H, J=11.5 Hz, 3.5 Hz), 3.73 (s, 3H), 3.88 (s, 3H), 3.90 (s, 6H), 4.10-4.28 (m, 2H), 4.42 (s, 2H), 6.71 (s, 2H), 6.78 (s, 4H), 7.24-7.28 (m, 1H), 7.31-7.40 (m, 2H), 7.42 (s, 1H).


PREPARATION EXAMPLE 100
Synthesis of

4-[N-(4-methoxyphenyl)-N-[3-(3,4,5-trimethoxyphenyl)benzyl]amino]piperidine Hydrochloride:
embedded image


1-(tert-Butoxycarbonyl)-4-[N-(4-methoxyphenyl)-N-[3-(3,4,5-trimethoxyphenyl)benzyl]amino]piperidine (1.12 g) was treated in the same manner as described in Preparation Example 94 to give pale yellow powder of the title compound.


Yield: 980 mg (99%).


EXAMPLES 67 TO 71

These compounds were obtained by the condensation of amines obtained in Preparation Examples 96, 98 and 100 with chloride derivatives obtained in Preparation Examples 42 and 48. Free bases obtained were then converted to the corresponding hydrochlorides. Yields and NMR data of their free bases are listed below.

Ex-NMR data (400 MHz, measuredampleStructureYieldas free bases, CDCl3) δ67embedded image62%1.60-1.92(m, 4H), 2.08-2.22(m, 2H), 2.92-3.06(m, 2H), 3.54-3.64(m, 3H), 3.73(s, 3H), 3.89(s, 3H), 3.90(s, 3H), 3.93(s, 12H), 4.43(s, 2H), 6.70-6.81(m, 6H), 7.12-7.17(m, 3H), 7.56(s, 1H), 7.76(s, 1H), 8.49(d, 1H, J=1.8Hz), 8.53(d, 1H, J=5.1Hz), 8.70(s, 1H).68embedded image54%1.65-1.79(m, 2H), 1.81-1.90(m, 2H), 2.04-2.18(m, 2H), 2.94-3.06(m, 2H), 3.52-3.66(m, 3H), 3.72(s, 3H), 3.89(s, 6H), 3.92(s, 6H), 3.93(s, 6H), 4.44(s, 2H), 6.70-6.80(m, 6H), 7.13-7.17(m, 3H), 7.24-7.50(m, 4H), 7.55(s, 1H), 8.53(d, 1H, J=4.9Hz).69embedded image52%1.66-1.89(m, 4H), 2.05-2.17(m, 2H), 2.97(d, 2H, J=10.3Hz), 3.43-3.60(m, 1H), 3.57(s, 2H), 3.86(s, 3H), 3.87(s, 6H), 3.91(s, 6H), 4.42(s, 2H), 6.63(s, 2H), 6.72-6.79(m, 6H), 7.64(s, 1H), 7.78(br, 1H), 8.46(d, 2H, J=1.6Hz), 8.59(d, 1H, J=2.24Hz), 8.68(d, 1H, J=2.2Hz).70embedded image69%1.55-1.97(m, 4H), 2.06-2.21(m, 2H), 2.92-3.07(m, 2H), 3.53-3.68(m, 3H), 3.72(s, 3H), 3.87(s, 3H), 3.89(s, 6H), 3.94(s, 3H), 4.46(s, 2H), 6.69(s, 2H), 6.73-6.82(m, 6H), 7.22-7.29(m, 1H), 7.32(t, 1H, J=7.4Hz), 7.36(d, 1H, J=7.8Hz), 7.41(s, 1H), 7.79(br, 1H), 8.48(s, 1H), 8.71(br, 1H).71embedded image75%1.69-1.89(m, 4H), 2.06-2.15(m, 2H), 2.96-3.04(m, 2H), 3.56-3.66(m, 1H), 3.57(s, 2H), 3.72(s, 3H), 3.87(s, 3H), 3.89(s, 9H), 3.92(s, 6H), 4.46(s, 2H), 6.70(s, 2H), 6.71-6.79(m, 6H), 7.23-7.47(m, 8H).


PREPARATION EXAMPLE 101
Synthesis of 1-(tert-butoxycarbonyl)-4-(4-ethoxyphenylamino)piperidine



embedded image


1-(tert-butoxycarbonyl)-4-piperidinone (5.00 g) and p-phenetidine (3.28 g) was treated in the same manner as described in Preparation Example 37 to give brown powder of the title compound.


Yield: 7.00 g (910%).



1H-NMR (400 MHz, CDCl3) δ: 1.21-1.31 (m, 2H), 1.37 (t, 3H, J=7.0 Hz), 1.46 (s, 9H), 1.97-2.05 (m, 2H), 2.84-2.95 (m, 2H), 3.28-3.37 (m, 1H), 3.96 (q, 2H, J=7.0 Hz), 3.99-4.10 (m, 2H), 6.57 (d, 2H, J=8.8 Hz), 6.77 (d, 2H, J=9.0 Hz).


PREPARATION EXAMPLE 102
Synthesis of 1-(tert-butoxycarbonyl)-4-[N-(4-ethoxyphenyl)-N-[[2-(3,4,5-trimethoxyphenyl)pyridin-4-yl]methyl]amino]piperidine



embedded image


1-(tert-Butoxycarbonyl)-4-[(4-ethoxyphenyl)amino]piperidine (641 mg) and 4-chloromethyl-2-(3,4,5-trimethoxyphenyl)pyridine (588 mg) was treated in the same manner as described in Example 9 to give light yellow amorphous of the title compound.


Yield: 1.08 g (94%).



1H-NMR (400 MHz, CDCl3) δ: 1.36 (t, 3H, J=7.9 Hz), 1.44 (s, 9H), 1.49-1.58 (m, 2H), 1.82-1.92 (m, 2H), 2.70-2.85 (m, 2H), 3.62-3.72 (m, 1H), 3.89 (s, 3H), 3.94 (s, 6H), 4.12-4.29 (m, 2H), 4.39 (s, 2H), 6.75 (d, 2H, J=9.2 Hz), 6.78 (d, 2H, J=9.6 Hz), 7.14-7.18 (m, 3H), 7.55 (s, 1H), 8.54 (d, 1H, J=5.1 Hz).


PREPARATION EXAMPLE 103
Synthesis of

4-[N-(4-ethoxyphenyl)-N-[[2-(3,4,5-trimethoxyphenyl)pyridin-4-yl]methyl]amino]piperidine Dihydrochloride:
embedded image


1-(tert-Butoxycarbonyl)-4-[N-(4-ethoxyphenyl)-N-[[2-(3,4,5-trimethoxyphenyl)pyridin-4-yl]methyl]amino]piperidine (1.08 g) was treated in the same manner as described in Preparation Example 94 to give light yellow powder of the title compound.


Yield: 1.01 g (98%).


PREPARATION EXAMPLE 104
Synthesis of 1-(tert-butoxycarbonyl)-4-[N-(4-ethoxyphenyl)-N-[[3-(3,4,5-trimethoxyphenyl)pyridin-5-yl]methyl]amino]piperidine



embedded image


1-(tert-Butoxycarbonyl)-4-[(4-ethoxyphenyl)amino]piperidine (641 mg) and 5-chloromethyl-3-(3,4,5-trimethoxyphenyl)pyridine (588 mg) was treated in the same manner as described in Example 9 to give light yellow amorphous of the title compound.


Yield: 452 mg (39%).



1H-NMR (400 MHz, CDCl3) δ: 1.36 (t, 3H, J=6.8 Hz), 1.44 (s, 9H), 1.50-1.60 (m, 2H), 1.82-1.90 (m, 1H), 2.68-2.82 (m, 2H), 3.52-3.61 (m, 1H), 3.88 (s, 3H), 3.90 (s, 6H), 3.94 (q, 2H, J=7.0 Hz), 4.10-4.25 (m, 2H), 4.40 (s, 2H), 6.66 (s, 2H), 6.77 (d, 2H, J=9.2 Hz), 6.81 (d, 2H, J=9.2 Hz), 7.67 (s, 1H), 8.49 (d, 1H, J=2.0 Hz), 8.62 (d, 1H, J=2.1 Hz).


PREPARATION EXAMPLE 105
Synthesis of

4-[N-(4-ethoxyphenyl)-N-[[3-(3,4,5-trimethoxyphenyl)pyridin-5-yl]methyl]amino]piperidine Dihydrochloride:
embedded image


1-(tert-Butoxycarbonyl)-4-[N-(4-ethoxyphenyl)-N-[[3-(3,4,5-trimethoxyphenyl)pyridin-5-yl]methyl]amino]piperidine (452 mg) was treated in the same manner as described in Preparation Example 94 to give light yellow powder of the title compound.


Yield: 380 mg (88%).


PREPARATION EXAMPLE 106
Synthesis of 1-(tert-butoxycarbonyl)-4-[N-(4-ethoxyphenyl)-N-[3-(3,4,5-trimethoxyphenyl)benzyl]amino]piperidine



embedded image


1-(tert-Butoxycarbonyl)-4-[(4-ethoxyphenyl)amino]piperidine (641 mg) and 3-(3,4,5-trimethoxyphenyl)benzyl chloride (586 mg) was treated in the same manner as described in Example 9 to give light yellow amorphous of the title compound.


Yield: 1.06 g (92%).



1H-NMR (400 MHz, CDCl3) δ: 1.36 (t, 3H, J=7.0 Hz), 1.44 (s, 9H), 1.53-1.59 (m, 2H), 1.83-1.91 (m, 2H), 2.70-2.83 (m, 2H), 3.64-3.73 (m, 1H), 3.88 (s, 3H), 3.90 (s, 6H), 3.94 (q, 2H, J=7.0 Hz), 4.10-4.29 (m, 2H), 4.41 (s, 2H), 6.71 (s, 2H), 6.76 (s, 4H), 7.26 (d, 1H, J=7.9 Hz), 7.33 (dd, 1H, J=7.4 Hz, 7.4 Hz), 7.38 (d, 1H, J=7.6 Hz), 7.42 (s, 1H).


PREPARATION EXAMPLE 107
Synthesis of

4-[N-(4-ethoxyphenyl)-N-[3-(3,4,5-trimethoxyphenyl)benzyl]amino]piperidine Hydrochloride:
embedded image


1-(tert-Butoxycarbonyl)-4>[N-(4-ethoxyphenyl)-N-[3-(3,4,5-trimethoxyphenyl)benzyl]amino]piperidine (1.06 g) was treated in the same manner as described in Preparation Example 94 to give light yellow powder of the title compound.


Yield: 913 mg (97%).


EXAMPLES 72 TO 79

These compounds were obtained by the condensation of amines obtained in Preparation Examples 103, 105 and 107 with chloride derivatives obtained in Preparation Examples 3, 42 and 48. Free bases obtained were then converted to the corresponding hydrochlorides. Yields and NMR data of their free bases are listed below.

Ex-NMR data (400 MHz, measured asampleStructureYieldfree bases, CDCl3) δ72embedded image49%1.36(t, 3H, J=7.1Hz), 1.68-1.94(m, 4H), 2.10-2.24(m, 2H), 2.93-3.04(m, 2H), 3.54-3.65(m, 3H), 3.89(s, 3H), 3.90(s, 3H), 3.93(s, 6H), 3.96(s, 6H), 4.45(s, 2H), 6.72(d, 2H, J=9.2Hz), 6.78(d, 2H, J=9.3Hz), 7.15(s, 2H), 7.17(d, 1H, J=6.1Hz), 7.20(dd, 1H, J=4.9Hz, 1.0Hz), 7.23(s, 2H), 7.57(s, 1H), #7.61(br, 1H), 8.54(d, 1H, J=5.2Hz), 8.59(d, 1H, J=4.9Hz).73embedded image63%1.36(t, 3H, J=7.0Hz), 1.56-1.74(m, 2H), 1.80-1.90(m, 2H), 2.07-2.19(m, 2H), 2.92-3.02(m, 2H), 3.58(s, 2H), 3.88-3.95(m, 2H), 3.89(s, 3H), 3.93(s, 12H), 4.43(s, 2H), 6.69-6.79(m, 6H), 7.12-7.17(m, 3H), 7.55(s, 1H), 7.76(s, 1H), 8.49(d, 1H, J=1.8Hz), 8.53(d, 1H, J=5.1Hz), 8.69(s, 1H).74embedded image65%1.36(t, 3H, J=7.0Hz), 1.58-1.78(m, 2H), 1.80-1.89(m, 2H), 2.04-2.16(m, 2H), 2.95-3.05(m, 2H), 3.52-3.66(m, 1H), 3.57(s, 1H), 3.85-3.97(m, 2H), 3.89(s, 6H), 3.92(s, 6H), 3.93(s, 6H), 4.44(s, 2H), 6.67-6.80(m, 6H), 7.13-7.18(m, 3H), 7.25-7.31(m, 1H), 7.37(dd, 1H, J=7.6Hz, 7.6Hz), 7.41-7.48(m, #2H), 7.55(s, 1H), 8.53(d, 1H, J=4.9Hz).75embedded image42%1.36(t, 3H, J=7.0Hz), 1.74-2.34(m, 6H), 2.96-3.10(m, 2H), 3.47-3.73(m, 3H), 3.87-3.98(m, 2H), 3.88(s, 3H), 3.90(s, 9H), 3.97(s, 6H), 4.44(s, 2H), 6.65(s, 2H), 6.74-6.82(m, 4H), 7.18-7.32(m, 4H), 7.67(s, 1H), 8.49(d, 1H, J=1.6Hz), 8.57-8.65(m, 2H).76embedded image43%1.36(t, 3H, J=6.8Hz), 1.63-1.96(m, 4h), 2.00-2.26(m, 2H), 2.92-3.03(m, 2H), 3.44-3.66(m, 3H), 3.86-3.96(m, 2H), 3.88(s, 3H), 3.89(s, 6H), 3.90(s, 3H), 3.93(s, 6H), 4.44(s, 2H), 6.65(s, 2H), 6.72-6.80(m, 6H), 7.67(s, 1H), 7.77(br, 1H), 8.47-8.53(m, 2H), 8.62(d, 1H, J=1.9Hz), 8.70(s, 1H).77embedded image82%1.35(t, 3H, J=6.8Hz), 1.70-1.82(m, 2H), 1.84-1.92(m, 2H), 2.10-2.19(m, 2H), 2.92-3.00(m, 2H), 3.52-3.65(m, 3H), 3.88(s, 3H), 3.89(s, 6H), 3.90(s, 3H), 3.93(q, 2H, J=7.1Hz), 3.96(s, 6H), 4.47(s, 2H), 6.70(s, 2H), 6.73(d, 2H, J=9.3Hz), 6.77(d, 2H, J=9.3Hz), 7.18-7.28(m, 4H), 7.33(dd, 1H, #J=7.3Hz, 7.3Hz), 7.37(d, 1H, J=7.6Hz), 7.43(s, 1H), 7.59(s, 1H), 8.58(d, 1H, J=4.9Hz).78embedded image61%1.35(t, 3H, J=6.9Hz), 15.8-1.80(m, 2H), 1.82-1.91(m, 2H), 2.09-2.18(m, 2H), 2.93-3.20(m, 2H), 3.56-3.65(m, 1H), 3.58(s, 2H), 3.87(s, 3H), 3.89(s, 6H), 3.89(s, 3H), 3.91-3.94(m, 2H), 3.93(s, 6H), 4.45(s, 2H), 6.69(s, 2H), 6.71-6.78(m, 6H), 7.23-7.28(m, 1H), 7.32(t, 1H, J=7.5Hz), 7.36(d, #1H, J=7.6Hz), 7.42(s, 1H), 7.77(s, 1H), 8.49(d, 1H, J=1.8Hz), 8.69(d, 1H, J=1.8Hz).79embedded image73%1.35(t, 3H, J=6.8Hz), 1.68-1.80(m, 2H), 1.81-1.89(m, 2H), 2.06-2.14(m, 2H), 2.96-3.03(m, 2H), 3.57(s, 2H), 3.57-3.65(m, 1H), 3.87(s, 3H), 3.89(s, 9H), 3.91-3.96(m, 2H), 3.92(s, 6H), 4.46(s, 2H), 6.69-6.79(m, 9H), 7.23-7.47(m, 7H).


PREPARATION EXAMPLE 108
Synthesis of 1-(tert-butoxycarbonyl)-4-(4-butoxyphenylamino)piperidine



embedded image


1-(tert-butoxycarbonyl)-4-piperidone (5.00 g) and 4-butoxyaniline (3.95 g) was treated in the same manner as described in Preparation Example 37 to give brown powder of the title compound.


Yield: 6.91 g (83%).



1H-NMR (400 MHz, CDCl3) δ: 0.96 (t, 3H, J=7.2 Hz), 1.23-1.35 (m, 2H), 1.42-1.53 (m, 2H), 1.46 (s, 9H), 1.68-1.76 (m, 2H), 1.97-2.05 (m, 2H), 2.84-2.95 (m, 2H), 3.28-3.37 (m, 1H), 3.88 (t, 2H, J=6.6 Hz), 3.96-4.12 (m, 2H), 6.57 (d, 2H, J=9.0 Hz), 6.77 (d, 2H, J=8.8 Hz).


PREPARATION EXAMPLE 109
Synthesis of

1-(tert-butoxycarbonyl)-4[N-(4-butoxyphenyl)-N-[[2-(3,4,5-trimethoxyphenyl)pyridin-4-yl]methyl]amino]piperidine:
embedded image


1-(tert-Butoxycarbonyl)-4-[(4-butoxyphenyl)amino]piperidine (696 mg) and 4-chloromethyl-2-(3,4,5-trimethoxyphenyl)pyridine (588 mg) was treated in the same manner as described in Example 9 to give light yellow amorphous of the title compound.


Yield: 980 mg (81%)



1H-NMR (400 MHz, CDCl3) δ: 0.95 (t, 3H, J=7.4 Hz), 1.40-1.50 (m, 2H), 1.44 (s, 9H), 1.67-1.76 (m, 2H), 1.82-1.90 (m, 2H), 1.82-1.90 (m, 2H), 2.70-2.82 (m, 2H), 3.61-3.71 (m, 1H), 3.84-3.90 (m, 5H), 3.94 (s, 6H), 4.10-4.28 (m, 2H), 4.39 (s, 2H), 6.74 (d, 2H, J=9.4 Hz), 6.78 (d, 2H, J=9.4 Hz), 7.14-7.18 (m, 3H), 7.56 (s, 1H), 8.54 (d, 1H, J=5.1 Hz).


PREPARATION EXAMPLE 110
Synthesis of

4-[N-(4-butoxyphenyl)-N-[[2-(3,4,5-trimethoxyphenyl)pyridin-4-yl]methyl]amino]piperidine Dihydrochloride:
embedded image


1-(tert-Butoxycarbonyl)-4-[N-(4-butoxyphenyl)-N-[[2-(3,4,5-trimethoxyphenyl)pyridinyl]methyl]amino]piperidine (980 mg) was treated in the same manner as described in Preparation Example 94 to give light yellow powder of the title compound.


Yield: 926 mg (99%).


PREPARATION EXAMPLE 111
Synthesis of

1-(tert-butoxycarbonyl)-4-[N-(4-butoxyphenyl)-N-[[3-(3,4,5-trimethoxyphenyl)pyridin-5-yl]methyl]amino]piperidine:
embedded image


1-(tert-Butoxycarbonyl)-4-[(4-butoxyphenyl)amino]piperidine (697 mg) and 5-chloromethyl-3-(3,4,5-trimethoxyphenyl)pyridine (588 mg) was treated in the same manner as described in Example 9 to give light yellow amorphous of the title compound.


Yield: 485 mg (40%).



1H-NMR (400 MHz, CDCl3) δ: 0.95 (t, 3H, J=7.4 Hz), 1.40-1.57 (m, 2H), 1.44 (s, 9H), 1.67-1.75 (m, 2H), 1.82-1.90 (m, 2H), 2.69-2.81 (m, 2H), 3.51-3.60 (m, 1H), 3.87 (q, 2H, J=6.6 Hz), 3.88 (s, 3H), 3.90 (s, 6H), 4.06-4.23 (m, 2H), 4.39 (s, 2H), 6.66 (s, 2H), 6.77 (d, 2H, J=9.2 Hz), 6.81 (d, 2H, J=9.2 Hz), 6.81 (d, 2H, J=9.4 Hz), 7.67 (s, 1H), 8.49 (d, 1H, J=1.8 Hz), 8.62 (d, 1H, J=2.2 Hz).


PREPARATION EXAMPLE 112
Synthesis of

4-[N-(4-butoxyphenyl)-N-[[3-(3,4,5-trimethoxyphenyl)pyridin-5-yl]methyl]amino]piperidine Dihydrochloride:
embedded image


1 tert-Butoxycarbonyl)-4-[N-(4-butoxyphenyl)-N-[[3-(3,4,5-trimethoxyphenyl)pyridin-5-yl]methyl]amino]piperidine (485 mg) was treated in the same manner as described in Preparation Example 94 to give light yellow powder of the title compound.


Yield: 456 mg (98%).


PREPARATION EXAMPLE 113
Synthesis of

1-(tert-butoxycarbonyl)-4-[N-(4-butoxyphenyl)-N-[3-(3,4,5-trimethoxyphenyl)benzyl]amino]piperidine:
embedded image


1-(tert-Butoxycarbonyl)-4-[(4-butoxyphenyl)amino]piperidine (697 mg) and 3-(3,4,5-trimethoxyphenyl)benzyl chloride (586 mg) was treated in the same manner as described in Example 9 to give light yellow amorphous of the title compound.


Yield: 1.17 g (97%).



1H-NMR (400 MHz, CDCl3) δ: 0.95 (t, 3H, J=7.3 Hz), 1.40-1.61 (m, 4H), 1.44 (s, 9H), 1.67-1.75 (m, 2H), 1.83-1.90 (m, 2H), 2.70-2.83 (m, 2H), 3.63-3.72 (m, 2H), 3.87 (q, 2H, J=6.6 Hz), 3.88 (s, 3H), 3.90 (s, 6H), 4.09-4.28 (m, 2H), 4.41 (s, 2H), 6.70 (s, 2H), 6.76 (s, 4H), 7.26 (d, 2H, J=8.0 Hz), 7.33 (t, 1H, J=7.6 Hz), 7.38 (d, 1H, J=7.3 Hz), 7.42 (s, 1H).


PREPARATION EXAMPLE 114
Synthesis of

4-[N-(4-butoxyphenyl)-N-[3-(3,4,5-trimethoxyphenyl)benzyl]amino]piperidine Hydrochloride:
embedded image


1-(tert-Butoxycarbonyl)-4-[N-(4-butoxyphenyl)-N-[3-(3,4,5-trimethoxyphenyl)benzyl]amino]piperidine (1.17 g) was treated in the same manner as described in Preparation Example 94 to give light yellow powder of the title compound.


Yield: 1.02 g (98%).


EXAMPLE 80 to 87

These compounds were obtained by the condensation of amines obtained in Preparation Examples 110, 112 and 114 with chloride derivatives obtained in Preparation Examples 3, 42 and 48. Free bases obtained were then converted to the corresponding hydrochlorides. Yields and NMR data of their free bases are listed below.

Ex-NMR data (400 MHz, measured asampleStructureYieldfree bases, CDCl3) δ80embedded image630.95(t, 3H, J=7.3Hz), 1.40-1.51(m, 2H), 1.66-1.79(m, 2H), 1.83-1.92(m, 2H), 2.10-2.21(m, 2H), 2.92-3.02(m, 2H), 3.53-3.63(m, 3H), 3.84-3.90(m, 2H), 3.89(s, 3H), 3.93(s, 6H), 3.96(s, 6H), 6.72(d, 2H, J=9.3Hz), 6.77(d, 2H, J=9.3Hz), 7.15(s, 2H), 7.17(d, 1H, J=5.1Hz), 7.20(d, 1H, J=6.1Hz), #7.22(s, 2H), 7.57(s, 1H), 7.59(s, 1H), 8.54(d, 1H, J=4.9Hz), 8.59(d, 1H, J=5.1Hz).81embedded image44%0.95(t, 3H, J=7.4Hz), 1.42-1.51(m, 2H), 1.67-1.76(m, 4H), 1.80-1.91(m, 2H), 2.08-2.20(m, 2H), 2.92-3.03(m, 2H), 3.84-3.96(m, 3H), 3.89(s, 3H), 3.90(s, 3H), 3.93(s, 12H), 4.43(s, 2H), 6.69-6.79(m, 6H), 7.14(s, 2H), 7.16(d, 1H, J=5.2Hz), 7.55(s, 1H), 7.76(s, 1H), 8.49(d, 1H, J=1.8Hz), 8.53(d, 1H, #J=5.0Hz), 8.69(s, 1H).82embedded image53%0.95(t, 3H, J=7.2Hz), 1.40-1.51(m, 2H), 1.65-1.78(m, 4H), 1.81-1.89(m, 2H), 2.05-2.18(m, 2H), 3.05-3.06(m, 2H), 3.54-3.65(m, 3H), 3.84-3.96(m, 20H), 4.44(s, 2H), 6.70(d, 2H, J=9.2Hz), 6.74-6.80(m, 4H), 7.11-7.19(m, 3H), 7.22-7.32(m, 1H), 7.34-7.50(m, 3H), 7.55(s, 1H), 8.53(d, #1H, J=5.1Hz).83embedded image42%0.95(t, 3H, 7.4Hz), 1.40-1.51(m, 2H), 1.67-1.86(m, 6H), 2.03-2.30(m, 2H), 2.92-3.06(m, 2H), 3.46-3.56(m, 1H), 3.60(s, 2H), 3.84-3.91(m, 2H), 3.88(s, 3H), 3.89(s, 6H), 3.90(s, 3H), 3.96(s, 6H), 4.44(s, 2H), 6.65(s, 2H), 6.74-6.81(m, 4H), 7.20(d, 1H, J=4.9Hz), 7.25(s, 2H), 7.67(br, 2H), 8.50(d, #1H, J=1.6Hz), 8.60(d, 1H, J=5.6Hz).84embedded image36%0.95(t, 3H, J=7.4Hz), 1.40-1.51(m, 2H), 1.66-1.79(m, 4H), 1.82-1.92(m, 2H), 2.00-2.22(m, 2H), 2.83-3.06(m, 2H), 3.44-3.67(m, 3H), 3.82-3.97(m, 2H), 3.88(s, 3H), 3.89(s, 6H), 3.90(s, 3H), 3.93(s, 6H), 4.44(s, 2H), 6.65(s, 2H), 6.72-6.80(m, 6H), 7.67(s, 1H), 7.76(br, 1H), 8.47-8.53(m, 2H), 8.62(d, 1H, #J=2.2Hz), 8.70(s, 1H).85embedded image72%0.95(t, 3H, J=7.3Hz), 1.40-1.51(m, 2H), 1.66-1.82(m, 4H), 1.84-1.92(m, 2H), 2.10-2.20(m, 2H), 2.92-3.00(m, 2H), 3.53-3.66(m, 3H), 3.83-3.92(m, 2H), 3.88(s, 3H), 3.89(s, 6H), 3.90(s, 3H), 3.96(s, 6H), 4.47(s, 2H), 6.67(s, 2H), 6.73(d, 2H, J=9.2Hz), 6.77(d, 2H, J=9.5Hz), 7.18-7.29(m, 4H), 7.33(dd, #1H, J=7.3Hz, 7.3Hz), 7.37(d, 1H, J=7.6Hz), 7.43(s, 1H), 7.60(s, 1H), 8.58(d, 1H, J=4.9Hz).86embedded image24%0.94(t, 3H, J=7.4Hz), 1.41-1.51(m, 2H), 1.61-1.80(m, 4H), 1.82-1.92(m, 2H), 2.08-2.19(m, 2H), 2.92-3.02(m, 2H), 3.55-3.65(m, 1H), 3.57(s, 2H), 3.84-3.91(m, 2H), 3.87(s, 3H), 3.88(s, 6H), 3.89(s, 3H), 3.93(s, 6H), 4.45(s, 2H), 6.69(s, 2H), 6.71-6.78(m, 4H), 6.75(s, 2H), 7.23-7.28(m, 1H), 7.32(t, #1H, J=7.4Hz), 7.36(d, 1H, J=7.6Hz), 7.42(s, 1H), 7.77(s, 1H), 8.49(d, 1H, J=1.6Hz), 8.69(s, 1H).87embedded image78%0.94(t, 3H, J=7.3Hz), 1.40-1.50(m, 2H), 1.66-1.88(m, 4H), 1.82-1.89(m, 2H), 2.04-2.16(m, 2H), 2.96-3.03(m, 2H), 3.55-3.65(m, 3H), 3.83-3.90(m, 2H), 3.87(s, 3H), 3.89(s, 9H), 3.92(s, 6H), 4.46(s, 2H), 6.69-6.79(m, 9H), 7.23-7.48(m, 7H).


PREPARATION EXAMPLE 115
Synthesis of 4-(m-anisidino)-1-(tert-butoxycarbonyl)piperidine



embedded image


1-(tert-Butoxycarbonyl)-4-piperidone (4.78 g) and m-anisidine (2.96 g) were condensed in the same manner as described in Preparation Example 37 to give the title compound.


Yield: 4.83 g (66%).



1H-NMR (400 MHz, CDCl3) δ: 1.20-1.39 (m, 2H), 1.44 (s, 9H), 1.99-2.05 (m, 2H), 2.89 (dt, 2H, J=13.5 Hz, 2.2 Hz), 3.33-3.44 (m, 1H), 3.75 (s, 3H), 3.96-4.07 (m, 2H), 6.14 (t, 1H, J=2.2 Hz), 6.18-6.29 (m, 2H), 7.05 (t, 1H, J=8.1 Hz).


PREPARATION EXAMPLE 116
Synthesis of

1-(tert-butoxycarbonyl)-4-[N-(3-methoxyphenyl)-N-[[2-(3,4,5-trimethoxyphenyl)pyridin-4-yl]methyl]amino]piperidine:
embedded image


4-(m-Anisidino)-1-(tert-butoxycarbonyl)piperidine (613 mg) and 4-chloromethyl-2-(3,4,5-trimethoxyphenyl)pyridine (588 mg) was treated in the same manner as described in Example 9 to give light yellow amorphous of the title compound.


Yield: 789 mg (70%).



1H-NMR (400 MHz, CDCl3) δ: 1.45 (s, 9H), 1.50-1.67 (m, 2H), 1.82-1.91 (m, 2H), 2.74-2.87 (m, 2H), 3.74 (s, 3H), 3.88-3.98 (m, 1H), 3.89 (s, 3H), 3.94 (s, 6H), 4.14-4.32 (m, 2H), 4.48 (s, 2H), 6.28 (dd, 1H, J=2.2 Hz, 2.2 Hz), 6.31-6.37 (m, 2H), 7.10-7.15 (m, 2H), 7.16 (s, 2H), 7.55 (s, 1H), 8.56 (d, 1H, J=5.1 Hz).


PREPARATION EXAMPLE 117
Synthesis of 4-[N-(3-methoxyphenyl)-N-[[2-(3,4,5-trimethoxyphenyl)pyridin-4-yl]methyl]amino]piperidine Dihydrochloride:



embedded image


1-(tert-Butoxycarbonyl)-4-[N-(3-methoxyphenyl)-N-[[2-(3,4,5-trimethoxyphenyl)pyridin-4-yl]methyl]amino]piperidine (789 mg) was treated in the same manner as described in Preparation Example 94 to give light yellow powder of the title compound.


Yield: 710 mg (95%).


PREPARATION EXAMPLE 118
Synthesis of 1-(tert-butoxycarbonyl)-4-[N-(3-methoxyphenyl)-N-[[3-(3,4,5-trimethoxyphenyl)pyridin-5-yl]methyl]amino]piperidine



embedded image


4-(m-Anisidino)-1-(tert-butoxycarbonyl)piperidine (613 mg) and 5-chloromethyl-3-(3,4,5-trimethoxyphenyl)pyridine (588 mg) was treated in the same manner as described in Example 9 to give light yellow amorphous of the title compound.


Yield: 396 mg (35%).



1H-NMR (400 MHz, CDCl3) δ: 1.45 (s, 9H), 1.54-1.66 (m, 2H), 1.81-1.91 (m, 2H), 2.73-2.87 (m, 2H), 3.74 (s, 3H), 3.87-3.93 (m, 1H), 3.88 (s, 3H), 3.90 (s, 6H), 4.14-4.29 (m, 2H), 4.51 (s, 2H), 6.30-6.35 (m, 2H), 6.38 (d, 1H, J=7.2 Hz), 6.68 (s, 2H), 7.12 (dd, 1H, J=8.8 Hz, 8.8 Hz), 7.66 (s, 1H), 8.49 (d, 1H, J=2.0 Hz), 8.66 (d, 1H, J=2.2 Hz).


PREPARATION EXAMPLE 119
Synthesis of 4-[N-(3-methoxyphenyl)-N-[[3-(3,4,5-trimethoxyphenyl)pyridin-5-yl]methyl]amino]piperidine Dihydrochloride



embedded image


1-(tert-Butoxycarbonyl)-4-[N-(3-methoxyphenyl)-N-[[3-(3,4,5-trimethoxyphenyl)pyridin-5-yl]methyl]amino]piperidine (396 mg) was treated in the same manner as described in Preparation Example 94 to give light yellow powder of the title compound.


Yield: 348 mg (92%).


PREPARATION EXAMPLE 120
Synthesis of 1-(tert-butoxycarbonyl)-4-[N-(3-methoxyphenyl)-N-[3-(3,4,5-trimethoxyphenyl)benzyl]amino]piperidine



embedded image


4-(m-Anisidino)-1-(tert-butoxycarbonyl)piperidine (613 mg) and 3-(3,4,5-trimethoxyphenyl)benzyl chloride (586 mg) was treated in the same manner as described in Preparation Example 9 to give light yellow amorphous of the title compound.


Yield: 1.01 g (90%).



1H-NMR (400 MHz, CDCl3) δ: 1.44 (s, 9H), 1.56-1.67 (m, 2H), 1.83-1.91 (m, 2H), 2.72-2.86 (m, 2H), 3.73 (s, 3H), 3.85-3.98 (m, 1H), 3.88 (s, 3H), 3.90 (s, 6H), 4.12-4.30 (m, 2H), 4.50 (s, 2H), 6.27-6.34 (m, 2H), 6.38 (dd, 1H, J=8.2 Hz, 2.4 Hz), 6.72 (s, 2H), 7.10 (dd, 1H, J=8.2 Hz, 8.2 Hz), 7.21-7.27 (m, 1H), 7.32-7.43 (m, 3H).


PREPARATION EXAMPLE 121
Synthesis of 4-[N-(3-methoxyphenyl)-N-[3-(3,4,5-trimethoxyphenyl)benzyl]amino]piperidine Hydrochloride



embedded image


1-(tert-Butoxycarbonyl)-4[N-(3-methoxyphenyl)-N-[3-(3,4,5-trimethoxyphenyl)benzyl]amino]piperidine (1.01 g) was treated in the same manner as described in Preparation Example 94 to give light yellow powder of the title compound.


Yield: 820 mg (92%).


EXAMPLES 88 TO 95

These compounds were obtained by the condensation of amines obtained in Preparation Examples 117, 119 and 121 with chloride derivatives obtained in Preparation Examples 3, 42 and 48. Free bases obtained were then converted to the corresponding hydrochlorides. Yields and NMR data of their free bases are listed below.

Ex-NMR data (400 MHz, measured asampleStructureYieldfree bases, CDCl3) δ88embedded image63%1.70-1.82(m, 2H), 1.83-1.90(m, 2H), 2.14-2.23(m, 2H), 2.94-3.01(m, 2H), 3.57(s, 2H), 3.73(s, 3H), 3.76-3.88(m, 1H), 3.89(s, 3H), 3.90(s, 3H), 3.93(s, 6H), 3.96(s, 6H), 4.53(s, 2H), 6.26-6.35(m, 3H), 7.11(dd, 1H, J=8.3Hz, 8.3Hz), 7.12-7.14(m, 1H), 7.15(s, 2H), 7.20(d, 1H, J=5.1Hz), #7.22(s, 2H), 7.55(s, 1H), 7.58(s, 1H), 8.55(d, 1H, J=4.9Hz), 8.59(d, 1H, J=4.9Hz).89embedded image72%1.67-1.90(m, 4H), 2.13-2.22(m, 2H), 2.94-3.04(m, 2H), 3.59(s, 2H), 3.74(s, 3H), 3.77-3.87(m, 1H), 3.89(s, 3H), 3.89(s, 3H), 3.92(s, 6H), 3.93(s, 6H), 4.52(s, 2H), 6.27(dd, 1H, J=2.4Hz, 2.4Hz), 6.29-6.34(m, 2H), 6.75(s, 2H), 7.08-7.17(m, 4H), 7.54(s, 1H), 7.75(s, 1H), 8.50(d, 1H, J=1.8Hz), #8.54(d, 1H, J=5.1Hz), 8.69(d, 1H, J=2.0Hz).90embedded image60%1.68-1.90(m, 4H), 2.09-2.19(m, 2H), 2.97-3.06(m, 2H), 3.58(s, 2H), 3.73(s, 3H), 3.76-3.87(m, 1H), 3.89(s, 6H), 3.92(s, 6H), 3.92(s, 6H), 4.52(s, 2H), 6.25-6.35(m, 3H), 6.76(s, 2H), 6.78-7.17(m, 4H), 7.25-7.32(m, 1H), 7.37(dd, 1H), J=7.4Hz, 7.4Hz), 7.41-7.47(m, 2H), 7.54(s, 1H), 8.54(d, 1H, #J=5.1Hz).91embedded image50%1.80-1.93(m, 4H), 2.13-2.32(m, 2H), 2.87-3.10(m, 2H), 3.60(s, 1H), 3.69-3.85(m, 1H), 3.73(s, 3H), 3.88(s, 3H), 3.89(s, 6H), 3.90(s, 3H), 3.96(s, 6H), 4.57(s, 2H), 6.29-6.34(m, 2H), 6.37(dd, 1H, J=8.2Hz, 8.1Hz), 6.67(s, 2H), 7.11(dd, 1H, J=8.6Hz, 8.6Hz), 7.20-7.28(m, 3H), 7.58-7.72(m, 1H), #7.68(s, 1H), 8.50(d, 1H, J=1.8Hz), 8.60(d, 1H, J=4.7Hz), 8.65(d, 1H, J=2.0Hz).92embedded image35%1.70-1.90(m, 4H), 2.12-2.25(m, 2H), 2.95-3.03(m, 2H), 3.59(s, 2H), 3.72-3.97(m, 1H), 3.73(s, 3H), 3.88(s, 3H), 3.89(s, 6H), 3.90(s, 3H), 3.93(s, 6H), 4.54(s, 2H), 6.25-6.38(m, 2H), 6.36(d, 1H, J=8.4Hz, 8.4Hz), 6.67(s, J=8.4Hz), 7.66(s, 1H), 8.49(s, 1H), 8.50(d, 1H, J=1.8Hz), 8.64(d, 1H, J=2.0Hz), #8.70(d, 1H, J=1.9Hz).93embedded image86%1.73-1.93(m, 4H), 2.13-2.23(m, 2H), 2.94-3.02(m, 2H), 3.57(s, 2H), 3.73(s, 3H), 3.77-3.87(m, 1H), 3.88(s, 3H), 3.88(s, 6H), 3.90(s, 3H), 3.96(s, 6H), 4.56(s, 2H), 6.27(dd, 1H, J=8.0Hz, 2.2Hz), 6.31(dd, 1H, J=2.2Hz, 2.2Hz), 6.36(dd, 1H, J=8.2Hz, 2.2Hz), 6.71(s, 2H), 7.09(dd, 1H, J=8.1Hz, 8.1Hz), #7.18-7.28(m, 4H), 7.34(dd, 1H, J=7.4Hz, 7.4Hz), 7.38(d, 1H, J=7.6Hz), 7.42(s, 1H), 7.59(s, 2H), 8.59(d, 1H, J=4.9Hz).94embedded image56%1.72-1.92(m, 4H), 2.10-2.23(m, 2H), 2.92-3.60(m, 2H), 3.59(s, 2H), 3.72(s, 3H), 3.77-3.89(m, 1H), 3.87(s, 3H), 3.88(s, 6H), 3.93(s, 6H), 4.55(s, 2H), 6.27(dd, 1H, J=8.0Hz, 2.2Hz), 6.31(dd, 1H, J=2.1Hz, 2.1Hz), 6.36(dd, 1H, J=8.4Hz, 2.4Hz), 6.70(s, 2H), 6.75(s, 2H), 7.09(dd, 1H, J=8.2Hz, 8.2Hz), #7.22(d, 1H, J=7.4Hz), 7.33(dd, 1H, J=7.4Hz, 7.4Hz), 7.38(d, 1H, J=7.8Hz), 7.40(s, 1H), 7.77(s, 1H), 8.50(d, 1H, J=1.8Hz), 8.69(d, 1H, J=1.8Hz).95embedded image77%1.66-1.89(m, 4H), 2.08-2.18(m, 2H), 2.95-3.05(m, 2H), 3.58(s, 2H), 3.72(s, 3H), 3.75-3.84(m, 1H), 3.87(s, 3H), 3.88(s, 6H), 3.89(s, 3H), 3.92(s, 6H), 4.55(s, 2H), 6.26(dd, 1H, J=8.0Hz, 2.2Hz), 6.30(dd, 1H, J=2.2Hz, 2.2Hz), 6.36(dd, 1H, J=8.3Hz, 2.2Hz), 6.70(s, 2H), 6.76(s, 2H), 7.08(dd, 1H, #J=8.3Hz, 8.3Hz), 7.22(d, 1H, J=7.3Hz), 7.27-7.47(m, 7H).


PREPARATION EXAMPLE 122
Synthesis of 4-(o-anisidino)-1-(tert-butoxycarbonyl)piperidine



embedded image


1-(tert-Butoxycarbonyl)-4-piperidone (4.78 g) and o-anisidine (2.96 g) were condensed in the same manner as described in Preparation Example 37 to give the title compound.


Yield: 2.61 g (36%).



1H-NMR (400 MHz, CDCl3) δ: 1.31-1.41 (m, 2H), 1.47 (s, 9H), 2.00-2.08 (m, 2H), 2.90-3.01 (m, 2H), 3.38-3.47 (m, 1H), 3.83 (s, 3H), 4.00-4.21 (m, 2H), 6.60-6.69 (m, 2H), 6.76-6.89 (m, 2H).


PREPARATION EXAMPLE 123
Synthesis of 1-(tert-butoxycarbonyl)-4-[N-(2-methoxyphenyl)-N-[[2-(3,4,5-trimethoxyphenyl)pyridin-4-yl]methyl]amino]piperidine



embedded image


4-(o-Anisidino)-1-(tert-butoxycarbonyl)piperidine (613 mg) and 4-chloromethyl-2-(3,4,5-trimethoxyphenyl)pyridine (588 mg) was treated in the same manner as described in Example 9 to give light yellow amorphous of the title compound.


Yield: 763 mg (68%).



1H-NMR (400 MHz, CDCl3) δ: 1.41-1.58 (m, 2H), 1.44 (s, 9H), 1.81-1.91 (m, 2H), 2.62-2.78 (m, 2H), 3.29 (tt, 1H, J=7.6 Hz, 3.7 Hz), 3.86 (s, 3H), 3.89 (s, 3H), 3.95 (s, 6H), 4.06-4.16 (m, 2H), 4.37 (s, 2H), 6.80 (ddd, 1H, J=7.6 Hz, 7.6 Hz, 1.2 Hz), 6.87 (dd, 1H, J=8.5 Hz, 1.0 Hz), 7.00-7.06 (m, 2H), 7.14 (s, 2H), 7.20 (dd, 1H, J=4.9 Hz, 1.0 Hz), 7.61 (s, 1H), 8.49 (d, 1H, J=4.9 Hz).


PREPARATION EXAMPLE 124
Synthesis of

4-[N-(2-methoxyphenyl)-N-[[2-(3,4,5-trimethoxyphenyl)pyridin-4-yl]methyl]amino]piperidine Dihydrochloride:
embedded image


1-(tert-Butoxycarbonyl)-4-[N-(2-methoxyphenyl)-N-[[2-(3,4,5-trimethoxyphenyl)pyridin-4-yl]methyl]amino]piperidine (763 mg) was treated in the same manner as described in Preparation Example 94 to give light yellow powder of the title compound.


Yield: 701 mg (97%).


PREPARATION EXAMPLE 125
Synthesis of 1-(tert-butoxycarbonyl)-4-[N-(2-methoxyphenyl)-N-[[3-(3,4,5-trimethoxyphenyl)pyridin-5-yl]methyl]amino]piperidine



embedded image


4-(o-Anisidino)-1-(tert-butoxycarbonyl)piperidine (613 mg) and 5-chloromethyl-3-(3,4,5-trimethoxyphenyl)pyridine (588 mg) was treated in the same manner as described in Example 9 to give light yellow amorphous of the title compound.


Yield: 353 mg (31%).



1H-NMR (400 MHz, CDCl3) δ: 1.44 (s, 9H), 1.46-1.53 (m, 2H), 1.82-1.91 (m, 2H), 2.62-2.78 (m, 2H), 3.24-3.33 (m, 1H), 3.83 (s, 3H), 3.89 (s, 3H), 3.91 (s, 6H), 4.03-4.16 (m, 2H), 4.37 (s, 2H), 6.64 (s, 2H), 6.79 (ddd, 1H, J=7.6 Hz, 7.6 Hz, 1.2 Hz), 6.84 (dd, 1H, J=7.0 Hz, 1.2 Hz), 6.97-7.06 (m, 2H), 7.68 (dd, 1H, J=1.3 Hz, 1.3 Hz), 8.49 (d, 1H, J=2.0 Hz), 8.56 (d, 1H, J=2.2 Hz).


PREPARATION EXAMPLE 126
Synthesis of 4-[N-(2-methoxyphenyl)-N-[[3-(3,4,5-trimethoxyphenyl)pyridin-5-yl]methyl]amino]piperidine Dihydrochloride



embedded image


1-(tert-Butoxycarbonyl)-4-[N-(2-methoxyphenyl)-N-[[3-(3,4,5-trimethoxyphenyl)pyridin-5-yl]methyl]amino]piperidine (353 mg) was treated in the same manner as described in Preparation Example 94 to give light yellow powder of the title compound.


Yield: 312 mg (93%).


PREPARATION EXAMPLE 127
Synthesis of 1-(tert-butoxycarbonyl)-4-[N-(2-methoxyphenyl)-N-[3-(3,4,5-trimethoxyphenyl)benzyl]amino]piperidine



embedded image


4-(o-Anisidino)-1-(tert-butoxycarbonyl)piperidine (613 mg) and 3-(3,4,5-trimethoxyphenyl)benzyl chloride (586 mg) was treated in the same manner as described in Example 9 to give light yellow amorphous of the title compound.


Yield: 1.12 g (100%).



1H-NMR (400 MHz, CDCl3) δ: 1.43 (s, 9H), 1.46-1.57 (m, 2H), 1.81-1.90 (m, 2H), 2.62-2.76 (m, 2H), 3.31 (tt, 1H, J=11.1 Hz, 3.3 Hz), 3.84 (s, 3H), 3.88 (s, 3H), 3.91 (s, 6H), 4.00-4.16 (m, 2H), 4.36 (s, 2H), 6.67 (s, 2H), 6.78 (t, 1H, J=7.3 Hz), 6.85 (d, 1H, J=7.9 Hz), 6.96-7.03 (m, 2H), 7.24-7.34 (m, 3H), 7.43 (s, 1H).


PREPARATION EXAMPLE 128
Synthesis of

4-[N-(2-methoxyphenyl)-N-[3-(3,4,5-trimethoxyphenyl)benzyl]amino]piperidine Hydrochloride:
embedded image


1-(tert-Butoxycarbonyl)-4-[N-(2-methoxyphenyl)-N-[3-(3,4,5-trimethoxyphenyl)benzyl]amino]piperidine (1.12 g) was treated in the same manner as described in Preparation Example 94 to give light yellow powder of the title compound.


Yield: 987 mg (99%).


EXAMPLE 96 TO 101

These compounds were obtained by the condensation of amines obtained in Preparation Examples 124, 126 and 128 with chloride derivatives obtained in Preparation Examples 3 and 48. Free bases obtained were then converted to the corresponding hydrochlorides. Yields and NMR data of their free bases are listed below.

Ex-NMR data (400 MHz, measured asampleStructureYieldfree bases, CDCl3) δ96embedded image73%1.62-1.74(m, 2H), 1.82-1.90(m, 2H), 1.98-2.08(m, 2H), 2.86-2.94(m, 2H), 3.13-3.22(m, 1H), 3.52(s, 2H), 3.85(s, 3H), 3.89(s, 3H), 3.90(s, 3H), 3.94(s, 6H), 3.96(s, 6H), 4.40(s, 2H), 6.80(ddd, 1H, J=7.6Hz, 7.6Hz, 1.2Hz), 6.86(dd, 1H, J=8.1Hz, 1.2Hz), 6.98-7.05(m, 1H), 7.14(s, 2H), 7.18(dd, 1H, #J=4.9Hz, 1.2Hz), 7.20-7.24(m, 1H), 7.22(s, 2H), 7.58(s, 1H), 7.62(s, 1H), 8.49(d, 1H, J=4.9Hz), 8.57(d, 1H, J=5.2Hz).97embedded image55%1.60-1.73(m, 4H), 1.82-1.93(m, 2H), 1.98-2.07(m, 2H), 2.87-2.97(m, 2H), 3.12-3.22(m, 1H), 3.54(s, 2H), 3.85(s, 3H), 3.89(s, 3H), 3.90(s, 3H), 3.93(s, 6H), 3.94(s, 6H), 4.39(s, 2H), 6.75(s, 2H), 6.79(dd, 1H, J=7.4Hz, 7.4Hz), 6.86(d, 1H, J=7.8Hz), 6.97-7.05(m, 2H), 7.13(s, 2H), #7.20(d, 1H, J=4.7Hz), 7.61(s, 1H), 7.75(s, 1H), 8.46-8.50(m, 2H), 8.68(d, 1H, J=2.0Hz).98embedded image29%1.64-1.82(m, 2H), 1.84-1.97(m, 2H), 2.00-2.15(m, 2H), 2.84-3.01(m, 2H), 3.13-3.27(m, 1H), 3.56(s, 2H), 3.82(s, 3H), 3.88(s, 3H), 3.90(s, 3H), 3.91(s, 6H), 3.96(s, 6H), 4.40(s, 2H), 6.63(s, 2H), 6.75-6.88(m, 2H), 6.97-7.04(m, 2H), 7.19(d, 1H, J=4.3Hz), 7.25(s, 2H), 7.58-7.73(m, 2H), #8.50(d, 1H, J=1.6Hz), 8.56(d, 1H, J=2.2Hz), 8.58(d, 1H, J=4.9Hz).99embedded image30%1.62-1.75(m, 2H), 1.83-1.94(m, 2H), 1.95-2.11(m, 2H), 2.84-3.01(m, 2H), 3.12-3.23(m, 1H), 3.55(s, 2H), 3.82(s, 3H), 3.88(s, 3H), 3.90(s, 3H), 3.90(s, 6H), 3.93(s, 6H), 4.39(s, 2H), 6.63(s, 2H), 6.70-6.86(m, 4H), 6.94-7.06(m, 2H), 7.68(s, 1H), 7.76(s, 1H), 8.47(d, 1H, J=1.7Hz), #8.49(d, 1H, J=1.7Hz), 8.55(d, 1H, J=2.2Hz), 8.69(s, 1H).100embedded image67%1.64-1.79(m, 2H), 1.85-1.93(m, 2H), 1.99-2.09(m, 2H), 2.86-2.95(m, 2H), 3.16-3.26(m, 1H), 3.52(s, 2H), 3.84(s, 3H), 3.88(s, 3H), 3.90(s, 6H), 3.96(s, 6H), 4.40(s, 2H), 6.67(s, 2H), 6.78(dd, 1H, J=7.4Hz, 7.4Hz), 6.85(d, 1H, J=8.2Hz), 6.97(dd, 1H, J=7.8Hz, 7.8Hz), 7.02(dd, 1H, #J=7.8, 1.6Hz), 7.17-7.33(m, 6H), 7.44(s, 1H), 7.59(s, 1H), 8.57(d, 1H, J=5.1Hz).101embedded image55%1.62-1.77(m, 2H), 1.82-1.94(m, 2H), 1.98-2.08(m, 2H), 2.86-2.96(m, 2H), 3.16-3.26(m, 1H), 3.54(s, 2H), 3.83(s, 3H), 3.87(s, 3H), 3.90(s, 9H), 3.93(s, 6H), 4.39(s, 2H), 6.66(s, 2H), 6.73-6.80(m, 3H), 6.84(d, 1H, J=7.8Hz), 6.97(dd, 1H, J=7.8Hz, 7.8Hz), 7.01(d, 1H, J=7.8Hz), #7.23-7.32(m, 3H), 7.43(s, 1H), 7.77(s, 1H), 8.47(d, 1H, J=1.4Hz), 8.68(d, 1H, J=1.8Hz).


PREPARATION EXAMPLE 129
Synthesis of 1-(tert-butoxycarbonyl)-4-(2,3-dimethoxyphenylamino)piperidine



embedded image


1-(tert-Butoxycarbonyl)-4-piperidone (4.78 g) and 2,3-dimethoxyaniline (3.68 g) were condensed in the same manner as described in Preparation Example 37 to give the title compound.


Yield: 3.18 g (39%).



1H-NMR (400 MHz, CDCl3) δ: 1.29-1.42 (m, 2H), 1.45 (s, 9H), 1.97-2.03 (m, 2H), 2.92 (dt, 2H, J=13.5 Hz, 2.2 Hz), 3.38 (dt, 1H, J=13.8 Hz, 4.1 Hz), 3.77 (s, 3H), 3.82 (s, 3H), 3.99-4.03 (m, 2H), 4.17 (m, 1H), 6.27-6.32 (m, 2H), 6.88 (t, 1H, J=8.4 Hz).


PREPARATION EXAMPLE 130
Synthesis of

1-(tert-butoxycarbonyl)-4-[N-(2,3-dimethoxyphenyl)-N-[[2-(3,4,5-trimethoxyphenyl)pyridin-4-yl]methyl]amino]piperidine:
embedded image


1-(tert-Butoxycarbonyl)-4-(2,3-dimethoxyphenylamino)piperidine (673 mg) and 4-chloromethyl-2-(3,4,5-trimethoxyphenyl)pyridine (588 mg) was treated in the same manner as described in Example 9 to give light yellow amorphous of the title compound.


Yield: 613 mg (52%).



1H-NMR (400 MHz, CDCl3) δ: 1.45 (s, 9H), 1.56-1.70 (m, 2H), 1.84-1.91 (m, 2H), 2.62-2.76 (m, 2H), 3.58 (tt, 1H, J=11.8 Hz, 3.6 Hz), 3.83 (s, 3H), 3.89 (s, 6H), 3.93 (s, 6H), 4.08-4.25 (m, 2H), 4.35 (s, 2H), 6.56-6.63 (m, 2H), 6.86 (t, 1H, J=8.3 Hz), 7.14 (s, 2H), 7.17 (dd, 1H, J=5.1 Hz, 1.2 Hz), 7.62 (s, 1H), 8.50 (d, 1H, J=5.1 Hz).


PREPARATION EXAMPLE 131
Synthesis of

4-[N-(2,3-dimethoxyphenyl)-N-[[2-(3,4,5-trimethoxyphenyl)pyridin-4-yl]methyl]amino]piperidine Dihydrochloride:
embedded image


1-(tert-Butoxycarbonyl)-4-[N-(2,3-dimethoxyphenyl)-N-[[2-(3,4,5-trimethoxy phenyl)pyridin-4-yl]methyl]amino]piperidine (613 mg) was treated in the same manner as described in Preparation Example 94 to give light yellow powder of the title compound.


Yield: 512 mg (88%).


EXAMPLE 102
Synthesis of 4-[N-(2,3-dimethoxyphenyl)-N-[[2-(3,4,5-trimethoxyphenyl)pyridin-4-yl]methyl]amino]-1-[[2-(3,4,5-trimethoxyphenyl)pyridin-4-yl]methyl]piperidine Trihydrochloride



embedded image


4-[N-(2,3-Dimethoxyphenyl)-N-[[2-(3,4,5-trimethoxyphenyl)pyridinyl]methyl]amino]piperidine dihydrochloride (113 mg) and 4-chloromethyl-2-(3,4,5-trimethoxyphenyl)pyridine (59 mg) were condensed in the same manner as described in Example 9. The title compound was obtained as light yellow powder after converting a free base to a trihydrochloride.


Yield: 21 mg (12%).



1H-NMR (400 MHz, measured as a free base, CDCl3) δ: 1.76-1.96 (m, 4H), 2.00-2.13 (m, 2H), 2.86-3.00 (m, 2H), 3.42-3.60 (m, 1H), 3.54 (s, 2H), 3.82 (s, 3H), 3.88 (s, 3H), 3.90 (s, 3H), 3.97 (s, 6H), 4.41 (s, 2H), 6.57 (d, 1H, J=8.0 Hz), 6.62 (d, 1H, J=8.2 Hz), 6.85 (dd, 1H, J=8.4 Hz, 8.4 Hz), 7.11-7.29 (m, 6H), 7.59 (s, 1H), 7.63 (s, 1H), 8.50 (d, 1H, J=4.9 Hz), 8.59 (d, 1H, J=4.9 Hz).


PREPARATION EXAMPLE 132
Synthesis of 1-(tert-butoxycarbonyl)-4-[[4-(trifluoromethoxy)phenyl]amino]piperidine



embedded image


1-tert-Butoxycarbonyl)-4-piperidone (5.00 g) and 4-(trifluoromethoxy)aniline (4.23 g) was treated in the same manner as described in Preparation Example 37 to give white powder of the title compound.


Yield: 5.22 g (60%).



1H-NMR (400 MHz, CDCl3) δ: 1.25-1.40 (m, 2H), 1.47 (s, 9H), 1.98-2.08 (m, 2H), 2.83-2.98 (m, 2H), 3.34-3.43 (m, 1H), 3.97-4.12 (m, 2H), 6.58 (d, 2H, J=8.8 Hz), 7.03 (d, 2H, J=8.8 Hz).


PREPARATION EXAMPLE 133
Synthesis of

1-(tert-butoxycarbonyl)-4[N-[4-(trifluoromethoxy)phenyl]-N-[[2-(3,4,5-trimethoxyphenyl)pyridin-4-yl]methyl]amino]piperidine:
embedded image


1-(tert-Butoxycarbonyl)-4-[[4-(trifluoromethoxy)phenyl]amino]piperidine (721 mg) and 4-chloromethyl-2-(3,4,5-trimethoxyphenyl)pyridine (588 mg) was treated in the same manner as described in Example 9 to give light yellow amorphous of the title compound.


Yield: 543 mg (44%).



1H-NMR (400 MHz, CDCl3) δ: 1.45 (s, 9H), 1.52-1.66 (m, 2H), 1.81-1.91 (m, 2H), 2.73-2.88 (m, 2H), 3.88-3.99 (m, 1H), 3.89 (s, 3H), 3.93 (s, 6H), 4.15-4.34 (m, 2H), 4.48 (s, 2H), 6.68 (d, 2H, J=9.2 Hz), 7.07 (d, 2H, J=8.6 Hz), 7.12 (dd, 1H, J=5.2 Hz, 1.3 Hz), 7.15 (s, 2H), 7.52 (s, 1H), 8.58 (d, 1H, J=5.2 Hz).


PREPARATION EXAMPLE 134
Synthesis of

4-[N-[4-(trifluoromethoxy)phenyl]-N-[[2-(3,4,5-trimethoxyphenyl)pyridin-4-yl]methyl]amino]piperidine Dihydrochloride:
embedded image


1-(tert-Butoxycarbonyl)-4-[N-[4-(trifluoromethoxy)phenyl]-N-[[2-(3,4,5-trimethoxyphenyl)pyridin-4-yl]methyl]amino]piperidine (543 mg) was treated in the same manner as described in Preparation Example 94 to give light yellow powder of the title compound.


Yield: 481 mg (93%).


PREPARATION EXAMPLE 135
Synthesis of 1-(tert-butoxycarbonyl)-4-[N-[4-(trifluoromethoxy)phenyl]-N-[[3-(3,4,5-trimethoxyphenyl)pyridin-5-yl]methyl]amino]piperidine



embedded image


1-(tert-Butoxycarbonyl)-4-[[4-(trifluoromethoxy)phenyl]amino]piperidine (721 mg) and 5-chloromethyl-3-(3,4,5-trimethoxyphenyl)pyridine (588 mg) was treated in the same manner as described in Example 9 to give light yellow amorphous of the title compound.


Yield: 201 mg (16%).



1H-NMR (400 MHz, CDCl3) δ: 1.45 (s, 9H), 1.54-1.67 (m, 2H), 1.82-1.90 (m, 2H), 2.74-2.86 (m, 2H), 3.84-3.91 (m, 1H), 3.88 (s, 3H), 3.89 (s, 6H), 4.16-4.30 (m, 2H), 4.52 (s, 2H), 6.67 (s, 2H), 6.72 (d, 2H, J=9.4 Hz), 7.06 (d, 2H, J=8.4 Hz), 7.64 (t, 1H, J=2.1 Hz), 8.49 (d, 1H, J=2.2 Hz), 8.68 (d, 1H, J=2.1 Hz).


PREPARATION EXAMPLE 136
Synthesis of

4-[N-[4-(trifluoromethoxy)phenyl]-N-[[3-(3,4,5-trimethoxyphenyl)pyridin-5-yl]methyl]amino]piperidine Dihydrochloride:
embedded image


1-(tert-Butoxycarbonyl)-4-[N-[4-(trifluoromethoxy)phenyl]-N-[[3-(3,4,5-trimethoxyphenyl)pyridin-5-yl]methyl]amino]piperidine (201 mg) was treated in the same manner as described in Preparation Example 94 to give light yellow powder of the title compound.


Yield: 185 mg (96%).


PREPARATION EXAMPLE 137
Synthesis of 1-(tert-butoxycarbonyl)-4-[N-[4-(trifluoromethoxy)phenyl]-N-[3-(3,4,5-trimethoxyphenyl)benzyl]amino)piperidine



embedded image


1-(tert-Butoxycarbonyl)-4-[[4-(trifluoromethoxy)phenyl]amino]piperidine (721 mg) and 3-(3,4,5-trimethoxyphenyl)benzyl chloride (586 mg) was treated in the same manner as described in Example 9 to give light yellow amorphous of the title compound.


Yield: 1.06 mg (86%).



1H-NMR (400 MHz, CDCl3) δ: 1.45 (s, 9H), 1.56-1.68 (m, 2H), 1.83-1.90 (m, 2H), 2.71-2.86 (m, 2H), 3.87-3.90 (m, 1H), 3.88 (s, 3H), 3.89 (s, 6H), 4.16-4.29 (m, 2H), 4.51 (s, 2H), 6.70 (d, 2H, J=9.3 Hz), 6.70 (s, 2H), 7.04 (d, 2H, J=8.5 Hz), 7.22 (d, 1H, J=7.8 Hz), 7.34-7.44 (m, 3H).


PREPARATION EXAMPLE 138
Synthesis of 4-[N-[4-(trifluoromethoxy)phenyl]-N-[3-(3,4,5-trimethoxyphenyl)benzyl]amino]piperidine Hydrochloride:



embedded image


1-(tert-Butoxycarbonyl)-4-[N-[4-(trifluoromethoxy)phenyl]-N-[3-(3,4,5-trimethoxyphenyl)benzyl]amino]piperidine (1.06 g) was treated in the same manner as described in Preparation Example 94 to give light yellow powder of the title compound.


Yield: 795 mg (84%).


EXAMPLE 103 TO 110

These compounds were obtained by the condensation of amines obtained in Preparation Examples 134, 136 and 138 with chloride derivatives obtained in Preparation Examples 3, 42 and 48. Free bases obtained were then converted to the corresponding hydrochlorides. Yields and NMR data of their free bases are listed below.

Ex-NMR data (400 MHz, measured asampleStructureYieldfree bases, CDCl3) δ103embedded image70%1.71-1.90(m, 4H), 2.15-2.23(m, 2H), 2.95-3.02(m, 2H), 3.58(s, 2H), 3.76-3.85(m, 1H), 3.89(s, 3H), 3.90(s, 3H), 3.92(s, 6H), 3.96(s, 6H), 4.54(s, 2H), 6.66(d, 2H, J=9.3Hz), 7.05(d, 2H, J=8.5Hz), 7.13(dd, 1H, J=5.1Hz, 1.2Hz), 7.14(s, 2H), 7.20(dd, 1H, J=4.9Hz, 1.2Hz), #7.22(s, 2H), 7.53(s, 1H), 7.59(s, 1H), 8.57(d, 1H, J=4.9Hz), 8.59(d, 1H, J=5.2Hz).104embedded image48%1.68-1.92(m, 4H), 2.13-2.25(m, 2H), 2.95-3.06(m, 2H), 3.60(s, 2H), 3.75-3.87(m, 1H), 3.89(s, 3H), 3.90(s, 3H), 3.91(s, 6H), 3.93(s, 6H), 4.52(s, 2H), 6.65(d, 2H, J=9.4Hz), 6.75(s, 2H), 7.05(d, 2H, J=9.2Hz), 7.12(d, 1H, J=5.1Hz), 7.14(s, 2H), 7.52(s, 1H), 7.76(s, 1H), #8.51(d, 1H, J=1.8Hz), 8.57(d, 1H, J=5.1Hz), 8.70(d, 1H, J=2.1Hz).105embedded image69%1.70-1.89(m, 4H), 2.10-2.19(m, 2H), 2.98-3.08(m, 2H), 3.59(s, 2H), 3.72-3.84(m, 1H), 3.89(s, 6H), 3.92(s, 6H), 3.92(s, 6H), 4.52(s, 2H), 6.65(d, 2H, J=9.4Hz), 6.76(s, 2H), 7.04(d, 2H, J=8.6Hz), 7.11(d, 1H, J=5.1Hz), 7.14(s, 2H), 7.25-7.33(m, 1H), 7.37(dd, 1H, #J=7.4Hz, 7.4Hz), 7.41-7.48(m, 2H), 7.51(s, 1H), 8.56(d, 1H, J=5.1Hz).106embedded image41%1.73-1.93(m, 4H), 2.12-2.26(m, 2H), 2.93-3.07(m, 2H), 3.53-3.65(m, 2H), 3.74-3.84(m, 1H), 3.88(s, 9H), 3.90(s, 3H), 3.96(s, 6H), 4.58(s, 2H), 6.66(s, 2H), 6.69(d, 2H, J=9.2Hz), 7.05(d, 2H, J=8.8Hz), 7.18-7.29(m, 3H), 7.59(br, 1H), 7.64(s, 1H), #8.49(s, 1H), 8.60(d, 1H, J=5.3Hz), 8.67(d, 1H, J=2.0Hz).107embedded image28%1.72-1.91(m, 4H), 2.12-2.28(m, 2H), 2.94-3.06(m, 2H), 3.60(s, 2H), 3.76-3.82(m, 1H), 3.88(s, 9H), 3.90(s, 3H), 3.93(s, 6H), 4.56(s, 2H), 6.65(s, 2H), 6.69(d, 2H, J=9.2Hz), 6.75(s, 2H), 7.05(d, 2H, J=8.8Hz), 7.63(s, 1H), 7.76(s, 1H), 8.48(d, 1H, J=1.8Hz), 8.51(d, #1H, J=1.8Hz), 8.66(d, 1H, J=2.2Hz), 8.70(d, 1H, J=2.2Hz).108embedded image78%1.76-1.91(m, 4H), 2.14-2.23(m, 2H), 2.94-3.03(m, 2H), 3.57(s, 2H), 3.75-3.84(m, 1H), 3.87(s, 9H), 3.90(s, 3H), 3.96(s, 6H), 4.56(s, 2H), 6.65-6.72(m, 4H), 7.03(d, 2H, J=8.8Hz), 7.18-7.24(m, 4H), 7.33-7.43(m, 3H), 7.59(s, 1H), 8.59(d, 1H, J=4.9Hz).109embedded image 5%1.72-1.90(m, 4H), 2.12-2.21(m, 2H), 2.94-3.03(m, 2H), 3.59(s, 2H), 3.73-3.86(m, 1H), 3.87(s, 9H), 3.90(s, 3H), 3.93(s, 6H), 4.54(s, 2H), 6.66-6.70(m, 4H), 6.75(s, 2H), 7.03(d, 2H, J=9.0Hz), 7.21(d, 1H, J=7.2Hz), 7.32-7.41(m, 3H), 7.76(s, 1H), .50(d, 1H, J=1.6Hz), #8.69(d, 1H, J=1.6Hz).110embedded image62%1.72-1.89(m, 4H), 2.08-2.20(m, 2H), 2.97-3.07(m, 2H), 3.59(s, 2H), 3.73-3.83(m, 1H), 3.87(s, 9H), 3.89(s, 3H), 3.92(s, 6H), 4.55(s, 2H), 6.67(d, 2H, J=9.3Hz), 6.69(s, 2H), 6.76(s, 2H), 7.02(d, 2H, J=8.6Hz), 7.20(d, 1H, J=7.6Hz), 7.25-7.47(m, 7H).


PREPARATION EXAMPLE 139
Synthesis of 1-(tert-butoxycarbonyl)-4-[[4-(methylthio)phenyl]amino]piperidine



embedded image


1-(tert-Butoxycarbonyl)-4-piperidone (5.00 g) and 4-(methylthio)aniline (3.33 g) was treated in the same manner as described in Preparation Example 37 to give white powder of the title compound.


Yield: 3.80 g (49%).



1H-NMR (400 MHz, CDCl3) δ: 1.26-1.38 (m, 2H), 1.46 (s, 9H), 1.98-2.06 (m, 2H), 2.41 (s, 3H), 2.88-2.97 (m, 2H), 3.36-3.45 (m, 2H), 3.48-3.56 (br, 1H), 3.96-4.12 (m, 2H), 6.55 (d, 2H, J=8.8 Hz), 7.21 (d, 2H, J=8.8 Hz).


PREPARATION EXAMPLE 140
Synthesis of 1-(tert-butoxycarbonyl)-4-[N-[4-(methylthio)phenyl]-N-[[2-(3,4,5-trimethoxyphenyl)pyridin-4-yl]methyl]amino]piperidine



embedded image


1-(tert-Butoxycarbonyl)-4-[[4-(methylthio)phenyl]amino]piperidine (644 mg) and 4-chloromethyl-2-(3,4,5-trimethoxyphenyl)pyridine (588 mg) was treated in the same manner as described in Example 9 to give light yellow amorphous of the title compound.


Yield: 671 mg (58%).



1H-NMR (400 MHz, CDCl3) δ: 1.45 (s, 9H), 1.50-1.66 (m, 2H), 1.81-1.89 (m, 2H), 2.40 (s, 3H), 2.74-2.87 (m, 2H), 3.88-3.94 (m, 1H), 3.90 (s, 3H), 3.94 (s, 6H), 4.15-4.29 (m, 2H), 4.48 (s, 2H), 6.67 (d, 2H, J=9.0 Hz), 7.11-7.18 (m, 1H), 7.16 (s, 2H), 7.22 (d, 2H, J=6.6 Hz), 7.54 (s, 1H), 8.57 (d, 1H, J=5.1 Hz).


PREPARATION EXAMPLE 141
Synthesis of 4-[N-[4-(methylthio)phenyl]-N-[[2-(3,4,5-trimethoxyphenyl)pyridin-4-yl]methyl]amino]piperidine Dihydrochloride



embedded image


1-(tert-Butoxycarbonyl)-4[N-[4-(methylthio)phenyl]-N-[[2-(3,4,5-trimethoxy phenyl)pyridin-4-yl]methyl]amino]piperidine (671 mg) was treated in the same manner as described in Preparation Example 94 to give light yellow powder of the title compound.


Yield: 602 mg (94%).


PREPARATION EXAMPLE 142
Synthesis of 1-(tert-butoxycarbonyl)-4-[N-[4-(methylthio)phenyl]-N-[[3-(3,4,5-trimethoxyphenyl)pyridin-5-yl]methyl]amino]piperidine



embedded image


1-(tert-Butoxycarbonyl)-4-[[4-(methylthio)phenyl]amino]piperidine (645 mg) and 5-chloromethyl-3-(3,4,5-trimethoxyphenyl)pyridine (588 mg) was treated in the same manner as described in Example 9 to give light yellow amorphous of the title compound.


Yield: 312 mg (27%).



1H-NMR (400 MHz, CDCl3) δ: 1.45 (s, 9H), 1.53-1.63 (m, 2H), 1.83-1.89 (m, 2H), 2.40 (s, 3H), 2.73-2.85 (m, 2H), 3.87-3.91 (m, 1H), 3.88 (s, 3H), 3.90 (s, 6H), 4.16-4.30 (m, 2H), 4.50 (s, 2H), 6.67 (s, 2H), 6.71 (d, 2H, J=9.0 Hz), 7.21 (d, 2H, J=9.0 Hz), 7.64 (s, 1H), 8.48 (d, 1H, J=2.2 Hz), 8.66 (d, 1H, J=2.1 Hz).


PREPARATION EXAMPLE 143
Synthesis of

4-[N-[4-(methylthio)phenyl]-N-[[3-(3,4,5-trimethoxyphenyl)pyridin-5-yl]methyl]amino]piperidine Dihydrochloride:
embedded image


1-(tert-Butoxycarbonyl)-4-[N-[4-(methylthio)phenyl]-N-[[3-(3,4,5-trimethoxy phenyl)pyridin-5-yl]methyl]amino]piperidine (312 mg) was treated in the same manner as described in Preparation Example 94 to give light yellow powder of the title compound.


Yield: 251 mg (84%).


PREPARATION EXAMPLE 144
Synthesis of 1-(tert-butoxycarbonyl)-4-[N-[4-(methylthio)phenyl]-N-[3-(3,4,5-trimethoxyphenyl)benzyl]amino]piperidine:



embedded image


1-(tert-Butoxycarbonyl)-4-[[4-(methylthio)phenyl]amino]piperidine (645 mg) and 3-(3,4,5-trimethoxyphenyl)benzyl chloride (586 mg) was treated in the same manner as described in Example 9 to give light yellow amorphous of the title compound.


Yield: 1.10 g (95%).



1H-NMR (400 MHz, CDCl3) δ: 1.45 (s, 9H), 1.55-1.68 (m, 2H), 1.81-1.90 (m, 2H), 2.39 (s, 3H), 2.73-2.86 (m, 2H), 3.87-3.91 (m, 1H), 3.88 (s, 3H), 3.89 (s, 6H), 4.15-4.29(m, 2H), 4.50 (s, 2H), 6.68-6.73 (m, 4H), 7.19-7.24 (m, 3H), 7.33-7.43 (m, 3H).


PREPARATION EXAMPLE 145
Synthesis of 4-[N-[4-(methylthio)phenyl]-N-[3-(3,4,5-trimethoxyphenyl)benzyl]amino]piperidine Hydrochloride



embedded image


1-(tert-Butoxycarbonyl)-4-[N-[4-(methylthio)phenyl]-N-[3-(3,4,5-trimethoxyphenyl)benzyl]amino]piperidine (1.10 g) was treated in the same manner as described in Preparation Example 94 to give light yellow powder of the title compound.


Yield: 866 mg (89%).


EXAMPLES 111 TO 118

These compounds were obtained by the condensation of amines obtained in Preparation Examples 141, 143 and 145 with chloride derivatives obtained in Preparation Examples 3, 42 and 48. Free bases obtained were then converted to the corresponding hydrochlorides. Yields and NMR data of their free bases are listed below.

Ex-NMR data (400 MHz, measuredampleStructureYieldas free bases, CDCl3) δ111embedded image40%1.70-1.90(m, 4H), 2.14-2.26(m, 2H), 2.40(s, 3H), 2.94-3.04(m, 2H), 3.58(s, 2H), 3.76-3.88(m, 1H), 3.89(s, 3H), 3.90(s, 3H), 3.93(s, 6H), 3.96(s, 6H), 4.53(s, 2H), 6.66(d, 2H, J=9.0Hz), 7.11-7.24(m, 8H), 7.54(s, 1H), 7.59(s, 1H), 8.56(d, 1H, J=5.1Hz), 8.59(d, 1H, J=5.1Hz).112embedded image53%1.66-1.90(m, 4H), 2.12-2.24(m, 2H), 2.40(s, 3H), 2.94-3.05(m, 2H), 3.59(s, 2H), 3.73-3.88(m, 1H), 3.89(s, 3H), 3.90(s, 3H), 3.92(s, 6H), 3.93(s, 6H), 4.51(s, 2H), 6.65(d, 2H, J=8.8Hz), 6.75(s, 2H), 7.12(d, 1H, J=4.9Hz), 7.14(s, 2H), 7.21(d, 2H, J=8.8Hz), 7.53(s, 1H), #7.76(s, 1H), 8.50(d, 1H, J=1.9Hz), 6.55(d, 1H, J=4.9Hz), 8.69(d, 1H, J=1.4Hz).113embedded image53%1.68-1.89(m, 4H), 2.10-2.20(m, 2H), 2.39(s, 3H), 2.98-3.07(m, 2H), 3.58(s, 2H), 3.75-3.87(m, 1H), 3.89(s, 6H), 3.92(s, 6H), 3.92(s, 6H), 4.51(s, 2H), 6.65(d, 2H, J=9.0Hz), 6.76(s, 2H), 7.11(d, 1H, J=5.1Hz), 7.14(s, 2H), 7.21(d, 2H, J=8.8Hz), 7.29(d, 1H, J=7.4Hz), #7.37(dd, 1H, J=7.6Hz, 7.6Hz), 7.42-7.49(m, 2H), 7.52(s, 1H), 8.54(d, 1H, J=4.9Hz).114embedded image50%1.57-2.00(m, 4H), 2.12-2.30(m, 2H), 2.39(s, 3H), 2.90-3.13(m, 2H), 3.50-3.74(m, 2H), 3.75-3.86(m, 1H), 3.88(s, 3H), 2.89(s, 3H), 3.90(s, 6H), 3.97(s, 6H), 4.57(s, 2H), 6.66(s, 2H), 6.70(d, 2H, J=9.0Hz), 7.17-7.30(m, 5H), 7.66(br, 2H), 8.48(s, 1H), 8.58-8.70(m, 2H).115embedded image59%1.68-1.92(m, 4H), 2.12-2.27(m, 2H), 2.39(s, 3H), 2.94-3.08(m, 2H), 3.60(s, 2H), 3.74-3.83(m, 1H), 3.88(s, 3H), 3.89(s, 6H), 3.90(s, 3H), 3.93(s, 6H), 4.55(s, 2H), 6.66(s, 2H), 6.69(d, 2H), J=8.8Hz), 6.73-6.80(m, 2H), 7.20(d, 2H, J=8.8Hz), 7.64(s, 1H), 7.77(br, 1H), #8.48(s, 1H), 8.50(s, 1H), 8.65(s, 1H), 8.71(s, 1H).116embedded image85%1.76-1.93(m, 4H), 2.14-2.24(m, 2H), 2.39(s, 3H), 2.94-3.03(m, 2H), 3.57(s, 2H), 3.76-3.86(m, 1H), 3.88(s, 6H), 3.90(s, 3H), 3.96(s, 6H), 4.55(s, 2H), 6.67-6.73(m, 4H), 7.18-7.29(m, 6H), 7.34(dd, 1H, J=7.6Hz, 7.6Hz), 7.37-7.44(m, 2H), 7.59(s, 1H), 8.59(d, 1H, J=4.9Hz).117embedded image53%1.72-1.90(m, 4H), 2.12-2.22(m, 2H), 2.39(s, 3H), 2.95-3.05(m, 2H), 3.59(s, 2H), 3.74-3.85(m, 1H), 3.87(s, 3H), 3.88(s, 6H), 3.89(s, 3H), 3.93(s, 6H), 4.54(s, 2H), 6.67-6.70(m, 4H), 6.75(s, 2H), 7.19-7.23(m, 3H), 7.33(dd, 1H, J=7.4Hz, 7.4Hz), 7.36-7.40(m, 2H), 7.76(s, 1H), #8.50(d, 1H, J=1.8Hz), 8.69(s, 1H).118embedded image83%1.72-1.90(m, 4H), 2.09-2.20(m, 2H), 2.38(s, 3H), 2.97-3.06(m, 2H), 3.58(s, 2H), 3.73-3.84(m, 1H), 3.87(s, 3H), 3.88(s, 3H), 3.89(s, 6H), 3.92(s, 6H), 4.54(s, 2H), 6.66-6.71(m, 4H), 6.76(s, 2H), 7.18-7.24(m, 3H), 7.26-7.48(m, 7H).


PREPARATION EXAMPLE 146
Synthesis of 1-(tert-butoxycarbonyl)-4-[(4-methylphenyl)amino]piperidine



embedded image


1-(tert-Butoxycarbonyl)-4-piperidone (5.00 g) and p-toluidine (2.56 g) was treated in the same manner as described in Preparation Example 37 to give white powder of the title compound.


Yield: 5.79 g (83%).



1H-NMR (400 MHz, CDCl3) δ: 1.25-1.36 (m, 2H), 1.46 (s, 9H), 1.99-2.06 (m, 2H), 2.23 (s, 3H), 2.86-2.96 (m, 2H), 3.30-3.43 (m, 2H), 3.96-4.10 (m, 2H), 6.53 (d, 2H, J=8.4 Hz), 6.98 (d, 2H, J=8.0 Hz).


PREPARATION EXAMPLE 147
Synthesis of 1-(tert-butoxycarbonyl)-4-[N-(4-methylphenyl)-N-[[2-(3,4,5-trimethoxyphenyl)pyridin-4-yl]methyl]amino]piperidine



embedded image


1-(tert-Butoxycarbonyl)-4-[(4-methylphenyl)amino]piperidine (581 mg) and 4-chloromethyl-2-(3,4,5-trimethoxyphenyl)pyridine (588 mg) was treated in the same manner as described in Example 9 to give light yellow amorphous of the title compound.


Yield: 1.00 g (91%).



1H-NMR (400 MHz, CDCl3) δ: 1.45 (s, 9H), 1.55-1.59 (m, 2H), 1.81-1.90 (m, 2H), 2.23 (s, 3H), 2.72-2.86 (m, 2H), 3.81-3.94 (m, 1H), 3.89 (s, 3H), 3.93 (s, 6H), 4.14-4.30 (m, 2H), 4.45 (s, 2H), 6.66 (d, 2H, J=8.6 Hz), 7.02 (d, 2H, J=8.2 Hz), 7.13-7.16 (m, 3H), 7.55 (s, 1H), 8.55 (d, 1H, J=8.1 Hz).


PREPARATION EXAMPLE 148
Synthesis of 4-[N-(4-methylphenyl)-N-[[2-(3,4,5-trimethoxyphenyl)pyridin-4-yl]methyl]amino]piperidine Dihydrochloride



embedded image


1-(tert-Butoxycarbonyl)-4-[N-(4-methylphenyl)-N-[[2-(3,4,5-trimethoxyphenyl)pyridin-4-yl]methyl]amino]piperidine (1.00 g) was treated in the same manner as described in Preparation Example 94 to give light yellow powder of the title compound.


Yield: 924 mg (97%).


PREPARATION EXAMPLE 149
Synthesis of 1-(tert-butoxycarbonyl)-4-[N-(4-methylphenyl)-N-[[3-(3,4,5-trimethoxyphenyl)pyridin-5-yl]methyl]amino]piperidine



embedded image


1-(tert-Butoxycarbonyl)-4-[(4-methylphenyl)amino]piperidine (581 mg) and 5-chloromethyl-3-(3,4,5-trimethoxyphenyl)pyridine (588 mg) was treated in the same manner as described in Example 9 to give light yellow amorphous of the title compound.


Yield: 426 mg (39%).



1H-NMR (400 MHz, CDCl3) δ: 1.45 (s, 9H), 1.52-1.70 (m, 2H), 1.82-1.90 (m, 2H), 2.23 (s, 3H), 2.72-2.86 (m, 2H), 3.77-3.86 (m, 1H), 3.88 (s, 3H), 3.90 (s, 6H), 4.10-4.28 (m, 2H), 4.47 (s, 2H), 6.67 (s, 2H), 6.70 (d, 2H, J=8.6 Hz), 7.01 (d, 2H, J=8.2 Hz), 7.67 (dd, 1H, J=2.1 Hz, 2.1 Hz), 8.50 (d, 1H, J=2.0 Hz), 8.64 (d, 1H, J=2.2 Hz).


PREPARATION EXAMPLE 150
Synthesis of 4-[N-(4-methylphenyl)-N-[[3-(3,4,5-trimethoxyphenyl)pyridin-5-yl]methyl]amino]piperidine Dihydrochloride



embedded image


1-(tert-Butoxycarbonyl)-4-[N-(4-methylphenyl)-N-[[3-(3,4,5-trimethoxyphenyl)pyridin-5-yl]methyl]amino]piperidine (426 mg) was treated in the same manner as described in Preparation Example 94 to give light yellow powder of the title compound.


Yield: 400 mg (99%).


PREPARATION EXAMPLE 151
Synthesis of 1-(tert-butoxycarbonyl)-4-[N-(4-methylphenyl)-N-[3-(3,4,5-trimethoxyphenyl)benzyl]amino]piperidine



embedded image


1-(tert-Butoxycarbonyl)-4-[(4-methylphenyl)amino]piperidine (581 mg) and 3-(3,4,5-trimethoxyphenyl)benzyl chloride (586 mg) was treated in the same manner as described in Example 9 to give light yellow amorphous of the title compound.


Yield: 1.03 g (94%).



1H-NMR (400 MHz, CDCl3) δ: 1.44 (s, 9H), 1.50-1.66 (m, 2H), 1.83-1.90 (m, 2H), 2.23 (s, 3H), 2.72-2.85 (m, 2H), 3.82-3.92 (m, 1H), 3.88 (s, 3H), 3.89 (s, 6H), 4.11-4.30 (m, 2H), 4.47 (s, 2H), 6.68 (d, 2H, J=8.6 Hz), 6.71 (s, 2H), 7.00 (d, 2H, J=8.8 Hz), 7.23-7.27 (m, 1H), 7.32-7.44 (m, 3H).


PREPARATION EXAMPLE 152
Synthesis of 4-[N-(4-methylphenyl)-N-[3-(3,4,5-trimethoxyphenyl)benzyl]amino]piperidine Hydrochloride



embedded image


1-(tert-Butoxycarbonyl)-4-(4-methylphenyl)-N-[3-(3,4,5-trimethoxyphenyl)benzyl]amino]piperidine (1.03 g) was treated in the same manner as described in Preparation Example 94 to give light yellow powder of the title compound.


Yield: 882 mg (97%).


EXAMPLES 119 TO 126

These compounds were obtained by the condensation of amines obtained in Preparation Examples 148, 150 and 152 with chloride derivatives obtained in Preparation Examples 3, 42 and 48. Free bases obtained were then converted to the corresponding hydrochlorides. Yields and NMR data of their free bases are listed below.

Ex-NMR data (400 MHz, measuredampleStructureYieldas free bases, CDCl3) δ119embedded image66%1.70-1.82(m, 2H), 1.83-1.91(m, 2H), 2.13-2.25(m, 2H), 2.23(s, 3H), 2.96-3.02(m, 2H), 3.57(s, 2H), 3.73-3.83(m, 1H), 3.89(s, 3H), 3.90(s, 3H), 3.93(s, 6H), 3.96(s, 6H), 4.50(s, 2H), 6.64(d, 2H, J=8.8Hz), 7.01(d, 2H, J=8.5Hz), 7.13-7.17(m, 3H), 7.20(d, 1H, J=4.9Hz), 7.22(s, 2H), 7.56(s, 1H), 7.59(s, 1H), 8.54(d, #1H, J=5.1Hz), 8.59(d, 1H, J=4.9Hz).120embedded image41%1.60-1.91(m, 4H), 2.12-2.24(m, 2H), 2.23(s, 3h), 2.95-3.08(m, 2H), 3.59(s, 2H), 3.73-3.83(m, 1H), 3.89(s, 3H), 3.89(s, 3H), 3.92(s, 6H), 3.93(s, 6H), 4.49(s, 2H), 6.63(d, 2H, J=8.6Hz), 6.75(s, 2H), 7.00(d, 2H, J=8.6Hz), 7.13-7.16(m, 3H), 7.55(s, 1H), 7.76(s, 1H), 8.50(d, 1H, J=1.8Hz), 8.53(d, 1H, J=5.1Hz), 8.70(s, 1H).121embedded image69%1.67-1.80(m, 2H), 1.81-1.89(m, 2H), 2.09-2.20(m, 2H), 2.22(s, 3H), 2.98-3.06(m, 2H), 3.58(s, 2H), 3.72-3.81(m, 1H), 3.88(s, 3H), 3.89(s, 3H), 3.92(s, 6H), 3.92(s, 6H), 4.49(s, 2H), 6.63(d, 2H, J=8.4Hz), 6.76(s, 2H), 7.00(d, 2H, J=8.6Hz), 7.12-7.15(m, 3H), 7.26-7.32(m, 1H), 7.37(dd, 1H, J=7.6Hz, 7.6Hz), #7.41-7.48(m, 2H), 7.55(s, 1H), 8.53(d, 1H, J=5.0Hz).122embedded image47%1.55-2.00(m, 4H), 2.12-2.31(m, 2H), 2.22(s, 3H), 2.93-3.10(m, 2H), 3.60(br, 2H), 3.69-3.80(m, 1H), 3.88(s, 3H), 3.89(s, 6H), 3.90(s, 3H), 3.96(s, 6H), 4.53(s, 2H), 6.66(s, 2H), 6.69(d, 2H, J=8.6Hz), 7.00(d, 2H, J=8.6Hz), 7.19-7.27(m, 4H), 7.68(s, 1H), 8.50(s, 1H), 8.60(d, 1H, J=4.9Hz), 8.64(d, 1H, J=2.2Hz).123embedded image34%1.67-1.98(m, 4H), 2.10-2.38(m, 2H), 2.22(s, 3H), 2.85-3.10(m, 2H), 3.53-3.67(s, 2H), 3.67-3.79(m, 1H), 3.88(s, 3H), 3.89(s, 6H), 3.90(s, 3H), 3.93(s, 6H), 4.51(s, 2H), 6.66(s, 2H), 6.68(d, 2H, J=8.8Hz), 6.76(s, 2H), 7.00(d, 2H, J=8.2Hz), 7.67(s, 1H), 7.77(br, 1H), 8.47-8.53(m, 2H), 8.63(d, 1H, #J=2.0Hz), 8.70(s, 1H).124embedded image91%1.73-1.92(m, 4H), 2.12-2.26(m, 2H), 2.21(s, 3H), 2.92-3.02(m, 2H), 3.57(s, 2H), 3.72-3.82(m, 1H), 3.87(s, 3H), 3.88(s, 6H), 3.90(s, 3H), 3.95(s, 6H), 4.53(s, 2H), 6.67(d, 2H, J=7.8Hz), 6.70(s, 2H), 6.99(d, 2H, J=8.0Hz), 7.18-7.25(m, 4H), 7.33(dd, 1H, J=7.4Hz), 7.4Hz), 7.38(d, 1H, J=7.2Hz), 7.42(s, 1H), 7.59(s, 1H), #8.58(d, 1H, J=4.7Hz).125embedded image74%1.70-1.92(m, 4H), 2.10-2.28(m, 2H), 2.21(s, 3H), 2.92-3.06(m, 2H), 3.58(s, 2H), 3.72-3.82(m, 1H), 3.87(s, 3H), 3.88(s, 6H), 3.89(s, 3H), 3.93(s, 6H), 4.51(s, 2H), 6.66(d, 2H, J=8.6Hz), 6.70(s, 2H), 6.75(s, 2H), 7.23(d, 1H, J=7.0Hz), 7.32(dd, 1H, J=7.6Hz, 7.6Hz), 7.37(d, 1H, J=7.8Hz), 7.41(s, 1H), 7.77(s, 1H), 8.49(s, 1H), #8.69(s, 1H).126embedded image84%1.71-1.88(m, 4H), 2.08-2.18(m, 2H), 2.21(s, 3H), 2.96-3.04(m, 2H), 3.58(s, 2H), 3.71-3.83(m, 1H), 3.87(s, 3H), 3.88(s, 6H), 3.89(s, 3H), 3.92(s, 6H), 4.52(s, 2H), 6.66(d, 2H, J=8.6Hz), 6.70(s, 2H), 6.76(s, 2H), 6.98(d, 2H, J=8.3Hz), 7.22-7.47(m, 8H).


PREPARATION EXAMPLE 153
Synthesis of 1-(tert-butoxycarbonyl)-4-[[4-(trifluoromethyl)phenyl]amino]piperidine



embedded image


1-(tert-Butoxycarbonyl)-4-piperidone (5.00 g) and 4-(trifluoromethyl)aniline (3.85 g) was treated in the same manner as described in Preparation Example 37 to give white powder of the title compound.


Yield: 3.30 g (40%).



1H-NMR (400 MHz, CDCl3) δ: 1.30-1.41 (m, 2H), 1.47 (s, 9H), 2.00-2.07 (m, 2H), 2.88-2.99 (m, 2H), 3.32-3.52 (m, 1H), 3.83-3.89 (m, 1H), 4.00-4.14 (m, 2H), 6.59 (d, 2H, J=8.4 Hz), 7.39 (d, 2H, J=8.4 Hz).


PREPARATION EXAMPLE 154
Synthesis of 1-(tert-butoxycarbonyl)-4-[N-[4-(trifluoromethyl)phenyl]-N-[[2-(3,4,5-trimethoxyphenyl)pyridin-4-yl]methyl]amino]piperidine



embedded image


1-(tert-Butoxycarbonyl)-4-[[4-(trifluoromethyl)phenyl]amino]piperidine (688 mg) and 4-chloromethyl-2-(3,4,5-trimethoxyphenyl)pyridine (588 mg) was treated in the same manner as described in Example 9 to give light yellow amorphous of the title compound.


Yield: 412 mg (34%).



1H-NMR (400 MHz, CDCl3) δ: 1.45 (s, 9H), 1.54-1.68 (m, 2H), 1.81-1.90 (m, 2H), 2.77-2.90 (m, 2H), 3.89 (s, 3H), 3.92 (s, 6H), 3.98-4.07 (m, 1H), 4.18-4.33 (m, 2H), 4.55 (s, 2H), 6.73 (d, 2H, J=8.8 Hz), 7.09 (d, 1H, J=3.7 Hz), 7.13 (s, 2H), 7.44 (d, 2H, J=8.8 Hz), 7.49 (s, 1H), 8.58 (d, 1H, J=5.1 Hz).


PREPARATION EXAMPLE 155
Synthesis of 4-[N-[4-(trifluoromethyl)phenyl]-N-[[2-(3,4,5-trimethoxyphenyl)pyridin-4-yl]methyl]amino]piperidine Dihydrochloride



embedded image


1-(tert-Butoxycarbonyl)-4-[N-[4-(trifluoromethyl)phenyl]-N-[[2-(3,4,5-trimethoxyphenyl)pyridin-4-yl]methyl]amino]piperidine (412 mg) was treated in the same manner as described in Preparation Example 94 to give light yellow powder of the title compound.


Yield: 359 mg (91%).


PREPARATION EXAMPLE 156
Synthesis of 1-(tert-butoxycarbonyl)-4-N-[4-(trifluoromethyl)phenyl]-N-[3-(3,4,5-trimethoxyphenyl)benzyl]amino]piperidine:



embedded image


1-(tert-Butoxycarbonyl)-4-[[4-(trifluoromethyl)phenyl]amino]piperidine (689 mg) and 3-(3,4,5-trimethoxyphenyl)benzyl chloride (586 mg) was treated in the same manner as described in Example 9 to give light yellow amorphous of the title compound.


Yield: 522 mg (44%).



1H-NMR (400 MHz, CDCl3) δ: 1.45 (s, 9H), 1.58-1.70 (m, 2H), 1.83-1.90 (m, 2H), 2.76-2.87 (m, 2H), 3.87 (s, 6H), 3.88 (s, 3H), 3.96-4.06 (m, 1H), 4.15-4.30 (m, 2H), 4.58 (s, 2H), 6.68 (s, 2H), 6.76 (d, 2H, J=8.8 Hz), 7.19 (s, 1H, J=7.4 Hz), 7.33-7.44 (m, 5H).


PREPARATION EXAMPLE 157
Synthesis of 4-[N-[4-(trifluoromethyl)phenyl]-N-[3-(3,4,5-trimethoxyphenyl)benzyl]amino]piperidine Hydrochloride



embedded image


1-(tert-Butoxycarbonyl)-4-[N-[4-(trifluoromethyl)phenyl]-N-[3-(3,4,5-trimethoxyphenyl)benzyl]amino]piperidine (522 mg) was treated in the same manner as described in Preparation Example 94 to give light yellow powder of the title compound.


Yield: 460 mg (99%).


EXAMPLE 127 TO 132

These compounds were obtained by the condensation of amines obtained in Preparation Examples 155 and 157 with chloride derivatives obtained in Preparation Examples 3, 42 and 48. Free bases obtained were then converted to the corresponding hydrochlorides. Yields and NMR data of their free bases are listed below.

Ex-NMR data (400 MHz, measured asampleStructureYieldfree bases, CDCl3) δ127embedded image72%1.74-1.92(m, 4H), 2.17-2.26(m, 2H), 2.96-3.04(m, 2H), 3.59(s, 2H), 3.89(s, 3H), 3.90(s, 3H), 3.91(s, 6H), 3.96(s, 6H), 4.60(s, 2H), 6.72(d, 2H, J=8.8Hz), 7.10(d, 1H, J=4.9Hz), 7.13(s, 2H), 7.20(d, 1H, J=5.1Hz), 7.43(d, 2H, J=8.8Hz), 7.50(s, 1H), 7.59(s, 1H), 8.56(d, 1H, J=4.9Hz), 8.58(d, 1H, J=5.1Hz).128embedded image51%1.70-1.90(m, 4H), 2.14-2.28(m, 2H), 2.96-3.08(m, 2H), 3.61(s, 2H), 3.87-3.96(m, 1H), 3.89(s, 3H), 3.90(s, 3H), 3.91(s, 6H), 3.93(s, 6H), 4.59(s, 2H), 6.71(d, 2H, J=8.8Hz), 6.75(s, 2H), 7.07-7.15(m, 3H), 7.43(d, 2H, J=8.8Hz), 7.49(s, 1H), 7.76(s, 1H), 8.51(d, 1H, J=1.8Hz), 8.57(d, 1H, J=5.1Hz), 8.70(s, 1H).129embedded image59%1.72-1.88(m, 4H), 2.11-2.24(m, 2H), 2.98-3.10(m, 2H), 3.59(s, 2H), 3.87-3.95(m, 1H), 3.88(s, 3H), 3.89(s, 3H), 3.90(s, 6H), 3.92(s, 6H), 4.59(s, 2H), 6.71(d, 2H, J=9.0Hz), 6.76(s, 2H), 7.08(d, 1H, J=5.1Hz), 7.12(s, 2H), 7.29(d, 1H, J=7.4Hz), 7.37(dd, 1H, J=7.6Hz, 7.6Hz), 7.40-7.52(m, 5H), 8.56(d, 1H, J=5.1Hz).130embedded image81%1.78-1.94(m, 4H), 2.15-2.27(m, 2H), 2.94-3.08(m, 2H), 3.58(s, 2H), 3.86(s, 6H), 3.87(s, 3H), 3.90(s, 3H), 3.96(s, 6H), 4.63(s, 2H), 6.67(s, 2H), 6.74(d, 2H, J=8.8Hz), 7.17-7.24(m, 4H), 7.34-7.45(m, 5H), 7.59(s, 1H), 8.59(d, 1H, J=5.1Hz).131embedded image54%1.75-1.90(m, 4H), 2.14-2.24(m, 2H), 2.95-3.04(m, 2H), 3.60(s, 2H), 3.84-3.88(m, 1H), 3.86(m, 1H), 3.87(s, 3H), 3.90(s, 3H), 3.93(s, 6H), 4.61(s, 2H), 6.67(s, 2H), 6.72-6.77(m, 4H), 7.18(d, 1H, J=7.4Hz), 7.33-7.43(m, 5H), 7.76(s, 1H), 8.50(d, 1H, J=1.9Hz), 8.69(d, 1H, J=1.9Hz).132embedded image67%1.76-1.88(m, 4H), 2.11-2.19(m, 2H), 2.98-3.06(m, 2H), 3.59(s, 2H), 3.86(s, 6H), 3.87(s, 3H), 3.89(s, 3H), 3.92(s, 6H), 4.61(s, 2H), 6.67(s, 2H), 6.73(d, 2H, J=8.8Hz), 6.76(s, 2H), 7.18(d, 1H, J=7.3Hz), 7.29(d, 1H, J=7.6Hz), 7.32-7.47(m, 8H).


PREPARATION EXAMPLE 158
Synthesis of 4-(4-bromophenyl)amino-1-(tert-butoxycarbonyl)piperidine



embedded image


1-(tert-Butoxycarbonyl)-4-piperidone (5.00 g) and 4-bromoaniline (4.11 g) was treated in the same manner as described in Example 37 to give white crystalline powder of the title compound.


Yield: 3.09 g (36%).



1H-NMR (400 MHz, CDCl3) δ: 1.25-1.37 (m, 2H), 1.46 (s, 9H), 1.97-2.05 (m, 2H), 2.86-2.96 (m, 2H), 3.33-3.42 (m, 2H), 3.47-3.57 (m, 1H), 3.96-4.12 (m, 2H), 6.47 (d, 2H, J=8.8 Hz), 7.24 (d, 2H, J=9.0 Hz).


PREPARATION EXAMPLE 159
Synthesis of 4-[N-(4-bromophenyl)-N-[[2-(3,4,5-trimethoxyphenyl)pyridin-4-yl]methyl]amino]-1-(tert-butoxycarbonyl)piperidine



embedded image


4-(4-Bromophenyl)amino-1-(tert-butoxycarbonyl)piperidine (711 mg) and 4-chloromethyl-2-(3,4,5-trimethoxyphenyl)pyridine (588 mg) was treated in the same manner as described in Example 9 to give light yellow amorphous of the title compound.


Yield: 607 mg (50%).



1H-NMR (400 MHz, CDCl3) δ: 1.45 (s, 9H), 1.50-1.64 (m, 2H), 1.81-1.88 (m, 2H), 2.74-2.88 (m, 2H), 3.86-3.94 (m, 1H), 3.89 (s, 3H), 3.93 (s, 6H), 4.14-4.32 (m, 2H), 4.46 (s, 2H), 6.59 (d, 2H, J=9.1 Hz), 7.10 (d, 1H, J=5.2 Hz), 7.14 (s, 2H), 7.28 (d, 2H, J=9.1 Hz), 7.50 (s, 1H), 8.57 (d, 1H, J=5.0 Hz).


PREPARATION EXAMPLE 160
Synthesis of 4-[N-(4-bromophenyl)-N-[[2-(3,4,5-trimethoxyphenyl)pyridin-4-yl]methyl]amino]piperidine Dihydrochloride



embedded image


4-[N-(4-Bromophenyl)-N-[[2-(3,4,5-trimethoxyphenyl)pyridinyl]methyl]amino]-1-(tert-butoxycarbonyl)piperidine (607 mg) was treated in the same manner as described in Preparation Example 94 to give light yellow powder of the title compound.


Yield: 541 mg (93%).


PREPARATION EXAMPLE 161
Synthesis of 4-[N-(4-bromophenyl)-N-[[3-(3,4,5-trimethoxyphenyl)pyridin-5-yl]methyl]amino]-1-(tert-butoxycarbonyl)piperidine



embedded image


4-(4-Bromophenyl)amino-1-(tert-butoxycarbonyl)piperidine (711 mg) and 5-chloromethyl-3-(3,4,5-trimethoxyphenyl)pyridine (588 mg) was treated in the same manner as described in Example 9 to give light yellow amorphous of the title compound.


Yield: 347 mg (28%).



1H-NMR (400 MHz, CDCl3) δ: 1.45 (s, 9H), 1.52-1.67 (m, 2H), 1.80-1.89 (m, 2H), 2.72-2.87 (m, 2H), 3.82-3.92 (m, 1H), 3.89 (s, 3H), 3.90 (s, 6H), 4.14-4.33 (m, 2H), 4.50 (s, 2H), 6.63 (d, 2H, J=9.2 Hz), 6.65 (s, 2H), 7.28 (d, 2H, J=9.4 Hz), 7.61 (s, 1H), 8.47 (d, 1H, J=2.0 Hz), 8.67 (d, 1H, J=2.2 Hz).


PREPARATION EXAMPLE 162
Synthesis of 4-[N-(4-bromophenyl)-N-[[3-(3,4,5-trimethoxyphenyl)pyridin-5-yl]methyl]amino]piperidine Dihydrochloride



embedded image


4-N-(4-Bromophenyl)-N-[[3-(3,4,5-trimethoxyphenyl)pyridin-5-yl]methyl]amino]-1-(tert-butoxycarbonyl)piperidine (347 mg) was treated in the same manner as described in Preparation Example 94 to give light yellow powder of the title compound.


Yield: 302 mg (91%).


PREPARATION EXAMPLE 163
Synthesis of 4-[N-(4-bromophenyl)-N-[3-(3,4,5-trimethoxyphenyl)benzyl]amino]-1-(tert-butoxycarbonyl)piperidine



embedded image


4-(4-Bromophenyl)amino-1-(tert-butoxycarbonyl)piperidine (711 mg) and 3-(3,4,5-trimethoxyphenyl)benzyl chloride (586 mg) was treated in the same manner as described in Example 9 to give light yellow amorphous of the title compound.


Yield: 1.14 g (93%).



1H-NMR (400 MHz, CDCl3) δ: 1.45 (s, 9H), 1.52-1.67 (m, 2H), 1.80-1.89 (m, 2H), 2.72-2.86 (m, 2H), 3.84-3.91 (m, 1H), 3.88 (s, 3H), 3.89 (s, 6H), 4.11-4.32 (m, 2H), 4.49 (s, 2H), 6.62 (d, 2H, J=9.2 Hz), 6.69 (s, 2H), 7.19 (d, 1H, J=7.6 Hz), 7.25 (d, 2H, J=5.5 Hz), 7.32-7.42 (m, 3H).


PREPARATION EXAMPLE 164
Synthesis of 4-[N-(4-bromophenyl)-N-[3-(3,4,5-trimethoxyphenyl)benzyl]amino]piperidine Hydrochloride



embedded image


4-[N-(4-Bromophenyl)-N-[3-(3,4,5-trimethoxyphenyl)benzyl]amino]-1-(tert-butoxycarbonyl)piperidine (1.14 g) was treated in the same manner as described in Preparation Example 94 to give light yellow powder of the title compound.


Yield: 973 mg (84%).


EXAMPLES 133 TO 140

These compounds were obtained by the condensation of amines obtained in Preparation Examples 160, 162 and 164 with chloride derivatives obtained in Preparation Examples 3, 42 and 48. Free bases obtained were then converted to the corresponding hydrochlorides. Yields and NMR data of their free bases are listed below.

NMR data (400 MHz,measured as freeExampleStructureYieldbases, CDCl3) δ133embedded image52%1.70-1.90 (m, 4H), 2.14-2.25 (m, 2H), 2.94-3.04 (m, 2H), 3.58 (s, 2H), 3.73-3.84 (m, 1H), 3.89 (s, 3H), 3.90 (s, 3H), 3.92 (s, 6H), 3.96 (s, 6H), 4.52 (s, 2H), 6.57 (d, 2H, J=8.8 Hz), 7.10 (d, 1H, J=4.9 Hz), 7.14 (s, 2H), 7.20 (d, 1H, J=4.9 Hz), 7.22 (s, 2H), 7.26 (d, 2H, J=8.5 Hz), 7.51 (s, 1H), 7.59 (s, 1H), 8.56 (d, 1H, J=4.9 Hz), 8.59 (d, 1H, J=4.9 Hz).134embedded image56%1.68-1.88 (m, 4H), 2.12-2.24 (m, 2H), 2.95-3.04 (m, 2H), 3.59 (s, 2H), 3.72-3.84 (m, 1H), 3.89 (s, 3H), 3.90 (s, 3H), 3.92 (s, 6H), 3.93 (s, 6H), 4.50 (s, 2H), 6.57 (d, 2H, J=9.2 Hz), 6.74 (s, 2H), 7.09 (d, 1H, J=3.9 Hz), 7.13 (s, 2H), 7.26 (d, 2H, J=8.8 Hz), 7.50 (s, 1H), 7.75 (s, 1H), 8.50 (d, 1H, J=2.0 Hz), 8.55 (d, 1H, J=5.0 Hz), 8.69 (d, 1H, J=2.0 Hz).135embedded image65%1.70-1.86 (m, 4H), 2.10-2.20 (m, 2H), 2.97-3.08 (m, 2H), 3.59 (s, 2H), 3.72-3.82 (m, 1H), 3.89 (s, 6H), 3.92 (s, 6H), 3.92 (s, 6H), 4.50 (s, 2H), 6.56 (d, 2H, J=9.2 Hz), 6.76 (s, 2H), 7.09 (d, 1H, J=5.1 Hz), 7.13 (s, 2H), 7.23-7.33 (m, 3H), 7.37 (dd, 1H, J=7.4 Hz), 7.41-7.48 (m, 2H), 7.49 (s, 1H), 8.54 (d, 1H, J=5.1 Hz).136embedded image49%1.77-1.93 (m, 4H), 2.12-2.30 (m, 2H), 2.94-3.10 (m, 2H), 3.60 (s, 2H), 3.73-3.83 (m, 1H), 3.88 (s, 3H), 3.89 (s, 6H), 3.90 (s, 3H), 3.96 (s, 6H), 4.55 (s, 2H), 6.61 (d, 2H, J=9.2 Hz), 6.65 (s, 2H), 7.19-7.29 (m, 5H), 7.62(br, 2H), 8.47 (d, 1H, J=1.6 Hz), 8.60 (d, 1H, J=4.9 Hz), 8.66 (d, 1H, J=2.0 Hz).137embedded image50%1.70-1.92 (m, 4H), 2.12-2.27 (m, 2H), 2.93-3.07 (m, 2H), 3.60 (s, 3H), 3.89 (s, 6H), 3.90 (s, 3H), 3.93 (s, 6H), 4.54 (s, 2H), 6.60 (d, 2H, J=9.0 Hz), 6.64 (s, 2H), 6.73-6.80 (m, 2H), 7.25 (s, 2H), 7.61 (s, 1H), 7.77(br, 1H), 8.45 (d, 1H, J=1.7 Hz), 8.50 (d, 1H, J=1.7 Hz), 8.65 (d, 1H, J=2.0 Hz).138embedded image81%1.75-1.90 (m, 4H), 2.17-2.24 (m, 2H), 2.94-3.02 (m, 2H), 3.57 (s, 2H), 3.72-3.83 (m, 1H), 3.88 (s, 3H), 3.88 (s, 6H), 3.90 (s, 3H), 3.95 (s, 6H), 4.54 (s, 2H), 6.60 (d, 2H, J=9.2 Hz), 6.69 (s, 2H), 7.18-7.27 (m, 6H), 7.32-7.42 (m, 3H), 7.60 (s, 1H), 8.58 (d, 1H, J=4.9 Hz).139embedded image80%1.72-1.90 (m, 4H), 2.13-2.21 (m, 2H), 2.94-3.05 (m, 2H), 3.59 (s, 2H), 3.72-3.82 (m, 1H), 3.87 (s, 3H), 3.88 (s, 6H), 3.89 (s, 3H), 3.93 (s, 6H), 4.53 (s, 2H), 6.60 (d, 2H, J=9.0 Hz), 6.68 (s, 2H), 6.75 (s, 2H), 7.19 (d, 1H, J=7.2 Hz), 7.24 (d, 2H, J=9.0 Hz), 7.31-7.41 (m, 3H), 7.76 (s, 1H), 8.50 (d, 1H, J=1.8 Hz), 8.70 (s, 1H).140embedded image78%1.72-1.88 (m, 4H), 2.08-2.18 (m, 2H), 2.97-3.06 (m, 2H), 3.58 (s, 2H), 3.71-3.82 (m, 1H), 3.87 (s, 3H), 3.88 (s, 6H), 3.89 (s, 3H), 3.92 (s, 6H), 4.53 (s, 2H), 6.59 (d, 2H, J=9.3 Hz), 6.68 (s, 2H), 6.76 (s, 2H), 7.18 (d, 1H, J=7.3 Hz), 7.21-7.47 (m, 9H)


PREPARATION EXAMPLE 165
Synthesis of 1-(tert-butoxycarbonyl)-4-[(4-chlorophenyl)amino]piperidine



embedded image


1-(tert-Butoxycarbonyl)-4-piperidone (5.00 g) and 4-chloroaniline (3.05 g) was treated in the same manner as described in Preparation Example 37 to give white powder of the title compound.


Yield: 3.80 g (49%).



1H-NMR (400 MHz, CDCl3) δ: 1.24-1.38 (m, 2H), 1.46 (s, 9H), 1.97-2.05 (m, 2H), 2.86-2.96 (m, 2H), 3.32-3.42 (m, 2H), 3.51 (br, 1H), 6.52 (d, 2H, J=9.0 Hz), 7.11 (d, 2H, J=9.0 Hz).


PREPARATION EXAMPLE 166
Synthesis of 1-(tert-butoxycarbonyl)-4-[N-(4-chlorophenyl)-N-[[2-(3,4,5-trimethoxyphenyl)pyridin-4-yl]methyl]amino]piperidine



embedded image


1-(tert-Butoxycarbonyl)-4-[(4-chlorophenyl)amino]piperidine (621 mg) and 4-chloromethyl-2-(3,4,5-trimethoxyphenyl)pyridine (588 mg) was treated in the same manner as described in Example 9 to give light yellow amorphous of the title compound.


Yield: 789 mg (69%).



1H-NMR (400 MHz, CDCl3) δ: 1.45 (s, 9H), 1.51-1.68 (m, 2H), 1.80-1.89 (m, 2H), 2.72-2.86 (m, 2H), 3.87-3.90 (m, 1H), 3.89 (s, 3H), 3.93 (s, 6H), 4.64 (s, 2H), 6.64 (d, 2H, J=9.0 Hz), 7.14 (d, 1H, J=5.3 Hz), 7.15 (d, 2H, J=9.0 Hz), 7.51 (s, 2H), 8.57 (d, 2H, J=5.1 Hz).


PREPARATION EXAMPLE 167
Synthesis of 4-[N-(4-chlorophenyl)-N-[[2-(3,4,5-trimethoxyphenyl)pyridin-4-yl]methyl]amino]piperidine Dihydrochloride



embedded image


1-(tert-Butoxycarbonyl)-4-[N-(4-chlorophenyl)-N-[[2-(3,4,5-trimethoxyphenyl)pyridin-4-yl]methyl]amino]piperidine (789 mg) was treated in the same manner as described in Preparation Example 94 to give light yellow powder of the title compound.


Yield: 673 mg (90%).


PREPARATION EXAMPLE 168
Synthesis of 1-(tert-butoxycarbonyl)-4-[N-(4-chlorophenyl)-N-[[3-(3,4,5-trimethoxyphenyl)pyridin-5-yl]methyl]amino]piperidine



embedded image


1-(tert-Butoxycarbonyl)-4-[(4-chlorophenyl)amino]piperidine (621 mg) and 5-chloromethyl-3-(3,4,5-trimethoxyphenyl)pyridine (588 mg) was treated in the same manner as described in Example 9 to give light yellow amorphous of the title compound.


Yield: 268 mg (24%).



1H-NMR (400 MHz, CDCl3) δ: 1.45 (s, 9H), 1.56-1.76 (m, 2H), 1.80-1.90 (m, 2H), 2.76-2.83 (m, 2H), 3.86-3.90 (m, 1H), 3.89 (s, 3H), 3.90 (s, 6H), 4.15-4.30 (m, 2H), 4.50 (s, 2H), 6.66 (s, 2H), 6.68 (d, 2H, J=9.2 Hz), 7.15 (d, 2H, J=9.0 Hz), 7.63 (s, 1H), 8.47 (d, 1H, J=2.0 Hz), 8.66 (d, 1H, J=2.0 Hz).


PREPARATION EXAMPLE 169
Synthesis of 4-[N-(4-chlorophenyl)-N-[[3-(3,4,5-trimethoxyphenyl)pyridin-5-yl]methyl]amino]piperidine Dihydrochloride



embedded image


1-(tert-Butoxycarbonyl)+[N-(4-chlorophenyl)-N-[[3-(3,4,5-trimethoxyphenyl)pyridin-5-yl]methyl]amino]piperidine (268 mg) was treated in the same manner as described in Preparation Example 94 to give light yellow powder of the title compound.


Yield: 233 mg (91%).


PREPARATION EXAMPLE 170
Synthesis of 1-(tert-butoxycarbonyl)-4-[N-(4-chlorophenyl)-N-[3-(3,4,5-trimethoxyphenyl)benzyl]amino]piperidine



embedded image


1-(tert-Butoxycarbonyl)-4-[4-(chlorophenyl)amino]piperidine (622 mg) and 3-(3,4,5-trimethoxyphenyl)benzyl chloride (586 mg) was treated in the same manner as described in Example 9 to give light yellow amorphous of the title compound.


Yield: 1.04 g (92%).



1H-NMR (400 MHz, CDCl3) δ: 1.45 (s, 9H), 1.58-1.67 (m, 2H), 1.82-1.91 (m, 2H), 2.74-2.86 (m, 2H), 3.85-3.92 (m, 1H), 3.88 (s, 3H), 3.89 (s, 6H), 4.35-4.31 (m, 2H), 4.49 (s, 2H), 6.66 (d, 2H, 3=9.2 Hz), 6.70 (s, 2H), 7.12 (d, 2H, J=9.0 Hz), 7.20 (d, 2H, J=7.3 Hz), 7.33-7.43 (m, 3H).


PREPARATION EXAMPLE 171
Synthesis of 4-[N-(4-chlorophenyl)-N-[3-(3,4,5-trimethoxyphenyl)benzyl]amino]piperidine Hydrochloride



embedded image


1-(tert-Butoxycarbonyl)-4-[N-(4-chlorophenyl)-N-[3-(3,4,5-trimethoxyphenyl) benzyl]amino]piperidine (1.04 g) was treated in the same manner as described in Preparation Example 94 to give light yellow powder of the title compound.


Yield: 899 mg (97%).


EXAMPLE 141 TO 148

These compounds were obtained by the condensation of amines obtained in Preparation Examples 167, 169 and 171 with chloride derivatives obtained in Preparation Examples 3, 42 and 48. Free bases obtained were then converted to the corresponding hydrochlorides. Yields and NMR data of their free bases are listed below.

NMR data (400 MHz,measured as freeExampleStructureYieldbases, CDCl3) δ141embedded image66%1.71-1.90 (m. 4H), 2.15-2.24 (m, 2H), 2.95-3.05 (m, 2H), 3.58 (s, 2H), 3.73-3.84 (m, 1H), 3.89 (s, 3H), 3.90 (s, 3H), 3.93 (s, 6H), 3.96 (s, 6H), 4.52 (s, 2H), 6.62 (d, 2H, J=9.0 Hz), 7.10-7.16 (m, 5H), 7.19-7.24 (m, 3H), 7.52 (s, 1H), 7.59 (s, 1H), 8.56 (d, 1H, J=4.9 Hz ,8.59 (d, 1H, J=4.9 Hz).142embedded image67%1.69-1.90 (m, 1H), 2.12-2.25 (m, 2H), 2.93-3.06 (m, 2H), 3.59 (s, 2H), 3.72-3.83 (m, 1H), 3.89 (s, 3H), 3.90 (s, 3H), 3.92 (s, 6H), 3.93 (s, 6H), 4.50 (s, 2H), 6.62 (d, 2H, J=9.2 Hz), 6.75 (s, 2H), 7.10 (d, 1H, J=5.3 Hz), 7.13 (s, 2H), 7.13 (d, 2H, J=9.0 Hz), 7.50 (s, 1H), 7.76 (s, 1H), 8.50 (d, 1H, J=1.8 Hz), 8.55 (d, 1H, J=5.1 Hz), 8.70 (d, 1H, J=1.8 Hz).143embedded image70%1.65-1.88 (m, 4H), 2.08-2.20 (m, 2H), 2.97-3.07 (m. 2H), 3.59 (s, 2H), 3.71-3.82 (m, 1H), 3.88 (s, 3H), 3.89 (s, 3H), 3.90-3.93 (m, 3H), 4.50 (s, 2H), 6.61 (d, 2H, J=8.2 Hz), 6.76 (s, 2H), 7.07-7.14 (m, 5H), 7.28 (d, 1H, J=6.6 Hz), 7.37 (dd, 1H, J=7.4 Hz), 7.40-7.47 (m, 2H), 7.50 (s, 1H), 8.54 (d, 1H, J=5.1 Hz).144embedded image57%1.56-1.93 (m, 4H), 2.12-2.30 (m, 2H), 2.92-3.10 (m, 2H), 3.53-3.68 (m, 2H), 3.70-3.82 (m, 1H), 3.88 (s, 3H), 3.89 (s, 6H), 3.90 (s, 3H), 3.96 (s, 6H), 4.56 (s, 2H), 6.64-6.70 (m, 4H), 7.13 (d, 2H, J=9.0 Hz), 7.20-7.30 (m, 3H), 7.63 (br, 2H), 8.48 (s, 1H), 8.60 (d, 1H, J=5.1 Hz), 8.66 (d, 1H, J=2.2 Hz.145embedded image70%1.71-1.92 (m, 4H), 2.12-2.27 (m, 2H), 2.94-3.07 (m, 2H), 3.59 (s, 2H), 3.69-3.81 (s, 1H), 3.88 (s, 3H), 3.89 (s, 6H), 3.90 (s, 3H), 3.93 (s, 6H), 4.54 (s, 2H), 6.63-6.68 (m, 4H), 6.75 (s, 2H), 7.13 (d, 2H, J=9.0 Hz), 7.62 (s, 1H), 7.76 (s, 1H), 8.47 (d, 1H, J=1.8 Hz), 8.50 (d, 1H, J=1.8 Hz), 8.65 (d, 1H, J=2.0 Hz), 8.70 (s, 1H).146embedded image78%1.75-1.91 (m, 4H), 2.13-2.23 (m, 2H), 2.94-3.02 (m, 2H), 3.57 (s, 2H), 3.73-3.82 (m, 1H), 3.88 (s, 3H), 3.88 (s, 6H), 3.90 (s, 3H), 3.96 (s, 6H), 4.55 (s, 2H), 6.65 (d, 2H, J=9.0 Hz), 6.68 (s, 2H), 7.11 (d, 2H, J=8.5 Hz), 7.18-7.24 (m, 4H), 7.32-7.42 (m, 3H), 7.59 (s, 1H), 8.59 (d, 1H, J=4.9 Hz).147embedded image63%1.72-1.89 (m, 4H), 2.12-2.21 (m, 2H), 2.94-3.03 (m, 2H), 3.59 (s, 2H), 3.72-3.82 (m, 1H), 3.87 (s, 3H), 3.88 (s, 6H), 3.90 (s, 3H), 3.93 (s, 6H), 4.53 (s, 2H), 6.64 (d, 2H, J=9.2 Hz), 6.68 (s, 2H), 6.75 (s, 2H), 7.11 (d, 2H), 7.19 (d, 1H, J=7.6 Hz), 7.32-7.40 (m, 3H), 7.76 (s, 1H), 8.50 (d, 1H, J=1.8 Hz), 8.69 (d, 1H, J=2.2 Hz).148embedded image68%1.72-1.87 (m, 4H), 2.08-2.18 (m, 2H), 2.97-3.05 (m, 2H), 3.58 (s, 2H), 3.71-3.82 (m, 1H), 3.87 (s, 3H), 3.88 (s, 6H), 3.89 (s, 3H), 3.92 (s, 6H), 4.53 (s, 2H), 6.64 (dt, 2H, J=9.3 Hz, 2.9 Hz), 6.68 (s, 2H), 6.76 (s, 2H), 7.10 (dt, 2H, J=9.0 Hz, 2.8 Hz), 7.19 (d, 1H, J=7.6 Hz, 7.24-7.47 (m, 7H).


PREPARATION EXAMPLE 172
Synthesis of 1-(tert-butoxycarbonyl)-4-[(3,4-difluorophenyl)amino]piperidine



embedded image


1-(tert-Butoxycarbonyl)-4-piperidone (5.00 g) and 3,4-difluoroaniline (3.09 g) was treated in the same manner as described in Preparation Example 37 to give light brown prism crystal of the title compound.


Yield: 4.66 g (62%).



1H-NMR (400 MHz, CDCl3) δ: 1.24-1.37 (m, 2H), 1.46 (s, 9H), 1.97-2.05 (m, 2H), 2.85-2.96 (m, 2H), 3.26-3.36 (m, 1H), 3.38-3.52 (m, 1H), 3.96-4.14 (m, 2H), 6.22-6.28 (m, 1H), 6.38 (ddd, 1H, J=12.7 Hz, 6.6 Hz, 2.9 Hz), 6.94 (dd, 1H, J=19.1 Hz, 9.0 Hz).


PREPARATION EXAMPLE 173
Synthesis of 1-(tert-butoxycarbonyl)-4-[N-(3,4-difluorophenyl)-N-[[2-(3,4,5-trimethoxyphenyl)pyridin-4-yl]methyl]amino]piperidine



embedded image


1-(tert-Butoxycarbonyl)-4[(3,4-difluorophenyl)amino]piperidine (625 mg) and 4-chloromethyl-2-(3,4,5-trimethoxyphenyl)pyridine (588 mg) was treated in the same manner as described in Example 9 to give light yellow amorphous of the title compound.


Yield: 534 mg (47%).



1H-NMR (400 MHz, CDCl3) δ: 1.45 (s, 9H), 1.50-1.70 (m, 2H), 1.82-1.90 (m, 2H), 2.73-2.88 (m, 2H), 3.90 (s, 3H), 3.94 (s, 6H), 4.15-4.30 (m, 2H), 4.43 (s, 2H), 6.33-6.39 (m, 1H), 6.52 (ddd, 1H, J=13.6 Hz, 6.4 Hz, 3.1 Hz), 6.98 (dd, 1H, J=19.1 Hz, 9.2 Hz), 7.11 (dd, 1H, J=5.0 Hz, 1.3 Hz), 7.16 (s, 2H), 7.51 (s, 1H), 8.58 (d, 1H, J=5.1 Hz).


PREPARATION EXAMPLE 174
Synthesis of 4-[N-(3,4-difluorophenyl)-N-[[2-(3,4,5-trimethoxyphenyl)pyridin-4-yl]methyl]amino]piperidine Dihydrochloride



embedded image


1-(tert-Butoxycarbonyl)-4-[N-(3,4-difluorophenyl)-N-[[2-(3,4,5-trimethoxyphenyl)pyridinyl]methyl]amino]piperidine (534 mg) was treated in the same manner as described in Preparation Example 94 to give light yellow powder of the title compound.


Yield: 442 mg (87%).


PREPARATION EXAMPLE 175
Synthesis of 1-(tert-butoxycarbonyl)-4[N-(3,4-difluorophenyl)-N-[[3-(3,4,5-trimethoxyphenyl)pyridin-5-yl]methyl]amino]piperidine



embedded image


1-(tert-Butoxycarbonyl)-4-[(3,4-difluorophenyl)amino]piperidine (625 mg) and 5-chloromethyl-3-(3,4,5-trimethoxyphenyl)pyridine (588 mg) was treated in the same manner as described in Example 9 to give light yellow amorphous or the title compound.


Yield: 350 mg (31%).


PREPARATION EXAMPLE 176
Synthesis of 4-[N-(3,4-difluorophenyl)-N-[[3-(3,4,5-trimethoxyphenyl)pyridin-5-yl]methyl]amino]piperidine Dihydrochloride



embedded image


1-(tert-Butoxycarbonyl)-4-[N-(3,4-difluorophenyl)-N-[[3-(3,4,5-trimethoxyphenyl)pyridin-5-yl]methyl]amino]piperidine (350 mg) was treated in the same manner as described in Preparation Example 94 to give light yellow powder of the title compound.


Yield: 305 mg (92%).


PREPARATION EXAMPLE 177
Synthesis of 1-(tert-butoxycarbonyl)-4-[N-(3,4-difluorophenyl)-N-[3-(3,4,5-trimethoxyphenyl)benzyl]amino]piperidine



embedded image


1-(tert-Butoxycarbonyl)-4-[(3,4-difluorophenyl)amino]piperidine (625 mg) and 3-(3,4,5-trimethoxyphenyl)benzyl chloride (586 mg) was treated in the same manner as described in Example 9 to give light yellow amorphous of the title compound.


Yield: 980 mg (86%).



1H-NMR (400 MHz, CDCl3) δ: 1.45 (s, 9H), 1.52-1.66 (m, 2H), 1.81-1.89 (m, 2H), 2.72-2.85 (m, 2H), 3.78 (tt, 1H, J=11.8 Hz, 3.8 Hz), 3.88 (s, 3H), 3.90 (s, 6H), 4.12-4.30 (m, 2H), 4.45 (s, 2H), 6.36-6.42 (m, 1H), 6.54 (ddd, 1H, J=13.9 Hz, 6.8 Hz, 2.9 Hz), 6.71 (s, 2H), 6.95 (dd, 1H, J=19.2 Hz, 9.2 Hz), 7.20 (d, 1H, J=7.4 Hz), 7.36-7.43 (m, 3H).


PREPARATION EXAMPLE 178
Synthesis of 4-[N-(3,4-difluorophenyl)-N-[3-(3,4,5-trimethoxyphenyl)benzyl]amino]piperidine Hydrochloride



embedded image


1-(tert-Butoxycarbonyl)-4-[N-(3,4-difluorophenyl)-N-[3-(3,4,5-trimethoxyphenyl)benzyl]amino]piperidine (980 mg) was treated in the same manner as described in Preparation Example 94 to give light yellow powder of the title compound.


Yield: 819 mg (94%).


EXAMPLE 149 TO 156

These compounds were obtained by the condensation of amines obtained in Preparation Examples 174, 176 and 178 with chloride derivatives obtained in Preparation Examples 3, 42 and 48. Free bases obtained were then converted to the corresponding hydrochlorides. Yields and NMR data of their free bases are listed below.

NMR data (400 MHz,measured as freeExampleStructureYieldbases, CDCl3) δ149embedded image67%1.70-1.90 (m, 4H), 2.16-2.23 (m, 2H), 2.95-3.03 (m, 2H), 3.58 (s, 2H), 3.64-3.74 (m, 1H), 3.89 (s, 3H), 3.90 (s, 3H), 3.93 (s, 6H), 3.96 (s, 6H), 4.49 (s, 2H), 6.31-6.37 (m, 1H), 6.51 (ddd, 1H, J=13.9 Hz, 6.6 Hz, 3.1 Hz), 6.96 (dd, 1H, J=19.2 Hz, 9.8 Hz), 7.11 (d, 1H, J=5.1 Hz), 7.15 (s, 2H), 7.20 (d, 1H, J=5.1 Hz), 7.22 (s, 2H), 7.52 (s, 1H), 7.59 (s, 1H), 8.57 (d, 1H, J=5.1 Hz), 8.59 (d, # 1H, J=5.1 Hz).150embedded image47%1.67-1.79 (m, 2H), 1.81-1.89 (m, 2H), 2.13-2.20 (m, 2H), 2.95-3.05 (m, 2H), 3.59 (s, 2H), 3.63-3.75 (m, 1H), 3.89 (s, 3H), 3.90 (s, 3H), 3.93 (s, 12H), 4.47 (s, 2H), 6.30-6.36 (m, 1H), 6.50 (ddd, 1H, J=13.9 Hz, 6.6 Hz, 3.1 Hz), 6.75 (s, 2H), 6.96 (d, 1H, J=19.0 Hz, 9.4 Hz), 7.10 (d, 1H, J=4.1 Hz), 7.15 (s, 2H), 7.51 (s, 1H), 7.75 (s, 1H), 8.50 (d, 1H, J=1.8 Hz), 8.56 (d, 1H, J=5.1 # 1H, J=5.1 Hz), 8.70 (s, 1H).151embedded image53%1.68-1.87 (m, 4H), 2.09-2.18 (m, 2H), 2.98-3.06 (m, 2H), 3.58 (s, 2H), 3.63-3.72 (m, 1H), 3.89 (s, 3H), 3.89 (s, 3H), 3.92 (s, 6H), 3.93 (s, 6H), 4.47 (s, 2H), 6.33-6.35 (m, 1H), 6.50 (ddd, 1H, J=13.9 Hz, 6.4 Hz, 2.9 Hz), 6.76 (s, 2H), 6.95 (dd, 1H, J=19.2 Hz, 9.4 Hz), 7.09 (d, 1H, J=5.1 Hz), 7.15 (s, 2H), 7.25-7.30 (m, 1H), 7.37 (dd, 1H, J=7.3 Hz, 7.3 Hz), 7.42-7.46 (m, 2H), 7.50 (s, 1H), # 8.56 (d, 1H, J=5.1 Hz).152embedded image50%1.72-1.96 (m, 4H), 2.12-2.28 (m, 2H), 2.94-3.08 (m, 2H), 3.59 (s, 2H), 3.62-3.72 (m, 1H), 3.89 (s, 3H), 3.90 (s, 9H), 3.96 (s, 6H), 4.52 (s, 2H), 6.36-6.43 (m, 1H), 6.55 (ddd, 1H, J=13.7 Hz, 6.6 Hz, 2.9 Hz), 6.67 (s, 2H), 6.96 (dd, 1H, J=19.1 Hz, 9.2 Hz), 7.21 (dd, 1H, J=5.1 Hz, 1.2 Hz), 7.24 (s, 2H), 7.61(br, 1H), 7.64 (s, 1H), 8.47 (d, 1H, J=2.0 Hz), 8.60 (d, 1H, J=4.9 Hz), 8.67 (d, 1H, # J=2.0 Hz).153embedded image61%1.71-1.90 (m, 4H), 2.12-2.25 (m, 2H), 2.95-3.05 (m, 2H), 357-375 (m, 1H), 3.59 (m, 2H), 3.88 (s, 3H), 3.90 (s, 9H), 3.93 (s, 6H), 4.50 (s, 2H), 6.32-6.43 (m, 1H), 6.54 (ddd, 1H, J=13.6 Hz, 6.4 Hz, 2.7 Hz), 6.67 (s, 2H), 6.73-6.78 (m, 3H), 6.96 (dd, 1H, J=18.9 Hz, 9.6 Hz), 7.63 (s, 1H), 7.76 (s, 1H), 8.46 (s, 1H), 8.50 (d, 1H, J=1.6 Hz), 8.66 (d, 1H, J=1.8 Hz), 8.70 (d, 1H, J=2.0 Hz).154embedded image82%1.74-1.90 (m, 4H), 2.13-2.22 (m, 2H), 2.95-3.01 (m, 2H), 3.57 (s, 2H), 3.63-3.73 (m, 1H), 3.88 (s, 3H), 3.89 (s, 6H), 3.90 (s, 3H), 3.96 (s, 6H), 4.51 (s, 2H), 6.34-6.40 (m, 1H), 6.52 (ddd, 1H, J=14.1 Hz, 6.6 Hz, 3.1 Hz), 6.70 (s, 2H), 6.94 (dd, 1H, J=19.2 Hz, 9.4 Hz), 7.17-7.26 (m, 4H), 7.32-7.42 (m, 3H), 7.59 (s, 1H), 8.59 (d, 1H, J=5.1 Hz.155embedded image75%1.74-1.90 (m, 4H), 2.13-2.21 (m, 2H), 2.95-3.04 (m, 2H), 3.59 (s, 2H), 3.63-3.72 (m, 1H), 3.88 (s, 3H), 3.89 (s, 6H), 3.89 (s, 3H), 3.93 (s, 6H), 4.49 (s, 2H), 6.33-6.39 (m, 1H), 6.52 (ddd, 1H, J=14.3 Hz, 3.7 Hz, 2.9 Hz), 6.69 (s, 2H), 6.75 (s, 2H), 6.94 (dd, 1H, J=19.1 Hz, 9.8 Hz), 7.19 (d, 1H, J=7.8 Hz), 7.32-7.41 (m, 3H), 7.76 (s, 1H), 8.50 (d, 1H, J=1.5 Hz), 8.69 (s, 1H).156embedded image79%1.72-1.88 (m, 4H), 2.08-2.18 (m, 2H), 2.98-3.05 (m, 2H), 3.58 (s, 2H), 3.62-3.72 (m, 1H), 3.88 (s, 3H), 3.89 (s, 9H), 3.92 (s, 6H), 4.45 (s, 2H), 6.33-6.39 (m, 1H), 6.51 (ddd, 1H, J=13.9 Hz, 6.6 Hz, 3.0 Hz), 6.69 (s, 2H), 6.76 (s, 2H), 6.93 (dd, 1H, J=19.3 Hz, 9.5 Hz), 7.19 (d, 1H, J=7.6 Hz), 7.25-7.47 (m, 7H).


PREPARATION EXAMPLE 179
Synthesis of 1-(tert-butoxycarbonyl)-4-[(4-fluorophenyl)amino]piperidine



embedded image


1-(tert-Butoxycarbonyl)-4-piperidone (5.00 g) and 4-fluoroaniline (2.66 g) was treated in the same manner as described in Preparation Example 37 to give white crystalline powder of the title compound.


Yield: 4.99 g (71%).



1H-NMR (400 MHz, CDCl3) δ: 1.23-1.36 (m, 2H), 1.46 (s, 9H), 1.97-2.05 (m, 2H), 2.84-2.96 (m, 2H), 3.30-3.39 (m, 2H), 3.96-4.14 (m, 2H), 6.51-6.57 (m, 2H), 6.84-6.91 (m, 2H).


PREPARATION EXAMPLE 180
Synthesis of 1-(tert-butoxycarbonyl)-4[N-(4-fluorophenyl)-N-[[2-(3,4,5-trimethoxyphenyl)pyridin-4-yl]methyl]amino]piperidine



embedded image


1-(tert-Butoxycarbonyl)-4-[(4-fluorophenyl)amino]piperidine (589 mg) and 4-chloromethyl-2-(3,4,5-trimethoxyphenyl)pyridine (588 mg) was treated in the same manner as described in Example 9 to give light yellow amorphous of the title compound.


Yield: 702 mg (64%).



1H-NMR (400 MHz, CDCl3) δ: 1.45 (s, 9H), 1.48-1.64 (m, 2H), 1.81-1.90 (m, 2H), 2.72-2.85 (m, 2H), 3.69-3.98 (m, 1H), 3.89 (m, 3H), 3.94 (m, 6H), 4.16-4.28 (m, 2H), 4.43 (s, 2H), 6.66-6.73 (m, 2H), 6.91 (dd, 2H, J=9.2 Hz, 9.2 Hz), 7.12-7.16 (m, 3H), 7.53 (s, 1H).


PREPARATION EXAMPLE 181
Synthesis of 4-[N-(4-fluorophenyl)-N-[[2-(3,4,5-trimethoxyphenyl)pyridin-4-yl]methyl]amino]piperidine Dihydrochloride



embedded image


1-(tert-Butoxycarbonyl)-4-[N-(4-fluorophenyl)-N-[[2-(3,4,5-trimethoxyphenyl)pyridin-4-yl]methyl]amino]piperidine (702 mg) was treated in the same manner as described in Preparation Example 94 to give light yellow powder of the title compound.


Yield: 561 mg (84%).


PREPARATION EXAMPLE 182
Synthesis of 1-(tert-butoxycarbonyl)-4-[N-(4-fluorophenyl)-N-[[3-(3,4,5-trimethoxyphenyl)pyridin-5-yl]methyl]amino]piperidine



embedded image


1-(tert-Butoxycarbonyl)-4-[(4-fluorophenyl)amino]piperidine (589 mg) and 5-chloromethyl-3-(3,4,5-trimethoxyphenyl)pyridine (588 mg) was treated in the same manner as described in Example 9 to give light yellow amorphous of the title compound.


Yield: 190 mg (17%).



1H-NMR (400 MHz, CDCl3) δ: 1.45 (s, 9H), 1.50-1.73 (m, 2H), 1.82-1.90 (m, 2H), 2.71-2.85 (m, 2H), 3.71 (tt, 1H, J=111.7 Hz, 3.1 Hz), 3.89 (s, 3H), 3.90 (s, 6H), 4.12-4.30 (m, 2H), 4.45 (s, 2H), 6.66 (s, 2H), 6.73-6.78 (m, 2H), 6.91 (dd, 2H, J=9.2 Hz, 8.2 Hz), 7.65 (s, 1H), 8.49 (d, 1H, J=2.0 Hz), 8.65 (d, 1H, J=2.0 Hz).


PREPARATION EXAMPLE 183
Synthesis of 4-[N-(4-fluorophenyl)-N-[[3-(3,4,5-trimethoxyphenyl)pyridin-5-yl]methyl]amino]piperidine Dihydrochloride



embedded image


1-(tert-Butoxycarbonyl)-4-[N-(4-fluorophenyl)-N-[[3-(3,4,5-trimethoxyphenyl)pyridin-5-yl]methyl]amino]piperidine (190 mg) was treated in the same manner as described in Preparation Example 94 to give light yellow powder of the title compound.


Yield: 165 mg (91%).


PREPARATION EXAMPLE 184
Synthesis of 1-(tert-butoxycarbonyl)-4-[N-(4-fluorophenyl)-N-[3-(3,4,5-trimethoxyphenyl)benzyl]amino]piperidine



embedded image


1-(tert-Butoxycarbonyl)-4-[(4-fluorophenyl)amino]piperidine (589 mg) and 3-(3,4,5-trimethoxyphenyl)benzyl chloride (586 mg) was treated in the same manner as described in Example 9 to give light yellow amorphous of the title compound.


Yield: 1.01 g (92%).



1H-NMR (400 MHz, CDCl3) δ: 1.44 (s, 9H), 1.51-1.65 (m, 2H), 1.82-1.90 (m, 2H), 2.82-2.84 (m, 2H), 3.78 (tt, 1H, J=11.7 Hz, 3.5 Hz), 3.88 (s, 3H), 3.90 (s, 6H), 4.10-4.30 (m, 2H), 4.45 (s, 2H), 6.68-6.73 (m, 4H), 6.89 (dd, 2H, J=9.2 Hz, 8.2 Hz), 7.21-7.25 (m, 1H), 7.32-7.41 (m, 3H).


PREPARATION EXAMPLE 185
Synthesis of 4-[N-(4-fluorophenyl)-N-[3-(3,4,5-trimethoxyphenyl)benzyl]amino]piperidine Hydrochloride:



embedded image


1-(tert-Butoxycarbonyl)-4-[N-(4-fluorophenyl)-N-[3-(3,4,5-trimethoxyphenyl) benzyl]amino]piperidine (1.01 g) was treated in the same manner as described in Preparation Example 94 to give light yellow powder of the title compound.


Yield: 790 mg (88%).


EXAMPLE 157 TO 164

These compounds were obtained by the condensation of amines obtained in Preparation Examples 181, 183 and 185 with chloride derivatives obtained in Preparation Examples 3, 42 and 48. Free bases obtained were then converted to the corresponding hydrochlorides. Yields and NMR data of their free bases are listed below.

NMR data (400 MHz,measured as freeExampleStructureYieldbases, CDCl3) δ157embedded image62%1.60-1.82 (m, 2H), 1.83-1.91 (m, 2H), 2.13-2.23 (m, 2H), 2.95-3.03 (m, 2H), 3.57 (s, 2H), 3.64-3.75 (m, 1H), 3.89 (s, 3H), 3.90 (s, 3H), 3.93 (s, 6H), 3.96 (s, 6H), 4.48 (s, 2H), 6.65-6.70 (m, 2H), 6.90 (dd, 2H, J=8.8 Hz, 8.8 Hz), 7.13-7.16 (m, 3H), 7.20 (d, 1H, J=5.1 Hz), 7.22 (s, 2H), 7.54 (s, 1H), 7.59 (s, 1H), 8.55 (d, 1H, J=5.1 Hz), 8.59 (d, 1H, J=4.9 Hz).158embedded image53%1.66-1.95 (m, 4H), 2.12-2.24 (m, 2H), 2.95-3.07 (m, 2H), 3.60 (s, 2H), 3.64-3.76 (m, 1H), 3.89 (s, 3H), 3.90 (s, 3H), 3.92 (s, 6H), 3.93 (s, 6H), 4.47 (s, 2H), 6.63-6.70 (m, 1H), 6.75 (s, 2H), 6.90 (dd, 1H, J=9.2 Hz, 9.2 Hz), 7.11-7.16 (m, 3H), 7.53 (s, 1H), 7.77 (s, 1H), 8.50 (d, 1H, J=2.0 Hz), 8.55 (d, 1H, J=4.9 Hz), 8.70 (d, 1H, J=5.9 Hz).159embedded image51%1.64-1.90 (m, 4H), 2.07-2.20 (m, 4H), 2.97-3.08 (m, 2H), 3.59 (s, 2H), 3.64-3.76 (m, 1H), 3.89 (s, 6H), 3.92 (s, 6H), 3.93 (s, 6H), 4.47 (s, 2H), 6.62-6.70 (m, 2H), 6.77 (s, 2H), 6.86-6.93 (m, 2H), 7.11-7.16 (m, 3H), 7.25-7.31 (m, 3H), 7.37 (dd, 1H, J=7.4 Hz, 7.4 Hz), 7.42-7.49 (m, 2H), 7.53 (s, 1H), 8.54 (d, 1H, J=5.1 Hz).160embedded image49%1.74-1.98 (m, 4H), 2.10-2.30 (m, 2H), 2.90-3.12 (m, 2H), 3.53-3.73 (m, 3H), 3.88 (s, 3H), 3.89 (s, 6H), 3.90 (s, 3H), 3.96 (s, 6H), 4.50 (s, 2H), 6.66 (s, 2H), 6.70-6.76 (m, 2H), 6.90 (dd, 2H, J=8.8 Hz, 8.8 Hz), 7.19-7.28 (m, 3H), 7.65 (br, 2H), 8.49 (d, 1H, J=1.8 Hz), 8.60 (d, 1H, J=4.9 Hz), 8.64 (d, 1H, J=2.2 Hz).161embedded image26%1.67-1.97 (m, 4H), 2.10-2.27 (m, 2H), 2.94-3.06 (m, 2H), 3.56-3.68 (m, 3H), 3.88 (s, 3H), 3.89 (s, 6H), 3.90 (s, 3H), 3.93 (s, 6H), 4.49 (s, 2H), 6.65 (s, 2H), 6.69-6.80 (m, 4H), 6.84-6.93 (m, 2H), 7.64 (s, 1H), 7.77 (br, 1H), 8.48 (d, 1H, J=1.7 Hz), 8.50 (d, 1H, J=1.7 Hz), 8.64 (d, 1H, J=1.9 Hz), 8.70 (s, 1H).162embedded image83%1.72-1.92 (m, 4H), 2.12-2.21 (m, 2H), 2.94-3.02 (m, 2H), 3.57 (s, 2H), 3.64-3.74 (m, 1H), 3.88 (s, 3H), 3.89 (s, 6H), 3.90 (s, 3H), 3.96 (s, 6H), 4.51 (s, 1H), 6.66-6.71 (m, 4H), 6.88 (dd, 2H, J=8.6 Hz, 8.6 Hz), 7.18-7.27 (m, 4H), 7.34 (dd, 1H, J=7.4 Hz, 7.4 Hz), 7.39 (d, 2H, J=5.4 Hz), 7.59 (s, 1H), 8.59 (d, 1H, J=5.1 Hz).163embedded image68%1.68-1.87 (m, 4H), 2.10-2.22 (m, 2H), 3.65-3.74 (m, 1H), 3.87 (s, 3H), 3.88 (s, 6H), 3.90 (s, 3H), 3.93 (s, 6H), 4.49 (s, 2H), 6.66-6.70 (m, 6H), 6.88 (dd, 2H, J=8.8 Hz, 8.8 Hz), 7.19-7.40 (m, 4H), 7.77 (s, 1H), 8.49 (d, 1H, J=1.8 Hz), 8.70 (s, 1H).164embedded image74%1.70-1.90 (m, 4H), 2.08-2.18 (m, 2H), 2.95-3.05 (m, 2H), 3.58 (s, 2H), 3.63-3.73 (m, 1H), 3.87 (s, 3H), 3.88 (s, 6H), 3.89 (s, 3H), 3.92 (s, 6H), 4.50 (s, 2H), 6.65-6.72 (m, 2H), 6.69 (s, 2H), 6.76 (s, 2H), 6.87 (dd, 2H, J=9.0 Hz, 9.0 Hz), 7.22 (d, 1H, J=7.6 Hz), 7.25-7.48 (m, 9H).


PREPARATION EXAMPLE 186
Synthesis of 1-(tert-butoxycarbonyl)-4-phenylaminopiperidine



embedded image


1-(tert-Butoxycarbonyl)-4-piperidone (5.00 g) and aniline (2.23 g) was treated in the same manner as described in Preparation Example 37 to give white needles of the title compound.


Yield: 3.77 g (57%).



1H-NMR (400 MHz, CDCl3) δ: 1.25-1.38 (m, 2H), 1.47 (s, 9H), 2.00-2.07 (m, 2H), 2.87-2.97 (m, 2H), 3.38-3.53 (m, 2H), 3.96-4.14 (m, 2H), 6.57-6.52 (m, 2H), 6.70 (tt, 1H, J=6.2 Hz, 1.0 Hz), 7.17 (dd, 2H, J=8.6 Hz, 7.2 Hz).


PREPARATION EXAMPLE 187
Synthesis of 1-(tert-butoxycarbonyl)-4-[N-phenyl-N-[[2-(3,4,5-trimethoxyphenyl)pyridin-4-yl]methyl]amino]piperidine



embedded image


1-(tert-Butoxycarbonyl)-4-phenylaminopiperidine (553 mg) and 4-chloromethyl-2-(3,4,5-trimethoxyphenyl)pyridine (588 mg) was treated in the same manner as described in Example 9 to give light yellow amorphous of the title compound.


Yield: 760 mg (71%).



1H-NMR (400 MHz, CDCl3) δ: 1.45 (s, 9H), 1.53-1.63 (m, 2H), 1.83-1.91 (m, 2H), 2.76-2.90 (m, 2H), 3.86-3.97 (m, 1H), 3.89 (s, 3H), 3.93 (s, 6H), 4.14-4.32 (m, 2H), 4.49 (s, 2H), 6.71-6.78 (m, 3H), 7.14 (s, 1H), 7.15 (s, 2H), 7.21 (dd, 2H, J=8.8 Hz, 7.4 Hz), 7.55 (s, 1H), 8.56 (d, 1H, J=5.1 Hz).


PREPARATION EXAMPLE 188
Synthesis of 4-[N-phenyl-N-[[2-(3,4,5-trimethoxyphenyl)pyridin-4-yl]methyl]amino]piperidine Dihydrochloride



embedded image


1-(tert-Butoxycarbonyl)-4-[N-phenyl-N-[[2-(3,4,5-trimethoxyphenyl)pyridin-4-yl]methyl]amino]piperidine (760 mg) was treated in the same manner as described in Preparation Example 94 to give light yellow powder of the title compound.


Yield: 652 mg (90%).


PREPARATION EXAMPLE 189
Synthesis of 1-(tert-butoxycarbonyl)-4-[N-phenyl-N-[[3-(3,4,5-trimethoxyphenyl)pyridin-5-yl]methyl]amino]piperidine



embedded image


1-(tert-Butoxycarbonyl)-4-phenylaminopiperidine (553 mg) and 5-chloromethyl-3-(3,4,5-trimethoxyphenyl)pyridine (588 mg) was treated in the same manner as described in Example 9 to give light yellow amorphous of the title compound.


Yield: 222 mg (21%).



1H-NMR (400 MHz, CDCl3) δ: 1.45 (s, 9H), 1.52-1.67 (m, 2H), 1.82-1.91 (m, 2H), 2.74-2.87 (m, 2H), 3.88-3.90 (m, 1H), 3.88 (s, 3H), 3.89 (s, 6H), 4.14-4.31 (m, 2H), 4.53 (s, 2H), 6.67 (s, 2H), 6.74-6.80 (m, 3H), 7.21 (dd, 2H, J=8.8 Hz, 7.2 Hz), 7.67 (s, 1H), 8.50 (d, 1H, J=5.3 Hz, 2.2 Hz), 8.66 (d, 1H, J=2.1 Hz).


PREPARATION EXAMPLE 190
Synthesis of 4-[N-phenyl-N-[[3-(3,4,5-trimethoxyphenyl)pyridin-5-yl]methyl]amino]piperidine Dihydrochloride



embedded image


1-(tert-Butoxycarbonyl)-4-[N-phenyl-N-[[3-(3,4,5-trimethoxyphenyl)pyridin-5-yl]methyl]amino]piperidine (222 mg) was treated in the same manner as described in Preparation Example 94 to give light yellow powder of the title compound.


Yield: 197 mg (94%).


PREPARATION EXAMPLE 191
Synthesis of 1-(tert-butoxycarbonyl)-4-[N-phenyl-N-[3-(3,4,5-trimethoxyphenyl)benzyl]amino]piperidine



embedded image


1-(tert-Butoxycarbonyl)-4-phenylaminopiperidine (553 mg) and 3-(3,4,5-trimethoxyphenyl)benzyl chloride (586 mg) was treated in the same manner as described in Example 9 to give light yellow amorphous of the title compound.


Yield: 1.06 g (100%).



1H-NMR (400 MHz, CDCl3) δ: 1.45 (s, 9H), 1.52-1.68 (m, 2H), 1.83-1.92 (m, 2H), 2.73-2.86 (m, 2H), 3.88 (s, 3H), 3.89 (s, 6H), 3.94 (tt, 1H, J=11.7 Hz, 3.3 Hz), 4.14-4.30 (m, 2H), 4.52 (s, 2H), 6.69-6.78 (m, 6H), 7.17-7.27 (m, 2H), 7.32-7.42 (m, 3H).


PREPARATION EXAMPLE 192
Synthesis of 4-[N-phenyl-N-[3-(3,4,5-trimethoxyphenyl)benzyl]amino]piperidine Hydrochloride



embedded image


1-(tert-Butoxycarbonyl)-4-[N-phenyl-N-[3-(3,4,5-trimethoxyphenyl)benzyl]amino]piperidine (1.06 g) was treated in the same manner as described in Preparation Example 94 to give light yellow powder of the title compound.


Yield: 909 mg (97%).


EXAMPLE 165 TO 169

These compounds were obtained by the condensation of amines obtained in Preparation Examples 188, 190 and 192 with chloride derivatives obtained in Preparation Examples 3 and 48. Free bases obtained were then converted to the corresponding hydrochlorides. Yields and NMR data of their free bases are listed below.

NMR data (400 MHz,measured as freeExampleStructureYieldbases, CDCl3) δ165embedded image53%1.63-1.81 (m, 4H), 1.82-1.92 (m, 2H), 2.14-2.24 (m, 2H), 2.95-3.05 (m, 2H), 3.59 (s, 2H), 3.80-4.02 (m, 1H), 3.89 (s, 3H), 3.90 (s, 3H), 3.92 (s, 6H), 3.93 (s, 6H), 4.53 (s, 2H), 6.69-6.77 (m, 5H), 7.13-7.17 (m, 3H), 7.20 (dd, 2H, J=7.6 Hz, 7.6 Hz), 7.55 (s, 1H), 7.76 (s, 1H), 8.51 (d, 1H, J=1.8 Hz), 8.55 (d, 1H, J=5.1 Hz), 8.70 (s, 1H).166embedded image50%1.85-2.04 (m, 4H), 2.20-2.40 (m, 2H), 2.92-3.25 (m, 2H), 3.60-3.77 (m, 3H), 3.88 (s, 3H), 3.89 (s, 6H), 3.90 (s, 3H), 3.97 (s, 6H), 4.59 (s, 2H), 6.67 (s, 2H), 6.72-6.81 (m, 4H), 7.17-7.30 (m, 4H), 7.68 (s, 1H), 8.50 (s, 1H), 8.62 (d, 1H, J=4.9 Hz), 8.65 (d, 1H, J=2.0 Hz).167embedded image43%1.72-1.92 (m, 4H), 2.13-2.26 (m, 2H), 2.95-3.04 (m, 2H), 3.59 (s, 2H), 3.78-4.01 (m, 1H), 3.88 (s, 9H), 3.90 (s, 3H), 3.93 (s, 6H), 4.56 (s, 2H), 6.66 (s, 2H), 6.70-6.78 (m, 5H), 7.19 (dd, 2H, J=8.2 Hz, 8.2 Hz), 7.66 (s, 1H), 7.77 (s, 1H), 8.50 (d, 1H, J=2.3 Hz), 8.51 (d, 1H, J=2.2 Hz), 8.65 (d, 1H, J=1.9 Hz), 8.70 (d, 1H, J=2.2 Hz).168embedded image82%1.75-1.92 (m, 4H), 2.14-2.23 (m, 2H), 2.94-3.01 (m, 2H), 3.57 (s, 2H), 3.80-3.94 (m, 1H), 3.87 (s, 3H), 3.88 (s, 6H), 3.90 (s, 3H), 3.96 (s, 6H), 4.57 (s, 2H), 6.67-6.77 (m, 5H), 7.15-7.27 (m, 5H), 7.34 (dd, 1H, J=7.4 Hz, 7.4 Hz), 7.39 (d, 1H, 7.6 Hz), 7.42 (s, 1H), 7.59 (s, 1H), 8.59 (d, 1H, J=5.1 Hz).169embedded image65%1.72-1.91 (m, 4H), 2.13-2.22 (m, 2H), 2.95-3.03 (m, 2H), 3.59 (s, 2H), 3.79-4.00 (m, 1H), 3.87 (s, 3H), 3.87 (s, 6H), 3.90 (s, 3H), 3.93 (s, 6H), 4.56 (s, 2H), 6.66-6.77 (m, 7H), 7.18 (dd, 2H, J=7.4 Hz, 7.4 Hz), 7.24 (d, 1H, J=7.4 Hz), 7.33 (dd, 1H, J=7.4 Hz, 7.4 Hz), 7.38 (d, 1H, J=7.6 Hz), 7.41 (s, 1H), 7.76 (s, 1H), 8.50 (d, 1H, J=1.6 Hz), 8.69 (d, 1H, J=2.2 Hz).


PREPARATION EXAMPLE 193 TO 203

These compounds were prepared by the same procedure as described in on Example from 1 to 3. Structures and NMR data are listed below.

PreparationExampleStructureNMR data (400 MHz, CDCl3) δ193embedded image4.61 (s, 2H), 7.25 (d, 1H, J=1.2 Hz), 7.41-7.52 (m, 3H), 7.75 (d, 1H, J=0.8 Hz), 7.98-8.02 (m, 2H), 8.69 (d, 1H, J=4.9 Hz).194embedded image3.87 (s, 3H), 4.60 (s, 2H), 7.01 (d, 1H, J=8.4 Hz), 7.08 (t, 1H, J=7.4 Hz), 7.24 (dd, 1H, J=5.1 Hz, 1.4 Hz), 7.38 (dt, 1H, J=7.4 Hz, 1.8 Hz), 7.77 (dd, 1H, J=7.6 Hz, 1.8 Hz), 7.84 (s, 1H), 8.69 (d, 1H, J=5.1 Hz)195embedded image3.90 (s, 3H), 4.60 (s, 2H), 6.87-7.03 (1H, m), 7.39 (t, 1H, 7.8 Hz), 7.50-7.66 (m, 2H), 7.73 (s, 1H), 8.68 (d, 1H, J=5.1 Hz)196embedded image1.45 (t, 3H, J=7.0 Hz), 4.12 (q, 2H, J=7.0 Hz), 4.59 (s, 2H), 6.99 (d, 2H, J=8.8 Hz), 7.18 (d, 1H, J=5.1 Hz), 7.20-7.29 (m, 1H), 7.68 (s, 1H), 7.95 (d, 2H, J=8.8 Hz), 8.63 (d, 1H, J=5.1 Hz)197embedded image3.95 (s, 3H), 4.00 (s, 3H), 4.60 (s, 2H), 6.96 (d, 1H, J=8.4 Hz), 7.21 (d, 1H, J=4.1 Hz), 7.53 (dd, 1H, J=8.4 Hz, 2.0 Hz), 7.67 (d, 1H, J=2.0 Hz), 7.70 (s, 1H), 8.65 (d, 1H, J=5.1 Hz)198embedded image4.61 (s, 2H), 7.14-7.21 (m, 1H), 7.21-7.23 (m, 2H), 7.35-7.42 (m, 1H), 7.80 (s, 1H), 7.98 (1H, dt, J=8.0 Hz, 2.0 Hz), 8.73 (d, 1H, J=5.1 Hz)199embedded image4.61 (s, 2H), 7.13 (1H, dt, J=8.4 Hz, 2.8 Hz), 7.28 (1H, d, J=5.0 Hz), 7.40-7.79 (m, 1H), 7.70-7.79 (m, 3H), 8.69 (d, 1H, J=5.0 Hz)200embedded image4.60 (s, 2H), 7.13-7.20 (m, 2H), 7.25 (1H, d, J=5.1 Hz), 7.70 (s, 1H), 7.95-8.03 (m, 2H), 8.66 (d, 1H, J=5.1 Hz)201embedded image4.61 (s, 2H), 7.21-7.30 (m, 2H), 7.69 (s, 1H), 7.73-7.76 (m, 1H), 7.85-7.92 (m, 1H), 8.76 (d, 1H, J=4.9 Hz)202embedded image4.61 (s, 2H), 6.86-6.91 (m, 1H), 7.31 (1H, d, J=5.1 Hz), 7.51-7.59 (m, 2H), 7.71 (s, 1H), 8.69 (d, 1H, J=5.1 Hz)203embedded image4.61 (s, 2H), 7.26 (d, 1H, J=4.9 Hz), 7.45 (d, 2H, J=8.4 Hz), 7.72 (s, 1H), 7.95 (d, 2H, J=8.4 Hz), 8.68 (s, 1H, J=4.9 Hz)


PREPARATION EXAMPLE 204
Synthesis of 1-(tert-butoxycarbonyl)-4-[N-(4-methoxyphenyl)-N-[[(2-phenylpyridin-4-yl)methyl]amino]piperidine



embedded image


4-(p-Anisidino)-1-(tert-butoxycarbonyl)piperidine (612 mg) and 4-chloromethyl-2-phenylpyridine (204 mg) were condensed in the same manner as described in Example 9 to give the title compound.


Yield: 407 mg (43%).


PREPARATION EXAMPLE 205
Synthesis of 4-[N-(4-methoxyphenyl)-N-[(2-phenylpyridin-4-yl)methyl]amino]piperidine Dihydrochloride



embedded image


1-(tert-Butoxycarbonyl)-4-[N-(4-methoxyphenyl)-N-[(2-phenylpyridin-4-yl)-methyl]amino]piperidine (407 mg) was treated in the same manner as described in Preparation Example 94 to give the title compound.


Yield: 365 mg (95%).


PREPARATION EXAMPLE 206
Synthesis of 1-(tert-butoxycarbonyl)-4-[N-(4-methoxyphenyl)-N-[[2-(2-methoxyphenyl)pyridin-4-yl ]methyl]amino]piperidine



embedded image


4-(p-Anisidino)-1-(tert-butoxycarbonyl)piperidine (306 mg) and 4-chloromethyl-2-(2-methoxyphenyl)pyridine (234 mg) were condensed in the same manner as described in Example 9 to give the title compound.


Yield: 237 mg (72%).


PREPARATION EXAMPLE 207
Synthesis of 4-[N-(4-methoxyphenyl)-N-[[2-(2-methoxyphenyl)pyridin-4-yl]methyl]amino]piperidine Dihydrochloride



embedded image


1-(tert-Butoxycarbonyl)-4-[N-(4-methoxyphenyl)-N-[[2-(2-methoxyphenyl)pyridin-4-yl]methyl]amino]piperidine (360 mg) was treated in the same manner as described in Preparation Example 94 to give the title compound.


Yield: 365 mg (65%).


PREPARATION EXAMPLE 208
Synthesis of 1-(tert-butoxycarbonyl)-4-[N-(4-methoxyphenyl)-N-[[2-(3-methoxyphenyl)pyridin-4-yl ]methyl]amino]piperidine:



embedded image


4-(p-Anisidino)-1-(tert-butoxycarbonyl)piperidine (306 mg) and 4-chloromethyl-2-(3-methoxyphenyl)pyridine (234 mg) were condensed in the same manner as described in Example 9 to give the title compound.


Yield: 550 mg (theoretical yield).


PREPARATION EXAMPLE 209
Synthesis of 4-[N-(4-methoxyphenyl)-N-[[2-(3-methoxyphenyl)pyridin-4-yl]methyl]amino]piperidine Dihydrochloride



embedded image


1-(tert-Butoxycarbonyl)-4-[N-(4-methoxyphenyl)-N-[[2-(3-methoxyphenyl)pyridin-4-yl]methyl]amino]piperidine (550 mg) was treated in the same manner as described in Preparation Example 94 to give the title compound.


Yield: 436 g (85%).


PREPARATION EXAMPLE 210
Synthesis of 1-(tert-butoxycarbonyl)-4-[N-[[2-(4-ethoxyphenyl)pyridin-4-yl]methyl]-N-(4-methoxyphenyl)]amino]piperidine



embedded image


4-(p-Anisidino)-1-(tert-butoxycarbonyl)piperidine (306 mg) and 4-chloromethyl-2-(4-ethoxyphenyl)pyridine (248 mg) were condensed in the same manner as described in Example 9 to give the title compound.


Yield: 515 mg (99%).


PREPARATION EXAMPLE 211
Synthesis of 4-[N-[[2-(4-ethoxyphenyl)pyridin-4-yl]methyl-N-(4-methoxyphenyl)amino]piperidine Dihydrochloride



embedded image


1-(tert-Butoxycarbonyl)-4-[N-[[2-(4-ethoxyphenyl)pyridin-4-yl]methyl-N-(4-methoxyphenyl)amino]piperidine (515 mg) was treated in the same manner as described in Preparation Example 94 to give the title compound.


Yield: 418 mg (80%).


PREPARATION EXAMPLE 212
Synthesis of 1-(tert-butoxycarbonyl)-4-[N-(4-methoxyphenyl)-N-[[2-(3,4-dimethoxyphenyl)pyridin-4-yl]methyl]amino]piperidine



embedded image


4-(p-Anisidino)-1-(tert-butoxycarbonyl)piperidine (306 mg) and 4-chloromethyl-2-(3,4-dimethoxyphenyl)pyridine (264 mg) were condensed in the same manner as described in Example 9 to give the title compound.


Yield: 600 mg (theoretical yield).


PREPARATION EXAMPLE 213
Synthesis of 4-[N-[[2-(3,4-dimethoxyphenyl)pyridin-4-yl]methyl]-N-(4-methoxyphenyl)amino]piperidine Dihydrochloride



embedded image


1-(tert-Butoxycarbonyl)-4-[N-[[2-(3,4-dimethoxyphenyl)pyridin-4-yl]methyl]-N-(4-methoxyphenyl)amino]piperidine (600 mg) was treated in the same manner as described in Preparation Example 94 to give the title compound.


Yield: 416 mg (77%).


PREPARATION EXAMPLE 214
Synthesis of 1-(tert-butoxycarbonyl)-4[N-[[2-(2-fluorophenyl)pyridin-4-yl]methyl]-N-(4-methoxyphenyl)amino]piperidine



embedded image


4-(p-Anisidino)-1-(tert-butoxycarbonyl)piperidine (306 mg) and 4-chloromethyl-2-(2-fluorophenyl)pyridine (222 mg) were condensed in the same manner as described in Example 9 to give the title compound.


Yield: 530 mg (theoretical yield).


PREPARATION EXAMPLE 215
Synthesis of 4[N-[[2-(2-fluorophenyl)pyridin-4-yl]methyl]-N-(4-methoxyphenyl)amino]piperidine Dihydrochloride



embedded image


1-(tert-Butoxycarbonyl)-4-[N-[[2-(2-fluorophenyl)pyridin-4-yl]methyl]-N-(4-methoxyphenyl)amino]piperidine (530 mg) was treated in the same manner as described in Preparation Example 94 to give the title compound.


Yield: 423 mg (85%).


PREPARATION EXAMPLE 216
Synthesis of 1-(tert-butoxycarbonyl)-4[N-[[2-(3-fluorophenyl)pyridinyl]methyl]-N-(4-methoxyphenyl)amino]piperidine



embedded image


4-p-Anisidino)-1-(tert-butoxycarbonyl)piperidine (153 mg) and 4-chloromethyl-2-(3-fluorophenyl)pyridine (111 mg) were condensed in the same manner as described in Example 9 to give the title compound.


Yield: 270 mg (theoretical yield).


PREPARATION EXAMPLE 217
Synthesis of 4-[[[2-(3-fluorophenyl)pyridinyl]methyl]-N-(4-methoxyphenyl)amino]piperidine Dihydrochloride



embedded image


1-(tert-Butoxycarbonyl)-4[N-[[2-(3-fluorophenyl)pyridin-4-yl]methyl]-N-(4-methoxyphenyl)amino]piperidine (270 mg) was treated in the same manner as described in Preparation Example 94 to give the title compound.


Yield: 193 mg (70%).


PREPARATION EXAMPLE 218
Synthesis of

1-(tert-butoxycarbonyl)-4-[N-[[2-(4-fluorophenyl)pyridin-4-yl]methyl]-N-(4-methoxyphenyl)amino]piperidine:
embedded image


4-(p-Anisidino)-1-(tert-butoxycarbonyl)piperidine (306 mg) and 4-chloromethyl-2-(4-fluorophenyl)pyridine (222 mg) were condensed in the same manner as described in Example 9 to give the title compound.


Yield: 550 mg (theoretical yield).


PREPARATION EXAMPLE 219
Synthesis of 4-[N-[[2-(4-fluorophenyl)pyridin-4-yl]methyl-N-(4-methoxyphenyl)amino]piperidine Dihydrochloride



embedded image


1-(tert-Butoxycarbonyl)-4-[N-[[2-(4-fluorophenyl)pyridin-4-yl]methy]-1-N-(4-methoxyphenyl)amino]piperidine (550 mg) was treated in the same manner as described in Preparation Example 94 to give the title compound.


Yield: 439 mg (880%).


PREPARATION EXAMPLE 220
Synthesis of 1-(tert-butoxycarbonyl)-4[N-[[2-(3,4-difluorophenyl)pyridinyl]methyl]-N-(4-methoxyphenyl)amino]piperidine



embedded image


4-(p Anisidino)-1-(tert-butoxycarbonyl)piperidine (306 mg) and 4-chloromethyl-2-(3,4 difluorophenyl)pyridine (240 mg) were condensed in the same manner as described in Example 9 to give the title compound.


Yield: 590 mg (theoretical yield).


PREPARATION EXAMPLE 221
Synthesis of 4-[N-[[2-(3,4-difluorophenyl)pyridin-4-yl]methyl]-N-(4-methoxyphenyl)amino]piperidine dihydrochloride



embedded image


1-(tert-Butoxycarbonyl)-4-[-N-[[2-(3,4-difluorophenyl)pyridin-4-yl]methyl]-N -(4-methoxyphenyl)amino]piperidine (590 mg) was treated in the same manner as described in Preparation Example 94 to give the title compound.


Yield: 483 mg (93%).


PREPARATION EXAMPLE 222
Synthesis of 1-(tert-butoxycarbonyl)-4-[N-[[2-(3,5-difluorophenyl)pyridin-4-yl]methyl]-N-(4-methoxyphenyl)amino]piperidine



embedded image


4-(p-Anisidino)-1-(tert-butoxycarbonyl)piperidine (306 mg) and 4-chloromethyl-2-(3,5-difluorophenyl)pyridine (240 mg) were condensed in the same manner as described in Example 9 to give the title compound.


Yield: 530 mg (theoretical yield).


PREPARATION EXAMPLE 223
Synthesis of 4-[N-[[2-(3,5-difluorophenyl)pyridin-4-yl]methyl]-N-(4-methoxyphenyl)amino]piperidine Dihydrochloride



embedded image


1 tert-Butoxycarbonyl)-4-[N-[[2-(3,5-difluorophenyl)pyridin-4-yl]methyl]-N-(4-methoxyphenyl)amino]piperidine: (530 mg) was treated in the same manner as described in Preparation Example 94 to give the title compound.


Yield: 418 mg (81%).


PREPARATION EXAMPLE 224
Synthesis of 1-(tert-butoxycarbonyl)-4-[N-[[2-(4-chlorophenyl)pyridin-4-yl]methyl]-N-(4-methoxyphenyl)amino]piperidine



embedded image


4-(p-Anisidino)-1-(tert-butoxycarbonyl)piperidine (306 mg) and 4-chloromethyl-2-(4-chlorophenyl)pyridine (238 mg) were condensed in the same manner as described in Example 9 to give the title compound.


Yield: 600 mg (theoretical yield).


PREPARATION EXAMPLE 225
Synthesis of 4-[N-[[2-(4-chlorophenyl)pyridin-4-yl]methyl]-N-(4-methoxyphenyl)amino]piperidine Dihydrochloride



embedded image


1-(tert-Butoxycarbonyl)-4-[N-[[2-(4-chlorophenyl)pyridin-4-yl]methyl]-N-(4-methoxyphenyl)amino]piperidine: (600 mg) was treated in the same manner as described in Preparation Example 94 to give the title compound.


Yield: 447 mg (86%).


EXAMPLES 170 TO 202

These compounds were obtained by the condensation of amines obtained in Preparation Examples 96, 205, 207, 209, 211, 213, 215, 217, 219, 221, 223 and 225 with chloride derivatives obtained in Preparation Examples 3, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102 and 103. Free bases obtained were then converted to the corresponding hydrochlorides. Yields and NMR data of their free bases are listed below.

NMR data (400 MHz,measured as freeExampleStructureYieldbases, CDCl3) δ170embedded image 47%1.67-1.80 (m, 2H), 1.83-1.91 (m, 2H), 2.10-2.19 (m, 2H), 2.93-3.00 (m, 2H), 3.54-3.65 (m, 1H), 3.56 (s, 2H), 3.73 (s, 3H), 3.89 (s, 3H), 3.93 (s, 6H), 4.45 (s, 3H), 6.73 (d, 2H, J=9.4 Hz), 6.78 (d, 2H, J=9.4 Hz), 7.14-7.21 (m, 2H), 7.15 (s, 2H), 7.38-7.49 (m, 3H), 7.57 (s, 1H), 7.68 (s, 1H), 7.97 (d, 1H, J=1.0 Hz), 7.99 (d, 1H, J=1.6 Hz), 8.54 (d, 1H, J=5.1 Hz), 8.61 (d, # 1H, J=5.1 Hz).171embedded image 55%1.62-1.80 (m, 2H), 1.84-1.93 (m, 2H), 2.10-2.20 (m, 2H), 2.93-3.02 (m, 2H), 3.53-3.66 (m, 1H), 3.56 (s, 2H), 3.73 (s, 3H), 3.90 (s, 3H), 3.96 (s, 6H), 4.44 (s, 2H), 6.65-6.83 (m, 4H), 7.14-7.30 (m, 4H), 7.36-7.50 (m, 3H). 7.59 (s, 1H), 7.67 (s, 1H), 7.93 (d, 2H, J=7.0 Hz), 8.54-8.61 (m, 2H).172embedded image 54%1.67-1.92 (m, 4H), 2.08-2.20 (m, 2H), 2.92-3.01 (m, 2H), 3.52-3.65 (m, 1H), 3.55 (s, 2H), 3.72 (s, 3H), 4.38 (s, 2H), 6.72 (d, 2H, J=9.2 Hz), 6.78 (d, 2H, J=9.0 Hz), 7.18 (dd, 2H, J=4.9 Hz, 4.9 Hz), 7.36-7.50 (m, 6H), 7.67 (s, 1H), 7.68 (s, 1H), 7.93 (dd, 2H, J=8.4 Hz, 1.2 Hz), 7.98 (dd, 2H, J=8.6 Hz, 1.4 Hz), 8.57 (d, 1H, J=5.1 Hz), 8.60 (d, 1H, J=5.1 Hz).173embedded image100%1.66-1.79 (m, 2H), 1.82-1.91 (m, 2H), 2.09-2.20 (m, 2H), 2.93-3.03 (m, 2H), 3.56 (s, 2H), 3.56-3.59 (m, 1H), 3.73 (s, 3H), 3.80 (s, 3H), 3.89 (s, 3H), 3.93 (s, 6H), 4.45 (s, 2H), 6.73 (d, 2H, J=9.3 Hz), 6.78 (d, 2H, J=9.3 Hz), 6.98 (d, 1H, J=8.5 Hz), 7.07 (t, 1H J=7.6 Hz), 7.15 (s, 2H), 7.15-7.19 (m, 2H), 7.33-7.38 (m, 1H), 7.57 (s, 1H), 7.66-7.74 (m, 2H), 8.53 (d, 1H, # J=5.1 Hz, 8.61 (d, 1H, J=4.9 Hz.174embedded image 94%1.70-1.80 (m, 2H), 1.83-1.91 (m, 2H), 2.11-2.18 (m, 2H), 2.92-3.01 (m, 2H), 3.56 (s, 2H), 3.57-3.65 (m, 1H), 3.73 (s, 3H), 3.74 (s, 3H), 3.90 (s, 3H), 3.96 (s, 6H), 4.44 (s, 2H), 6.71 (d, 2H, J=9.0 Hz), 6.78 (d, 2H, J=9.0 Hz), 6.96 (d, 1H, J=8.3 Hz), 7.05 (dt, 1H, J=7.3 Hz, 1.0 Hz), 7.14 (d, 1H, J=5.2 Hz), 7.20 (d, 1H, J=5.2 Hz), 7.22 (2H, s), 7.32-7.37 (m, 1H), 7.59 (s, # 1H), 7.71-7.75 (m, 2H), 8.56-8.60 (m, 2H).175embedded image 98%1.67-1.80 (m, 2H), 1.83-1.90 (m, 2H), 2.10-2.19 (m, 2H), 2.94-3.03 (m, 2H), 3.50-3.67 (m, 1H), 3.56 (s, 2H), 3.73 (s, 3H), 3.74 (s, 3H), 3.79 (s, 3H), 4.44 (s, 2H), 6.70 (d, 2H, J=9.3 Hz), 6.78 (d, 2H, J=9.3 Hz), 6.96 (d, 1H, J=8.3 Hz), 6.98 (d, 1H, J=8.8 Hz), 7.04 (dd, 1H, J=7.6 Hz, 1.0 Hz), 7.07 (dd, 1H, 7.6, J=1.0 Hz), 7.12-7.19 (m, 2H), 7.32-7.39 (m, 2H), 7.70-7.75 # (m, 4H), 8.58 (d, 1H, J=5.1 Hz), 8.61 (d, 1H, J=4.9 Hz).176embedded image100%1.68-1.79 (m, 2H), 1.82-1.90 (m, 2H), 2.10-2.19 (m, 2H), 2.90-3.01 (m, 2H), 3.56 (s, 2H), 3.56-3.58 (m, 1H), 3.73 (s, 3H), 3.89 (s, 3H), 3.91 (s, 3H), 3.93 (s, 6H), 4.45 (s, 2H), 6.73 (d, 2H, J=9.3 Hz), 6.78 (d, 2H, J=9.3 Hz), 6.93-6.99 (m, 1H), 7.15 (s, 2H), 7.16-7.20 (m, 2H), 7.37 (t, 1H, J=7.8 Hz), 7.52-7.59 (m, 3H), 7.67 (s, 1H), 8.54 (d, 1H, J=5.1 Hz), 8.60 (d, 1H, # J=5.1 Hz).177embedded image100%1.68-1.79 (m, 2H), 1.83-1.92 (m, 2H), 2.11-2.16 (m, 2H), 2.91-3.02 (m, 2H), 3.56 (s, 2H), 3.55-3.65 (m, 1H), 3.73 (s, 3H), 3.88 (s, 3H), 3.90 (s, 3H), 3.96 (s, 6H), 4.43 (s, 2H), 6.72 (d, 2H, J=9.3 Hz), 6.78 (d, 2H, J=9.3 Hz), 6.95 (dd, 1H. J=8.3 Hz, 2.7 Hz), 7.16-7.21 (m, 2H), 7.22 (s, 2H), 7.35 (t, 1H, J=7.8 Hz), 7.48 (d, 1H, J=7.8 Hz), 7.53 (t, 1H, J=2.7 Hz), 7.59 (s, # 1H), 7.65 (s, 1H), 8.55-8.60 (m, 2H).178embedded image100%1.65-1.79 (m, 2H), 1.82-1.90 (m, 2H), 2.09-2.19 (m, 2H), 2.92-3.00 (m, 2H), 3.50-3.66 (m, 1H), 3.56 (s, 2H), 3.73 (s, 3H), 3.73 (s, 3H), 3.88 (s, 3H), 3.89 (s, 3H), 4.44 (s, 2H), 6.72 (d, 2H, J=9.3 Hz), 6.78 (d, 2H, J=9.3 Hz), 6.92-6.98 (m, 2H), 7.16-7.21 (m, 2H), 7.34 (d, 1H, J=7.8 Hz), 7.38 (d, 1H, J=8.5 Hz), 7.46-7.59 (m, 4H), 7.65 (s, 1H), 7.67 (s, 1H), 8.57 (dd, 1H, # J=5.1 Hz, 0.7 Hz), 8.60 (d, 1H, J=5.1 Hz).179embedded image 76%1.44 (t, 3H, J=7.1 Hz), 1.70-1.80 (m, 2H), 1.82-1.91 (m, 2H), 2.10-2.19 (m, 2H), 2.90-3.02 (m, 2H), 3.54 (s, 2H), 3.73-3.78 (m, 1H), 3.73 (s, 3H), 3.88 (s, 3H), 3.93 (s, 6H), 4.09 (q, 2H, J=7.1 Hz), 4.45 (s, 2H), 6.73 (d, 2H, J=9.2 Hz), 6.78 (d, 2H, J=9.2 Hz), 6.97 (d, 2H, J=8.8 Hz), 7.10-7.18 (m, 2H), 7.15 (s, 2H), 7.57 (s, 1H), 7.61 (s, 1H), 7.92 (d, 2H, J=8.8 Hz), 8.52-# 8.58 (m, 2H).180embedded image 93%1.43 (t, 3H, J=6.8 Hz), 1.68-1.80 (m, 2H), 1.82-1.92 (m, 2H), 2.10-2.19 (m, 2H), 2.90-3.01 (m, 2H), 3.56 (s, 2H), 3.57-3.64 (m, 1H), 3.73 (s, 3H), 3.90 (s, 3H), 3.96 (s, 6H), 4.08 (q, 2H, J=6.8 Hz), 4.42 (s, 2H), 6.72 (d, 2H, J=9.0 Hz), 6.78 (d, 2H, J=9.3 Hz), 6.95 (d, 2H, J=8.8 Hz), 7.11 (d, 1H, J=5.1 Hz), 7.20 (d, 1H, J=5.1 Hz), 7.22 (s, 2H), 7.58-7.62 (m, 2H), 7.87 (d, # 2H, J=8.8 Hz), 8.52 (d, 1H, J=5.1 Hz), 8.58 (d, 1H, J=5.1 Hz).181embedded image100%1.43 (t, 3H, J=7.1 Hz), 1.44 (t, 3H, J=7.1 Hz), 1.67-1.78 (m, 2H), 1.82-1.90 (m, 2H), 2.09-2.18 (m, 2H), 2.92-3.00 (m, 2H), 3.54 (s, 2H), 3.55-3.65 (m, 1H), 3.73 (s, 3H), 4.08 (q, 2H, J=7.1 Hz), 4.09 (q, 2H, J=6.8 Hz), 4.42 (s, 2H), 6.71 (d, 2H, J=9.0 Hz), 6.78 (d, 2H, J=9.0 Hz), 6.93-7.00 (m, 4H), 7.10-7.14 (m, 2H), 7.60 (s, 2H), 7.88 (s, 2H), 7.88 (d, 2H, J=8.8 Hz), # 7.93 (d, 2H, J=8.8 Hz), 8.52 (d, 1H, J=5.1 Hz), 8.56 (d, 1H, J=4.9 Hz).182embedded image100%1.68-1.79 (m, 2H), 1.82-1.90 (m, 2H), 2.10-2.19 (m, 2H), 2.90-3.01 (m, 2H), 3.55 (s, 2H), 3.56-3.59 (m, 1H), 3.73 (s, 3H), 3.89 (s, 3H), 3.93 (s, 6H), 3.94 (s, 3H), 3.99 (s, 3H), 4.45 (s, 2H), 6.76 (d, 2H, J=9.5 Hz), 6.78 (d, 2H, J=9.5 Hz), 6.94 (d, 1H, J=8.3 Hz), 7.15 (s, 2H), 7.16-7.19 (m, 2H), 7.49-7.66 (m, 4H), 8.54 (d, 1H, J=4.9 Hz), 8.57 (d, 1H, J=5.1 Hz).183embedded image100%1.68-1.78 (m, 2H), 1.82-1.91 (m, 2H), 2.10-2.18 (m, 2H), 2.93-3.00 (m, 2H), 3.56 (s, 2H), 3.56-3.62 (m, 1H), 3.73 (s, 3H), 3.90 (s, 3H), 3.93 (s, 3H), 3.96 (s, 6H), 3.97 (S, 3H), 4.43 (s, 2H), 6.72 (d, 2H, J=9.3 Hz), 6.78 (d, 2H, J=9.3 Hz), 6.92 (d, 1H, J=8.3 Hz), 7.12 (d, 1H, J=5.1 Hz), 7.20 (d, 1H, J=5.1 Hz), 7.22 (s, 2H), 7.42 (d, 1H, J=8.5 Hz, 2.2 Hz), 7.58-7.63 (m, # 3H), 8.53 (d, 1H, J=4.9 Hz), 8.58 (d, 1H, J=5.1 Hz).184embedded image 89%1.67-1.79 (m, 2H), 1.84-1.90 (m, 2H), 2.10-2.19 (m, 2H), 2.93-3.01 (m, 2H), 3.50-3.65 (m, 1H), 3.55 (s, 2H), 3.73 (s, 3H), 3.94 (s, 3H), 3.97 (s, 3H), 3.99 (s, 3H), 4.43 (s, 2H), 6.72 (d, 2H, J=9.3 Hz), 6.78 (d, 2H, J=9.3 Hz), 6.92 (d, 1H, J=8.6 Hz), 6.94 (d, 1H, J=8.3 Hz), 7.14 (d, 1H, J=5.6 Hz), 7.15 (d, 1H, J=6.4 Hz), 7.43 (dd, 1H, J=8.6 Hz, 2.0 Hz), 7.50 (dd, 1H, J=8.3 # Hz, 1.9 Hz), 7.60-7.63 (m, 3H), 7.66 (d, 1H, J=2.2 Hz), 8.53 (d, 1H, J=5.1 Hz), 8.57 (d, 1H, J=4.9 Hz).185embedded image100%1.68-1.79 (m, 2H), 1.82-1.90 (m, 2H), 2.10-2.20 (m, 2H), 2.93-3.01 (m, 2H), 3.57 (s, 2H), 3.57-3.65 (m, 1H), 3.73 (s, 3H), 3.89 (s, 3H), 3.93 (s, 6H), 4.46 (s, 2H), 6.73 (d, 2H, J=7.3 Hz), 6.78 (d, 2H, J=7.3 Hz), 7.11-7.19 (m, 2H), 7.15 (s, 2H), 7.22-7.29 (m, 2H), 7.34-7.40 (m, 1H), 7.58 (s, 1H), 7.73 (s, 1H), 7.94 (t, 1H, J=8.3 Hz), 8.54 (d, 1H, J=5.1 Hz), 8.64 (d, 1H, J=# 4.9 Hz).186embedded image 88%1.68-1.79 (m, 2H), 1.83-1.92 (m, 2H), 2.09-2.16 (m, 2H), 2.93-3.01 (m, 2H), 3.56 (s, 2H), 3.56-3.62 (m, 1H), 3.73 (s, 3H), 3.90 (s, 3H), 3.96 (s, 6H), 4.44 (s, 2H), 6.71 (d, 2H, J=9.3 Hz), 6.77 (d, 2H, J=9.3 Hz), 7.10-7.16 (m, 1H), 7.17-7.26 (m, 3H), 7.22 (s, 2H), 7.32-7.38 (m, 1H), 7.59 (s, 1H), 7.73 (s, 1H), 7.92 (dt, 1H, J=8.0 Hz, 2.0 Hz), 8.57-8.61 (m, 2H).187embedded image100%1.66-1.80 (m, 2H), 1.83-1.93 (m, 2H), 2.10-2.20 (m, 2H), 2.92-3.02 (m, 2H), 3.53-3.65 (m, 1H), 3.57 (s, 2H), 3.73 (s, 3H), 4.44 (s, 2H), 6.71 (d, 2H, J=9.0 Hz), 6.78 (d, 2H, J=9.3 Hz), 7.10-7.18 (m, 2H), 7.19-7.29 (m, 4H), 7.32-7.40 (m, 2H), 7.73 (s, 2H), 7.91 (dd, 1H, J=8.1 Hz, 1.4 Hz), 7.95 (dd, 1H, J=7.6 Hz, 1.5 Hz), 8.60 (d, 1H, J=4.9 Hz), 8.64 (d, 1H, J=5.1 Hz).188embedded image 96%1.67-1.80 (m, 2H), 1.82-1.92 (m, 2H), 2.10-2.20 (m, 2H), 2.91-3.01 (m, 2H), 3.56 (s, 2H), 3.56-3.61 (m, 1H), 3.73 (s, 3H), 3.89 (s, 3H), 3.93 (s, 6H), 4.46 (s, 2H), 6.73 (d, 2H, J=9.3 Hz), 6.78 (d, 2H, J=9.3 Hz), 7.06-7.19 (m, 2H), 7.15 (s, 2H), 7.20-7.26 (m, 1H), 7.38-7.45 (m, 1H), 7.56 (s, 1H), 766-7.78 (m, 3H), 8.54 (d, 1H, J=5.1 Hz), 8.61 (d, 1H, J=4.9 Hz).189embedded image 92%1.65-1.78 (m, 2H), 1.79-1.92 (m, 2H), 2.21-2.26 (m, 2H), 2.90-3.01 (m, 2H), 3.56 (s, 2H), 3.56-3.63 (m, 1H), 3.73 (s, 3H), 3.90 (s, 3H), 3.96 (s, 6H), 4.44 (s, 2H), 6.72 (d, 2H, J=9.3 Hz), 6.78 (d, 2H, J=9.3 Hz), 7.08 (dt, 1H, J=8.3 Hz, 1.7 Hz), 7.18-7.40 (m, 2H), 7.22 (s, 2H), 7.37-7.43 (m, 1H), 7.56-7.72 (m, 4H), 8.55-8.60 (m, 2H).190embedded image 55%1.66-1.79 (m, 2H), 1.80-1.91 (m, 2H), 2.10-2.20 (m, 2H), 2.88-3.01 (m, 2H), 3.50-3.66 (m, 1H), 3.56 (s, 2H), 3.73 (s, 3H), 4.45 (s, 2H), 6.72 (d, 2H, J=8.5 Hz), 6.79 (d, 2H, J=9.0 Hz), 7.04-7.13 (m, 2H), 7.19-7.25 (m, 2H), 7.35-7.46 (m, 2H), 7.62-7.79 (m, 6H), 8.57 (d, 1H, J=5.1 Hz), 8.61 (d, 1H, J=4.9 Hz).191embedded image100%1.68-1.79 (m, 2H), 1.82-1.91 (m, 2H), 2.10-2.19 (m, 2H), 2.92-3.00 (m, 2H), 3.55 (s, 2H), 3.56-3.63 (m, 1H), 3.73 (s, 3H), 3.89 (s, 3H), 3.93 (s, 6H), 4.45 (s, 2H), 6.73 (d, 2H, J=9.3 Hz), 6.78 (d, 2H, J=9.3 Hz), 7.11-7.19 (m, 4H), 7.15 (s, 2H), 7.57 (s, 1H), 7.63 (s, 1H), 7.92-8.01 (m, 2H), 8.54 (d, 1H, J=5.1 Hz), 8.58 (d, 1H, J=5.1 Hz).192embedded image100%1.68-1.79 (m, 2H), 1.83-1.92 (m, 2H), 2.11-2.19 (m, 2H), 2.93-3.01 (m, 2H), 3.56 (s, 2H), 3.57-3.62 (m, 1H), 3.73 (s, 3H), 3.90 (s, 3H), 3.96 (s, 6H), 4.43 (s, 2H), 6.72 (d, 2H, J=9.3 Hz), 6.78 (d, 2H, J=9.3 Hz), 7.10-7.22 (m, 4H), 7.22 (s, 2H), 7.54-7.66 (m, 2H), 7.88-7.94 (m, 2H), 8.55 (d, 1H, J=4.9 Hz), 8.58 (d, 1H, J=4.9 Hz).193embedded image 90%1.66-1.80 (m, 2H), 1.83-1.91 (m, 2H), 2.10-2.19 (m, 2H), 2.92-3.00 (m, 2H), 3.50-3.66 (m, 1H), 3.55 (s, 2H), 3.73 (s, 3H), 4.44 (s, 2H), 6.72 (d, 2H, J=9.3 Hz), 7.78 (d, 2H, J=9.3 Hz), 7.09-7.20 (m, 6H), 7.62 (s, 1H), 7.63 (s, 1H), 7.89-8.00 (m, 4H), 8.55 (d, 1H, J=5.1 Hz, 8.58 (d, 1H, J=4.9 Hz).194embedded image 36%1.68-1.80 (m, 2H), 1.82-1.90 (m, 2H), 2.11-2.19 (m, 2H), 2.91-2.99 (m, 2H), 3.55 (s, 2H), 3.56-3.62 (m, 1H), 3.73 (s, 3H), 3.89 (s, 3H), 3.93 (s, 6H), 4.45 (s, 2H), 6.73 (d, 2H, J=9.3 Hz), 6.78 (d, 2H, J=9.3 Hz), 7.15 (s, 2H), 7.16-7.26 (m, 3H), 7.57 (s, 1H), 7.62 (s, 1H), 7.71 (br, 1H), 7.80-7.90 (m, 1H), 8.54 (d, 1H, J=5.1 Hz), 8.58 (d, 1H, J=4.9 Hz).195embedded image100%1.60-1.80 (m, 2H), 1.82-1.91 (m, 2H), 2.12-2.19 (m, 2H), 2.91-3.00 (m, 2H), 3.56 (s, 2H), 3.56-3.64 (m, 1H), 3.73 (s, 3H), 3.90 (s, 3H), 3.96 (s, 6H), 4.45 (s, 2H), 6.72 (d, 2H, J=9.0 Hz), 6.78 (d, 2H, J=9.0 Hz), 7.17-7.24 (m, 4H), 7.25-7.27 (m, 1H), 7.60 (s, 2H), 7.65 (br, 1H), 7.77-7.84 (m, 1H), 8.53-8.61 (m, 2H).196embedded image100%1.66-1.79 (m, 2H), 1.82-1.91 (m, 2H), 2.09-2.20 (m, 2H), 2.90-3.00 (m, 2H), 3.50-3.65 (m, 1H), 3.55 (s, 2H), 3.73 (s, 3H), 4.44 (s, 2H), 6.72 (d, 2H, J=9.3 Hz), 6.79 (d, 2H, J=9.3 Hz), 7.18-7.28 (m, 4H), 7.60 (s, 1H), 7.62 (s, 1H), 7.63-7.68 (m, 1H), 7.70-7.75 (m, 1H), 7.77-7.89 (m, 2H), 8.55 (d, 1H, J=4.9 Hz), 8.58 (d, 1H, J=5.1 Hz).197embedded image100%1.68-1.80 (m, 2H), 1.82-1.90 (m, 2H), 2.10-2.21 (m, 2H), 2.90-3.00 (m, 2H), 3.56 (s, 2H), 3.56-3.63 (m, 1H), 3.73 (s, 3H), 3.89 (s, 3H), 3.93 (s, 6H), 4.56 (s, 2H), 6.73 (d, 2H, J=9.3 Hz), 6.78 (d, 2H, J=9.3 Hz), 6.81-6.87 (m, 1H), 7.15 (s, 2H), 7.18 (d, 1H, J=4.2 Hz), 7.22-7.26 (m, 1H), 7.51-7.59 (m, 3H), 7.65 (s, 1H), 8.54 (d, 1H, J=4.9 Hz), 8.59 (d, 1H, J=5.1 Hz).198embedded image100%1.65-1.79 (m, 2H), 1.80-1.94 (m, 2H), 2.22-2.25 (m, 2H), 2.90-3.05 (m, 2H), 3.56 (s, 2H), 3.56-3.65 (m, 1H), 3.73 (s, 3H), 3.90 (s, 3H), 3.96 (s, 6H), 4.44 (s, 2H), 6.72 (d, 2H, J=9.2 Hz), 6.78 (d, 2H, J=9.2 Hz), 6.80-6.94 (m, 2H), 7.22 (s, 2H), 7.19-7.28 (m, 1H), 7.45-7.51 (m, 2H), 7.59 (s, 1H), 7.62 (s, 1H), 8.56 (d, 1H, J=4.9 Hz), 8.59 (d, 1H, J=5.1 Hz).199embedded image100%1.67-1.79 (m, 2H), 1.82-1.92 (m, 2H), 2.12-2.20 (m, 2H), 2.92-2.99 (m, 2H), 3.50-3.65 (m, 1H), 3.56 (s, 2H), 3.73 (s, 3H), 4.45 (s, 2H), 6.72 (d, 2H, J=9.0 Hz), 6.79 (d, 2H, J=9.3 Hz), 6.80-6.88 (m, 2H), 7.23-7.27 (m, 2H), 7.48 (dd, 2H, J=8.8 Hz, 2.2 Hz), 7.55 (dd, 2H, J=8.8 Hz, 2.2 Hz), 7.63 (s, 1H), 7.65 (s, 1H), 8.57 (d, 1H, J=4.9 Hz), 8.60 (d, 1H, J=4.9 Hz).200embedded image 84%1.68-1.80 (m, 2H), 1.83-1.92 (m, 2H), 2.10-2.21 (m, 2H), 2.91-3.00 (m, 2H), 3.56 (s, 2H), 3.57-3.62 (m, 1H), 3.73 (s, 3H), 3.89 (s, 3H), 3.93 (s, 6H), 4.45 (s, 2H), 6.73 (d, 2H, J=9.3 Hz), 6.78 (d, 2H, J=9.3 Hz), 7.15 (s, 2H), 7.17 (d, 1H, J=4.9 Hz), 7.20 (d, 1H, J=5.1 Hz), 7.43 (d, 2H, J=8.3 Hz), 7.57 (s, 1H), 7.65 (s, 1H), 7.93 (d, 2H, J=8.3 Hz), 8.54 (d, 1H, J=4.9 Hz), # 8.59 (d, 1H, J=5.1 Hz).201embedded image 72%1.65-1.78 (m, 2H), 1.82-1.91 (m, 2H), 2.10-2.16 (m, 2H), 2.91-3.02 (m, 2H), 3.56 (s, 2H), 3.56-3.64 (m, 1H), 3.73 (s, 3H), 3.90 (s, 3H), 3.96 (s, 6H), 4.43 (s, 2H), 6.72 (d, 2H, J=9.3 Hz), 6.78 (d, 2H, J=9.3 Hz), 7.17-7.21 (m, 1H), 7.22 (2H, s), 7.41 (d, 2H, J=8.7 Hz), 7.48 (d, 1H, J=7.8 Hz), 7.59 (s, 1H), 7.63 (s, 1H) 7.87 (d, 2H, J=8.7 Hz), 8.56 (d, 1H, J=4.9 Hz), 8.58 # (d, 1H, J=5.1 Hz).202embedded image 94%1.67-1.88 (m, 2H), 1.83-1.90 (m, 2H), 2.10-2.17 (m, 2H), 2.92-2.99 (m, 2H), 3.50-3.65 (m, 1H), 3.55 (s, 2H), 3.73 (s, 3H), 4.44 (s, 2H), 6.72 (d, 2H, J=9.0 Hz), 6.78 (d, 2H, J=9.3 Hz), 7.17-7.22 (m, 2H), 7.39-7.45 (m, 4H), 7.63 (s, 1H), 7.65 (s, 1H), 7.88 (d, 2H, J=8.6 Hz), 7.93 (d, 2H, J=8.5 Hz), 8.56 (d, 1H, J=4.9 Hz), 8.59 (d, 1H, J=4.9 Hz).


PREPARATION EXAMPLE 226
Synthesis of 4-[N-[3-(3,4,5-trimethoxyphenyl)benzyl]-N-[4-(methylsulfonyl)phenyl]amino]piperidine



embedded image


To a solution of 4-[N-[3-(3,4,5-trimethoxyphenyl)benzyl]-N-[4-(methylthio)phenylamino]piperidine hydrochloride (52 mg, obtained in the Preparation Example 145) in dichloromethane (1 mL) was added 3-chloroperbenzoic acid (69 mg) at 0° C. The mixture was stirred at room temperature for 3 hours and saturated aqueous sodium hydrogen carbonate was added. After separating the organic layer, the aqueous layer was extracted with chloroform. Organic layers were combined, washed with brine, dried over anhydrous sodium sulfate and evaporated to give pale yellow oil of the title compound which was used for the next step without further purification.


EXAMPLE 203
Synthesis of 4-[N-[4-(methylsulfonyl)phenyl]-N-[3-(3,4,5-trimethoxyphenyl)benzyl]amino]-1-[[2-(3,4,5-trimethoxyphenyl)pyridin-4-yl]methyl]piperidine Dihydrochloride



embedded image


Crude 4-[N-[3-(3,4,5-trimethoxyphenyl)benzyl]-N-[4-(methylsulfonyl)phenyl]amino]piperidine and 4-chloromethyl-2-(3,4,5-trimethoxyphenyl)pylidine (29 mg) were condensed in the same manner as described in Example 9. The title compound was obtained as pale yellow powder after converting a free base to a dihydrochloride.


Yield: 23 mg (26% in 2 steps).



1H-NMR (400 MHz, measured as a free base, CDCl3) δ: 1.70-1.97 (m, 4H), 2.16-2.28 (m, 2H), 2.95-3.04 (m, 2H), 2.99 (s, 3H), 3.59 (s, 2H), 3.82 (s, 3H), 3.87-3.97 (m, 1H), 3.90 (s, 3H), 3.91 (s, 3H), 3.92 (s, 31), 3.96 (s, 9H), 4.65 (s, 2H), 6.59 (s, 1H), 6.75 (d, 2H, J=9.3 Hz), 7.19-7.30 (m, 7H), 7.39 (dd, 1H, J=7.6, 7.6 Hz), 7.60 (s, 1H), 7.68 (d, 2H, J=9.0 Hz), 8.60 (d, 1H, J=4.9 Hz).


EXAMPLE 204
Synthesis of 4-[N-(4-metoxyphenyl)-N-[[2-(3,4,5-trimethoxyphenyl)pyridin-4-yl]methyl]amino]-1-[[2-(3-methoxyphenyl)pyridin-4-yl]methyl]piperidine Trihydrochloride



embedded image


4-[N-(4-Methoxyphenyl)-N-[[3-(3,4,5-trimethoxyphenyl)pyridin-5-yl]methyl]amino]piperidine dihydrochloride (139 mg, obtained in the Preparation Example 98) and 4-chloromethyl-2-(3-methoxyphenyl)pyridine (70 mg, obtained in the Preparation Example 195) were condensed in the same manner described in the Example 9 to give the title compound as a trihydrochloride.


Yield: 131 mg (66%).



1H-NMR (400 MHz, measured as a free base, CDCl3) δ: 1.70-1.95 (m, 4H), 2.05-2.25 (m, 2H), 2.90-3.08 (m, 2H), 3.45-3.68 (m, 3H), 3.72 (s, 3H), 3.88 (s, 3H), 3.90 (s, 9H), 4.46 (s, 2H), 6.66 (s, 2H), 6.70-6.85 (m, 4H), 6.96 (d, 1H, J=8.3 Hz), 7.21 (br, 1H), 7.38 (t, 1H, J=7.8 Hz), 7.55 (t, 1H, J=7.8 Hz), 7.59 (s, 1H), 7.63-7.75 (m, 2H), 8.50 (s, 1H), 8.62 (m, 2H).


EXAMPLE 205
Synthesis of 4-[N-(4-metoxyphenyl)-N-[[2-(3,4,5-t ethoxyphenyl)pyridin-4-yl]methyl]amino]-1-[[2-(3,4-dimethoxyphenyl)pyridin-4-yl]methyl]piperidine Trihydrochloride



embedded image


4-[N-(4-Methoxyphenyl)-N-[[3-(3,4,5-trimethoxyphenyl)pyridin-5-yl]methyl]amino]piperidine dihydrochloride (139 mg, obtained in the Preparation Example 98) and 4-chloromethyl-2-(3,4-dimethoxyphenyl)pyridine (80 mg, obtained in the Preparation Example 197) were condensed in the same manner described in the Example 9 to give the title compound as a trihydrochloride.


Yield: 139 mg (67%).



1H-NMR (400 MHz, measured as a free base, CDCl3) δ: 1.70-1.95 (m, 4H), 2.05-2.20 (m, 2H), 2.90-3.05 (m, 2H), 3.45-3.60 (m, 3H), 3.73 (s, 3H), 3.88 (s, 3H), 3.89 (s, 6H), 3.94 (s, 3H), 4.00 (s, 3H), 4.46 (s, 2H), 6.65 (s, 2H), 6.74-6.82 (m, 4H), 6.94 (d, 1H, J=8.3 Hz), 7.15 (br, 1H), 7.52 (br, 1H), 7.58-7.71 (m, 3H), 8.50 (s, 1H), 8.57 (d, 1H, J=5.2 Hz), 8.62 (br, 1H).


EXAMPLE 206
Synthesis of 4-[N-(4-fluorophenyl)-N-[[3-(3,4,5-trimethoxyphenyl)pyridin-5-yl]methyl]amino]-1-[[2-(3-methoxyphenyl)pyridin-4-yl]methyl]piperidine Trihydrochloride



embedded image


4-[N-(4-Fluorophenyl)-N-[[3-(3,4,5-trimethoxyphenyl)pyridin-5-yl]methyl]amino]piperidine dihydrochloride (135 mg, obtained in the Preparation Example 183) and 4-chloromethyl-2-(3-methoxyphenyl)pyridine (70 mg, obtained in the Preparation Example 195) were condensed in the same manner described in the Example 9 to give the title compound as a trihydrochloride.


Yield: 178 mg (92%).



1H-NMR (400 MHz, measured as a free base, CDCl3) δ: 1.73-1.95 (m, 4H), 2.10-2.25 (m, 2H), 2.93-3.05 (m, 2H), 3.57 (s, 2H), 3.64 (br, 1H), 3.88 (s, 3H), 3.89 (s, 9H), 4.51 (s, 2H), 6.66 (s, 2H), 6.70-6.76 (m, 2H), 6.90 (t, 2H, J=8.3 Hz), 6.96 (d, 1H, J=8.3 Hz), 7.21 (br, 1H), 7.38 (t, 1H, J=8.0 Hz), 7.54 (d, 1H, J=7.8 Hz), 7.58 (s, 1H), 7.65 (s, 1H), 7.74 (br, 1H), 8.50 (s, 1H), 8.61 (d, 1H, J=5.1 Hz), 8.65 (br, 1H).


EXAMPLE 207
Synthesis of 4-[N-(4-fluorophenyl)-N-[[3-(3,4,5-trimethoxyphenyl)pyridin-5-yl]methyl]amino]-1-[[2-(3,4-dimethoxyphenyl)pyridin-4-yl]methyl]piperidine Trihydrochloride



embedded image


4-[N-(4-Fluorophenyl)-N-[[3-(3,4,5-trimethoxyphenyl)pyridin-5-yl]methyl]amino]piperidine dihydrochloride (135 mg, obtained in the Preparation Example 183) and 4-chloromethyl-2-(3,4-dimethoxyphenyl)pyridine (80 mg, obtained in the Preparation Example 197) were condensed in the same manner described in the Example 9 to give the title compound as a trihydrochloride.


Yield: 195 mg (96%).



1H-NMR (400 MHz, measured as a free base, CDCl3) δ: 1.70-1.95 (m, 4H), 2.10-2.24 (m, 2H), 2.94-3.09 (m, 2H), 3.57 (s, 2H), 3.64 (br, 1H), 3.88 (s, 3H), 3.89 (s, 6H), 3.94 (s, 3H), 4.00 (s, 3H), 4.51 (s, 2H), 6.65 (s, 2H), 6.69-6.78 (m, 2H), 6.86-6.97 (m, 3H), 7.16 (d, 1H, J=4.9 Hz), 7.51 (d, 1H, J=8.5 Hz), 7.60-7.70 (m, 3H), 8.50 (s, 1H), 8.58 (d, 1H, J=4.9 Hz), 8.65 (s, 1H).


EXAMPLE 208
Synthesis of 4-[N-(3,4,5-difluorophenyl)-N-[[3-(3,4,5-trimethoxyphenyl)pyridin-5-yl]methyl]amino]-1-[[2-(3-methoxyphenyl)pyridinyl]methyl]piperidine Trihydrochloride



embedded image


4N-(3,4-Difluorophenyl)-N-[[3-(3,4,5-trimethoxyphenyl)pyridin-5-yl]methyl]amino]piperidine dihydrochloride (160 mg, obtained in the Preparation Example 176) and 4-chloromethyl-2-(3-methoxyphenyl)pyridine (80 mg, obtained in the Preparation Example 195) were condensed in the same manner described in the Example 9 to give the title compound as a trihydrochloride.


Yield: 130 mg (57%).



1H-NMR (400 MHz, measured as a free base, CDCl3) δ: 1.73-1.90 (m, 4H), 2.01-2.24 (m, 2H), 2.92-3.05 (m, 2H), 3.57 (s, 2H), 3.67 (br, 1H), 3.88 (s, 3H), 3.89 (s, 3H), 3.90 (s, 6H), 4.52 (s, 2H), 6.36-6.42 (m, 1H), 6.50-6.58 (m, 1H), 6.67 (s, 2H), 6.93-7.01 (m, 2H), 7.20 (br, 1H), 7.38 (t, 1H, J=7.8 Hz), 7.52-7.62 (m, 2H), 7.62-7.72 (m, 2H), 8.48 (br, 1H), 8.61 (br, 1H), 8.66 (d, 1H, J=2.0 Hz).


EXAMPLE 209
Synthesis of 1-[[2-(3-methoxyphenyl)pyridin-4-yl]methyl]-4 [N-[[3-(3,4,5-trimethoxyphenyl)pyridin-5-yl]methyl]-N-(4-methylthiophenyl)amino]piperidine



embedded image


4-[N-(4-Metythiophenyl)-N-[[3-(3,4,5-trimethoxyphenyl)pyridin-5-yl]methyl]amino]piperidine dihydrochloride (121 mg, obtained in the Preparation Example 143) and 4-chloromethyl-2-(4-methoxyphenyl)pyridine (55 mg, obtained in the Preparation Example 195) were condensed in the same manner described in the Example 9 to give the title compound.


Yield: 71 mg (44%).



1H-NMR (400 MHz, measured as a free base, CDCl3) δ: 1.72-1.83 (m, 4H), 2.12-2.20 (m, 2H), 2.37 (s, 3H), 2.97 (d, 2H, J=10.8 Hz), 3.56 (s, 2H), 3.75-3.81 (m, 1H), 3.86 (s, 3H), 3.87 (s, 61), 4.54 (s, 2H), 6.64-6.69 (m, 3H), 6.94 (dd, 1H, J=7.8 Hz, 1.9 Hz), 7.17-7.26 (m, 4H), 7.35 (t, 1H, J=7.8 Hz), 7.51-7.66 (m, 4H), 8.47 (s, 1H), 8.59 (d, 1H, J=4.6 Hz), 8.63 (s, 1H).


TEST EXAMPLE 1

Human umbilical venous endothelial cells (HUVECs) were placed in 10 cm dishes (3×105 cells/dish). Two days thereafter, Trichostatin A (TSA, produced by Upstate) dissolved in dimethyl sulfoxide (DMSO) and the compound prepared in Example 10 dissolved in DMSO were individually added to a final concentrations of 10 μM and 1 μM, respectively. Each sample was stimulated with TNFα (final concentration: 10 ng/mL, Genzyme-Techne). Four hours later, total RNA was extracted with ISOGEN (Nippon Gene Co., Ltd.). The subsequent procedure was performed in accordance with the manufacturer's protocol (Affymetrix). From the thus obtained total RNA, mRNA was purified by a conventional method. cDNA was synthesized from the purified mRNA, and then biotin-labeled cRNA was synthesized by in vitro transcription. The cRNA was purified and subjected to heat treatment for fragmentation. The fragmented cRNA was used in gene expression analysis.


Method of gene expression analysis: The thus-prepared fragmented cRNA was injected to a HuGene human FL array (Affymetrix), and allowed to hybridize for 16 hours at 45° C. After washing, streptavidin labeled with phycoerythrin, and biotinylated anti-streptavidin antibody were added to each sample in order to cause reaction. Gene expression information was read by use of a dedicated scanner for GeneChip™ (Hewlett Packard). The thus-obtained information was analyzed with GeneChip Software (Affymetrix) for comparison in terms of level of expression.


The mRNA expression levels of 52 genes were twice or more increased by stimulation with TNFα. As shown in FIG. 1, the mRNA expression levels of these genes under addition of TSA and those under addition of the compound prepared in Example 10 have a positive correlation. In 25 genes (including VCAM-1, fractalkine, lymphotoxin β, and RDC-1) out of these genes, expression was inhibited by TSA and also by the compound prepared in Example 10. Conversely, expression was enhanced in 6 genes (including ICAM-1). The above results demonstrate that TSA and the compound prepared in Example 10 have similar actions on TNFα-stimulated HUVECs.

TABLE 1Genes with suppressed expression in the presenceof the two agentsNoTNFα+ CompoundGenesstimulationstimulationof Example 10+ TSAOB-cadherin-247972462caspase-like862457650apoptosisregulatoryprotein 2 (clarp)Nef associated241844496396factor 1M-Ras-461193739regulated GEFSpliceosomal 37964079Protein Sap 49ets-2331409038cytoplasmic601427837antiproteinase 2(CAP2)MCP-1411514346IL-7R491434444VCAM-1188738396EphrinA196356148113p50-NF-kappa51583357B homologCox-222154030BCL3114283125198IFNGR259418186209Na/K-ATPase8720078148beta-1TRAF14660088262IAP homolog B681774299RDC182932721ninjurin1104182135150fractalkine−15433738lymphotoxin beta−78258−56−40metalloproteinase45985469stromelysin-2ABC transporter371856966B2beta-galactoside27961419alpha-2; 6-sialyltransferaseGenes with enhanced expression in the presenceof the two agentsNoTNFα+ CompoundGenesstimulationstimulationof Ex. 10+ TSAICAM-1−19160121742303I kappa B alpha271117412591363B9456101010924junB599210123exodus-1−191573101206Gro1131466614855


TEST EXAMPLE 2

TSA (final concentration: 10 μM) or the compound prepared in Example 10 (final concentration: 1 μM) was added to HUVECs. The samples were stimulated with TNFα (final concentration: 10 ng/mL) for five hours, and RNA was recovered by use of an RNeasy Mini Kit (QIAGEN) in accordance with the manufacturer's protocol. Subsequently, cDNA was synthesized from the recovered RNA through a conventional method. The cDNA was subjected to quantitative PCR by the TaqMan probe method with a real-time quantitative PCR apparatus (ABI PRISM 7900HT, Applied Biosystems). The assay was performed for VCAM-1, GM-CSF, fractalkine, and ICAM-1. The expression level without stimulation was subtracted from the expression level with stimulation of TNFα, and assuming the resulting value to be 100, relative expression level was calculated. The results are shown in FIG. 2. TSA and the compound prepared in Example 10 exhibited either inhibitory or enhancing action on gene expressions. The results support the analysis results obtained from the test using GeneChip (see Test Example 1).


TEST EXAMPLE 3

Cultured human cancer cells were placed in a 96-well plate. On the following day, a solution of the compound prepared in Example 10 (in five concentrations resulting from 10-fold stepwise dilution: 10−4, 10−5, 10−6, 10−7, or 10−8 M) was added, followed by incubation for two days. Cell count after growth was determined in each plate through colorimetry using sulforhodamine B. The concentration at which the cell count after growth was inhibited to 50% of that of the cell count of the control (in the absence of the compound prepared in Example 10) was calculated (GI50). Simultaneously, on the basis of the cell count just before addition of the compound prepared in Example 10 (time zero), the following value (concentration) was calculated.

    • TGI: a concentration at which cell growth is inhibited to a cell count equal to that at time zero (concentration at which no change in cell count is observed)
    • LC50: a concentration at which cell count is reduced to 50% of the cell count at time zero (cell-killing effect).


Table 2 shows the growth inhibitory effect of the compound prepared in Example 10 on 9 typical cancer cells.

TABLE 2Cancer cell linesGI50 (μM)TGI (μM)LC50 (μM)MCF-7 (breast cancer)0.16>100>100SF-539 (brain tumor)0.83>100>100HCC2998 (colon cancer)0.331040DMS114 (lung cancer)0.0382.6>100LOX-IMVI (melanoma)0.181.241OVCAR-3 (ovarian cancer)0.3539>100ACHN (renal cancer)1.9>100>100MKN74 (stomach cancer)0.0260.56>100PC-3 (prostatic carcinoma)26.3>100>100


As is apparent from Table 2, the compound prepared in Example 10 exhibits strong growth inhibitory effect (GI50) on typical cultured human cancer cells. Moreover, LC50 values suggest that the compound produces reduced side effects.


TEST EXAMPLE 4

Cultured human cancer cells were added to a 96-well plate. On the following day, a solution of each of the compounds prepared in Examples 13, 23, 29, 36, and 114 (in five concentrations resulting from 10-fold stepwise dilution: 10−4, 10−5, 10−6, 10−7, or 10−8 M) was added, followed by incubation for 48 hours. Subsequently, % growth of the cells was measured through colorimetry by use of a WST-1 (Dojindo) reagent for measurement of cell count. From the measurement data, % growth was calculated by use of the following equation, and 50% growth inhibitory concentration (GI50) was calculated from the dose-response curve of each compound:

% growth={[(OD as measured after 48 hours from addition of compound)−(OD at time zero)]/[(OD of control as measured after 48 hours)−(OD at time zero)]}×100.


As is apparent from Table 3, the compounds prepared in Examples 13, 23, 29, 36, and 114 all exhibited strong growth inhibitory effect on cultured human cancer cells.

TABLE 3MCF-7HCT-15MKN-45MKN-74Compound(breast (colon (stomach (stomach (Examplecancer)cancer)cancer)cancer)No.)[GI50 (μM)][GI50 (μM)][GI50 (μM)][GI50 (μM)]130.70.830.7230.60.940.7290.70.830.4360.7120.61140.60.820.2


Industrial Applicability

The present invention can provide a method for treating cancer with reduced side effects.

Claims
  • 1. A histone deacetylase inhibitor comprising a cyclic amine compound represented by the following formula (1):
  • 2. The inhibitor according to claim 1, wherein R1, R2, and R3 are each independently a hydrogen atom, a halogen atom, a hydroxy group, a C1-C8 alkyl group, a halogen-substituted C1-C8 alkyl group, an alkoxy group having a C1-C8 alkyl group, an alkylthio group having a C1-C8 alkyl group, a carboxyl group, an alkoxycarbonyl group having a C1-C6 alkyl group, or an alkanoyl group having a C1-C6 allyl group.
  • 3. The inhibitor according to claim 1, wherein R4 is a hydrogen atom, a C1-C8 alkyl group, a C3-C8 alkenyl group, a C3-C8 alkynyl group, a substituted or unsubstituted C6-C14 aryl group, a substituted or unsubstituted heteroaryl group containing a 5- or 6-membered ring having one to four nitrogen atoms, a substituted or unsubstituted (C6-C14)-aryl —(C1-C6)-alkyl group, or a substituted or unsubstituted heteroaryl —(C1-C6)-alkyl group containing a 5- or 6-membered ring having one to four nitrogen atoms.
  • 4. The inhibitor according to claim 3, wherein the substituent(s) of the aryl group, the aryl group of the aralkyl group, the heteroaryl group, or the heteroaryl group of the heteroaralkyl group represented by R4 is (are) one to three groups or atoms selected from an alkyl group, an alkoxy group, an alkylthio group, a halogen atom, a nitro group, an amino group, an acetylamino group, a trifluoromethyl group, and an alkylenedioxy group.
  • 5. The inhibitor according to claim 1, wherein the active ingredient is 4-[N -(4-methoxyphenyl)-N-[[2-(3,4,5-trimethoxyphenyl)pyridin-4-yl]methyl]amino]-1-[[2-(3,4,5-trimethoxyphenyl)pyridin-4-yl]methyl]piperidine, 4-[N-(4-methoxyphenyl)-N-[[5-(3,4,5-trimethoxyphenyl)pyridin-3-yl]methyl]amino]-1-[[2-(3,4,5-trimethoxyphenyl)pyridin 4-yl]methyl]piperidine, 4-[N-(3,5-dimethoxyphenyl)-N-[[2-(3,4,5-trimethoxyphenyl)pyridin-4-yl]methyl]amino]-1-[[2-(3,4,5-trimethoxyphenyl)pyridin 4-yl]methyl]piperidine, 4-[N-(3,4-methylenedioxyphenyl)-N-[[2-(3,4,5-trimethoxyphenyl)pyridin-4-yl]methyl]amino]-1-[[2-(3,4,5-trimethoxyphenyl)pyridin-4-yl]methyl]piperidine, 4-[N-methyl-N-[[2-(3,4,5-trimethoxyphenyl)pyridin-4-yl]methyl]amino]-1-[[2-(3,4,5-trimethoxyphenyl)pyridin-4-yl]methyl]piperidine, 4-[N-(4-methylthiophenyl)-N-[[5-(3,4,5-trimethoxyphenyl)pyridin-3-yl]methyl]amino]-1-[[2-(3,4,5-trimethoxyphenyl)pyridin-4-yl]methyl]piperidine, or a salt thereof.
  • 6. A medicine for treating cancer comprising a cyclic amine compound represented by the following formula (1):
  • 7. The medicine according to claim 6, wherein R1, R2, and R3 are each independently a hydrogen atom, a halogen atom, a hydroxy group, a C1-C8 alkyl group, a halogen-substituted C1-C8 alkyl group, an alkoxy group having a C1-C8 alkyl group, an alkylthio group having a C1-C8 alkyl group, a carboxy group, an alkoxycarbonyl group having a C1-C6 alkyl group, or an alkanoyl group having a C1-C6 alkyl group.
  • 8. The medicine according to claim 6, wherein R4 is a hydrogen atom, a C1-C8 alkyl group, a C3-C8 alkenyl group, a C3-C8 alkynyl group, a substituted or unsubstituted C6-C14 aryl group, a substituted or unsubstituted heteroaryl group containing a 5- or 6-membered ring having one to four nitrogen atoms, a substituted or unsubstituted (C6-C14)-aryl —(C1-C6)-alkyl group, or a substituted or unsubstituted heteroaryl —(C1-C6)-alkyl group containing a 5- or 6-membered ring having one to four nitrogen atoms.
  • 9. The medicine according to claim 8, wherein the substituent(s) of the aryl group, the aryl group of the aralkyl group, the heteroaryl group, or the heteroaryl group of the heteroaralkyl group represented by R4 is (are) one to three groups or atoms selected from an alkyl group, an alkoxy group, an alkylthio group, a halogen atom, a nitro group, an amino group, an acetylamino group, a trifluoromethyl group, and an alkylenedioxy group.
  • 10. The medicine according to claim 6, wherein the active ingredient is 4-[N -(4-methoxyphenyl)-N-[[2-(3,4,5-trimethoxyphenyl)pyridin-4-yl]methyl]amino]-1-[[2-(3,4,5-trimethoxyphenyl)pyridin-4-yl]methyl]piperidine, 4-[N-(4-methoxyphenyl)-N-[[5-(3,4,5-trimethoxyphenyl)pyridin-3-yl]methyl]amino]-1-[[2-(3,4,5-trimethoxyphenyl)pyridin-4-yl]methyl]piperidine, 4-[N-(3,5-dimethoxyphenyl)-N-[[2-(3,4,5-trimethoxyphenyl)pyridin 4-yl]methyl]amino]-1-[[2-(3,4,5-trimethoxyphenyl)pyridin-4-yl]methyl]piperidine, 4-[N-(3,4-methylenedioxyphenyl)-N-[[2-(3,4,5-trimethoxyphenyl)pyridin-4-yl]methyl]amino]-1-[[2-(3,4,5-trimethoxyphenyl)pyridin-4-yl]methyl]piperidine, 4-[N-methyl-N-[[2-(3,4,5-trimethoxyphenyl)pyridin 4-yl]methyl]amino]-1-[[2-(3,4,5-trimethoxyphenyl)pyridin-4-yl]methyl]piperidine, 4-[N-(4-methylthiophenyl)-N-[[5-(3,4,5-trimethoxyphenyl)pyridin-3-yl]methyl]amino]-1-[[2-(3,4,5-trimethoxyphenyl)pyridin-4-yl]methyl]piperidine, or a salt thereof.
  • 11. A gene therapy facilitater comprising administering an effective amount of a cyclic amine compound represented by the following formula (1):
  • 12. The facilitater according to claim 11, wherein R1, R2, and R3 each are independently a hydrogen atom, a halogen atom, a hydroxy group, a C1-C8 alkyl group, a halogen-substituted C1-C8 alkyl group, an alkoxy group having a C1-C8 alkyl group, an alkylthio group having a C1-C8 alkyl group, a carboxy group, an alkoxycarbonyl group having a C1-C6 alkyl group, or an alkanoyl group having a C1-C6 alkyl group.
  • 13. The facilitater according to claim 11, wherein R4 is a hydrogen atom, a C1-C8 alkyl group, a C3-C8 alkenyl group, a C3-C8 alkynyl group, a substituted or unsubstituted C6-C14 aryl group, a substituted or unsubstituted heteroaryl group containing a 5- or 6-membered ring having one to four nitrogen atoms, a substituted or unsubstituted (C6-C14)-aryl —(C1-C6)-alkyl group, or a substituted or unsubstituted heteroaryl —(C1-C6)-alkyl group containing a 5- or 6-membered ring having one to four nitrogen atoms.
  • 14. The facilitater according to claim 13, wherein the substituent(s) of the aryl group, the aryl group of the aralkyl group, the heteroaryl group, or the heteroaryl group of the heteroaralkyl group represented by R4 is (are) one to three groups or atoms selected from an alkyl group, an alkoxy group, an alkylthio group, a halogen atom, a nitro group, an amino group, an acetylamino group, a trifluoromethyl group, and an alkylenedioxy group.
  • 15. The facilitater according to claim 11, wherein the active ingredient is 4-[N-(4-methoxyphenyl)-N-[[2-(3,4,5-trimethoxyphenyl)pyridin 4-yl]methyl]amino]-1-[[2-(3,4,5-trimethoxyphenyl)pyridin-4-yl]methyl]piperidine, 4-[N-(4-methoxyphenyl)-N-[[5-(3,4,5-trimethoxyphenyl)pyridin-3-yl]methyl]amino]-1-[[2-(3,4,5-trimethoxyphenyl)pyridin 4-yl]methyl]piperidine, 4-[N-(3,5-dimethoxyphenyl)-N-[[2-(3,4,5-trimethoxyphenyl)pyridin-4-yl]methyl]amino]-1-[[2-(3,4,5-trimethoxyphenyl)pyridin 4-yl]methyl]piperidine, 4-[N-(3,4-methylenedioxyphenyl)-N-[[2-(3,4,5-trimethoxyphenyl)pyridin 4-yl]methyl]amino]-1-[[2-(3,4,5-trimethoxyphenyl)pyridin-4-yl]methyl]piperidine, 4-[N-methyl-N-[[2-(3,4,5-trimethoxyphenyl)pyridin-4-yl]methyl]amino]-1-[[2-(3,4,5-trimethoxyphenyl)pyridin-4-yl]methyl]piperidine, 4-[N-(4-methylthiophenyl)-N-[[5-(3,4,5-trimethoxyphenyl)pyridin-3-yl]methyl]amino]-1-[[2-(3,4,5-trimethoxyphenyl)pyridin 4-yl]methyl]piperidine, or a salt thereof.
  • 16. A histone deacetylase inhibiting composition comprising a cyclic amine compound represented by the following formula (1):
  • 17. The composition according to claim 16, wherein R1, R2, and R3 are each independently a hydrogen atom, a halogen atom, a hydroxy group, a C1-C8 alkyl group, a halogen-substituted C1-C8 alkyl group, an alkoxy group having a C1-C8 alkyl group, an alkylthio group having a C1-C8 alkyl group, a carboxyl group, an alkoxycarbonyl group having a C1-C6 alkyl group, or an alkanoyl group having a C1-C6 alkyl group.
  • 18. The composition according to claim 16, wherein R4 is a hydrogen atom, a C1-C8 alkyl group, a C3-C8 alkenyl group, a C3-C8 alkynyl group, a substituted or unsubstituted C6-C14 aryl group, a substituted or unsubstituted heteroaryl group containing a 5- or 6-membered ring having one to four nitrogen atoms, a substituted or unsubstituted (C6-C14)-aryl —(C1-C6)-alkyl group, or a substituted or unsubstituted heteroaryl —(C1-C6)-alkyl group containing a 5- or 6-membered ring having one to four nitrogen atoms.
  • 19. The composition according to claim 18, wherein the substituent(s) of the aryl group, the aryl group of the aralkyl group, the heteroaryl group, or the heteroaryl group of the heteroaralkyl group represented by R4 is (are) one to three groups or atoms selected from an alkyl group, an alkoxy group, an alkylthio group, a halogen atom, a nitro group, an amino group, an acetylamino group, a trifluoromethyl group, and an alkylenedioxy group.
  • 20. The composition according to claim 16, wherein the active ingredient is 4-[N-(4-methoxyphenyl)-N-[[2-(3,4,5-trimethoxyphenyl)pyridin-4-yl]methyl]amino]-1-[[2-(3,4,5-trimethoxyphenyl)pyridin-4-yl]methyl]piperidine, 4 -[N-(4-methoxyphenyl)-N-[[5-(3,4,5-trimethoxyphenyl)pyridin-3-yl]methylamino]-1-[[2-(3,4,5-trimethoxyphenyl)pyridin-4-yl]methyl]piperidine, 4-[N-(3,5-dimethoxyphenyl)-N-[[2-(3,4,5-trimethoxyphenyl)pyridin 4-yl]methyl]amino]-1-[[2-(3,4,5-trimethoxyphenyl)pyridin-4-yl]methyl]piperidine, 4-[N-(3,4-methylenedioxyphenyl)-N-[[2-(3,4,5-trimethoxyphenyl)pyridin 4-yl]methyl]amino]-1-[[2-(3,4,5-trimethoxyphenyl)pyridin-4-yl]methyl]piperidine, 4-[N-methyl-N-[[2-(3,4,5-trimethoxyphenyl)pyridin-4-yl]methyl]amino]-1-[[2-(3,4,5-trimethoxyphenyl)pyridin-4-yl]methyl]piperidine, 4-[N-(4-methylthiophenyl)-N-[[5-(3,4,5-trimethoxyphenyl)pyridin-3-yl]methyl]amino]-1-[[2-(3,4,5-trimethoxyphenyl)pyridin-4-yl]methyl]piperidine, or a salt thereof.
  • 21. A medicinal composition for treating cancer comprising a cyclic amine compound represented by the following formula (1):
  • 22. The composition according to claim 21, wherein R1, R2, and R3 are each independently a hydrogen atom, a halogen atom, a hydroxy group, a C1-C8 alkyl group, a halogen-substituted C1-C8 alkyl group, an alkoxy group having a C1-C8 alkyl group, an alkylthio group having a C1-C8 alkyl group, a carboxy group, an alkoxycarbonyl group having a C1-C6 alkyl group, or an alkanoyl group having a C1-C6 alkyl group.
  • 23. The composition according to claim 21, wherein R4 is a hydrogen atom, a C1-C8 alkyl group, a C3-C8 alkenyl group, a C3-C8 alkynyl group, a substituted or unsubstituted C6-C14 aryl group, a substituted or unsubstituted heteroaryl group containing a 5- or 6-membered ring having one to four nitrogen atoms, a substituted or unsubstituted (C6-C14)-aryl —(C1-C6)-alkyl group, or a substituted or unsubstituted heteroaryl —(C1-C6)-alkyl group containing a 5- or 6-membered ring having one to four nitrogen atoms.
  • 24. The composition according to claim 23, wherein the substituent(s) of the aryl group, the aryl group of the aralkyl group, the heteroaryl group, or the heteroaryl group of the heteroaralkyl group represented by R4 is (are) one to three groups or atoms selected from an alkyl group, an alkoxy group, an alkylthio group, a halogen atom, a nitro group, an amino group, an acetylamino group, a trifluoromethyl group, and an alkylenedioxy group.
  • 25. The composition according to claim 21, wherein the active ingredient is 4-[N-(4-methoxyphenyl)-N-[[2-(3,4,5-trimethoxyphenyl)pyridin 4-yl]methyl]amino]-1-[[2-(3,4,5-trimethoxyphenyl)pyridin-4-yl]methyl]piperidine, 4-[N-(4-methoxyphenyl)-N-[[5-(3,4,5-trimethoxyphenyl)pyridin-3-yl]methyl]amino]-1-[[2-(3,4,5-trimethoxyphenyl)pyridin-4-yl]methyl]piperidine, 4-[N-(3,5-dimethoxyphenyl)-N-[[2-(3,4,5-trimethoxyphenyl)pyridin-4-yl]methyl]amino]-1-[[2-(3,4,5-trimethoxyphenyl)pyridin-4-yl]methyl]piperidine, 4-[N-(3,4-methylenedioxyphenyl)-N-[[2-(3,4,5-trimethoxyphenyl)pyridin-4-yl]methyl]amino]-1-[[2-(3,4,5-trimethoxyphenyl)pyridin-4-yl]methyl]piperidine, 4-[N-methyl-N-[[2-(3,4,5-trimethoxyphenyl)pyridin-4-yl]methyl]amino]-1-[[2-(3,4,5-trimethoxyphenyl)pyridin-4-yl]methyl]piperidine, 4-[N-(4-methylthiophenyl)-N-[[5-(3,4,5-trimethoxyphenyl)pyridin-3-yl]methyl]amino]-1-[[2-(3,4,5-trimethoxyphenyl)pyridin-4-yl]methyl]piperidine, or a salt thereof.
  • 26. A gene therapy facilitating composition comprising a cyclic amine compound represented by the following formula (1):
  • 27. The composition according to claim 26, wherein R1, R2, and R3 each are independently a hydrogen atom, a halogen atom, a hydroxy group, a C1-C8 alkyl group, a halogen-substituted C1-C8 alkyl group, an alkoxy group having a C1-C8 alkyl group, an alkylthio group having a C1-C8 alkyl group, a carboxy group, an alkoxycarbonyl group having a C1-C6 alkyl group, or an alkanoyl group having a C1-C6 alkyl group.
  • 28. The composition according to claim 26, wherein R4 is a hydrogen atom, a C1-C8 alkyl group, a C3-C8 alkenyl group, a C3-C8 alkynyl group, a substituted or unsubstituted C6-C14 aryl group, a substituted or unsubstituted heteroaryl group containing a 5- or 6-membered ring having one to four nitrogen atoms, a substituted or unsubstituted (C6-C14)-aryl —(C1-C6)-alkyl group, or a substituted or unsubstituted heteroaryl —(C1-C6)-alkyl group containing a 5- or 6-membered ring having one to four nitrogen atoms.
  • 29. The composition according to claim 28, wherein the substituent(s) of the aryl group, the aryl group of the aralkyl group, the heteroaryl group, or the heteroaryl group of the heteroaralkyl group represented by R4 is (are) one to three groups or atoms selected from an alkyl group, an alkoxy group, an alkylthio group, a halogen atom, a nitro group, an amino group, an acetylamino group, a trifluoromethyl group, and an alkylenedioxy group.
  • 30. The composition according to claim 26, wherein the active ingredient is 4-[N-(4-methoxyphenyl)-N-[[2-(3,4,5-trimethoxyphenyl)pyridin-4-yl]methyl]amino]-1-[[2-(3,4,5-trimethoxyphenyl)pyridin-4-yl]methyl]piperidine, 4-N-(4-methoxyphenyl)-N-[[5-(3,4,5-trimethoxyphenyl)pyridin-3-yl]methyl]amino]-1-[[2-(3,4,5-trimethoxyphenyl)pyridin-4-yl]methyl]piperidine, 4-[N-(3,5-dimethoxyphenyl)-N-[[2-(3,4,5-trimethoxyphenyl)pyridin-4-yl]methyl]amino]-1-[[2-(3,4,5-trimethoxyphenyl)pyridin-4-yl]methyl]piperidine, 4-[N-(3,4-methylenedioxyphenyl)-N-[[2-(3,4,5-trimethoxyphenyl)pyridin-4-yl]methyl]amino]-1-[[2-(3,4,5-trimethoxyphenyl)pyridin-4-yl]methyl]piperidine, 4-[N-methyl-N-[[2-(3,4,5-trimethoxyphenyl)pyridin-4-yl]methyl]amino]-1-[[2-(3,4,5-trimethoxyphenyl)pyridin-4-yl]methyl]piperidine, 4-[N-(4-methylthiophenyl)-N-[[5-(3,4,5-trimethoxyphenyl)pyridin-3-yl]methyl]amino]-1-[[2-(3,4,5-trimethoxyphenyl)pyridin 4-yl]methyl]piperidine, or a salt thereof.
  • 31. Use, for producing histone deacetylase inhibitor of a cyclic amine compound represented by the following formula (1):
  • 32. The use according to claim 31, wherein R1, R2, and R3 are each independently a hydrogen atom, a halogen atom, a hydroxy group, a C1-C8 alkyl group, a halogen-substituted C1-C8 alkyl group, an alkoxy group having a C1-C8 alkyl group, an alkylthio group having a C1-C8 alkyl group, a carboxyl group, an alkoxycarbonyl group having a C1-C6 alkyl group, or an alkanoyl group having a C1-C6 alkyl group.
  • 33. The use according to claim 31, wherein R4 is a hydrogen atom, a C1-C8 alkyl group, a C3-C8 alkenyl group, a C3-C8 alkynyl group, a substituted or unsubstituted C6-C14 aryl group, a substituted or unsubstituted heteroaryl group containing a 5- or 6-membered ring having one to four nitrogen atoms, a substituted or unsubstituted (C6-C14)-aryl —(C1-C6)-alkyl group, or a substituted or unsubstituted heteroaryl —(C1-C6)-alkyl group containing a 5- or 6-membered ring having one to four nitrogen atoms.
  • 34. The use according to claim 33, wherein the substituent(s) of the aryl group, the aryl group of the aralkyl group, the heteroaryl group, or the heteroaryl group of the heteroaralkyl group represented by R4 is (are) one to three groups or atoms selected from an alkyl group, an alkoxy group, an alkylthio group, a halogen atom, a nitro group, an amino group, an acetylamino group, a trifluoromethyl group, and an alkylenedioxy group.
  • 35. The use according to claim 31, wherein the active ingredient is 4-[N-(4-methoxyphenyl)-N-[[2-(3,4,5-trimethoxyphenyl)pyridin-4-yl]methyl]amino]-1-[[2-(3,4,5-trimethoxyphenyl)pyridin 4-yl]methyl]piperidine, 4-[N-(4-methoxyphenyl)-N-[[5-(3,4,5-trimethoxyphenyl)pyridin-3-yl]methyl]amino]-1-[[2-(3,4,5 -trimethoxyphenyl)pyridin 4-yl]methyl]piperidine, 4-[N-(3,5-dimethoxyphenyl)-N -[[2-(3,4,5-trimethoxyphenyl)pyridin-4-yl]methyl]amino]-1-[[2-(3,4,5-trimethoxyphenyl)pyridin 4-yl]methyl]piperidine, 4-[N-(3,4-methylenedioxyphenyl)-N-[[2-(3,4,5-trimethoxyphenyl)pyridin-4-yl]methyl]amino]-1-[[2-(3,4,5-trimethoxyphenyl)pyridin-4-yl]methyl]piperidine, 4-[N-methyl-N-[[2-(3,4,5-trimethoxyphenyl)pyridin-4-yl]methyl]amino]-1-[[2-(3,4,5-trimethoxyphenyl)pyridin 4-yl]methyl]piperidine, 4-[N-(4-methylthiophenyl)-N-[[5-(3,4,5-trimethoxyphenyl)pyridin-3-yl]methyl]amino]-1-[[2-(3,4,5-trimethoxyphenyl)pyridin-4-yl]methyl]piperidine, or a salt thereof.
  • 36. Use, for producing medicine for treating cancer of a cyclic amine compound represented by the following formula (1):
  • 37. The use according to claim 36, wherein R1, R2, and R3 are each independently a hydrogen atom, a halogen atom, a hydroxy group, a C1-C8 alkyl group, a halogen-substituted C1-C8 alkyl group, an alkoxy group having a C1-C8 alkyl group, an alkylthio group having a C1-C8 alkyl group, a carboxy group, an alkoxycarbonyl group having a C1-C6 alkyl group, or an alkanoyl group having a C1-C6 alkyl group.
  • 38. The use according to claim 36, wherein R4 is a hydrogen atom, a C1-C8 alkyl group, a C3-C8 alkenyl group, a C3-C8 allyl group, a substituted or unsubstituted C6-C14 aryl group, a substituted or unsubstituted heteroaryl group containing a 5- or 6-membered ring having one to four nitrogen atoms, a substituted or unsubstituted (C6-C14)-aryl —(C1-C6)-alkyl group, or a substituted or unsubstituted heteroaryl —(C1-C6)-alkyl group containing a 5- or 6-membered ring having one to four nitrogen atoms.
  • 39. The use according to claim 38, wherein the substituent(s) of the aryl group, the aryl group of the aralkyl group, the heteroaryl group, or the heteroaryl group of the heteroaralkyl group represented by R4 is (are) one to three groups or atoms selected from an alkyl group, an alkoxy group, an alkylthio group, a halogen atom, a nitro group, an amino group, an acetylamino group, a trifluoromethyl group, and an alkylenedioxy group.
  • 40. The use according to claim 36, wherein the active ingredient is 4-[N-(4-methoxyphenyl)-N-[[2-(3,4,5-trimethoxyphenyl)pyridin-4-yl]methyl]amino]-1-[[2-(3,4,5-trimethoxyphenyl)pyridin-4-yl]methyl]piperidine, 4-[N-(4-methoxyphenyl)-N-[[5-(3,4,5-trimethoxyphenyl)pyridin-3-yl]methyl]amino]-1-[[2-(3,4,5-trimethoxyphenyl)pyridin-4-yl]methyl]piperidine, 4-[N-(3,5-dimethoxyphenyl)-N -[[2-(3,4,5-trimethoxyphenyl)pyridin-4-yl]methyl]amino]-1-[[2-(3,4,5-trimethoxyphenyl)pyridin-4-yl]methyl]piperidine, 4-[N-(3,4-methylenedioxyphenyl)-N-[[2-(3,4,5-trimethoxyphenyl)pyridin-4-yl]methyl]amino]-1-[[2-(3,4,5-trimethoxyphenyl)pyridin-4-yl]methyl]piperidine, 4-[N-methyl-N-[[2-(3,4,5-trimethoxyphenyl)pyridin-4-yl]methyl]amino]-1-[[2-(3,4,5-trimethoxyphenyl)pyridin-4-yl]methyl]piperidine, 4-[N-(4-methylthiophenyl)-N-[[5-(3,4,5-trimethoxyphenyl)pyridin-3-yl]methyl]amino]-1-[[2-(3,4,5-trimethoxyphenyl)pyridin 4-yl]methyl]piperidine, or a salt thereof.
  • 41. Use, for producing gene therapy facilitator, of a cyclic amine compound represented by the following formula (1):
  • 42. The use according to claim 41, wherein R1, R2, and R3 each are independently a hydrogen atom, a halogen atom, a hydroxy group, a C1-C8 alkyl group, a halogen-substituted C1-C8 alkyl group, an alkoxy group having a C1-C8 alkyl group, an alkylthio group having a C1-C8 alkyl group, a carboxy group, an alkoxycarbonyl group having a C1-C6 alkyl group, or an alkanoyl group having a C1-C6 alkyl group.
  • 43. The use according to claim 41, wherein R4 is a hydrogen atom, a C1-C8 alkyl group, a C3-C8 alkenyl group, a C3-C8 alkynyl group, a substituted or unsubstituted C6-C14 aryl group, a substituted or unsubstituted heteroaryl group containing a 5- or 6-membered ring having one to four nitrogen atoms, a substituted or unsubstituted (C6-C14)-aryl —(C1-C6)-alkyl group, or a substituted or unsubstituted heteroaryl —(C1-C6)-alkyl group containing a 5- or 6-membered ring having one to four nitrogen atoms.
  • 44. The use according to claim 43, wherein the substituent(s) of the aryl group, the aryl group of the aralkyl group, the heteroaryl group, or the heteroaryl group of the heteroaralkyl group represented by R4 is (are) one to three groups or atoms selected from an alkyl group, an alkoxy group, an alkylthio group, a halogen atom, a nitro group, an amino group, an acetylamino group, a trifluoromethyl group, and an alkylenedioxy group.
  • 45. The use according to claim 41, wherein the active ingredient is 4-[N-(4-methoxyphenyl)-N-[[2-(3,4,5-trimethoxyphenyl)pyridin-4-yl]methyl]amino]-1-[[2-(3,4,5-trimethoxyphenyl)pyridin-4-yl]methyl]piperidine, 4-[N-(4-methoxyphenyl)-N-[[5-(3,4,5-trimethoxyphenyl)pyridin-3-yl]methyl]amino]-1-[[2-(3,4,5-trimethoxyphenyl)pyridin-4-yl]methyl]piperidine, 4-N-(3,5-dimethoxyphenyl)-N -[[2-(3,4,5-trimethoxyphenyl)pyridin-4-yl]methyl]amino]-1-[[2-(3,4,5-trimethoxyphenyl)pyridin 4-yl]methyl]piperidine, 4-[N-(3,4-methylenedioxyphenyl)-N-[[2-(3,4,5-trimethoxyphenyl)pyridin-4-yl]methyl]amino]-1-[[2-(3,4,5-trimethoxyphenyl)pyridin-4-yl]methyl]piperidine, 4-N-methyl-N-[[2-(3,4,5-trimethoxyphenyl)pyridin-4-yl]methyl]amino]-1-[[2-(3,4,5-trimethoxyphenyl)pyridin-4-yl]methyl]piperidine, 4-[N-(4-methylthiophenyl)-N-[[5-(3,4,5-trimethoxyphenyl)pyridin-3-yl]methyl]amino]-1-[[2-(3,4,5-trimethoxyphenyl)pyridin-4-yl]methyl]piperidine, or a salt thereof.
  • 46. A method for inhibiting histone deacetylase, comprising administering an effective amount of a cyclic amine compound represented by the following formula (1):
  • 47. The method according to claim 46, wherein R1, R2, and R3 are each independently a hydrogen atom, a halogen atom, a hydroxy group, a C1-C8 alkyl group, a halogen-substituted C1-C8 alkyl group, an alkoxy group having a C1-C8 alkyl group, an alkylthio group having a C1-C8 alkyl group, a carboxyl group, an alkoxycarbonyl group having a C1-C6 alkyl group, or an alkanoyl group having a C1-C6 alkyl group.
  • 48. The method according to claim 46, wherein R4 is a hydrogen atom, a C1-C8 alkyl group, a C3-C8 alkenyl group, a C3-C8 alkynyl group, a substituted or unsubstituted C6-C14 aryl group, a substituted or unsubstituted heteroaryl group containing a 5- or 6-membered ring having one to four nitrogen atoms, a substituted or unsubstituted (C6-C14)-aryl —(C1-C6)-alkyl group, or a substituted or unsubstituted heteroaryl —(C1-C6)-alkyl group containing a 5- or 6-membered ring having one to four nitrogen atoms.
  • 49. The method according to claim 48, wherein the substituent(s) of the aryl group, the aryl group of the aralkyl group, the heteroaryl group, or the heteroaryl group of the heteroaralkyl group represented by R4 is (are) one to three groups or atoms selected from an alkyl group, an alkoxy group, an alkylthio group, a halogen atom, a nitro group, an amino group, an acetylamino group, a trifluoromethyl group, and an alkylenedioxy group.
  • 50. The method according to claim 46, wherein the active ingredient is 4-[N -(4-methoxyphenyl)-N-[[2-(3,4,5-trimethoxyphenyl)pyridin-4-yl]methyl]amino]-1-[[2-(3,4,5-trimethoxyphenyl)pyridin-4-yl]methyl]piperidine, 4-[N-(4-methoxyphenyl)-N-[[5-(3,4,5-trimethoxyphenyl)pyridin-3-yl]methyl]amino]-1-[[2 -(3,4,5-trimethoxyphenyl)pyridin-4-yl]methyl]piperidine, 4-[N-(3,5-dimethoxyphenyl)-N-[[2-(3,4,5-trimethoxyphenyl)pyridin-4-yl]methyl]amino]-1-[[2-(3,4,5-trimethoxyphenyl)pyridin-4-yl]methyl]piperidine, 4-[N-(3,4-methylenedioxyphenyl)-N-[[2-(3,4,5-trimethoxyphenyl)pyridin-4-yl]methyl]amino]-1-[[2-(3,4,5-trimethoxyphenyl)pyridin-4-yl]methyl]piperidine, 4-[N-methyl-N-[[2-(3,4,5-trimethoxyphenyl)pyridin-4-yl]methyl]amino]-1-[[2-(3,4,5-trimethoxyphenyl)pyridin 4-yl]methyl]piperidine, 4-[N-(4-methylthiophenyl)-N-[[5-(3,4,5-trimethoxyphenyl)pyridin-3-yl]methyl]amino]-1-[[2-(3,4,5-trimethoxyphenyl)pyridin-4-yl]methyl]piperidine, or a salt thereof.
  • 51. A method for treating cancer, comprising administering an effective amount of a cyclic amine compound represented by the following formula (1):
  • 52. The method according to claim 51, wherein R1, R2, and R3 are each independently a hydrogen atom, a halogen atom, a hydroxy group, a C1-C8 alkyl group, a halogen-substituted C1-C8 alkyl group, an alkoxy group having a C1-C8 alkyl group, an alkylthio group having a C1-C8 alkyl group, a carboxy group, an alkoxycarbonyl group having a C1-C6 alkyl group, or an alkanoyl group having a C1-C6 alkyl group.
  • 53. The method according to claim 51, wherein R4 is a hydrogen atom, a C1-C8 alkyl group, a C3-C8 alkenyl group, a C3-C8 alkynyl group, a substituted or unsubstituted C6-C14 aryl group, a substituted or unsubstituted heteroaryl group containing a 5- or 6-membered ring having one to four nitrogen atoms, a substituted or unsubstituted (C6-C14)-aryl —(C1-C6)-alkyl group, or a substituted or unsubstituted heteroaryl —(C1-C6)-alkyl group containing a 5- or 6-membered ring having one to four nitrogen atoms.
  • 54. The method according to claim 53, wherein the substituent(s) of the aryl group, the aryl group of the aralkyl group, the heteroaryl group, or the heteroaryl group of the heteroaralkyl group represented by R4 is (are) one to three groups or atoms selected from an alkyl group, an alkoxy group, an alkylthio group, a halogen atom, a nitro group, an amino group, an acetylamino group, a trifluoromethyl group, and an alkylenedioxy group.
  • 55. The method according to claim 51, wherein the active ingredient is 4-[N -(4-methoxyphenyl)-N-[[2-(3,4,5-trimethoxyphenyl)pyridin-4-yl]methyl]amino]-1-[[2-(3,4,5-trimethoxyphenyl)pyridin-4-yl]methyl]piperidine, 4-N-(4-methoxyphenyl)-N-[[5-(3,4,5-trimethoxyphenyl)pyridin-3-yl]methyl]amino]-1-[[2-(3,4,5-trimethoxyphenyl)pyridin-4-yl]methyl]piperidine, 4-[N-(3,5-dimethoxyphenyl)-N-[[2-(3,4,5-trimethoxyphenyl)pyridin-4-yl]methyl]amino]-1-[[2-(3,4,5-trimethoxyphenyl)pyridin-4-yl]methyl]piperidine, 4-N-(3,4-methylenedioxyphenyl)-N-[[2-(3,4,5-trimethoxyphenyl)pyridin-4-yl]methyl]amino]-1-[[2-(3,4,5-trimethoxyphenyl)pyridin-4-yl]methyl]piperidine, 4-[N-methyl-N-[[2-(3,4,5-trimethoxyphenyl)pyridin-4-yl]methyl]amino]-1-[[2-(3,4,5-trimethoxyphenyl)pyridin-4-yl]methyl]piperidine, 4-[N-(4-methylthiophenyl)-N-[[5-(3,4,5-trimethoxyphenyl)pyridin-3-yl]methyl]amino]-1-[[2-(3,4,5-trimethoxyphenyl)pyridin-4-yl]methyl]piperidine, or a salt thereof.
  • 56. A method for facilitating gene therapy, comprising administering an effective amount of a cyclic amine compound represented by the following formula (1):
  • 57. The method according to claim 56, wherein R1, R2, and R3 each are independently a hydrogen atom, a halogen atom, a hydroxy group, a C1-C8 alkyl group, a halogen-substituted C1-C8 alkyl group, an alkoxy group having a C1-C8 alkyl group, an alkylthio group having a C1-C8 alkyl group, a carboxy group, an alkoxycarbonyl group having a C1-C6 alkyl group, or an alkanoyl group having a C1-C6 alkyl group.
  • 58. The method according to claim 56, wherein R4 is a hydrogen atom, a C1-C8 alkyl group, a C3-C8 alkenyl group, a C3-C8 alkynyl group, a substituted or unsubstituted C6-C14 aryl group, a substituted or unsubstituted heteroaryl group containing a 5- or 6-membered ring having one to four nitrogen atoms, a substituted or unsubstituted (C6-C14)-aryl —(C1-C6)-alkyl group, or a substituted or unsubstituted heteroaryl —(C1-C6)-alkyl group containing a 5- or 6-membered ring having one to four nitrogen atoms.
  • 59. The method according to claim 58, wherein the substituent(s) of the aryl group, the aryl group of the aralkyl group, the heteroaryl group, or the heteroaryl group of the heteroaralkyl group represented by R4 is (are) one to three groups or atoms selected from an alkyl group, an alkoxy group, an alkylthio group, a halogen atom, a nitro group, an amino group, an acetylamino group, a trifluoromethyl group, and an alkylenedioxy group.
  • 60. The method according to claim 56, wherein the active ingredient is 4-[N -(4-methoxyphenyl)-N-[[2-(3,4,5-trimethoxyphenyl)pyridin-4-yl]methyl]amino]-1-[[2-(3,4,5-trimethoxyphenyl)pyridin-4-yl]methyl]piperidine, 4-[N-(4-methoxyphenyl)-N-[[5-(3,4,5-trimethoxyphenyl)pyridin-3-yl]methyl]amino]-1-[[2-(3,4,5-trimethoxyphenyl)pyridin-4-yl]methyl]piperidine, 4-[N-(3,5-dimethoxyphenyl)-N-[[2-(3,4,5-trimethoxyphenyl)pyridin-4-yl]methyl]amino]-1-[[2-(3,4,5-trimethoxyphenyl)pyridin-4-yl]methyl]piperidine, 4-[N-(3,4-methylenedioxyphenyl)-N-[[2-(3,4,5-trimethoxyphenyl)pyridin 4-yl]methyl]amino]-1-[[2-(3,4,5-trimethoxyphenyl)pyridin-4-yl]methyl]piperidine, 4-[N-methyl-N-[[2-(3,4,5-trimethoxyphenyl)pyridin-4-yl]methyl]amino]-1-[[2-(3,4,5-trimethoxyphenyl)pyridin 4-yl]methyl]piperidine, 4-[N-(4-methylthiophenyl)-N-[[5-(3,4,5-trimethoxyphenyl)pyridin-3-yl]methyl]amino]-1-[[2-(3,4,5-trimethoxyphenyl)pyridin-4-yl]methyl]piperidine, or a salt thereof.
PCT Information
Filing Document Filing Date Country Kind
PCT/JP03/04602 4/11/2003 WO
Provisional Applications (2)
Number Date Country
60371675 Apr 2002 US
60412571 Sep 2002 US