1. Field of the Invention
The present invention relates to a medicine supply apparatus that is placed at hospitals and pharmacies and supplies the designated number of medicines accommodated within tablet cases into a container (a bottle or a bag) in accordance with a prescription.
2. Description of the Related Art
In hospitals and pharmacies, a medicine supply apparatus such as one disclosed in, for example, Japanese Utility Model Application Publication (JP-Y) No. 57-5282 (B65B1/30) has been conventionally used to provide medicines prescribed by doctors to patients. In accordance with such a system, the designated number of medicines (tablets, capsules and the like) described in a prescription are discharged one by one from discharge drums (referred to as aligning boards in JP-Y No. 57-5282) within tablet cases. The discharged medicines are collected in a hopper through a chute and then packaged in packaging paper or bottled in a bottle.
Such a medicine supply apparatus is provided with a plurality of tablet cases and control for discharging medicine from each of the tablet cases is performed. In accordance with such control for discharging medicine, it is necessary that a tablet case accommodating medicine corresponding to a prescription is specified and a discharge drum or the like for the corresponding tablet case is rotated.
In such case, there has been conventionally utilized a method in which a memory which stores data for identifying the corresponding tablet case is mounted to a circuit board for the tablet case, electric wirings are connected to the tablet case to read the data, and the resultant data is used for control. In accordance with such a conventional method, however, the electric circuit for the tablet case becomes complicated, and costs are increased. Further, the electric wirings must be connected to a case accommodating section every time that tablet cases are exchanged. Thus, improvements for such drawbacks have been desired.
When medicine is discharged from the tablet case, a discharge drum for discharging the medicine one by one is rotated. If a motor for driving this discharge drum is disconnected, however, medicine cannot be discharged. Various causes of inability to discharge medicine may be considered, such as the case in which there is no medicine within a tablet case and the case in which medicine is clogged within the tablet case.
Such situations can be detected by visually checking tablet cases. However, disconnection of motors cannot be determined visually. Thus, there arises the problem in which it takes a long time to specify causes of failure and perform maintenance for corresponding parts.
Medicine is discharged from a tablet case by driving a discharge drum with a motor. A shutter for temporarily receiving medicine may be provided between a chute and a hopper. Such shutter is driven to be opened/closed by a solenoid. Further, when medicine is packaged in packaging paper, the paper is thermally sealed by a thermal sealing device and a time slot in which medicine should be taken is usually printed onto the packaging paper by a printer.
The aforementioned motor, solenoid, thermal sealing device and printer are parts that wear out and thus have their own durability limits. If such parts are broken, supply of medicine may be stopped.
A name of a patient taking the medicine and a time slot in which the medicine should be taken (before a meal or after a meal) are printed by a printer onto packaging paper or the like into which the medicine is charged. Pharmacists at pharmacies usually draw lines on the packaging paper with marking inks, especially for aged patients so that they can distinguish by colors the time slots in which medicine should be taken. This requires work by human hand, and further, errors may occur, resulting in confusion.
The present invention was developed in order to solve the above-described conventional technical drawbacks, and an object of the invention is to provide a medicine supply apparatus that realizes simplification of exchanging of tablet cases and of a structure of the apparatus itself.
In order to accomplish the aforementioned object, in accordance with a first aspect of the invention, there is provided a medicine supply apparatus which comprises a plurality of tablet cases for accommodating medicines and a case accommodating section for accommodating the plurality of tablet cases and which selects a tablet case accommodating a designated medicine, takes the medicine out of the tablet case, and charges the same into a container. The medicine supply apparatus comprises an identifier that is provided at each of the tablet cases and indicates identification information for the tablet case, and a reader for reading, in a non-contact manner, the identification information indicated by the identifiers for the tablet cases provided within the case accommodating section. Selection of the tablet case accommodating the designated medicine is controlled on the basis of the identification information read by the reader. The medicine supply apparatus further comprises a control device for controlling discharge of medicine from tablet cases on the basis of the identification information read by the reader.
In accordance with a more preferred aspect, the medicine supply apparatus further comprises an information output device. The control device outputs information about exchange of tablet cases to the information output device on the basis of the identification information read by the reader. The information about exchange of tablet cases includes information indicating medicines to be accommodated within the case accommodating section. Further, the information about exchange of tablet cases preferably includes information for indicating the accommodated positions of the tablet cases accommodating medicines which are not designated among the tablet cases accommodated within the case accommodating section, as exchangeable medicines. The information output device is usually a display device.
The identifier may be an optically readable identification code provided on the surface of each of the tablet cases, and the reader may be an optical sensor for reading the identification code.
Namely, the medicine supply apparatus of the above-described aspects comprises a plurality of tablet cases for accommodating medicines provided within a case accommodating section of a main body, a chute through which medicines discharged from the tablet cases pass, a hopper provided below the chute, and a charging device for charging medicines received by the hopper into a container such as a bag or a bottle. The medicine supply apparatus comprises identification means that is provided at each of the tablet cases and has identification information for identifying the tablet case, and a reader for reading, in a non-contact manner, the identification information in the identification means for the tablet cases provided within the case accommodating section.
In accordance with a more preferred aspect, the medicine supply apparatus comprises control means to which the reader (reading means) is connected. The control means identifies each of the tablet cases on the basis of the identification information read by the reader and controls discharge of medicine from each of the tablet cases.
The control means provided in the medicine supply apparatus outputs instruction information about exchanges of tablet cases on the basis of the identification information read by the reader.
In accordance with the above-described aspects of the medicine supply apparatus, the identification means is an optically readable identification code provided on the surface of each of the tablet cases, and the reader is an optical sensor for reading the identification code.
In accordance with the above-described aspects of the invention, the medicine supply apparatus comprises a plurality of tablet cases for accommodating medicines, provided within a case accommodating section of a main body, a chute through which medicines discharged from the tablet cases pass, a hopper provided below the chute, and a charging device for charging medicines received by the hopper into a container such as a bag or a bottle. The medicine supply apparatus comprises identification means (or an identifier) that is provided at each of the tablet cases and has identification information for identifying the tablet case, and a reader for reading, in a non-contact manner, the identification information in the identification means for the tablet cases provided within the case accommodating section. The control means (or control device) may identify each of the tablet cases on the basis of the identification information read by the reader and control selection of medicine from the tablet cases.
The operation for detaching electric wirings when exchanging tablet cases becomes unnecessary, and thus operational performance is significantly improved.
The control means (control device) may output instruction information about exchanges of tablet cases on the basis of the identification information read by the reader. For example, in the case of charging a plurality types of medicines into a package, exchangeable tablet cases may be designated when medicines that should be charged do not exist within the case accommodating section. Thus, it is possible to prevent the tablet cases accommodating medicines that should be charged into the package from being removed. As a result, convenience is significantly improved.
Further, the identification means (identifier) may be an optically readable identification code provided on the surface of each of the tablet cases, and the reader may be an optical sensor for reading the identification code. As a result, an electric circuit for the tablet cases can be simplified, and a significant reduction in costs can be realized.
In accordance with a second aspect of the invention, there is provided a medicine supply apparatus that is capable of reliably detecting disconnection of a motor for driving a discharge drum for a tablet case and rapidly handling such failure.
In accordance with the second aspect of the invention, there is provided a medicine supply apparatus which comprises a plurality of tablet cases for accommodating medicines and discharges a designated medicine from a selected tablet case. The medicine supply apparatus comprises a plurality of tablet cases, each of which includes an accommodating container for medicine, a discharging device for discharging medicine from the accommodating container by a discharging operation, and a drive motor which is coupled to the discharging device so as to be driven and rotated in a predetermined direction to make the discharging device perform the discharging operation, and a control device for controlling rotation of the driving motors. The control device has an abnormality detection mode in which at least one of the driving motors is driven for a predetermined period of time which is shorter than a time required for the motor to be rotated for discharging medicine, an energized current for the motor is measured, and an abnormality of the motor is detected on the basis of a measured value. The discharging device is formed in a substantial drum configuration and medicine is discharged by the driving motor being rotated in the predetermine direction.
Abnormality of the motor includes disconnection of motor. The abnormality detection mode comprises a forward rotation mode in which the discharging device is rotated in a predetermine direction and a reverse rotation mode in which the discharging device is rotated in a direction opposite to the predetermined direction, and the reverse rotation mode precedes the forward rotation mode. The control device preferably performs the abnormality detection mode for a plurality of driving motors in turn.
The medicine supply apparatus further comprises a display device, and the control device controls the display device to display information indicating driving motors in which abnormalities are detected in the abnormality detection mode.
Namely, the medicine supply apparatus comprises a plurality of tablet cases, each of which includes an accommodating container for accommodating medicine, a discharge drum for discharging medicine from the accommodating container, and a motor for driving the discharge drum, and a control device for rotating the motors forward to discharge medicine. The control device performs an abnormality detection operation in which a motor is rotated in reverse for a predetermined period of time which is sufficiently shorter than a time required for medicine to be discharged and then rotated forward for the predetermined period of time, and determines disconnection of the motor on the basis of an energized current for the motor during the abnormality detection operation.
In accordance with the above-described aspects, the control device performs the abnormality detection operation for a plurality of tablet cases in turn.
In accordance with the above-described aspects, there is provided a medicine supply apparatus which comprises a plurality of tablet cases, each of which includes an accommodating container for accommodating medicine, a discharge drum (discharging device) for discharging medicine from the accommodating container, and a motor for driving the discharge drum, and a control device for rotating forward the motors to discharge medicine. The control device performs an abnormality detection operation (abnormality detection mode) in which a motor is rotated in reverse for a predetermined period of time which is sufficiently shorter than a time interval during which medicine is discharged and then rotated forward for the predetermined period of time, and determines disconnection of a motor on the basis of an energized current for the motor during the abnormality detection operation. Thus, disconnection failure of motor can be reliably detected, and maintenance for such a motor can be rapidly performed.
As the time interval for reverse rotation and forward rotation in the abnormality detection operation is sufficiently shorter than the time interval during which medicine is discharged, medicine cannot be discharged by mistake. Further, as a motor is firstly rotated in reverse, even if the next medicine, with respect to the previous discharge operation, is on the verge of being discharged, the medicine cannot be discharged by mistake.
In accordance with a preferred aspect, the control device in the medicine supply apparatus performs the abnormality detection operation for a plurality of tablet cases in turn. Thus, even if a plurality of tablet cases are provided, disconnection failures of motors corresponding to the tablet cases can be detected smoothly.
A third aspect of the invention is provided in order to minimize the drawback in which supply of medicine is delayed because of failures of operating elements such as parts that wear out used in the medicine supply apparatus.
In accordance with the third aspect of the invention, there is provided a medicine supply apparatus which comprises a plurality of tablet cases for accommodating medicines, and which discharges medicine from a selected tablet case and charges the medicine into a packaging container to supply the medicine. The medicine supply apparatus comprises a plurality of operating elements operated by being energized, a control device for controlling the operations of the operating elements and a storage medium for storing durability limit values for the operating elements. The control device stores data indicating the operating time or the frequency of operation for operating elements in the storage medium.
The data includes a cumulative value for the operating time or the frequency of operation of an operating element from when the operating element started to be used. Alternatively, the control device calculates a cumulative value from the data. The medicine supply apparatus comprises a diagnostic mode. In the diagnostic mode, the control device compares, with respect to at least one operating element, its durability limit value and its cumulative value and performs a predetermined failure prediction operation on the basis of the result of comparison.
The medicine supply apparatus comprises a display device. The control device controls the display device to display, on the basis of the result of the comparison, an operating element whose cumulative value has reached a predetermined value determined based on its durability limit value.
Each of the tablet cases includes a driving motor for discharging medicine accommodated therein, and the operating element may include the driving motor. The medicine supply apparatus further comprises a shutter for temporarily holding medicines discharged from tablet cases, prior to being accommodated in a packaging container, and the operating element may include the shutter. Further, the medicine supply apparatus comprises a thermal sealing device for sealing a packaging container into which medicine is charged, and the operating element may include the thermal scaling device. The medicine supply apparatus further comprises a print mechanism for printing predetermined items onto a packaging container, and the operating element may include the print mechanism.
Namely, the medicine supply apparatus of the above-described aspects comprises a plurality of tablet cases for accommodating medicines, provided within a main body, a chute through which medicines discharged from the tablet cases pass, a hopper provided below the chute, and a charging device for charging medicines received by the hopper into a container such as a bag or a bottle. The medicine supply apparatus comprises a control device for adding up the operating time or the frequency of operation for each of the parts that wear out provided within the main body. If the operating time or the frequency of operation for a part that wears out approximates a predetermined durability limit or reaches the same, the control device performs a predetermined failure prediction operation.
In accordance with a preferred aspect of the medicine supply apparatus, the part that wears out is a motor for driving a drum for discharging medicine from a tablet case.
In accordance with a preferred aspect, the part that wears out is a shutter that is capable of being freely opened/closed in order to temporarily receive medicine that falls into the hopper though the chute.
In accordance with a preferred aspect, the part that wears out is a thermal sealing device for packaging paper, provided in the charging device.
In accordance with a preferred aspect, the part that wears out is a printer for packaging paper, provided in the charging device.
In accordance with the above-described aspects of the invention, there is provided a medicine supply apparatus which comprises a plurality of tablet cases for accommodating medicines, provided within a main body, a chute through which medicines discharged from the tablet cases pass, a hopper provided below the chute, and a charging device for charging medicines received by the hopper into a container such as a bag or a bottle. The medicine supply apparatus comprises a control device for adding up the operating time or the frequency of operation for each of the parts that wear out(operating elements) provided within the main body. If the operating time or the frequency of operation for a part that wears out approximates a predetermined durability limit or reaches the same, the control device performs a predetermined failure prediction operation. Thus, if a part that wears out such as a motor for driving a drum, a shutter, a thermal sealing device for packaging paper, or a printer for packaging paper, approximates its durability limit value or reaches the same, a user is informed of failure prediction, and the user is asked to perform maintenance for the corresponding part that wears out such as exchanging of the part.
As a result, it is possible to exchange such parts that wear out before they are broken and to prevent stoppage of medicine supply by failures.
In accordance with a fourth aspect of the invention, there is provided a medicine supply apparatus that is capable of simply printing information such as how to take medicine provided to patients onto a container or a label for the container.
In accordance with the fourth aspect of the invention, there is provided a medicine supply apparatus which comprises a plurality of tablet cases for accommodating medicines, discharges medicine from a selected tablet case, and charges the medicine into a packaging container to supply the medicine. The medicine supply apparatus comprises a printing mechanism provided so as to print predetermined items about medicine to be charged into a packaging container onto the packaging container. The printing mechanism is capable of printing with two or more different colors. The packaging container has a label attached thereto and the print mechanism prints predetermined items on the label.
The print mechanism may comprise ink ribbons holding thermal transfer ink material and print by heating the ink ribbons to transfer the ink material.
The predetermined items preferably include indication of time slots in which medicine charged into a packaging container should be taken. Further, the print mechanism prints the time slots in which medicine should be taken with different colors for each of the time slots.
Namely, the medicine supply apparatus comprises a plurality of tablet cases for accommodating medicines and charges medicines discharged from the tablet cases into a container such as a bag or a bottle. The medicine supply apparatus comprises a printer for printing on a container or a label for the container. The printer has the function of color printing.
In accordance with a preferred aspect, the printer that the medicine supply apparatus includes performs thermal transfer by color ink ribbons onto a container or a label for the container.
In accordance with another preferred aspect of the medicine supply apparatus, the printer prints the time slots in which medicine should be taken with different colors.
In accordance with the above-described aspects, there is provided a medicine supply apparatus which comprises a plurality of tablet cases for accommodating medicines and charges medicines discharged from the tablet cases into a container such as a bag or a bottle. The medicine supply apparatus comprises a printer for printing on a container or a label for the container, and the printer has the function of color printing. For example, the time slots in which medicine should be taken may be printed by color ink ribbons with different colors.
Thus, how to take medicine can be easily indicated with different colors and convenience is significantly improved.
Embodiments of the present invention will be described hereinafter in detail with reference to the drawings.
A medicine supply apparatus 1 of the invention is installed at hospitals and pharmacies and is formed of a main body 7 formed in a rectangular configuration with longer transverse sides and a personal computer PC for control to be described later (which structures control means). The main body 7 is formed of an upper structure 7A and a lower structure 7B that are capable of being separated from each other. The upper structure 7A is placed on the lower structure 7B and coupled thereto. A case accommodating section 8 with its front, top and bottom portions being opened for accommodating tablet cases 3 to be described later is formed within the upper structure 7A. The top surface of the case accommodating section 8 is closed by the detachable top roof 1A.
The front surface and the top surface of the lower structure 7B are opened. The lower structure 7B is communicated with the top structure 7A at its top surface. A packaging machine 13 or the like serving as a charging device to be described later is accommodated within the lower structure 7B and installed therein. The front opening of the lower structure 7B is closed by lower panels 4 which can freely open together on hinges.
Four columns and five rows (i.e., 20 in total) shelves 2 are placed within the case accommodating section 8 of the upper structure 7A. A door panel 6 is mounted to the front end of each of the shelves 2. In the state that all shelves 2 are accommodated within the case accommodating section 8, the door panels 6 close the front surface opening of the upper structure 7A (the case accommodating section 8). A path 9 with its top and bottom portions being opened is longitudinally formed at the central portion of the shelf 2. Eight driving bases 52 of the tablet cases 3 are respectively arranged at the right and left sides of the path 9 along the longitudinal direction thereof and mounted thereat (i.e., 16 driving bases 52 are mounted in total) (see
A drum motor (motor for driving drum) 14 formed of a DC (direct current) motor with brush serving as a motor for driving drum is accommodated from above within the driving base 52. The drum motor 14 is fixed to the driving base 52 by a cover 16 and a lock tool 17. In the state of the drum motor 14 being fixed, its drive shaft 14A protrudes upward from the cover 16 (see
The top surface of the accommodating container 51 of the tablet case 3 is opened. The opened top surface is closed by a lid 22 which can be freely opened/closed (see
Such accommodating container 51 is mounted on the above-described driving base 52 and detachably coupled thereto. At this time, the tablet case 3 is mounted so that the identification code 26 faces the outer side of the shelf 2 (the side opposite to the path 9). In this way, the tablet case 3 is structured. The discharge drum 23 is detachably engaged with the drive shaft 14A of the drum motor 14. When the drum motor 14 is driven in forward, the discharge drum 23 is also rotated forward. Then, the vertical grooves 24 are successively engaged with the discharge port 21 of the driving base 52, so that pieces of medicines within the grooves pass into the discharge chute 19.
The medicine passing through the discharge port 21 is detected by the medicine detection sensor 18. The medicine passing through the discharge chute 19 is discharged into the path 9 of the shelf 2. If the accommodating container 51 becomes empty, the accommodating container 51 is removed from the driving base 52 and then is replenished with medicine.
The shelf 2 to which a plurality of tablet cases 3 are mounted as described above is detachably fixed by screws to a pair of drawing rails 27 mounted within the case accommodating section 8 of the upper structure 7A (see
A harness 28 for energizing (supplying electricity to) the drum motors 14 for the tablet cases 3 and transmitting outputs from the medicine detection sensors 18 is detachably mounted via a connector 29 to the rear edge of the shelf 2. The harness 28 is longer than the distance the shelf 2 is drawn. Further, the harness 28 is held by a wiring holding member 31 which is mounted to the upper structure 7A and can be folded and extended (see
When the shelves 2 are accommodated within the case accommodating section 8, the paths 9 of the vertically placed shelves 2 correspond with each other. Thus, a series of vertically communicating chutes 32 are structured. Accordingly, in accordance with the embodiments, four vertically extending chutes 32 are formed within the case accommodating section 8. The shelves 2 capable of being drawn independently are vertically provided within the case accommodating section 8. Thus, when the accommodating container 51 for the tablet case 3 is exchanged, each of the shelves 2 can be drawn and then exchange is performed.
Thereby, as compared to the structure that vertically arranged shelves 2 are drawn at the same time, intervals between the vertically arranged shelves 2 for exchanging the accommodating containers 51 can be reduced. Thus, the number of tablet cases 3 accommodated within the case accommodating section 8 can be increased. The path 9 is formed at the central portion of the shelf 2 and the vertically extending chute 32 is formed in the state the vertically arranged shelves 2 are accommodated within the case accommodating section 8. Thus, as compared to the case chute is formed at the side portion of the shelf 2, intervals of the chutes 32 at the right and left sides can be reduced. Consequently, areas of top surface openings of shutters 53 and a hopper 54 can be reduced resulting in a compact apparatus.
A plurality of optical identification sensors 33 serving as readers (reading means) are mounted to the right and left side surfaces of the case accommodating section 8 of the upper structure 7A so as to correspond to the tablet cases 3 in the shelves 2 placed at the right and left sides (see
Four vertically extending stays 34 serving as restriction means are provided at the rear portion within the case accommodating section 8 of the upper structure 7A so as to correspond to the rear portions of the four columns of the shelves 2 (see
An operating member 39 extending rearward is mounted at the rear surface of the shelf 2 so as to be protruded rearward. The operating member 39 is provided in accordance with the height of each of the engagement holes 37 of the stay 34, and has an L-shaped operating side 39A extending rearward and an L-shaped engaging side 39B placed forward.
When a column of shelves 2 is accommodated within the case accommodating section 8, the stay 34 is in a released state as shown in
Under such restricted state, the engaging sides 39B of the operating members 39 for other shelves 2 enter respectively the engagement holes 37 of the restricting side 34A of the stay 34 and engaged therewith (see
Because of the above-described structure, only one of the shelves 2 in a column in vertical direction can be drawn and a plurality of shelves 2 cannot be drawn at the same time. As a result, it is possible to prevent a drawback that a plurality of shelves 2 arranged in a column are drawn at the same time and thus the main body 7 falls forward because of loads of the drawn shelves 2.
Lock members 41 protruding forward in the above-described released state are mounted to the stays 34. Keep solenoids 42 serving as lock means are mounted to the upper structure 7A so as to correspond to the front sides of the lock members 41 of the stays 34. Plungers 42A of the keep solenoids 42 are protruded rearward. In the state that the keep solenoid 42 makes the plunger 42A protrude rearward, the plunger 42A abuts against the lock member 41 in the released state and rotation of the stay 34 is prohibited (see
When the plunger 42A is retracted, the stay 34 becomes rotatable as shown in
A reference numeral 44 denotes a lock release bar serving as manual unlock means. A plurality of the lock release bars are provided so as to respectively correspond to the keep solenoids 42. The lock release bar 44 is formed in an L-shaped configuration. The trailing edge of the lock release bar 44 is mounted to the position of engaged with the plunger 42A. The lock release bar 44 is normally retracted rearward by a coil spring 46 and thus set apart from the plunger 42A (see
In accordance with this embodiment, a plurality of shelves 2 vertically arranged in a column cannot be drawn at the same time and are locked. Nevertheless, the invention is not limited to this case. Shelves transversely arranged in a row may be set not to be drawn at the same time and to be locked. In this case, transverse stays are mounted in accordance with five rows of shelves.
On the other hand, the packaging machine 13 (charging device) is accommodated at the lower portion within the lower structure 7B of the main body 7. The structure of the packaging machine 13 will be described later in detail. As shown in
Two shutters 53 are transversely provided at the upper portion within the lower structure 7B. Each of the shutters 53 corresponds to lower portions of the chutes 32. The right side shutter 53 corresponds to the chute 32 at the right end side and the chute 32 next to the same and the left side shutter 53 corresponds to the chute 32 at the left end side and the chute 32 next to the same. The shutters temporarily receive medicine falling through the chutes 32 into the hopper 54 to be described later.
The hopper 54 is provided within the lower structure 7B so as to correspond to the lower portions of the shutters 53. The hopper 54 is formed in a rectangular funnel configuration so as to have widely opened top surface and gradually reduced diameter toward its lower end. The hopper 54 receives medicine falling through the chutes 32 and passing through the shutters 53 and discharges the medicine from its lower end opening 54A.
The right and left upper ends of the hopper 54 are detachably fixed by screws to drawing rails 56 mounted to the right and left upper portions within the lower structure 7B. The shutters 53 are placed on the drawing rails 56 and detachably fixed by screws to the drawing rails 56. Thus, while the lower panels 4 are open, the hopper 54 and the shutters 53 can be freely drawn forward from the lower structure 7B at the same time. Further, the drawn hopper 54 and the shutters 53 can be detached from the drawing rails 56 (see
Because of such structure, when the maintenance such as exchange for tablet cases 3, cleaning for the chutes 32 formed of the paths 9 and the hopper 54 and exchange for parts for the packaging machine 13 is performed, components to be subjected to the maintenance are drawn from the upper structure 7A or the lower structure 7B of the main body 7 and then detached.
The workability of the maintenance for the medicine supply apparatus 1 is significantly improved and smooth charging of medicine can be realized. In particular, a plurality of the tablet cases 3 in the shelf 2 can be drawn from the upper structure 7A at the same time. The accommodating containers 51 for the tablet cases 3 are detachably mounted. Thus, the workability for exchanging the accommodating containers 51 for the tablet cases 3 is further improved.
Further, also the shutters 53 are mounted so as to be drawn from the lower structure 7B and to be freely detached therefrom. Thus, the workability of the maintenance for the shutters 53 for temporarily receiving medicine falling into the hopper 54 is also improved. In particular, the shutters 53 and the hopper 54 are mounted so as to be drawn from the lower structure 7B at the same time. Then, the workability of the maintenance for the shutters 53 and the hopper 54 is even further improved.
An additional medicine feeder (UTC) 57 is mounted at the upper central portion within the lower structure 7B so as to be placed between the shutters 53. In this case, the additional medicine feeder 57 is mounted so as to be independently drawn forward without being covered by the lower panels 4 and to be freely detached from the lower structure 7B (see
Next, the structure of the shutters 53 will be described with reference to
The open/close plates 63A and 63B are operated by a shutter solenoid 64, a coil spring 58 and a link mechanism 66 provided at the rear portion of the shutter 53. The open/close plates 63A and 63B are driven so as to be in a closed state shown in
A curtain 67 serving as a cushioning member is mounted within the shutter 53. The curtain 67 is made of materials with flexibility capable of absorbing kinetic energies for medicines falling though chutes 32, colliding the inclined walls 61A and 61B and bouncing back, such as thin fabric, rubber and synthetic resins. The curtain 67 is hung down from the upper central portion within the main body 62. The lower end of the curtain 67 is extended even further than the lower end opening 62A and nipped by the closed open/close plates 63A and 63B as shown in
Because of the above-described structure, kinetic energies of medicines falling within the shutter 53 and bouncing back are absorbed by the curtain 67 and the medicines are rapidly collected from the lower end opening 62A onto the open/close panels 63A and 63B, and then becomes stationary. Especially, as the curtain 67 is extended from the upper portion of the shutter 53 to the lower end portion thereof, falling medicine easily abuts against the curtain 67 resulting in an improvement in impact absorption action. As a result, the time required for medicine to become stationary is even further reduced. Further, as the curtain 67 is nipped by the open/close plates 63A and 63B, noise occurring when the lower ends of the open/close plates 63A and 63B abut can be absorbed.
Then, the structure of the packaging machine 13 will be described with reference to
The packaging paper 72 rolled around the roll 71 has a substantially V-shaped cross-sectional configuration so that its top surface is opened and its lower end is folded and closed. The packaging paper 72 is drawn from the roll 71 downward at an incline to the right by the roller 77. Then, printing is performed upon the surface of the packaging paper 72 by the printer 73 as described later. Medicine discharged from the nozzle 74 is charged into the packaging paper 72. The packaging paper 72 is divided for each piece of medicine by thermal adhesion performed by the thermal sealing head 76. The divided packaging paper 72 packaging pieces of medicines is cut by the cutter 79 and then conveyed to the output port 84 placed at the top left portion of the lower structure 7B by the conveyer 81.
The nozzle 74 is formed in a rectangular cylindrical configuration with its top and bottom surfaces being opened as shown in
The nozzle 74 is mounted to the hopper 54 so as to swing about a rotating shaft 89 of a holding member 88 in a direction perpendicular to a direction the packaging paper 72 is advanced (indicated by the arrow shown in
Next, the printer 73 will be described. The printer 73 is a thermal transfer type printer using ink ribbons. As shown in
The printer 73 with the above-described structure prints in black a name, a date when medicine should be taken and a time slot in which medicine should be taken at the band C1. Further, a black line L1 is printed for medicine package to be taken before sleep, a blue line L2 is printed for medicine package to be taken after supper and a yellow line L4 is printed for medicine package to be taken before breakfast. In this way, time slots in which medicine should be taken are displayed by different colors. Accordingly, the time slot in which medicine should be taken is easily discriminated and mistakes such as taking wrong medicine can be effectively eliminated. The time slots in which medicine should be taken may be printed by characters in the lines L1, L2 and L4 as shown in
Data printed onto the packaging paper is prepared on the basis of data inputted to a prescribed medicine table to be described later. Written into the prescribed medicine table are, in addition to a patient's name, a medicine's name and a medicine code, a positional code for the tablet 3 accommodating the medicine, the number of medicines prescribed, a time slot in which the medicine should be taken and the number of the medicines taken at a time on the basis of the inputted prescription data or by making reference to a database for accommodated medicines to be described later. The data to be printed is read out from the prescribed medicine table. At the printer driver, print data of corresponding item to be printed is supplied to each of print heads placed so as to correspond to the respective colors of the color ink ribbon.
The microcomputer 97 is illustrated as a single block. The microcomputer 97 is provided with required number of processors in accordance with the number of processings performed in parallel.
A memory (not shown) serving as an external storage is connected to the microcomputer 97. A hard disk for a personal computer PC may be also used as the storage.
Connected to an input of the microcomputer 97 are an output of a current transformer 96 for detecting the communicating current of each drum motor 14, the outputs of the lock sensors 43, the outputs of the medicine detection sensors 18 and the outputs of identification sensors 33. The microcomputer 97 is connected to the personal computer PC so as to accomplish data communication with the same.
The operation of the medicine supply apparatus 1 of the invention with the above-described structure will be described. When a power source is switched on, the shutters 53 are closed. Further, assume that the shelves 2 that the tablet cases 3 accommodating predetermined medicine are mounted are mounted within the case accommodating section 8 of the upper structure 7A as described above.
When a power source for the medicine supply apparatus 1 is switched on, the microcomputer 97 for the control device 95 reads by the identification sensors 33 identification codes for the tablet cases 3 in the shelves 2 placed at the right and left end of the case accommodating section 8 of the upper structure 7A. Data about types of medicines accommodated in the tablet cases 3 is stored together with the positions of the tablet cases 3. The data is also sent to the personal computer PC.
The microcomputer 97 has a database about the types of medicines within the tablet cases 3 accommodated within the case accommodating section 8 and the position of the corresponding tablet case 3 (i.e., a database for accommodated medicines) in an unillustrated external storage connected to the microcomputer 97. The database is also sent to the personal computer PC. The identification codes read by the identification sensors 33 are also added to the database.
Firstly, a system for preparing medicines related with a series of medicine preparation operations will be described.
Next, operating elements (operating parts) serving as parts that wear out are periodically checked. An add-up value for usage of the operating parts, i.e., a cumulative usage time or a frequency of operation is checked (step 402). This routine will be described later in detail with reference to
When steps 402 and 403 for such checks are completed, the system is placed in a state of waiting for prescription data to be inputted. Unless it is determined in step 405 that the system is instructed to end, the system is in a state of waiting for prescription data to be inputted (steps 404 and 405). When an operator inputs the prescription data from the personal computer PC on the basis of a prescription prepared by a doctor, a table for prescribed medicines is prepared on the basis of one medicine or two or more medicines prescribed at the same time. Then, it is checked whether the medicine is accommodated within any tablet cases 3 in the medicine supply apparatus 1 by making reference to a database for accommodated medicines (step 406). In the table for prescribed medicines, in addition to a patient's name, a medicine's name and a medicine code, a positional code that the medicine is accommodated, the number of the medicines, a time slot in which the medicine should be taken, a number of medicines to be taken at a time, a presence or absence of other medicines to be packaged within the same package are prepared on the basis of the inputted prescription data or the database for accommodated medicines. In step 406, presence or absence of medicines in the table for prescribed medicines is checked by verifying the accommodated medicine database. If the medicine exists in the accommodated medicine database, the positional code of the medicine is written by making reference to the accommodated medicine database. On the other hand, if any of medicines to be prescribed is not accommodated within the medicine supply apparatus 1, namely if a tablet case 3 for medicine required for prescription does not exist in the case accommodating section 8, the positional code for such medicine is not written.
When all medicines in the table for prescribed medicines are verified with respect to the database for accommodated medicines, it is determined in step 407 whether or not all medicines are accommodated. A name of medicine whose positional code is not written is sent to the personal computer PC and displayed on a display screen for the personal computer PC as an unaccommodated medicine (step 408). The operator watches the display, draws the shelf 2 accommodating the tablet case 3 and loads the accommodating container 51 for the medicine to be replenished therein. At this time, the required number of positions of the accommodating containers 51 for the tablet cases 3 accommodating medicines that may be exchanged for new medicines are also displayed on the display screen. Such exchangeable accommodating containers 51 may be containers for medicines that need not to be accommodated in a package. Thus, the exchangeable accommodating containers 51 for the tablet cases 3 may be, among the medicines existing in the database for accommodated medicines, for medicines that do not exist in the prescribed medicine table. Alternatively, the database for accommodated medicines may include, with respect to each medicine, information about its frequency of being prepared and tablet cases 3 accommodating medicines with lower frequencies of being prepared may be successively displayed.
When unaccommodated medicines and exchangeable medicines are displayed on the display screen for the personal computer PC, the system is placed in a waiting state of waiting an instruction of restart of the medicine preparation operation (step 409). When the accommodating containers 51 for medicines to be newly added have been loaded, the operator instructs to restart the operation for preparing medicines. When the instruction for restart is recognized (step 409), identification codes are read again, the database for accommodated medicine is updated on the basis of results of reading and the routine returns to step 406. When it is confirmed that all medicines necessary for a prescription have been accommodated (step 407), the process proceeds to an operation for preparing medicines (step 411).
Then, the selected medicine is instructed to be supplied from the tablet case 3 accommodating the selected medicines (step 502). In accordance with this instruction, the processor for controlling the operation for supplying medicine starts a predetermined procedure (routine) for supplying medicine to be described later. This routine is preferably performed in parallel with other processings in order to improve the efficiency of the system. Thus, this routine proceeds by being controlled by different processor on the basis of the instruction to start supply of the selected medicine. The microcomputer 97 of this embodiment is structured so as to have two or more processors capable of processing in parallel. The routine for supplying the selected medicine is performed and medicine to be packaged is supplied onto the open/close panels 63A and 63B of the shutter 53.
During this routine, in step 503, the packaging paper 72 for packaging medicine starts to be supplied. The printer 73 prints predetermined items about selected prescribed medicine onto a fed packaging paper on the basis of the data of the prescribed medicine table.
When it is confirmed by an unillustrated sensor or the like that the routine for supplying medicine ends (step 504), the open/close panels 63A and 63B are opened (step 505) and medicine is charged through the hopper 54 into the packaging paper 72 placed immediately below the nozzle 74. This opening/closing updates data in a table for managing operating parts to be described later as a part of data for performing maintenance of operating parts (step 506).
Then, it is instructed in step 507 to start packaging of medicine. A packaging paper is fed to the thermal sealing head and the opening portion of the packaging paper 72 is closed thereat. Then, the packaging paper 72 is cut at a predetermined position and outputted outside from the output port 72.
When it is instructed to start packaging of medicine in step 507, the procedure proceeds to step 508. It is determined by making reference to the table for prescribed medicines whether there exists medicines that are in the table for prescribed medicines but not selected yet as medicines to be prepared (step 508). If the answer to the determination in step 508 is affirmed, the routine returns to step 501. Then, the medicine in the next order in the prescribed medicine table is selected and the above-described procedure is repeated for this medicine.
Namely, the microcomputer 97 energizes the shutter solenoid 64 to open the open/close panels 63A and 63B (see
If the answer to the determination in step 508 is negative, the procedure for performing the medicine preparation operation ends. Then, the process returns to P1 in the routine for medicine preparation system shown in
Specifically, when it is instructed to supply selected medicines in the procedure for performing the medicine preparation operation shown in
The procedure proceeds to step 602. In step 602, a medicine in the first order is selected and the prescribed number (N) of the medicines is stored in another predetermined storage region on the basis of the prescribed medicine table data.
Then, the procedure proceeds to step 603. The drum motor 14 for the tablet case 3 for the firstly selected medicine is driven for a predetermined period of time so that the vertical groove 24 of the drum coincides the discharge port 21 (step 604). The drive time is used for updating the data of the table for managing operating parts to be described later as a part of the operating part maintenance data (step 605). When the medicines pass into the discharge port 21, its number (P) is detected by the medicine detection sensor 18 and counted (step 606). In step 607, the number (P) does not reach the prescribed number (N) of the medicines in the prescribed medicine table (N−P>0), namely, if it does not satisfy N−P=0, the routine returns to step 604 and a discharge operation is repeated until the number of discharged medicines coincides the prescribed number of medicines. If the discharged number of medicines does not satisfy the prescribed number of the medicines after a predetermined period of time passes, the medicine supply apparatus 1 may be structured to indicate an abnormality that the selected medicine does not remain within the accommodating container 51.
When the discharged number coincides with the prescribed number, this routine proceeds to step 608. The number of types of medicines to be accommodated within the same packaging paper that is stored in a predetermined storage region is subtracted 1(M←M−1). In next step 609, it is determined whether or not medicines that are not prescribed yet exist (M=0 ?). If there exists medicines that are not prescribed yet, the procedure returns to step 602 and the medicine in the next prescription order is selected and its number (N) is set again. Then, the operation for supplying the medicine is repeated. If it is determined in step 609 that all types of medicines to be accommodated within the same package have been supplied, this routine ends.
As described above, 320 tablet cases 3 are accommodated within the tablet case accommodating section 8 in this embodiment. Accordingly, at most 320 types of medicines can be supplied and packaged. When medicines used cannot be accommodated within the case accommodating section 8, the accommodating containers 51 for the tablet cases 3 in the shelves 2 at the right and left end sides of the case accommodating section 8 (i.e., at the side walls of the case accommodating section 8) are exchanged for the accommodating containers 51 accommodating necessary types of medicines. Identification codes for the exchanged accommodating containers 51 are read by the identification sensors 33 and inputted to the microcomputer 97. Read data of new medicines is added to the database.
One or a plurality of tablet cases 3 for one or a plurality of types of medicines to be charged do not exist within the case accommodating section 8, the microcomputer 97 sends data to the personal computer PC to display a guide about exchange of tablet cases 3 on the screen of the personal computer PC. The microcomputer 97 sends data to the personal computer PC to display, on the screen thereof, a guide about the positions (addresses) of the accommodating containers 51 for the tablet cases 3 that may be removed. For example, when a plurality of types of medicines are charged into a package, accommodating containers 51 other than the accommodating containers 51 accommodating the medicines to be charged are displayed in a guide as exchangeable containers. Thus, it is possible to prevent a drawback that when a plurality of types of medicines are charged into a package, in order to mount accommodating containers 51 for medicines that do not exist in the case accommodating section 8, accommodating containers 51 accommodating medicines that should be charged into the package are removed.
Then, the microcomputer 97 controls the driver 94 to perform an abnormality detection operation. In accordance with this abnormality detection operation, the drum motor 14 is periodically rotated in reverse for a predetermined short period of time (e.g., for 10 ms) and then rotated forward for the same period of time. The time interval during which the drum motor 14 is rotated forward or in reverse in the abnormality detection operation is sufficiently shorter than a time interval during which the vertical groove 24 coincides the discharge port 21 by rotation of the discharge drum 23 (i.e., a time interval during which medicine is discharged).
The microcomputer 97 fetches an energized current value for the drum motor 14 during the abnormality detection operation by the current transformer 96. If a current is not applied to the drum motor 14, it is determined that windings of the drum motor 13 are disconnected and an alarm operation is performed. Data of this alarm is sent to the personal computer PC and displayed on its screen. This abnormality detection operation is successively performed upon the drum motors 14 for all tablet cases 3. Because the time during which the drum motor is rotated forward or in reverse in the abnormality detection operation is sufficiently shorter than the time required for medicine to be discharged, medicine is not discharged.
In particular, the drum motor 14 is firstly rotated in reverse. Thus, even if a medicine tends to fall into the discharge port 21 from the vertical groove 24 in the previous discharge operation (the drum motor 14 was rotated forward), this medicine is not discharged into the discharge port 21.
The drum motors 14 are ordered in advance for check and the abnormality detection operation is performed in this order. When the routine starts, in a step for initial setting in step 700, order information for the abnormality detection operation is read and settings necessary for performing this routine are performed. The order information may be stored in the external storage or in the personal computer PC.
In step 701, the first drum motor 14 to be subjected to the abnormality detection operation is selected in accordance with the order (step 701). The selected drum motor 14 is energized for a predetermined period of time so as to be rotated in reverse (step 702) and a current value at that time is read and recorded in a predetermined storage region (step 703). Then the drum motor 14 is energized for a predetermined period of time so as to rotate forward (step 704) and a current value at that time is also read and recorded in a predetermined storage region (step 705). The time during when the drum motor 14 is driven for such check operations is added to the table for operating parts to be described later and the data of the table is updated (step 706).
Then, the routine proceeds to step 707 and it is determined whether the abnormality detection operation has been ended for all drum motors 14 to be subjected to operational check (step 707). If the answer to the determination in step 707 is negative, the routine returns to step 701 and the drum motor 14 in the next order is selected and the steps 701 to 707 are repeated for the drum motor. If it is determined in step 707 that the abnormality operation has been ended for all drum motors 14, the routine proceeds to step 708. In step 708, it is determined on the basis of the current value data in the storage region whether the current values read by experimentally driving the drum motors 14 are within a predetermined range, extremely larger or smaller than the predetermined range, or whether none of current values is measured. Then, drum motors 14 with current values outside the predetermined range are extracted. If a current value is extremely small or not measured at all, it is estimated that connection inferior or disconnection may occur. If a current value is extremely large, it is estimated that overload may occur because of some causes.
Basically, such abnormality detection operation is periodically performed for all drum motors 14 in turn. A drum motor list for identifying a drum motor 14 is prepared for each of types of abnormalities. A display for identifying the drum motor 14 that an abnormality operation occurs (e.g., positional information of the tablet case 3) is displayed on the screen of the personal computer PC (step 709) and then this routine ends.
The microcomputer 97 energizes, on the basis of the instruction data from the personal computer PC, one or a plurality of the keep solenoids 42 corresponding to one column of the shelves 2 or all columns of the shelves 2 identified by an input operation to the personal computer PC to protrude the plungers 42A rearward, so that the corresponding stays are in a locked state. Thus, all shelves 2 in a column corresponding to the keep solenoid 42 (or all columns of the shelves 2) cannot be drawn as described above (see
An access right for lock and unlock operations is set by a user in the personal computer PC (a password or the like). Thus, it is possible to prevent the drawback that the shelves 2 are carelessly drawn and different medicines are accommodated within the tablet cases 3.
The microcomputer 97 determines by the lock sensor 43 whether the stay 34 is in the above-described released state or in a restricted state. When any of the shelves 2 is drawn, the keep solenoid 42 corresponding to the column with the stay 34 being in a restricted state is not subjected to the above-describe lock operation. Thus, it is possible to prevent the lock member 41 of the stay 34 in a restricted state from being engaged with the plunger 42A of the keep solenoid 42 and not being capable of rotating.
As described above, the locked state of the keep solenoid 42 may be manually released by drawing the unlock lever 44. Thus, even if the keep solenoid 42 is broken and its locked state cannot be released, the shelves 2 can be drawn smoothly.
The microcomputer 97 adds up the operating time for the drum motors 14 in the above-described operation for discharging medicine and packaging the same. Further, the microcomputer 97 also adds up the frequencies of operations for the shutter solenoids 64, the keep solenoids 42, the thermal sealing head 76 for the packaging machine 13 and the thermal transfer head 93 for the printer 73. Durability limit values for such parts that wear out are inputted and set in the microcomputer 97.
When the operating time or the frequency of operation for such part that wears out approximates or reaches its durability limit value, the microcomputer 97 sends failure prediction data to the personal computer PC to display on the screen for the personal computer PC a failure prediction that the corresponding wear-out part may be broken with high possibility. Thus, a user can exchange in advance the drum motor 14, the shutter solenoid 64, the keep solenoid 42, the thermal sealing head 76 or the thermal transfer head 93 approximating or reaching their durability limits. Consequently, it is possible to prevent a delay of supply of medicines due to such wear-out parts being broken.
When it is instructed in step 402 shown in
In steps 803 and 804, the durability limit value (Si) for this part (i) relating to the usage time or the frequency of operation is compared to the cumulative usage time or the cumulative frequency of operation (Ni) at that time for the part. If the cumulative usage time or the cumulative frequency of operation (Ni) coincides the durability limit value (Si) or exceeds the same in step 804, it is determined that the part reaches its durability limit and is displayed on the screen for the personal computer PC (step 805).
Thereafter, similar to the case that it is determined in step 805 that the part does not reach its durability limit, this routine proceeds step 806. Then, this routine returns to step 801 unless it is determined that all operating parts to be checked are compared, and a part to be compared next is specified in accordance with the order. On the other hand, if all parts have been compared, this routine ends.
Each of the lower ends of the paths 9 for the shelves 2 in the additional unit 98 corresponds to each of the upper ends of the paths 9 for the underlying shelves 2 within the case accommodating section 8. Such paths 9 structure chutes 32. The drum motors 14 for the tablet cases 3 and the medicine detection sensors 18 in the additional unit 98 are connected to the microcomputer 97 and the same discharge operation as the above-described one is performed.
As shown in
A shelf 2B to which a tablet case 3B for half-tablet medicine (halved tablet) is mounted can be provided within the case accommodating section 8 so as to be freely drawn, as shown in
As described above, various shelves including the shelves 2A and 2B with different tablet cases being mounted thereto and the shelf 2C which is not connected to a power source can be provided within the case accommodating section 8 so as to be freely drawn. Thus, the facility of the medicine supply apparatus 1 is significantly improved.
The bottling machine 99 is formed by a catcher 104 with grip arms 103 for gripping a bottle 102 serving as a container, a moving device 106 for horizontally and vertically moving the catcher 104 and a conveyor 107 for conveying the bottle 102. The bottle 102 conveyed from an insertion opening 109 by the conveyer 107 is gripped by the grip arms 103 of the catcher 104. While gripped by the grip arms 103, the bottle 102 is moved by the moving device 106 under the lower end opening of the hopper 101 through which a discharged medicine passes. In this way, the medicine is charged into the bottle 102. The bottle 102 with the medicine being charged therein is conveyed by the conveyer 107 to an output port 108.
In addition to lower structures accommodating the above-described packaging machine 13 and the bottling machine 99, there may be considered a lower structure that accommodates a charging device referred to as a so-called blister packaging machine. As the lower structures 7B and 7C with various types of charging devices can be alternatively connected to the lower side of the same upper structure 7A, medicine supply apparatuses comprising a case accommodating section and various charging devices need not to be prepared individually. Thus, the flexibility of the medicine supply apparatus is significantly improved and a reduction in production costs may be accomplished.
In accordance with this embodiment, data is inputted to the medicine supply apparatus 1 by a separate personal computer PC. Nevertheless, the invention is not limited to this case. Alternatively, or in addition to such case, a control panel 111 may be mounted to any of the shelves 2. The prescription data may be inputted by the control panel 111. Further, an alarm may be displayed on the control panel 111.
In accordance with this embodiment, a plurality of door panels 6 are respectively mounted to a plurality of shelves 2 accommodated within the case accommodating section 8 so as to be freely drawn, so that the front surface opening of the upper structure 7A (the case accommodating section 8) is closed by the panels 6. Nevertheless, the invention is not limited to this case. As shown in
Further, in accordance with this embodiment, the identification code 26 is provided as the means for identifying the tablet case 3 and the optical identification sensor 33 is provided as the reading means. Nevertheless, an IC memory with identification information recorded therein may be provided at the tablet case 3, and a sensor for reading the information recorded in the IC memory by an electric field in an untouched manner may be provided at the case accommodating section 8. Moreover, in accordance with this embodiment, only the identification codes 26 for the tablet cases 3 at the right and left wall sides of the case accommodating section 8 are read by the identification sensors 33. The identification codes 26 for all tablet cases 3 within the case accommodating section 8 may be read.
The drum motor 14, the keep solenoid 64, the thermal sealing head 76 and the thermal transfer head 93 are provided as parts that wear out (operating elements) in this embodiment. Nevertheless, the invention is not limited to this case. Various types of parts that wear out used in this type of the medicine supply apparatus 1 may be provided as the parts that wear out.
Although color printing is performed by the printer 73 onto the packaging paper 72 in accordance with this embodiment, the invention is not limited to this case. In the case shown in
As described above, in accordance with a first aspect of the invention, each of tablet cases is identified by control means (control device) on the basis of identification information read by a reader (reading means) and discharge of medicine from each of the tablet cases is controlled.
Thus, the operation for detaching electric wirings when tablet cases are exchanged becomes unnecessary and thus the handling workability is significantly improved.
As shown a preferred aspect, information for instructing exchanges for tablet cases may be outputted by the control means (control device) on the basis of the identification information read by the reader (reading means). For example, if medicines to be charged do not exist in a case accommodating section when a plurality of types of medicines are charged in a package, exchangeable tablet cases may be designated. Thus, it is possible to prevent the tablet cases accommodating medicines to be charged in the package from being removed, resulting in a significant improvement in utility.
An optically readable identification code provided on the surface of a tablet case serves as the identification means (identifier) and an optical sensor capable of reading the identification code serves as the reader (reading means). Thus, an electric circuit for a tablet case can be simplified and a significant reduction in costs can be accomplished.
In accordance with a second aspect of the invention, a disconnection failure of motor can be reliably detected and a maintenance for the motor can be performed rapidly.
As the time during which the motor is rotated forward or in reverse in an abnormality detection operation (abnormality detection mode) is sufficiently shorter than the time interval during which medicine is discharged, medicine cannot be discharged by mistake. Further, the motor is firstly rotated in reverse. Thus, even if the next medicine is to be discharged in the previous discharge operation, the medicine cannot be discharged by mistake.
In accordance with a more preferable aspect, the control device successively performs the abnormality detection operation upon a plurality of tablet cases. Thus, in a case that a plurality of tablet cases are provided, disconnection failures of motors corresponding to the tablet cases can be smoothly detected.
In accordance with a third aspect of the invention, when operating elements serving as parts that wear out including a motor for driving a drum, a shutter, a thermal sealing device for packaging paper and a printer for packaging paper approximate their durability limits or reach them, it is possible to inform a user of failures and to ask the user to perform maintenance for the corresponding parts.
Thus, it is possible to conduct such operations as exchanging parts that wear out before they are broken and to prevent supply of medicine from being stopped by failures.
In accordance with a fourth aspect of the invention, the medicine supply apparatus comprises a printer with color print function (print mechanism) for printing on a container or a label for the container. For example, color ink ribbons may be used and time slots in which medicine should be taken may be displayed by different colors. Thus, how to take medicine can be shown clearly with different colors and the facility is significantly improved.
The invention may be used as a medicine supply apparatus that is installed at hospitals or pharmacies and supplies the determined number of medicines accommodated in tablet cases to a container (a bottle or a bag) on the basis of a prescription. Thus, automation and efficiency for prescription can be significantly improved.
Number | Date | Country | Kind |
---|---|---|---|
2002-42598 | Feb 2002 | JP | national |
2002-42626 | Feb 2002 | JP | national |
2002-42649 | Feb 2002 | JP | national |
2002-42653 | Feb 2002 | JP | national |
Number | Date | Country | |
---|---|---|---|
Parent | 10505307 | Jun 2005 | US |
Child | 12646946 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 12646946 | Dec 2009 | US |
Child | 14512596 | US |