The present invention relates to a medium conveyance mechanism (device) that conveys a medium such as a banknote, and particularly to a technique for stably conveying media of different sizes.
Conventional medium conveyance mechanisms (devices) handle tickets of different sizes, and are sized such that the width of opposing belts corresponds to the width of large tickets. Accordingly, in the case of conveying a large ticket by the opposing belts, the large ticket is conveyed so that a side thereof follows the surface of a guiding wall provided at a side of the opposing belts. When a small ticket is conveyed, on the other hand, because a space exists between the small ticket and the guiding wall surface, the small ticket is pressed against the guiding wall surface by an aligning device so that an edge of the small ticket follows the guiding wall surface. (See, for example, paragraph [0011] and FIG. 1 of Japanese Patent Application Laid-Open (JP-A) No. 2002-249263.)
In the above-described conventional technology, however, a mechanism for operating the aligning device is necessary to press a banknote toward the guiding wall surface side by the aligning device, which increases the size and cost of the medium conveyance device. Further, in the case of a structure in which a banknote is held between and conveyed by rollers, even if the banknote held between the rollers is pressed by the aligning device, the banknote cannot be moved and fully pressed toward the guiding wall surface.
An object of the invention is to provide a solution to the above point.
An aspect of the invention is a medium conveyance mechanism including: a first conveyance belt entrained around at least two rollers; a second conveyance belt entrained around at least two rollers and disposed so as to overlap the first conveyance belt; and an aligning guide disposed at one side of the first and second conveyance belts at a distance therefrom, the aligning guide having an inclined surface for carrying out aligning of a medium and a conveyance reference surface formed at an end side of the inclined surface, wherein, when the medium being held between and conveyed by the first and second conveyance belts abuts the inclined surface for aligning, one side of the medium is guided by the conveyance reference surface while the medium is slipped with respect to the first and second conveyance belts in a direction orthogonal to a direction in which the medium is conveyed.
With this structure, the invention can achieve size reduction since a member for aligning a medium such as an aligning device can be omitted.
An embodiment of a medium conveyance mechanism (device) according to the invention will be described below with reference to the drawings.
A lower belt (second conveyance belt) 5 is an endless belt that opposes the upper belt 2 from below, is disposed at a position at which the lower belt 5 abuts an undersurface of the banknote P, and is entrained around the rollers 6a, 6b. The lower belt 5 is made to travel by either one of the rollers 6a, 6b being rotated by an unillustrated drive mechanism. The upper belt 2 and the lower belt 5 are disposed such that portions thereof overlap each other, and convey the banknote with the overlapping portion holding the banknote therebetween.
Plural auxiliary rollers 8 are disposed at predetermined intervals between the rollers 6a, 6b around which the lower belt 5 is entrained. The auxiliary rollers 8 are disposed at positions slightly higher, namely further toward the upper belt 2, than the rollers 6a, 6b. Further, the auxiliary rollers 8 are disposed so that the positions thereof are gradually higher toward a substantially intermediate position between the rollers 6a, 6b. In this way, the overlapping portion of the upper belt 2 and the lower belt 5 has convex shape (i.e., take the shape that curves toward the upper belt 2).
By forming the overlapping portion of the upper belt 2 and the lower belt 5 into convex shape, approximately equal force is applied to every position of the upper belt 2 during conveyance of the banknote P. Thus, resistance against the conveyance of the banknote P is not generated, and constant force for conveying the banknote P is secured at every position. The interval between the auxiliary rollers 8 is smaller than a banknote P having the shortest side along a direction in which the banknote P is conveyed. The number of the auxiliary rollers 8 disposed is determined in accordance with this interval.
A conveyance guide 10 is disposed at both sides of the lower belt 5 with respect to the conveyance direction of the banknote P designated by arrow A. The conveyance guide 10 serves to support a portion of the undersurface of the banknote P that protrude from the lower belt 5. The conveyance guide 10 has a surface that is at substantially the same height as that of the surface of the lower belt 5 contacting the banknote P and, in the same way as the lower belt 5, is raised at an intermediate portion thereof between the rollers 6a, 6b. Further, the conveyance guide 10 has a surface that is inclined downward at an upstream side end in the conveyance direction of the banknote, such that the banknote P being conveyed is guided between the upper belt 2 and the lower belt 5.
With the above-described structure of the aligning guide 15, the banknote P held between and conveyed by the upper belt 2 and the lower belt 5 comes into contact with the inclined surface 16, and is conveyed further from the inclined surface 16 while being aligned along the conveyance reference surface 17. In this way, the banknote P can be guided while being aligned in the conveyance thereof. Operation of the above-described structure will be described. When the banknote P is conveyed by the medium conveyance mechanism (device) of the invention in the conveyance direction of the banknote P designated by arrow A of
Since the aligning guide 15 extends toward the upper belt 2 and the lower belt 5, namely, the aligning guide 15 is inclined toward the banknote P being conveyed as it extends from the upstream to the downstream in the conveyance direction, the banknote P being conveyed is brought into contact with the aligning guide 15. The banknote P is conveyed so that an edge thereof follows the inclined surface 16 of the aligning guide 15, while being held between the upper belt 2 and the lower belt 5. However, the auxiliary rollers 8 are disposed at the lower belt 5, whereas no rollers other than the rollers 3a, 3b are disposed at the upper belt 2. With this structure, one side of the banknote P is guided toward the conveyance reference surface 17 while friction acting on the banknote P causes the banknote P to slip in a direction orthogonal to the conveyance direction.
Subsequently, the banknote P is conveyed along the conveyance reference surface 17 of the aligning guide 15. In this way, all the banknotes P are conveyed further while being aligned along the inclined surface 16 and the conveyance reference surface 17 of the aligning guide 15. As described above, the auxiliary rollers are disposed at the lower belt in the present embodiment. No rollers are disposed, on the other hand, at the upper roller other than the rollers around which the upper belt is entrained. In this way, frictional force acting between the upper roller and the banknote P is reduced, and the banknote P is conveyed while being slipped in the direction orthogonal to the conveyance direction when it abuts the aligning guide, and is aligned along the aligning guide. With this structure, no members for aligning the banknote P are necessary, and the size of the medium conveyance mechanism (device) can be reduced.
Additionally, the cost required for constructing the medium conveyance mechanism (device) can be reduced by omitting members for aligning the banknote P. Further, by forming the overlapping portion of the upper belt and the lower belt into convex shape, a case is prevented in which the belt is loosened by the banknote P entering between the upper belt and the lower belt, which leads to formation of a space between the opposing belts and thereby making holding of the banknote therebetween impossible.
Number | Date | Country | Kind |
---|---|---|---|
2008-212475 | Aug 2008 | JP | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/JP2009/061001 | 6/17/2009 | WO | 00 | 2/17/2011 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2010/021194 | 2/25/2010 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
1178286 | Anderson | Apr 1916 | A |
4637602 | Gavaghan et al. | Jan 1987 | A |
5180154 | Malick | Jan 1993 | A |
6971647 | Jewell et al. | Dec 2005 | B2 |
20050017440 | Jewell | Jan 2005 | A1 |
Number | Date | Country |
---|---|---|
59-102750 | Jun 1984 | JP |
9-150993 | Jun 1997 | JP |
11-301888 | Nov 1999 | JP |
2002-249263 | Sep 2002 | JP |
Number | Date | Country | |
---|---|---|---|
20110133388 A1 | Jun 2011 | US |