The present invention relates to a medium support unit, a printing apparatus, a heating apparatus, and a printing method.
Hitherto, medium support units in which a medium is supported on a support section have been employed in printing apparatuses. Such a medium support unit is sometimes employed to print at different positions on the medium. Generally, in such cases, a medium that has been set on the medium support unit and printed on is temporarily removed and the orientation or the like of the medium is changed, and then the medium is again set on the medium support unit and printed on once more. However, this takes time and effort.
JP-A-2004-262214 describes a printing apparatus (an ink jet printer) for reducing such time and effort. This printing apparatus has a configuration in which a medium support unit is retained on a rotation shaft. The medium support unit has two medium-supporting faces. It is possible to switch between the medium-supporting faces by rotating the medium support unit about the rotation shaft.
However, since the printing apparatus described in JP-A-2004-262214 has a configuration in which the entire medium support unit is retained on a single rod-shaped rotation shaft, it is difficult to stabilize the medium support unit, and the medium is not able to be stably supported on the support section.
An advantage of some aspects of the invention is that a medium-supporting face can be easily changed and printed on while a medium is stably supported on a support section.
A medium support unit of a first aspect of the invention is a medium support unit that supports a medium to be printed on by a printing apparatus. The medium support unit includes a support section and a frame section. The support section has a first support face and a second support face that are capable of supporting the medium. The frame section retains the support section. The frame section includes a first placement portion that is placed on a base of the printing apparatus when the first support face is set as a printing face on which the medium is printed, and a second placement portion that is placed on the base when the second support face is set as the printing face.
This aspect includes the support section and the frame section. The support section has the first support face and the second support face. The frame section includes the first placement portion that is placed on the base when the first support face is set as the printing face, and the second placement portion that is placed on the base when the second support face is set as the printing face. Accordingly, a medium-supporting face can be easily switched and printed on by printing using the first support face as the printing face and then printing using the second support face as the printing face. Placing the first placement portion on the base when the first support face side is to be printed on and placing the second placement portion on the base when the second support face side is to be printed on enables the support section to be stably supported on the base and enables a medium to be stably supported on the support section. Thus, a medium-supporting face is able to be easily changed and printed on while a medium is stably supported on the support section.
The frame section of the medium support unit may be inserted between the first support face and the second support face to retain the support section.
According to this aspect, the frame section may be inserted between the first support face and the second support face to retain the support section. This enables the frame section to be easily configured not to protrude from the printing face. Accordingly, obstruction of printing due to the frame section protruding from the printing face can be easily suppressed.
The frame section of the medium support unit may pinch the support section from the first support face-side and the second support face-side to retain the support section.
According to this aspect, the frame section may pinch the support section from the first support face-side and the second support face-side to retain the support section. The support section can thereby be suitably retained by the frame section.
An inclined portion may be provided at an outer peripheral portion of at least one of the first support face or the second support face. The inclined portion may be inclined such that in a state in which the frame section is placed on the base, the medium supported on the printing face approaches closer to the base with greater proximity to the outer edge of the outer peripheral portion.
According to this aspect, the inclined portion may be provided. The inclined portion may be inclined such that in a state in which the frame section is placed on the base, positions where the medium is supported at the printing face are closer to the base with greater proximity to the outer edge of the outer peripheral portion. Although the outer peripheral portion of the first support face and the second support face are liable to leave a mark on portions of a medium supported thereby, adopting such a configuration enables marking of the medium to be suppressed.
The frame section of the medium support unit may be provided with a mark to indicate the orientation of the medium support unit when the medium support unit is placed on the base.
According to this aspect, the frame section may be provided with a mark to indicate the orientation of the medium support unit when the medium support unit is placed on the base. Accordingly, placement of the frame section on the base in an incorrect orientation can be suppressed when the frame section is placed on the base.
A printing apparatus according to a second aspect of the invention includes the medium support unit of the aspect described above, the base, and a printing section. The printing section prints on the medium supported by the support section of the medium support unit that is on the base.
This aspect includes the medium support unit configured as described above. Accordingly, a medium-supporting face can be easily switched and a medium printed on while the medium is stably supported on the support section.
In a state in which the frame section is on the base, an open space may be provided between the support section and the base.
According to this aspect, in a state in which the frame section is on the base, the open space may be provided between the support section and the base. Accordingly, in cases in which the second support face is set as the printing face and printed on after the first support face has been set as the printing face and printed on, it is possible to suppress reduction in image quality due to a previously printed portion printed on the first support face side making contact with the base while the second support face side is being printed on.
A heating apparatus according to a third aspect of the invention includes a mounting portion and a heating section. The mounting portion is mountable with the medium support unit of the aspect described above. The heating section is capable of heating both the first support face and the second support face of the support section of the medium support unit mounted to the mounting portion.
This aspect enables heat to be easily applied at once to both the first support face and the second support face so as to fix printed images on a printed article without removing the printed article from the medium support unit, of which a medium-supporting face has been easily switched to print the printed article while the medium was stably supported on the support section.
A printing method of a fourth aspect of the invention is a printing method employing a medium support unit including a support section and a frame section. The support section has a first support face and a second support face that are capable of supporting a medium to be printed on by a printing apparatus. The frame section is capable of retaining the support section. The frame section includes a first placement portion that is placed on a base of the printing apparatus when the first support face is set as a printing face on which the medium is printed, and a second placement portion that is placed on the base when the second support face is set as the printing face. The printing method includes placing the first placement portion on the base and printing on the medium on the first support face, and placing the second placement portion on the base and printing on the medium on the second support face.
According to this aspect, the first placement portion is placed on the base and the first support face side is printed on as the printing face, and the second placement portion is placed on the base and the second support face side is printed on as the printing face. Thus, a medium-supporting face is able to be easily changed and printed on while a medium is stably supported on the support section.
The invention will be described with reference to the accompanying drawings, wherein like numbers reference like elements.
Detailed explanation follows regarding a printing apparatus 1 according to an embodiment of a liquid ejecting apparatus of the invention, with reference to the accompanying drawings.
The printing apparatus 1 of the present embodiment includes the medium support unit 2, which is moved along a movement direction A in a state in which a medium is supported by support faces (first support face 8a and second support face 8b, described below) of a tray 4, which serves as a medium support section. Note that the medium support unit 2, this being a relevant portion of the printing apparatus 1 of the present embodiment, is configured by the tray 4 and a frame section 10. The configuration of the medium support unit is described in detail below.
The printing apparatus 1 also includes a medium transport portion 3 that transports a medium supported by the tray 4 along the movement direction A. The movement direction A is a direction encompassing a direction A1 and a direction A2. The direction A2 is the opposite direction to the direction A1.
The medium support unit 2 is detachably mounted to a base 5 of the printing apparatus 1. An attachment/detachment direction C of the medium support unit 2 with respect to the base 5 is the vertical direction in the case of the printing apparatus 1 of the present embodiment. Rotating a lever 9 moves the medium support unit 2 and the base 5 in a direction (the vertical direction) following the attachment/detachment direction C. Note that as illustrated in
A print head 7 is provided inside the body of the printing apparatus 1. The print head 7 serves as a printing section capable of ejecting ink or other liquid, from a nozzle so as to print on the medium. The printing apparatus 1 of the present embodiment, a carriage 6 retaining the print head 7 is recprically moved in a scanning direction B, which intersects the movement direction A and, while the print head 7 is reciprically moved in the scanning direction B, ink is ejected from the print head 7 onto a medium supported by the tray 4 to form a desired image.
Note that in the printing apparatus 1 of the present embodiment, the near side (lower left direction) in
Explanation follows regarding the electrical configuration in the printing apparatus 1 of the present embodiment.
A control section 19 is provided with a CPU 20 that governs the overall control of the printing apparatus 1. The CPU 20 is connected, through a system bus 21, to ROM 22 which stores various control programs and the like executed by the CPU 20, and to RAM 23 which is capable of temporarily storing data.
The CPU 20 is also connected to a head drive section 24 for driving the print head 7 through the system bus 21.
The CPU 20 is also connected to a motor drive section 25 through the system bus 21. The motor drive section 25 is connected to a carriage motor 26 for moving the carriage 6 provided with the print head 7, and to a transport motor 27 provided to the medium transport portion 3 for transporting medium (namely, moving the medium support unit 2).
In addition, the CPU 20 is connected to an input/output section 28 through the system bus 21. The input/output section 28 is connected to a PC 29 for exchanging signals and data such as print data.
The control section 19 performs overall control of the printing apparatus 1 through such configuration.
Explanation follows regarding the medium support unit 2, which is a relevant portion of the printing apparatus 1 of the present embodiment.
As illustrated in
As illustrated in
Note that each of the figures from
Namely, the medium support unit 2 of the present embodiment is a medium support unit 2 that supports a medium printed on by the printing apparatus 1. The medium support unit 2 includes a tray 4 that has a first support face 8a and a second support face 8b both capable of supporting the medium, and a frame section 10 that retains (holds) the tray 4. As illustrated in
Due to such configuration, a medium-supporting face is able to be easily changed and printed on by printing with the first support face 8a as the printing face 8 and then printing with the second support face 8b as the printing face 8. By placing the first placement portions 10a on the base 5 when the first support face 8a side is to be printed on, and placing the second placement portions 10b on the base 5 when the second support face 8b side is to be printed on, the tray 4 can be stably supported on the base 5 and also the medium can be stably supported on the tray 4. The medium support unit 2 of the present embodiment is thereby configured such that a medium-supporting face can be easily switched and printed on with a medium stably supported on the tray 4.
Said differently, a medium-supporting face can be easily switched and printed on with a medium stably supported on the tray 4, because the printing apparatus 1 of the present embodiment includes the thus-configured medium support unit 2, base 5, and print head 7 that prints on a medium supported by the tray 4 of the medium support unit 2 placed on the base 5.
As illustrated in
In the medium support unit 2 of the present embodiment, the frame section 10 is configured by two configuration members (a frame portion 10γ and a frame portion 10Δ), each configured in an L-shape as illustrated in
As illustrated in
The inclined portion 17 is inclined in this way such that in a state in which the frame section 10 is placed on the base 5, positions where a medium is supported at the printing face 8 approach the base toward the outer edge of the outer peripheral portion 16. Such an inclined portion 17 is preferably provided at the outer peripheral portion 16 of at least one of the first support face 8a or the second support face 8b. The outer peripheral portion 16 of the first support face 8a and the second support face 8b are liable to leave a mark on portions of a medium they support. However, adopting the inclined portion 17 enables marking of the medium to be suppressed.
As illustrated in
Note that in the present embodiment, the mark 33a is formed on one movement direction A side (the frame portion 10γ) of the medium support unit 2, and the mark 33b is formed on the other side (the frame portion 10Δ) of the medium support unit 2. The mark 33a and the mark 33b have different colors. Adopting such marks makes it easier to place the frame section 10 on the base 5 in a correct orientation, particularly when placing the frame section 10 on the base 5. In addition, in cases in which a medium support unit 2 on which a medium has been set is set in another apparatus (such as a heating apparatus), the setting orientation (printing direction) in the printing apparatus 1 can be matched with the setting orientation in the other apparatus. Herein, although the marks 33a and 33b of the present embodiment are marks that differ in color, the marks 33a and 33b may be marks that differ in shape, size, and so on.
As illustrated in
As illustrated in
Note that there is no limitation to the configuration by which both sides of the frame section 10 are connected together (the configuration of the connection portion 32). For example, according to the medium support unit 2 of a second embodiment illustrated in
As illustrated in
As illustrated in
Additional explanation follows regarding the medium support unit 2, which is a relevant portion of the printing apparatus 1 of the present embodiment.
As illustrated in
As illustrated in
In other words, the frame section 10 of the present embodiment is configured to retain the tray 4 by pinching the tray 4 from the first support face 8a-side and the second support face 8b-side. Such a configuration enables the tray 4 to be suitably retained by the frame section 10.
Herein, when the frame portion 10α and the frame portion 10β pinch the tray 4, the heights of the frame portion 10α and the frame portion 10β are sufficiently shorter in height than the support faces 8a and 8b (so as not to project from the support faces 8a and 8b). Specifically, configuration is such that the first placement portions 10a of the frame portion 10α are positioned at a lesser height than the second support face 8b, and the second placement portions 10b of the frame portion 10β are positioned at a lesser height than the first support face 8a. This enables the frame portion 10α and the frame portion 10β to be suppressed from obstructing printing by the printing apparatus or obstructing heating by the heating apparatus.
A silicon layer 10e is formed at positions on the side of the frame section 10 that contacts the base members 13 so that medium set on the tray 4 does not slip. The silicon layer 10e elastically deforms such that even if pressure is applied to a medium, the occurrence of pressure marks on the medium can be reduced. In addition, configuring the silicon layer 10e as a heat-resistant silicon layer enables the suppression of plastic deformation and the like of the silicon layer 10e due to heat when a printed image formed on a medium is cured by a heating apparatus after printing has completed.
As illustrated in
Note that, as illustrated in
As illustrated in
However, there is no limitation to such configuration. For example, as in the printing apparatus 1 illustrated in
In addition, the frame section 10 may be configured like the frame section 10 of the medium support unit 2 of a fourth embodiment illustrated in
Explanation follows regarding an embodiment of a heating apparatus capable of heating a medium that has been printed on using the medium support unit 2. The heating apparatus is explained using the example of a heat press in which a movable heater contacts a medium so as to apply pressure and heat. However, the heating apparatus may be an oven that applies heat without the heater contacting the medium.
The heating apparatus 49 illustrated in
The heating apparatus 49 illustrated in
Note that in
Thus, the heating apparatuses 49 illustrated in
Detailed explanation using a flowchart follows regarding a printing method that can be carried out using the above-described printing apparatus 1 (a printing apparatus 1 of the present embodiments) illustrated in
First, at step S110, a user sets a medium on the tray 4, and then sets the medium support unit 2 on which the medium has been set in the printing apparatus 1 (the first placement portions 10a are placed on the base 5).
Next, at step S120, the first support face 8a side is printed on.
Next, at step S130, the tray 4 (the medium support unit 2) is flipped upside down and the medium support unit 2 is set in the printing apparatus 1 (the second placement portions 10b are placed on the base 5).
Note that when a related printing apparatus is employed rather than the printing apparatus 1 of the present embodiments, a process of removing the medium from the medium support unit 2, a process of setting the medium in a heating apparatus, and a process heating the medium set in the heating apparatus, and so on, may be necessary between step S120 and step S130. Namely, carrying out the printing method of the present embodiments enables these processes to be omitted.
Next, at step S140, the second support face 8b side is printed on.
Next, at step S150, the entire tray 4 (medium support unit 2) is set in the heating apparatus 49.
Then, at step S160, the medium set in the heating apparatus 49 is heated, and the printing method of the present embodiments ends.
Note that when a related printing apparatus is employed rather than the printing apparatus 1 of the present embodiments, a process of removing the medium from the medium support unit 2, and so on, may be necessary between step S140 and step S150. Namely, carrying out the printing method of the present embodiments enables this process to be omitted.
As described above, the printing method of the present embodiments is a printing method employing the medium support unit 2 including the tray 4 and the frame section 10. The tray 4 has the first support face 8a and the second support face 8b capable of supporting a medium to be printed on by the printing apparatus 1. The frame section 10 is capable of retaining the tray 4, and includes the first placement portion 10a that is placed on the base 5 of the printing apparatus 1 when the first support face 8a side is set as the printing face 8 to be printed on, and includes the second placement portion 10b that is placed on the base 5 when the second support face 8b side is set as the printing face 8. In the printing method, the first placement portion 10a is placed on the base 5 and the first support face 8a side is printed on (step S110 and step S120), and then the second placement portion 10b is placed on the base 5 and the second support face 8b side is printed on (step S130 and step S140).
By thus placing the first placement portion 10a on the base 5 and printing on the first support face 8a side as the printing face 8 and then placing the second placement portion 10b on the base 5 and printing on the second support face 8b side as the printing face 8, a medium-supporting face is able to be easily changed and printed on while the medium is stably supported on the tray 4.
Note that the invention is not limited to the above embodiments, and various modifications are possible within the scope of the invention encompassed by the patent claims. Such modifications also fall within the scope of the invention.
Moreover, each medium support unit 2 in the first embodiment to the fourth embodiment described above has a similar shape when viewed from the first support face 8a side and when viewed from the second support face 8b side. Accordingly, the first support face 8a may be read to be the second support face 8b, and the second support face 8b may be read to be the first support face 8a.
Moreover, although the tray 4 of the medium support unit 2 of the above embodiments is configured such that the tray 4 has two faces with which it is able to support a medium, configuration may be such that the tray 4 has three or more faces with which it is able to support a medium. For example, when a third support face and a fourth support face are provided in addition to the first support face 8a and the second support face 8b, it is possible to print on four faces of a T-shirt (the chest, back, left side, and right side).
Number | Date | Country | Kind |
---|---|---|---|
2016-171037 | Sep 2016 | JP | national |
This application is a continuation of U.S. patent application Ser. No. 15/686,406, filed Aug. 25, 2017, which claims priority under 35 U.S.C. § 119 to Japanese Patent Application No. 2016-171037, filed Sep. 1, 2016, the entire disclosures of which are hereby incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
6908190 | Iwatsuki et al. | Jun 2005 | B2 |
7311041 | Niimi | Dec 2007 | B2 |
9025196 | Moriya | May 2015 | B2 |
20030197772 | Iwatsuki | Oct 2003 | A1 |
20170320316 | Nakamura | Nov 2017 | A1 |
Number | Date | Country |
---|---|---|
3056348 | Aug 2016 | EP |
2004-262214 | Sep 2004 | JP |
2005-068595 | Mar 2005 | JP |
3969168 | Jun 2007 | JP |
2016-147239 | Aug 2016 | JP |
Number | Date | Country | |
---|---|---|---|
20200016908 A1 | Jan 2020 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 15686406 | Aug 2017 | US |
Child | 16581027 | US |