The present invention relates to medium support units, printing apparatuses, and methods for attaching and detaching a friction member.
Medium support units are conventionally used to support a medium by a support member. Among these, there are medium support units configured to hold a medium on a support member by using a friction member (prevent a medium from being displaced). For example, JP-A-2004-291430 discloses a fabric printing apparatus (printing apparatus which includes a medium support unit) configured to hold a fabric as a medium on a platen as a support member by using a cotton cloth as a friction member adhered to the center of the platen so that the medium is held by means of a friction force of the cotton cloth.
According to the medium support unit as disclosed in JP-A-2004-291430, which is configured to hold a medium on the support member by using the friction member, a medium can be reliably held on a support member by using a friction member. In some cases, however, it is desired to attach a friction member or detach a friction member depending on the types of the medium used. However, in the fabric printing apparatus disclosed in JP-A-2004-291430, a cotton cloth is attached by a double-sided adhesive tape, which involves cumbersome process such as alignment and wrinkle release of the cotton cloth in attachment of the friction member, and peeling of the cotton cloth in detachment of the friction member.
An advantage of some aspects of the invention is to ensure that a friction member for holding a medium on a medium support unit can be attached and detached in a simple manner.
An aspect of the invention is a medium support unit which supports a medium while printing is performed on the medium by a printing apparatus, the medium support unit includes a support member having a support surface that supports the medium, a frame which is detachable from the support member, and a friction member which has a static friction coefficient to the medium higher than that of the support surface, the friction member being attached to the frame so as to cover the support surface when the frame is attached to the support member.
With this configuration, the friction member is attached to the frame which is detachably attached to the support member. Since the frame can be easily detachably attached (attached and detached) to the support member, the friction member can also be easily detachably attached to the support member. That is, the friction member can be easily detachably attached to the medium support unit. The “support surface that supports a medium” means not only a configuration by which a medium is directly supported by the support surface, but also a configuration by which a medium is indirectly supported by the support surface via other members disposed on the support surface (without being directly in contact with the medium).
In the above aspect of the invention, the medium support unit further includes a low swelling member that is disposed between the friction member and the support surface, and is less likely to swell than the friction member, wherein the friction member and the low swelling member are adhered to each other.
With this configuration, since the low swelling member adhered to the friction member is provided between the friction member and the support surface, the friction member can be prevented from being deformed due to swelling.
In the above aspect of the invention, the low swelling member is provided sandwiched between the friction member and the frame.
With this configuration, since the low swelling member is provided sandwiched between the friction member and the frame, the low swelling member can be reliably held by the friction member and the frame. Accordingly, the low swelling member can be particularly effectively prevented from being displaced relative to the friction member, and the low swelling member and the friction member can be particularly effectively prevented from being deformed.
In the above aspect of the invention, the low swelling member is provided inside the frame.
With this configuration, since the swelling member is provided inside the frame, a portion of the friction member which corresponds to the region where the low swelling member inside the frame is located is raised due to the thickness of the low swelling member when the frame is attached to the tray, and accordingly, an inclined surface is formed at a region around the raised area (the region which generally corresponds to the periphery of the support surface). For example, since the medium expands outward when the medium swells, the medium is likely to be lifted from the tray at the region around the support surface. However, such lifting can be prevented by virtue of the inclined surface formed corresponding to the periphery of the support surface. The phrase that the low swelling member is “provided inside the frame” means that the low swelling member is located only inside the frame, and not at a position between the friction member and the frame.
In the above aspect of the invention, an adhesive material is provided on a surface that faces the support surface when the frame is attached to the support member.
With this configuration, since the adhesive material is provided on a surface that faces the support surface when the frame is attached to the support member, the friction member can be prevented from being displaced (misaligned) relative to the support member, and allow the friction member to effectively extend along the support surface (for example, effectively increase the flatness of the friction member).
In the above aspect of the invention, an adhesive material is not provided on a surface that faces the support surface when the frame is attached to the support member.
With this configuration, since the adhesive material is not provided on a surface that faces the support surface when the frame is attached to the support member, the friction member can be particularly easily attached and detached.
In the above aspect of the invention, the friction member is attached to the frame so as to cover an outer peripheral surface of the frame.
With this configuration, since the friction member is attached to the frame so as to cover an outer peripheral surface of the frame, a medium can also be held on the outer peripheral surface of the frame by the friction member extending on the outer peripheral surface of the frame and can be particularly reliably held on the support member.
Another aspect of the invention is a printing apparatus including: the medium support unit according to the above aspect; and a print section that performs printing onto a medium supported by the medium support unit.
With this configuration, the printing apparatus can perform printing while a medium is reliably held on the support member by the friction member, and also can easily switch between a state where the friction member is attached and a state where the friction member is detached depending on the types of the medium used.
Another aspect of the invention is a method for attaching and detaching a friction member to and from a medium support unit which supports a medium while printing is performed on the medium by a printing apparatus, the medium support unit including: a support member having a support surface that supports the medium; a frame which is detachable from the support member; and the friction member which has a static friction coefficient to the medium higher than that of the support surface, the friction member being attached to the frame so as to cover the support surface when the frame is attached to the support member, wherein the friction member is attached and detached to and from the medium support unit by attaching and detaching the frame to and from the support member.
With this configuration, since the friction member is detachably attached to the frame that is detachably attached to the support member, and the frame can be easily detachably attached to the support member, the friction member can also be easily detachably attached to the support member.
The invention will be described with reference to the accompanying drawings, wherein like numbers reference like elements.
With reference to the drawings, a printing apparatus 1 according to an example of the invention will be described in detail.
The printing apparatus 1 of the present example includes the medium support unit 2. The medium support unit 2 includes a tray 4 as a support member, and the tray 4 has a support surface 8 for supporting a medium. The medium support unit 2 moves in a movement direction A while supporting a medium by the support surface 8 of the tray 4. Further, the printing apparatus 1 includes a medium transportation unit 3 that transports a medium supported by the tray 4 in the movement direction A. The movement direction A includes a direction A1 and a direction A2 which is a direction opposite to the direction A1.
Further, the medium support unit 2 is detachably mounted on a stage 5. In the printing apparatus 1 of the present example, an attachment and detachment direction C of the medium support unit 2 with respect to the stage 5 is a vertical direction. The medium support unit 2 moves in a direction along the attachment and detachment direction C (vertical direction) together with the stage 5 by rotating a lever 9. As shown in
Further, the printing apparatus 1 includes a print head 7 as a print section in the main body. The print head 7 can perform printing on a medium by ejecting ink as an example of liquid via nozzles, which are not shown, formed on a forming surface 17. The printing apparatus 1 of the present example forms a desired image by ejecting ink from the print head 7 onto a medium supported by the tray 4 while reciprocating a carriage 6 as a holding section that holds the print head 7 in a scan direction B which is perpendicular to the movement direction A to thereby reciprocates the print head 7 in the scan direction B. In the printing apparatus 1 of the present example, the medium setting position on the tray 4 is on the front side (lower left position) in
Next, the medium support unit 2, which is an essential part of the printing apparatus 1 of the present example will be described.
As shown in
Furthermore, the printing apparatus 1 of the present example is configured to support a medium by a configuration in which a friction member 13 (a member having a static friction coefficient to the medium lower than that of the support surface 8) is attached to the frame 12, which in turn placed on the tray 4 (frame receiver 10) with the friction member 13 being attached to the frame 12, and a medium is placed thereon (on the friction member 13). Accordingly, when a medium is slippery on the support surface 8, the printing apparatus 1 of the present example can advantageously print an image on the medium by providing the friction member 13 on the tray 4. The friction member 13 may be, for example, a cloth. When the support surface 8 is made of a resin member, a cloth having a static friction coefficient to the medium higher than that of the resin member can be used as the friction member 13. However, a member used as the friction member 13 is not necessarily a cloth, and any material having a static friction coefficient to the medium higher than that of the support surface 8 may be used. The medium can be prevented from being displaced on the support surface 8 by placing the friction member 13 on the tray 4. Displacement of a medium on the support surface 8 includes a case where the medium generally moves in one direction relative to the support surface 8, and a case where the medium is swelled and displaced (expands) in all directions relative to the support surface 8, for example, in the first printing stage of the medium when two-stage printing is performed to the medium. For example, in the first printing stage when two-stage printing is performed to the medium (for example, base printing using white ink), if the medium is swelled and displaced (expands) in all directions relative to the support surface 8, there is a risk of misalignment of the image in the next printing stage (for example, the base print by white ink may be present outside the image of the next printing stage).
As shown in
Here, a brief summary of the medium support unit 2 of the present example will be described. The medium support unit 2 of the present example serves to support a medium while the printing apparatus 1 performs printing on the medium, and includes the tray 4 having the support surface 8 that supports a medium, a frame 12 which is detachably attached to the tray 4, and a friction member 13, which has a static friction coefficient to the medium higher than that of the support surface 8, attached to the frame 12 so as to cover the support surface 8 when the frame 12 is attached to the tray 4. According to this configuration of the medium support unit 2 of the present example, the frame 12 is easily detachably attached (can be attached and detached) to the tray 4. Accordingly, the friction member 13 is also easily detachably attached to the tray 4. That is, the medium support unit 2 of the present example has a configuration by which the friction member 13 is easily detachably attached. The “support surface 8 that supports a medium” means not only a configuration by which a medium is directly supported by the support surface 8, but also a configuration by which a medium is indirectly supported by the support surface 8 via other members disposed on the support surface 8 (without being directly in contact with the medium). The support surface 8 of the present example indirectly supports the medium at least via the friction member 13.
The above can also be described from another viewpoint as a method for attaching and detaching the friction member 13 to and from the medium support unit 2 which serves to support a medium while the printing apparatus 1 performs printing on the medium, and includes the tray 4 having the support surface 8 that supports a medium, a frame 12 which is detachably attached to the tray 4, and a friction member 13, which has a static friction coefficient to the medium higher than that of the support surface 8, attached to the frame 12 so as to cover the support surface 8 when the frame 12 is attached to the tray 4. The method for attaching and detaching the friction member 13 is a method for attaching and detaching the friction member 13 to and from the medium support unit 2 by attaching and detaching the frame 12 to the tray 4. By performing such a method for attaching and detaching the friction member 13, the friction member 13 can be easily attached and detached to the tray 4.
Further, the above can also be described from still another viewpoint as the printing apparatus 1 according to the present example including the medium support unit 2, and the print head 7 as the print section that performs printing on a medium supported by the medium support unit 2. Accordingly, the printing apparatus 1 of the present example can perform printing while a medium is reliably held on the tray 4 by the friction member 13, and also can easily switch between a state where the friction member 13 is attached and a state where the friction member 13 is detached depending on the types of the medium used. For example, in the state where the friction member 13 is detached, an adjustment pattern or the like of the print head 7 can be printed on the support surface 8, and is then wiped off after the adjustment process of the print head 7. Then, in the state where the friction member 13 is attached, printing can be performed on a desired medium. That is, ink ejection accompanying the adjustment process or the like of the print head 7 can be performed not onto the friction member 13, but onto the tray 4 (onto the support surface 8). This is because the tray 4 is commonly made of a material that is not likely to absorb water (such as a resin member) in general, and ink can be easily wiped off.
Further, as described above, the adhesive material 14 is disposed on the surface of the medium support unit 2 of the present example frame 12 which faces the support surface 8 when the frame 12 is attached to the tray 4 (see
However, the adhesive material 14 may not necessarily be disposed on the surface which faces the support surface 8 when the frame 12 is attached to the tray 4. With this configuration, the friction member 13 is not adhered to the support surface 8 since the adhesive material 14 is not disposed on the surface which faces the support surface 8 when the frame 12 is attached to the tray 4, and the friction member 13 can be particularly easily attached and detached.
Further, as seen from
Depending on the materials or the like of the friction member 13, the friction member 13 may swell due to moisture absorption. Accordingly, the printing apparatus 1 of the present example may use the medium support unit 2 provided with a low swelling member 15 that can reduce swelling of the friction member 13. A specific example of the medium support unit 2 provided with the low swelling member 15 that can be used in the printing apparatus 1 of the present example will be described.
The medium support unit 2 shown in
In the medium support unit 2 shown in
On the other hand, in the medium support unit 2 shown in
It should be noted that the present invention is not limited to the above embodiments. Needless to say, various modifications are contemplated within the scope of the invention as defined in the appended claims, and these should be included in the scope of the present invention. For example, although the friction member 13 in the aforementioned medium support unit 2 is detachably attached to the frame 12, the frame 12 on which the friction member 13 is attached and the frame 12 on which no friction member 13 is attached may be separately provided. In the configuration which can use the frame 12 on which no friction member 13 is attached, methods can be selected depending on the types of the medium between pressing a medium directly supported by the support surface 8 by using the frame 12 and placing a medium on the support surface 8 on which the friction member 13 is formed.
This application claims priority under 35 U.S.C. § 119 to Japanese Patent Application No. 2017-033571, filed Feb. 24, 2017. The entire disclosure of Japanese Patent Application No. 2017-033571 is hereby incorporated herein by reference.
Number | Date | Country | Kind |
---|---|---|---|
2017-033571 | Feb 2017 | JP | national |
Number | Name | Date | Kind |
---|---|---|---|
4819559 | Szarka | Apr 1989 | A |
5090313 | Chapman | Feb 1992 | A |
7311041 | Niimi | Dec 2007 | B2 |
9981483 | Hamada | May 2018 | B2 |
20030197750 | Iwatsuki | Oct 2003 | A1 |
20030197772 | Iwatsuki | Oct 2003 | A1 |
20040189776 | Niimi et al. | Sep 2004 | A1 |
20050068358 | Mizutani | Mar 2005 | A1 |
20050179708 | Ben-Zur | Aug 2005 | A1 |
20060243852 | Valls Roca | Nov 2006 | A1 |
20130057632 | Moriya | Mar 2013 | A1 |
20130104762 | Yanagishita | May 2013 | A1 |
20140020189 | Weibel | Jan 2014 | A1 |
20150151551 | Livingston | Jun 2015 | A1 |
20150273866 | Sakai | Oct 2015 | A1 |
20160279988 | Kobayashi | Sep 2016 | A1 |
20170106673 | Fujimori | Apr 2017 | A1 |
20170320316 | Nakamura | Nov 2017 | A1 |
20170320339 | Matsumoto | Nov 2017 | A1 |
20180147858 | Kunioka | May 2018 | A1 |
20180154656 | Ueno | Jun 2018 | A1 |
20180162148 | Komiya | Jun 2018 | A1 |
20180170087 | Kobayashi | Jun 2018 | A1 |
20180313033 | Yanase | Nov 2018 | A1 |
20190009575 | Mombourquette | Jan 2019 | A1 |
Number | Date | Country |
---|---|---|
2004-291430 | Oct 2004 | JP |
2004291430 | Oct 2004 | JP |
2004291461 | Oct 2004 | JP |
2006123361 | Oct 2004 | JP |
2006240082 | Sep 2006 | JP |
2013096017 | May 2013 | JP |
2013245615 | Dec 2013 | JP |
2014200743 | Nov 2017 | JP |
Number | Date | Country | |
---|---|---|---|
20180244080 A1 | Aug 2018 | US |