This application claims priority under 35 U.S.C. § 119 to International application PCT/EP2013/003827 filed on Dec. 18, 2013, designates the U.S., and claims priority to European application 12008460.3 filed on Dec. 19, 2012. The content of each prior application is hereby incorporated by reference in its entirety.
The present disclosure relates to a medium voltage switchgear with interlocking device corresponding with the switching drive, wherein the switching drive operates a switching element via a mechanical coupling element.
A known mechanical arrangement includes an actuator, a rod, and a movable interlocking device as well as a cabinet. In this known arrangement, the rod is fixed to the actuator and moving with it during an operation. The interlocking device is held down by the rod, when the actuator is in a specified position (in this case the lower position), so the cabinet is locked. When the actuator moves up, the rod is released from the interlocking device, so the cabinet is unlocked.
Because the rod is fixed to the actuator and directly heading to the interlocking device, the interlocking function is only working, when the rod is directly touching the interlocking device. This might be a disadvantage, when the interlocking function is needed over a certain range of the actuator-travel. It may lead to an insecure situation, when the actuator stops in another position than its dedicated end-positions (mid position). This mid position is undesired, however possible as a result of a malfunction.
An exemplary medium voltage switchgear is disclosed, comprising: an interlocking device associated with an actuator drive, which operates a switching element via a mechanical coupling element, wherein the switching drive is movable in two end positions wherein the interlocking device is movable between a locked and an unlocked position, wherein a direction of motion of the actuator drive matches a direction of motion of the interlocking device, and wherein the mechanical coupling element includes a force flux element which is rotatable during operation of the drive from OFF to ON such that a region where the interlocking shifts from unlocked to locked can freely be chosen by a shape of said force flux element.
The exemplary embodiments will be further described, by way of example only, with reference to the drawings, in which:
Exemplary embodiments of the present disclosure are directed to keeping the interlocking active over a certain range of the actuator travel, in a way that the shift point where this interlocking is active and where this interlocking is not active can be freely chosen.
For example, according to an exemplary embodiment of the present disclosure the mechanical coupling element includes a force flux element which is rotatable during operation of the drive from OFF to ON in that way, that the region where the interlocking shifts from unlocked to locked can freely be chosen by the shape of said force flux element.
The issue here is that the given direction of motion of the actuator 1, up and down, and the given direction of motion and the given upper and lower positions of the interlocking device 6 allow for an active interlocking when the actuator is in, or very close to, the lower position.
It is not possible to freely choose a certain shift point of the position of the actuator where the interlocking function changes from not active to active when the position of the actuator is further lowered.
In comparison to embodiments disclosed, for example, in US 2007/0029178 (for example,
This is not the case in the present application due to the given constraints of the direction of motion of the actuator 1 and the given upper and lower position of the interlocking device 6. It is not possible to achieve an activated interlocking function for example, in the mid position of the actuator.
According to an exemplary embodiment of the present disclosure, the definition of the two end positions and a middle position is not in the meaning of a three position switch. The middle position is a defined position until which the interlocking device remains active, dependent for which end position the drive actually started the movement.
According to another exemplary embodiment of the present disclosure, the interlocking remains active in the middle position, so that it is prevented, that the interlocking function is only active in the defined lower end position.
According to an exemplary embodiment disclosed herein, the rotation of the force flux element according to the motion of the actuator 1 results in a mechanical interlocking, which remains active along the actuator travel between the lower end position and the middle position.
The disadvantages of the prior art are solved by the exemplary embodiments, which include mechanical coupling element having a force flux element 5 which can rotate around an axis 10.
According to an exemplary embodiment of present disclosure, an additional interlocking element (element 5) that transforms the available motion (for example, linear motion of the actuator 1) in another motion (for example, rotation) that can be used for an interlocking function with a freely selectable shift point (realized here by the shape 3 of the surface of the element 5).
In comparison, exemplary embodiments of the present disclosure permit the shifting point to move freely between the ON and OFF position of the actuator so that for example the interlocking is only unlocked in the vicinity of the OFF position of the actuator.
Thus, it will be appreciated by those skilled in the art that the present invention can be embodied in other specific forms without departing from the spirit or essential characteristics thereof. The presently disclosed embodiments are therefore considered in all respects to be illustrative and not restricted. The scope of the invention is indicated by the appended claims rather than the foregoing description and all changes that come within the meaning and range and equivalence thereof are intended to be embraced therein.
Number | Date | Country | Kind |
---|---|---|---|
12008460 | Dec 2012 | EP | regional |
Number | Name | Date | Kind |
---|---|---|---|
1910686 | Frank | May 1933 | A |
2344636 | Quast | Mar 1944 | A |
2695934 | Wills | Nov 1954 | A |
2739002 | Johnson | Mar 1956 | A |
4754367 | Bohnen | Jun 1988 | A |
4860161 | Maki et al. | Aug 1989 | A |
5334808 | Bur et al. | Aug 1994 | A |
7429708 | Poyner | Sep 2008 | B1 |
20070029178 | Mukharzi et al. | Feb 2007 | A1 |
Number | Date | Country |
---|---|---|
0 226 532 | Jun 1987 | EP |
0 278 984 | Aug 1988 | EP |
0 567 415 | Oct 1993 | EP |
Entry |
---|
International Search Report (PCT/ISA/210) dated Mar. 13, 2014, by the European Patent Office as the International Searching Authority for International Application No. PCT/EP2013/003827. |
Written Opinion (PCT/ISA/237) dated Mar. 13, 2014, by the European Patent Office as the International Searching Authority for International Application No. PCT/EP2013/003827. |
Search Report dated May 24, 2013, by the European Patent Office for Application No. 12008460.3. |
Number | Date | Country | |
---|---|---|---|
20150294812 A1 | Oct 2015 | US |
Number | Date | Country | |
---|---|---|---|
Parent | PCT/EP2013/003827 | Dec 2013 | US |
Child | 14744609 | US |