The present invention relates to a process of making granulates or multiparticulates which are useful, for example, in pharmaceutical dosage forms. In particular, the invention relates to a process for melt-extruding pharmaceutical agents with excipients to form multiparticulates suitable for inclusion in solid dosage forms such as capsules, tablets and the like.
It is known in the pharmaceutical art to prepare compositions which provide for controlled (slow) release of pharmacologically active substances contained in the compositions after oral administration to humans and animals. Such slow release compositions are used to delay absorption of a medicament until it has reached certain portions of the alimentary tract. Such sustained-release of a medicament in the alimentary tract further maintains a desired concentration of said medicament in the blood stream for a longer duration than would occur if conventional rapid release dosage forms are administered.
Over the years, several different methods of preparing controlled release pharmaceutical dosage forms have been suggested. For example, direct compression techniques, wet granulation techniques, encapsulation techniques and the like have been proposed to deliver pharmaceutically active ingredients to the alimentary tract over extended periods.
Melt granulation techniques have also been suggested to provide controlled release formulations. Melt granulation usually involves mechanically working an active ingredient in particulate form with one or more suitable binders and/or pharmaceutically acceptable excipients in a mixer until one or more of the binders melts and adheres to the surface of the particulate, eventually building up granules.
PCT International Publication No. WO 92/06679 discloses melt granulating methods for producing pellets containing therapeutically active substances. The method includes mechanically working a mixture containing the active substance in cohesive form with a binder having a melting point of 40-100° C., while supplying sufficient energy to melt the binder and form “overmoist” spherical pellets and thereafter adding an additional cohesive substance while maintaining the mechanical working to finally produce dry pellets.
PCT International Publication No. WO 93/18753 also discloses another melt extrusion process for preparing sustained-release pellets. This method includes pelletizing a mixture containing drug in finely divided form and a binder which includes one or more water-insoluble-wax-like binder substances with a melting point above 40° C. using a high shear mixer.
In the spite of the foregoing advances, a need for further alternatives in the field of controlled release formulations has been sought. The present invention addresses this need.
It is therefore an object of the present invention to provide improved methods for producing multiparticulates containing pharmaceutically active ingredients and excipients.
It is a further object of the present invention to provide multiparticulates containing pharmaceutically active ingredients which display improved controlled-release characteristics.
These objects and others have been accomplished by the present invention, which relates in part to a unit dose sustained-release oral dosage form containing a plurality of melt-extruded particles, each of said particles comprising:
Another aspect of the invention provides a method of preparing a multiparticulate sustained-release oral dosage form. This method includes mixing together a therapeutically effective agent, a water-insoluble retardant and an optional binder to form a homogeneous mixture, heating the mixture and thereafter extruding the mixture into strands. The strands are then cooled, and reduced to particles having a size of from about 0.1 to about 12 mm. This aspect further includes dividing the particles into unit doses. The ratio of water-insolube retardant material to therapeutically active agent is sufficient to impart a release of the active agent from the multiparticulate system over an extended time period. In this regard, the retardant will comprise about 5-95% of melt-extruded multiparticulate. The multiparticulate sustained-release system can be included within a hard gelatin capsule or other oral dosage forms such as a compressed tablet. Methods of preparing such dosage forms are also provided herein.
In yet a further aspect of the invention, there is provided a method of treating a patient with sustained-release multi-particulate formulations prepared as described above. This method includes administering a unit dose sustained release oral dosage form containing the novel melt-extruded particles to a patient in need of the active ingredient contained therein. For purposes of the present invention, a unit dose is understood to contain an effective amount of the therapeutically active agent.
A still further aspect of the invention provides an alternative method of preparing a multiparticulate sustained oral dosage form. This aspect includes directly metering into an extruder a homogeneous mixture of a water-insoluble retardant, a therapeutically active agent, and an optional binder, heating the homogeneous mixture, extruding said mixture to form strands, cooling the strands and cutting the strands into particles having a size of from about 0.1 to 12 mm and dividing the particles into unit doses. The ratio of hydrophobic material, namely water-insoluble retardant (and optional binder) to the therapeutically active agent is sufficient to impart a controlled release of the therapeutically active agent from the melt-extruded particles and unit doses over a time period of at least 8 hours.
The following drawings are illustrative of embodiments of the invention and are not meant to limit the scope of the invention as encompassed by the claims.
a and 3b are graphs displaying the pH dependency of the dissolution results of Examples 3 and 5 respectively;
In accordance with the present invention, there are provided methods for preparing multiparticulates using melt-extrusion techniques and sustained release oral unit dosage forms containing a plurality of the melt extruded particulates. In accordance therewith, a therapeutically active agent is combined with one or more suitable controlled-release retardants, and optionally, a water-insoluble binder, extruded and thereafter rendered into a plurality of melt-extruded particles-or multiparticulates, such as spheres, beads or the like.
Pharmaceutical Agents
The active pharmaceutical agent(s) included in the controlled release multiparticulates of the present invention include systemically active therapeutic agents, locally active therapeutic agents, disinfecting agents, chemical impregnants, cleansing agents, deodorants, fragrances, dyes, animal repellents, insect repellents, a fertilizing agents, pesticides, herbicides, fungicides, and plant growth stimulants, and the like. The only limitation on the ingredient is that the pharmaceutical agent is capable of undergoing the inventive extrusion process without substantially losing its sought-after effect.
A wide variety of therapeutically active agents can be used in conjunction with the present invention. The therapeutically active agents (e.g. pharmaceutical agents) which may be used in the compositions of the present invention include both water soluble and water insoluble drugs. Examples of such therapeutically active agents include anti-histamines (e.g., dimenhydrinate, diphenhydramine, chlorpheniramine and dexchlorpheniramine maleate), analgesics (e.g., aspirin, codeine, morphine, dihydromorphone, oxycodone, etc.), non-steroidal anti-inflammatory agents (e.g., naproxyn, diclofenac, indomethacin, ibuprofen, sulindac), anti-emetics (e.g., metoclopramide), anti-epileptics (e.g., phenytoin, meprobamate and nitrezepam), vasodilators (e.g., nifedipine, papaverine, diltiazem and nicardirine), anti-tussive agents and expectorants (e.g., codeine phosphate), anti-asthmatics (e.g. theophylline), antacids, anti-spasmodics (e.g. atropine, scopolamine), antidiabetics (e.g., insulin), diuretics (e.g., ethacrynic acid., bendrofluazide), anti-hypotensives (e.g., propranolol, clonidine), antihypertensives (e.g, clonidine, methyldopa), bronchodilators (e.g., albuterol), steroids (e.g., hydrocortisone, triamcinolone, prednisone), anti-biotics (e.g., tetracycline), antihemorrhoidals, hypnotics, psychotropics, antidiarrheals, mucolytics, sedatives, decongestants, laxatives, vitamins, stimulants (including appetite suppressants such as phenylpropanolamine), as well as salts, hydrates, and solvates of the same. The above list is not meant to be exclusive.
In certain preferred embodiments, the multiparticulate systems of the present invention include one or more compounds known as opioid analgesics. Opioid analgesic compounds which may be used in the present invention include alfentanil, allylprodine, alphaprodine, anileridine, benzylmorphine, bezitramide, buprenorphine, butorphanol, clonitazene, codeine, cyclazocine, desomorphine, dextromoramide, dezocine, diampromide, dihydrocodeine, dihydromorphine, dimenoxadol, dimepheptanol, dimethylthiambutene, dioxaphetyl butyrate, dipipanone, eptazocine, ethoheptazine, ethylmethylthiambutene, ethylmorphine, etonitazene fentanyl, heroin, hydrocodone, hydromorphone, hydroxypethidine, isomethadone, ketobemidone, levallorphan, levorphanol, levophenacylmorphan, lofentanil, meperidine, meptazinol, metazocine, methadone, metopon, morphine, myrophine, nalbuphine, narceine, nicomorphine, norlevorphanol, normethadone, nalorphine, normorphine, norpipanone, opium, oxycodone, oxymorphone, papaveretum, pentazocine, phenadoxone, phenomorphan, phenazocine, phenoperidine, piminodine, piritramide, propheptazine, promedol, properidine, propiram, propoxyphene, sufentanil, tramadol, tilidine, salts thereof, mixtures of any of the foregoing, mixed mu-agonists/antagonists, mu-antagonist combinations, and the like.
In certain particularly preferred embodiments, the opioid analgesic is selected from morphine, codeine, hydromorphone, hydrocodone, oxycodone, dihydrocodeine, dihydromorphine, oxymorphone, hydrates and solvates of any of the foregoing, mixtures of any of the foregoing, and the like.
Controlled Release Retardants and Binders
According to the present invention, in order to obtain a controlled release of the active agent, the therapeutically active agent is homogeneously combined with a sufficient amount of a release-retardant material and, optionally, a water-insoluble binder prior to undergoing extrusion. The retardant can be a hydrophobic material such as a water-insoluble acrylic polymer or alkylcellulose, or a water soluble material such as hydroxyalkylcelluloses and related materials. If unit doses of the multiparticulate are to have about a 12 hour or shorter release pattern, hydroxyalkylcelluloses, for example will be extruded with the therapeutic agent. If release rates of greater than about 12 hours are desired, water-insoluble materials are selected. It is, of course, within the scope of the invention to have particles containing mixtures of the water soluble and insoluble polymers.
In certain preferred embodiments of the present invention, the hydrophobic polymer is a pharmaceutically acceptable acrylic polymer, including but not limited to acrylic acid and methacrylic acid copolymers, methyl methacrylate copolymers, ethoxyethyl methacrylates, cynaoethyl methacrylate, aminoalkyl methacrylate copolymer, poly(acrylic acid), poly(methacrylic acid), methacrylic acid alkylamide copolymer, poly(methyl methacrylate), poly(methacrylic acid) (anhydride), methyl methacrylate, polymethacrylate, poly(methyl methacrylate), poly(methyl methacrylate) copolymer, polyacrylamide, aminoalkyl methacrylate copolymer, poly(methacrylic acid anhydride), and glycidyl methacrylate copolymers.
The melt-extruded particle will comprise from about 1 to about 99% by weight of the retardant and preferably from about 5 to 95% by weight. Other retardant polymers which may be used for the extrusion process of the present invention, as those skilled in the art will appreciate, include other cellulosic polymers, including other alkyl cellulosic polymers, may be substituted for part or all of water-insoluble portion of the retardant in the multiparticulate.
The terms “sustained release” and “extended duration” are defined for purposes of the present invention as the release of the drug (i.e., opioid analgesic) at such a rate that blood (e.g., plasma) levels are maintained within the therapeutic range but below toxic levels over a period of time greater than 6 hours, more preferably for periods of up to about 24 hours, or longer.
In certain preferred embodiments, the acrylic polymer is comprised of one or more ammonio methacrylate copolymers. Ammonio methacrylate copolymers are well known in the art, and are described in NF XVII as fully polymerized copolymers of acrylic and methacrylic acid esters with a low content of quaternary ammonium groups.
In one preferred embodiment, the acrylic polymer is an acrylic resin lacquer such as that which is commercially available from Rohm Pharma under the Tradename Eudragit®. In further preferred embodiments, the acrylic polymer comprises a mixture of two acrylic resin lacquers commercially available from Rohm Pharma under the Tradenames Eudragit® RL30D and Eudragit® RS30D, respectively. Eudragit® RL30D and Eudragit® RS30D are copolymers of acrylic and methacrylic esters with a low content of quaternary ammonium groups, the molar ratio of ammonium groups to the remaining neutral (meth)acrylic esters being 1:20 in Eudragit® RL30D and 1:40 in Eudragit® RS30D. The mean molecular weight is about 150,000. Edragit® and Eudragit® L-100 are also preferred. The code designations RL (high permeability) and RS (low permeability) refer to the permeability properties of these agents. Eudragit® RL/RS mixtures are insoluble in water and in digestive fluids. However, multiparticulate systems formed to include the same are swellable and permeable in aqueous solutions and digestive fluids.
The polymers described above such as Eudragit® RL/RS may be mixed together in any desired ratio in order to ultimately obtain a sustained-release formulation having a desirable dissolution profile. Desirable sustained-release multiparticulate systems may be obtained, for instance, from 100% Eudragit® RL, 50% Eudragit® RL and 50% Eudragit® RS, and 10% Eudragit® RL:Eudragit® 90% RS. Of course, one skilled in the art will recognize that other acrylic polymers may also be used, such as, for example, Eudragit® L.
In other preferred embodiments, the hydrophobic polymer which may be used is a hydrophobic cellulosic material such as ethylcellulose. Those skilled in the art will appreciate that other cellulosic polymers, including other alkyl cellulosic polymers, may be substituted for part or all of the ethylcellulose included in the hydrophobic polymer portion of the multiparticulates of the present invention.
In certain preferred embodiments, the release-modifying agent or retardant is selected from materials such as hydroxyalkylcelluloses such as hydroxypropylmethylcellulose and mixtures of the foregoing.
The retardants may also include a plasticizer. Examples of suitable plasticizers for ethylcellulose include water insoluble plasticizers such as dibutyl sebacate, diethyl phthalate, triethyl citrate, tributyl citrate, and triacetin, although it is possible that other water-insoluble plasticizers (such as acetylated monoglycerides, phthalate esters, castor oil, etc.) may be used. Triethyl citrate is especially preferred.
Examples of suitable plasticizers for the acrylic polymers of the present invention include citric acid esters such as triethyl citrate NF XVI, tributyl citrate, dibutyl phthalate, and possibly 1,2-propylene glycol, polyethylene glycols, propylene glycol, diethyl phthalate, castor oil, and triacetin, although it is possible that other water-insoluble plasticizers (such as acetylated monoglycerides, phthalate esters, castor oil, etc.) may be used. Triethyl citrate is especially preferred.
The binder portion of the melt-extruded particles is optionally included. It has been fouond that the binder can be reduced or even eliminated from the extrusion if the physical properties and relationships between the therapeutically active ingredient and retardant(s) allow a sufficiently cohesive extruded strand to exit the apparatus. A non-limiting list of suitable binders includes hydrogenated vegetable or castor oil, paraffin, higher aliphatic alcohols, higher aliphatic acids, long chain fatty acids, fatty acid esters, and mixtures thereof.
The binder material may consist of one or more water-insoluble wax-like thermoplastic substances possibly mixed with one or more wax-like thermoplastic substances being less hydrophobic than said one or more water-insoluble wax-like substances. In order to achieve constant release, the individual wax-like substances in the binder material should be substantially non-degradable and insoluble in gastrointestinal fluids during the initial release phases.
Useful water-insoluble wax-like substances may be those with a water-solubility that is lower than about 1:5,000 (w/w).
Binder materials are preferably water-insoluble with more or less pronounced hydrophilic and/or hydrophobic trends. Specifically, the wax-like substance may comprise fatty alcohols, fatty acid esters, fatty acid glycerides (mono-, di-, and tri-glycerides), hydrogenated fats, hydrocarbons, normal waxes, stearic aid, stearyl alcohol and hydrophobic and hydrophilic polymers having hydrocarbon backbones.
In addition to the foregoing, the melt-extruded particles can be prepared to include pharmaceutically acceptable carriers and excipients. It is to be understood that these materials can be mixed with the particles after extrusion as well. Specific examples of pharmaceutically acceptable carriers and excipients that may be used to formulate oral dosage forms are described in the Handbook of Pharmaceutical Excipients, American Pharmaceutical Association (1986), incorporated by reference herein. Techniques and compositions for making solid oral dosage forms are described in Pharmaceutical Dosage Forms: Tablets (Lieberman, Lachman and Schwartz, editors). Second Edition, published by Marcel Dekker, Inc., incorporated by reference herein. Techniques and compositions for making tablets (compressed and molded), capsules (hard and soft gelatin) and pills are also described in Remington's Pharmaceutical Sciences, (Arthur Osol, editor), 1553-1593 (1980), incorporated by reference herein.
An optional process for preparing the multiparticulates and unit doses of the present invention includes directly metering into an extruder a water-insoluble retardant, a therapeutically active agent, and an optional binder; heating said homogenous mixture; extruding said homogenous mixture to thereby form strands; cooling said strands containing said homogeneous mixture; and cutting said strands into particles having a size from about 0.1 mm to about 12 mm; and dividing said particles into unit doses. In this aspect of the invention, a relatively continuous manufacturing procedure is realized.
Multiparticulates and Multiparticulate Systems
The multiparticulate system can be, for example, in the form of granules, spheroids or pellets depending upon the extruder exit orifice. For purposes of the present invention, the terms “multiparticulate(s)” and “multiparticulate system(s)” and “melt-extruded paricles” shall refer to a plurality of units, preferably within a range of similar size and/or shape and containing one or more active agents and one or more excipients, preferably including a retardant as described herein. In this regard, the multiparticulates will be of a range of from about 0.1 to about 12 mm in length and have a diameter of from about 0.l to about 5 mm. In addition, it is to be understood that the multiparticulates can be any geometrical shape within this size range such as beads, microspheres, seeds, pellets, etc.
The multiparticulate can thereafter be included in a capsule or in any other suitable solid form.
The term “unit dose” is defined for purposes of the present invention as the total amount of substrates needed to administer a desired dose of drug (e.g., opioid analgesic) to a patient.
In one especially preferred embodiment, oral dosage forms are prepared to include an effective amount of multiparticulates within a capsule. For example, a plurality of the melt extruded particles may be placed in a gelatin capsule in an amount sufficient to provide an effective controlled-release dose when ingested and contacted by gastric fluid. In certain preferred embodiments of the present invention, the sustained-release multiparticulate systems are coated with a sustained-release coating. The coating formulations of the present invention should be capable of producing a strong, continuous film that is smooth and elegant, capable of supporting pigments and other coating additives, non-toxic, inert, and tack-free.
In order to obtain a sustained-release of opioid, for example, sufficient to provide an analgesic effect for the extended durations set forth in the present invention, the melt extruded particles comprising the therapeutically active agent may be coated with a sufficient amount of hydrophobic material to obtain a weight gain level from about 2 to about 30 percent, although the overcoat may be greater depending upon the physical properties of the particular opioid analgesic compound utilized and the desired release rate, among other things. In certain preferred embodiments of the present invention, the hydrophobic polymer comprising the sustained-release coating is a pharmaceutically acceptable acrylic polymer, such as those described hereinabove.
The solvent which is used for the hydrophobic material may be any pharmaceutically acceptable solvent, including water, methanol, ethanol, methylene chloride and mixtures thereof. It is preferable however, that the coatings be based upon aqueous dispersions of the hydrophobic material.
In one preferred embodiment the multiparticulate is used in a sustained-release opioid oral dosage form and includes hydromorphone as the therapeutically active ingredient in an amount from about 4 to about 64 mg hydromorphone hydrochloride. Alternatively, the dosage form may contain molar equivalent amounts of other hydromorphone salts or of the hydromorphone base. In other preferred embodiments where the opioid analgesic is other than hydromorphone, the dosage form contains an appropriate amount to provide a substantially equivalent therapeutic effect. For example, when the opioid analgesic comprises morphine, the sustained-release oral dosage forms of the present invention include form about 5 mg to about 800 mg morphine, by weight. When the opioid analgesic comprises oxycodone, the sustained-release oral dosage forms of the present invention include from about 5 mg to about 400 mg oxycodone. In these aspects of the invention, the multiparticulate can be encapsulated or compressed into solid oral dosage forms using standard techniques.
The unit dosage forms of the present invention may further include combinations of multiparticulates containing one or more of the active agents disclosed above before being encapsulated. Furthermore, the unit dosage forms can also include an amount of an immediate release active agent for prompt therapeutic effect.
The controlled-release formulations of the present invention slowly release the therapeutically active agent, e.g., when ingested and exposed to gastric fluids, and then to intestinal fluids. The controlled-release profile of the formulations of the invention can be altered, for example, by varying the amount of retardant, i.e., hydrophobic polymer, by varying the amount of plasticizer relative to hydrophobic polymer, by the inclusion of additional ingredients or excipients, by altering the method of manufacture, etc.
For example, hydromorphone-containing multiparticulate may also be overcoated with an aqueous dispersion of the hydrophobic polymer. The aqueous dispersion of hydrophobic polymer preferably further includes an effective amount of plasticizer, e.g. triethyl citrate. Pre-formulated aqueous dispersions of ethylcellulose, such as Aquacoat® or Surelease®, may be used. If Surelease® is used, it is not necessary to separately add a plasticizer. Alternatively, pre-formulated aqueous dispersions of acrylic polymers such as Eudragit® can be used. These coating solutions may also contain film-formers, plasticizers, a solvent system (i.e., water), a colorant to provide elegance and product distinction. Color may also be added to or during the extrusion of the therapeutically active agent and retardant.
The plasticized aqueous dispersion of hydrophobic polymer may be applied onto the multiparticulate comprising the therapeutically active agent by spraying using any suitable spray equipment known in the art. In a preferred method, a Wurster fluidized-bed system is used in which an air jet, injected from underneath, fluidizes the multiparticulate material and effects drying while the acrylic polymer coating is sprayed on. A sufficient amount of the aqueous dispersion of hydrophobic polymer to obtain a pre-determined controlled-release of said therapeutically active agent when the coated particulate is exposed to aqueous solutions, e.g. gastric fluid, is preferably applied, taking into account the physical characteristics of the therapeutically active agent, the manner of incorporation of the plasticizer, etc.
In addition to the above ingredients, a controlled-release matrix may also contain suitable quantities of other materials, e.g. diluents, lubricants, binders, granulating aids, colorants, flavorants and glidants that are conventional in the pharmaceutical art in amounts up to about 50% by weight of the particulate if desired.
In a further aspect of the present invention, a process for the preparation of a multiparticulate controlled release, oral dosage form is provided, This aspect includes homogeneously mixing a therapeutically effective agent with a water-insoluble retardant and, optionally, a binder; extruding the mixture, cooling the exiting extruded strands, rendering the strands into particles having a size of from about 0.1 to about 12 mm in length and optionally, encapsulating or compressing and shaping the granules into tablets. The diameter of the extruder aperture or exit port can also be adjusted to vary the thickness of the extruded strands. Furthermore, the exit part of the extruder need not be round; it can be oblong, rectangular, etc. The exiting strands can be reduced to particles using a hot wire cutter, guillotine, etc.
As shown in
Premix the required amount of drug, polymers, and optional binder (wax).
Charge a powder feeder with proper amount of drug/excipient blend.
Set temperatures of extruder to the required temperature, depending on the formulation. Wait until the corresponding heating zones reach steady temperatures. Start the feeder and the extruder. The drug/excipient powder blend is melted and intimately mixed in the extruder. The diameter of the extruder aperture can be adjusted to vary the thickness of the resulting strand.
Set the conveyor belt speed to an appropriate speed (e.g., 3-100 ft/min). Allow the extruded semisolid strand(s) to be congealed and transported to the pelletizer. Additional cooling devices may be needed to ensure proper congealing. (The conveyor belt may not be needed to cool the strand, if the material congeals rapidly enough.)
Set the roller speed and cutter speed (e.g., to 3-100 ft/min and 100-800 rpm). Cut the congealed strands to desired size (e.g., 3-5 mm in diameter, 0.3-5. mm in length).
Collect the pellet product.
Fill a desired weight of pellets into hard gelatin capsules to obtain an appropriate does of the drug.
1st hour in 700 ml simulated gastric fluid or SGF thereafter, 900 ml simulated intestinal fluid SIF
Using HPLC procedures for assay
The following examples illustrate various aspects of the present invention. They are not meant to be construed to limit the claims in any manner whatsoever.
In these examples, chlorpheniramine maleate controlled release pellets were prepared according to the above manufacturing procedure using ethylcellulose and an acrylic polymer (Eudragit RSPO), respectively as the retardant. The formulations are set forth in Tables 1 and 2 below. The dissolution of these formulations is set forth in
The excipients used in Ex. 2 were employed to make morphine sulfate controlled release pellets. The drug release rate was slower than expected especially during later hours of the dissolution.
To increase the drug dissolution rate during later hours, varying amounts of Eudragit L-100 were incorporated in the formulation. The drug dissolution rate increases with increasing amount of Eudragit L-100 in the formulation.
As seen in
In
As demonstrated in
A different polymer/wax combination was used as an alternative formulation. As seen in
The formula used in Ex. 5 was applied to oxycodone hydrochloride. Due to the higher potency of oxycodone, only 20 mg of drug was used. The missing 40 mg was replaced by 40 mg of talc (Ex. 12). No replacement was used in Ex. 11. When tested in only SGF or SIF, the use of Eudragit L causes the formulation to become less pH dependent. The results are shown in
The formula used in Ex. 5 was applied to hydromorphone hydrochloride. Due to the higher potency of hydromorphone, only 8 mg of drug was used. The missing 52 mg was replaced by 52 mg of talc (Ex. 14) or 52 mg of excipients (Ex. 13). The results are shown in
In this Example, a bioavailability study was under-taken. Fourteen subjects were given the morphine sulphate formulations of Example 3. The results are provided in Table 15 below and in
From the above data, it can be seen that the formulation is an ideal candidate for an extended release or once-a-day product without a food effect.
The examples provided above are not meant to be exclusive. Many other variations of the present invention would be obvious to those skilled in the art, and are contemplated to be within the scope of the appended claims.
Number | Name | Date | Kind |
---|---|---|---|
2738303 | Blythe et al. | Mar 1956 | A |
3065143 | Christenson et al. | Nov 1962 | A |
3652589 | Flick et al. | Mar 1972 | A |
3714350 | Gough | Jan 1973 | A |
3830934 | Flick et al. | Aug 1974 | A |
3845770 | Theeuwes et al. | Nov 1974 | A |
3853988 | Casadio et al. | Dec 1974 | A |
3880991 | Yolles | Apr 1975 | A |
3950508 | Mony et al. | Apr 1976 | A |
3965256 | Leslie | Jun 1976 | A |
3974157 | Shetty et al. | Aug 1976 | A |
4013784 | Speiser | Mar 1977 | A |
4076798 | Casey et al. | Feb 1978 | A |
4132753 | Blichare et al. | Jan 1979 | A |
4173417 | Kruder | Nov 1979 | A |
4230687 | Sair et al. | Oct 1980 | A |
4259314 | Lowey | Mar 1981 | A |
4265875 | Byrne et al. | May 1981 | A |
4292300 | Byrne et al. | Sep 1981 | A |
4310483 | Dorfel et al. | Jan 1982 | A |
4343789 | Kawata et al. | Aug 1982 | A |
4344431 | Yolles | Aug 1982 | A |
4346709 | Schmitt | Aug 1982 | A |
4366172 | Lednicer | Dec 1982 | A |
4374082 | Hochschild | Feb 1983 | A |
4380534 | Fukui et al. | Apr 1983 | A |
4389393 | Schor et al. | Jun 1983 | A |
4406883 | Byrne et al. | Sep 1983 | A |
4421736 | Walters | Dec 1983 | A |
4483847 | Augart | Nov 1984 | A |
4533562 | Ikegami et al. | Aug 1985 | A |
4613619 | Sleigh et al. | Sep 1986 | A |
4621114 | Watanabe | Nov 1986 | A |
4649042 | Davis et al. | Mar 1987 | A |
4720384 | DiLuccio et al. | Jan 1988 | A |
4764378 | Keith et al. | Aug 1988 | A |
4778676 | Yang et al. | Oct 1988 | A |
4801458 | Hidaka et al. | Jan 1989 | A |
4801460 | Goertz et al. | Jan 1989 | A |
4806337 | Snipes et al. | Feb 1989 | A |
4818450 | Hall et al. | Apr 1989 | A |
4828836 | Elger et al. | May 1989 | A |
4834984 | Goldie et al. | May 1989 | A |
4842761 | Rutherford | Jun 1989 | A |
4844907 | Elger et al. | Jul 1989 | A |
4844909 | Goldie et al. | Jul 1989 | A |
4861598 | Oshlack | Aug 1989 | A |
RE33093 | Schiraldi et al. | Oct 1989 | E |
4879108 | Yang et al. | Nov 1989 | A |
4880585 | Klimesch et al. | Nov 1989 | A |
4880830 | Rhodes | Nov 1989 | A |
4882151 | Yang et al. | Nov 1989 | A |
4882152 | Yang et al. | Nov 1989 | A |
4882153 | Yang et al. | Nov 1989 | A |
4882155 | Yang et al. | Nov 1989 | A |
4882156 | Yang et al. | Nov 1989 | A |
4882157 | Yang et al. | Nov 1989 | A |
4882159 | Yang et al. | Nov 1989 | A |
4882167 | Jang | Nov 1989 | A |
4894234 | Sharma et al. | Jan 1990 | A |
4917899 | Geoghegan et al. | Apr 1990 | A |
4925675 | Giannini et al. | May 1990 | A |
4935246 | Ahrens | Jun 1990 | A |
4957681 | Klimesch et al. | Sep 1990 | A |
4959208 | Chakrabarti et al. | Sep 1990 | A |
4967486 | Doelling | Nov 1990 | A |
4970075 | Oshlack | Nov 1990 | A |
4987136 | Kreek et al. | Jan 1991 | A |
4990341 | Goldie et al. | Feb 1991 | A |
4992100 | Koepff et al. | Feb 1991 | A |
4994227 | Dietz et al. | Feb 1991 | A |
5007790 | Shell | Apr 1991 | A |
5013306 | Solomon et al. | May 1991 | A |
5023089 | Sakamoto et al. | Jun 1991 | A |
5026560 | Makino et al. | Jun 1991 | A |
5030400 | Danielson et al. | Jul 1991 | A |
5035509 | Kruder | Jul 1991 | A |
5049394 | Howard et al. | Sep 1991 | A |
5055307 | Tsuru et al. | Oct 1991 | A |
5073379 | Klimesch et al. | Dec 1991 | A |
5102668 | Eichel et al. | Apr 1992 | A |
5126145 | Evenstad | Jun 1992 | A |
5132142 | Jones et al. | Jul 1992 | A |
5133974 | Paradissis et al. | Jul 1992 | A |
5162117 | Stupak et al. | Nov 1992 | A |
5165952 | Solomon et al. | Nov 1992 | A |
5167964 | Muhammed et al. | Dec 1992 | A |
5169645 | Shukla et al. | Dec 1992 | A |
5178868 | Malmqvist-Granlund et al. | Jan 1993 | A |
5183690 | Carr et al. | Feb 1993 | A |
5196203 | Boehm | Mar 1993 | A |
5202128 | Morella et al. | Apr 1993 | A |
5204119 | Shiobara et al. | Apr 1993 | A |
5225199 | Oshlack et al. | Jul 1993 | A |
5229148 | Copper | Jul 1993 | A |
5234697 | Sipos | Aug 1993 | A |
5240400 | Fujimoto et al. | Aug 1993 | A |
5262172 | Sipos | Nov 1993 | A |
5266331 | Oshlack et al. | Nov 1993 | A |
5271934 | Goldberg et al. | Dec 1993 | A |
5273758 | Royce | Dec 1993 | A |
5283065 | Doyon et al. | Feb 1994 | A |
5290560 | Autant et al. | Mar 1994 | A |
5292461 | Juch et al. | Mar 1994 | A |
5296266 | Kunugi et al. | Mar 1994 | A |
5300300 | Egidio et al. | Apr 1994 | A |
5330766 | Morella et al. | Jul 1994 | A |
5330768 | Park et al. | Jul 1994 | A |
5340581 | Tseng et al. | Aug 1994 | A |
5350584 | McClelland et al. | Sep 1994 | A |
5354856 | Kawashima et al. | Oct 1994 | A |
5356635 | Raman et al. | Oct 1994 | A |
5378462 | Boedecker et al. | Jan 1995 | A |
5380535 | Geyer et al. | Jan 1995 | A |
5395626 | Kotwal et al. | Mar 1995 | A |
5403593 | Royce | Apr 1995 | A |
5443846 | Yoshioka et al. | Aug 1995 | A |
5451424 | Solomon et al. | Sep 1995 | A |
5453283 | Munch et al. | Sep 1995 | A |
5456923 | Nakamichi et al. | Oct 1995 | A |
5472710 | Klokkers-Bethke et al. | Dec 1995 | A |
5472712 | Oshlack et al. | Dec 1995 | A |
5476528 | Trimm et al. | Dec 1995 | A |
5478577 | Sackler et al. | Dec 1995 | A |
5510114 | Borella et al. | Apr 1996 | A |
5516205 | Oda et al. | May 1996 | A |
5552159 | Mueller et al. | Sep 1996 | A |
5567439 | Myers et al. | Oct 1996 | A |
5622722 | Knott et al. | Apr 1997 | A |
5643773 | Aebischer et al. | Jul 1997 | A |
5700410 | Nakamichi et al. | Dec 1997 | A |
5958452 | Oshlack | Sep 1999 | A |
5965161 | Oshlack et al. | Oct 1999 | A |
6261599 | Oshlack et al. | Jul 2001 | B1 |
6335033 | Oshlack et al. | Jan 2002 | B2 |
6706281 | Oshlack et al. | Mar 2004 | B2 |
6743442 | Oshlack et al. | Jun 2004 | B2 |
20040081694 | Oshlack et al. | Apr 2004 | A1 |
Number | Date | Country |
---|---|---|
57224 | May 1986 | AU |
8976091 | Jun 1992 | AU |
2082573 | May 1993 | CA |
2131350 | Mar 1995 | CA |
2150304 | Dec 1995 | CA |
2439538 | Mar 1976 | DE |
3602360 | Jul 1987 | DE |
3602370 | Aug 1987 | DE |
3623193 | Jan 1988 | DE |
4329794 | Mar 1995 | DE |
0032004 | Dec 1980 | EP |
0097523 | Aug 1983 | EP |
0043254 | May 1984 | EP |
0108218 | May 1984 | EP |
0147780 | Dec 1984 | EP |
0152379 | Aug 1985 | EP |
0214735 | Jul 1986 | EP |
0189861 | Aug 1986 | EP |
204596 | Dec 1986 | EP |
0204596 | Dec 1986 | EP |
0208144 | Jan 1987 | EP |
0248548 | May 1987 | EP |
0249347 | May 1987 | EP |
0251459 | May 1987 | EP |
0253104 | Jun 1987 | EP |
0240904 | Oct 1987 | EP |
0240906 | Oct 1987 | EP |
0254978 | Feb 1988 | EP |
0256127 | Feb 1988 | EP |
0267702 | May 1988 | EP |
0271193 | Jun 1988 | EP |
0275834 | Jul 1988 | EP |
0300897 | Jul 1988 | EP |
0021129 | Sep 1988 | EP |
0295212 | Dec 1988 | EP |
0327295 | Aug 1989 | EP |
0337256 | Oct 1989 | EP |
0068450 | Jan 1990 | EP |
0351580 | Jan 1990 | EP |
0377518 | Jan 1990 | EP |
0354345 | Feb 1990 | EP |
0358105 | Mar 1990 | EP |
0358107 | Mar 1990 | EP |
0361680 | Apr 1990 | EP |
0361910 | Apr 1990 | EP |
0368247 | May 1990 | EP |
0375063 | Jun 1990 | EP |
0377517 | Jul 1990 | EP |
0298355 | Nov 1990 | EP |
0415693 | Mar 1991 | EP |
0430287 | Jun 1991 | EP |
0463833 | Jun 1991 | EP |
0241615 | Sep 1991 | EP |
0452145 | Oct 1991 | EP |
0239983 | Nov 1991 | EP |
0465338 | Jan 1992 | EP |
0481600 | Apr 1992 | EP |
0531611 | Apr 1992 | EP |
0240904 | Jul 1992 | EP |
0535841 | Sep 1992 | EP |
0320480 | Nov 1992 | EP |
0337256 | Nov 1992 | EP |
0526862 | Feb 1993 | EP |
0338383 | Mar 1993 | EP |
0529396 | Mar 1993 | EP |
0533297 | Mar 1993 | EP |
0534628 | Mar 1993 | EP |
0544144 | Jun 1993 | EP |
0546676 | Jun 1993 | EP |
0667065 | Aug 1993 | EP |
665010 | Oct 1993 | EP |
0 574 894 | Dec 1993 | EP |
0580860 | Feb 1994 | EP |
580860 | Feb 1994 | EP |
0582380 | Feb 1994 | EP |
0624366 | Apr 1994 | EP |
0595311 | May 1994 | EP |
0249347 | Jun 1994 | EP |
0436786 | Jun 1994 | EP |
0636370 | Feb 1995 | EP |
0491238 | Mar 1995 | EP |
0642788 | Mar 1995 | EP |
0609961 | Aug 1995 | EP |
0205282 | Sep 1995 | EP |
0624366 | May 1996 | EP |
2273512 | Jan 1976 | FR |
2273584 | Jan 1976 | FR |
2642420 | Mar 1990 | FR |
0997399 | Apr 1964 | GB |
1405088 | Jun 1971 | GB |
1504553 | Mar 1978 | GB |
1513166 | Jun 1978 | GB |
2030861 | Apr 1980 | GB |
2111386 | Dec 1982 | GB |
2117239 | Mar 1983 | GB |
2053681 | Apr 1984 | GB |
2196848 | May 1988 | GB |
2207355 | Jan 1991 | GB |
2246514 | Feb 1992 | GB |
2281204 | Mar 1995 | GB |
2284760 | Jun 1995 | GB |
5257315 | May 1977 | JP |
2223513 | Sep 1990 | JP |
2223533 | Sep 1990 | JP |
9218106 | Oct 1992 | JP |
9104015 | Apr 1991 | WO |
9119484 | Dec 1991 | WO |
9119485 | Dec 1991 | WO |
9201446 | Feb 1992 | WO |
9202209 | Feb 1992 | WO |
9205774 | Apr 1992 | WO |
9206679 | Apr 1992 | WO |
9222283 | Dec 1992 | WO |
9300063 | Jan 1993 | WO |
9300076 | Jan 1993 | WO |
9304675 | Mar 1993 | WO |
9307859 | Apr 1993 | WO |
9307861 | Apr 1993 | WO |
9310765 | Jun 1993 | WO |
9317667 | Sep 1993 | WO |
9318753 | Sep 1993 | WO |
9324110 | Dec 1993 | WO |
9403160 | Feb 1994 | WO |
9403161 | Feb 1994 | WO |
9405262 | Mar 1994 | WO |
9408568 | Apr 1994 | WO |
9422431 | Oct 1994 | WO |
9423698 | Oct 1994 | WO |
9423700 | Oct 1994 | WO |
9514460 | Jun 1995 | WO |
WO 03004029 | Jan 2003 | WO |
WO 03004030 | Jan 2003 | WO |
WO 03004031 | Jan 2003 | WO |
WO 03004032 | Jan 2003 | WO |
WO 03004033 | Jan 2003 | WO |
Number | Date | Country | |
---|---|---|---|
20040185096 A1 | Sep 2004 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 10038867 | Jan 2002 | US |
Child | 10745950 | US | |
Parent | 09358828 | Jul 1999 | US |
Child | 10038867 | US | |
Parent | 08334209 | Nov 1994 | US |
Child | 09358828 | US |