Melt spinable concentrate pellets having enhanced reversible thermal properties

Information

  • Patent Grant
  • 6793856
  • Patent Number
    6,793,856
  • Date Filed
    Tuesday, February 6, 2001
    23 years ago
  • Date Issued
    Tuesday, September 21, 2004
    20 years ago
Abstract
A process for manufacturing extrudable/melt spinnable concentrate pellets which contain phase change materials (PCMs), whether the PCMs are micro-encapsulated absorbed into carrier polymers, or non-micro-encapsulated within the concentrate pellets. The polymer matrix within the concentrate pellets can be any thermoplastic polymer or combination of thermoplastic polymers, and the concentrate pellets can then be blended into similar thermoplastic polymers to form mono-filament melt spun fibers, extruded films, injection molded products, etc., or the concentrate pellets can be blended with other thermoplastic polymers to form bi-component or multi-component melt spun fibers, extruded films, injection molded products, etc.
Description




BACKGROUND OF THE INVENTION




1. Field of the Invention




This invention relates to the manufacture of melt spun synthetic fibers having temperature regulation properties, the melt spun fibers being formed from polymer-based concentrate pellets that have Phase Change Materials (PCMs) therein.




2. Description of the Related Art




Many fabric materials are made from synthetic fibers. Two processes—a wet solution process and a melt spun process—are generally used for making synthetic fibers. The wet solution process is generally used to form acrylic fibers, while the melt spun process is used to form nylons, polyesters, polypropylenes, and other similar type fibers. A large portion of the fibers that are used in the textile industry are made via the melt spun process.




As is well known, nylon is a family of polyamide polymers characterized by the presence of the amide group CONH; polyester fiber is a fiber in which the fiber-forming substance is a long chain synthetic polymer composed of at least 85-percent by weight of an ester of a dihydric alcohol and terephthalic acid, and polypropylene (C


3


H


5


) is a synthetic crystalline thermoplastic polymer having a molecular weight of about 40,000 or more.




The melt spun manufacturing process generally involves passing a melted polymeric material or pellets through a device known as a spinneret, to thereby form individual polymeric fibers. The fibers are then made into a filament/strand, or into a cut staple. After the fibers have been formed, the fibers can be used to make non-woven material, or alternatively, the fibers can be wound into a yarn that is comprised of individual fibers, the yarn to be used thereafter in the weaving or knitting of a fabric material.




In order to provide a thermal regulation property to fabric materials, microencapsulated phase change materials (microPCMs or mPCMs) have been incorporated into acrylic fibers that were made using an aqueous batch (solution) process. However, with respect to synthetic fibers that are made by the melt spun manufacturing process wherein excessive amounts of volatile materials should not be present, conventional aqueous batch methods for incorporating mPCMs into the fibers are problematic.




It is against this background that embodiments of the present invention were developed.




SUMMARY OF THE INVENTION




According to one aspect of the present invention, disclosed herein is a process for manufacturing melt spinnable concentrate pellets that contain Phase Change Materials (PCMs), but do not contain an excessive amount of volatile materials. In accordance with this invention, the PCMs can be microencapsulated PCMs that are within the concentrate pellets, the PCMs can be absorbed into carrier polymers that form the concentrate pellets, and/or non-micro-encapsulated PCMs can be included as a component of the concentrate pellets.




According to the invention, the melt spinnable concentrate pellet matrix, or carrier polymer, can be any thermoplastic polymer or any combination of thermoplastic polymers




Concentrate pellets in accordance with the invention, can be blended into similar thermoplastic polymers, and the blend can then be extruded to form monofilament melt spun fibers, extruded films, injection molded products, etc., or the concentrate pellets can be blended with different thermoplastic polymers and the blend can then be extruded to form bicomponent or multi-component melt spun fibers, multi-component extruded films, multi-component injection molded products, etc.




For example, polypropylene concentrate pellets that contain PCMs or mPCMs can be blended with an additional amount of the polypropylene polymer and then melt spun to form polypropylene monofilament fibers, or this same polypropylene concentrate pellet can be blended with, or bicomponent melt spun with, an amount of nylon polymer to form bicomponent polypropylene/nylon fibers.




In accordance with a feature of the invention, but without limitation thereto, a PCM(s), and preferably a microencapsulate PCM(s), in a wet-cake form (i.e. in a water-based form) that comprises about 70 weight-percent solids and about 30 weight percent water, is melt-blended with a low molecular weight dispersing-polymer, with the result that about all of the water that is within the wet cake is driven off as the PCM(s) is concomitantly generally uniformly dispersed throughout the low molecular weight dispersing polymer.




In this mixture of a PCM(s) and a low molecular weight dispersing polymer, the dispersing polymer is selected for its compatibility with, and for its affinity for, the PCM(s), thus providing for an optimum dispersion of the PCM(s) throughout the dispersing polymer.




Granules of the above-described PCM/dispersion polymer are then melt blended with a high molecular weight polymer in order to produce concentrate pellets of the invention that contain about 15 weight percent of the PCM(s).




This high molecular weight polymer is selected for its affinity for the low molecular weight polymer and for the physical qualities that are desired of articles (i.e., fibers and the like) that are extruded, or melt spun in conventional manners using the concentrate pellets of the invention.




The foregoing and other features, utilities and advantages of the invention will be apparent from the following description of preferred embodiments of the invention.











BRIEF DESCRIPTION OF THE DRAWINGS





FIG. 1

,

FIG. 2

, and

FIG. 3

illustrate processes of making concentrate pellets and other extruded products according to some embodiments of the invention.











DESCRIPTION OF PREFERRED EMBODIMENTS




In accordance with the present invention, a process is disclosed for making concentrate pellets of one or more polymers, each pellet having one or more PCMs therein, the concentrate pellets being adapted for use in extrusion and melt spun manufacturing processes.




The concentrate pellet manufacturing process of this invention provides benefits that are achieved by adding PCMs to products that are manufactured using extrusion processes such as the melt spun process, non-limiting examples being fibers such as nylon fibers, polyester fibers, polyethylene fibers and polypropylene fibers, films, and injection molded articles.




The present invention forms concentrate pellets having enhanced reversible thermal properties, which concentrate pellets can then be used to make temperature regulating articles having PCMs therein, the melt spun fiber manufacturing process being an example.




The PCMs of the invention can be in a microencapsulated form wherein a hollow capsule or hollow shell having a diameter of from about 1 to about 3 microns protects the PCMs that are within the capsule/shell from exposure to the high temperature and high shear processing that is commonly found in the manufacture of melt spun fibers and melt spun fiber components.




The PCMs of the invention can be contained within, surrounded by, or encapsulated within a number of polymer matrix formats, or within carrier polymers, to thereby provide for the ease of handling of the PCMs, while at the same time, offering a degree of protection to the PCMs from the harsh environment of the extrusion/melt spin processing the PCM-containing concentrate pellets, as well as protecting the PCMs that are within melt spun fibers from subsequent fiber processing.




In accordance with the invention, raw or not-capsulated PCMs can be incorporated into a process by which the concentrate pellets of the invention are manufactured. In this case, the PCMs are preferably introduced into the concentrate pellet manufacturing process via one of the late pellet manufacturing steps, to thereby minimize exposure of the PCMs to high temperature processing.




In one example of the invention, the PCMs are incorporated into any of the many process steps by which the concentrate pellets are manufactured.




In another example, a wetflush process is used to form a plurality of plastic-based granules, each granule containing mPCMs. Preferably, approximately 50 weight percent of a selected mPCM is placed in a compatiblizer plastic, and the PCM/plastic mixture is then ground down to form a plurality of granules, each granule containing mPCM. After the granules are formed, concentrate pellets are formed from the mPCM granules by adding a virgin thermoplastic polymer, to thereby reduce the mPCM concentration within the finished concentrate pellet product. In one example, the resulting concentrate pellets included about 15 weight percent mPCM in relation to the thermoplastic polymer.




In accordance with a feature of the invention, the above-described compatiblizer plastic is a low molecular weight dispersing polymer, and the above-described virgin thermoplastic polymer is a high molecular weight polymer, the low molecular weight dispersing polymer being selected for its compatibility with, and for its affinity for, the mPCM, and the virgin thermoplastic polymer being selected for its affinity for the low molecular weight polymer and for the physical qualities that are desired of articles that are extruded or melt spun in conventional manners using the concentrate pellets of the invention.




Upon formation of concentrate pellets of the invention, the concentrate pellets can be extruded/melt spun as is (for example, to produce monofilament fibers that contain about 15 weight percent of the mPCM), or the concentrate pellets can be blended with another polymer(s) and then extruded/melt spun, for example, to produce multi component fibers having, for example, from about 5 to about 10 weight percent of the mPCM.




Finally, upon the formation of the PCM containing individual fibers as above described, a desired fiber material, fabric material or textile material is formed. As described above, the individual fibers can then be used to manufacture a non-woven material, or the fibers can be used by way of a yarn spinning process to manufacture fabric or textile materials using a weaving process, a knitting process, or the like. It is understood that the fiber/fabric/textile material that is manufactured from the fibers is a matter of choice, and is not critical to this invention. The manufactured fiber/fabric/textile material will contain the above-described PCM, and as a result will exhibit thermal regulatory properties.




It should also be noted that the above-described concentrate pellet manufacturing process is applicable to raw or un-encapsulated PCMs, wherein the PCM is placed into the concentrate pellets and the concentrate pellets are then passed through an extrusion or melt-spun manufacturing process to form extruded/melt spun articles such as fibers having the PCM contained or held within a plurality of isolated volumes or spaces that are dispersed throughout the article




In accordance with embodiments of the present invention, concentrate pellets can be manufactured using a variety of manufacturing processes; for example, 1) the use of mPCM containment systems, 2) the use of gelled containment PCM systems, 3) the use of alternative containment PCM systems, or 4) the addition of non-contained, raw or non-micro-encapsulated PCM systems.




One such process for use with mPCMs involves wet flushing and/or subsequent compounding of the mPCM into a thermoplastic polymer matrix or carrier. In one example, wet flushing consisted of the addition of a dispersing-polymer into a heated mixing bowl and then melting the polymer. Preferably, but without limitation thereto, the dispersing-polymer was a low molecular weight polymer. Upon melting of the dispersing-polymer, mPCM wet cake was slowly added to the molten polymer and permitted to disperse as, at the same time, water was flashed or flushed off. Upon completion of the dispersion and the removal of water, the dispersed mPCM/polymer concentrate was removed, cooled, and thereafter chopped into granules of acceptable dimensions for later blending.




The above-described dispersing polymer may include graft, homo, or copolymers of polyolefins, polyamides, polyesters, or other thermoplastic polymers that are compatible with, and have an affinity for, the final polymer matrix of the melt extruded concentrate pellet product, which final polymer matrix is preferably a high molecular weight polymer matrix.




The above-described mPCM wet cake may consist of between about 1 and 90 weight percent solids in water, and preferably contains between about 60 and 70 weight percent solids. Final concentrations of the mPCM in the wet cake concentrate can be from about 30 to about 60 weight percent, and preferably it is from about 45 to about 55 weight percent.




To insure improved mixing in the final extruded concentrate pellet product, the wet flush concentrate can be further blended into the finished product polymer matrix, to yield a concentrate pellet containing mPCM of about 10 to about 30% weight percent, and preferably about 15 weight percent.




PCMs can be gelled, absorbed or physically contained in a number of ways. One such means of gelling or physical containment is by the addition of silica particles, fumed silica particles, zeolite particles or absorbent polymers to the PCM to provide for ease of addition to the above-described dispersing polymer.




PCMs that are physically contained can then be manufactured into concentrate pellets in a manner similar to the above-described process. One preferred method is by removing the above-described wet flushing step and simply blending the PCMs with the dispersing-polymer, or with the final matrix polymer of the concentrate pellet when the concentrate pellet is extruded. This process yields concentrate pellets with PCM concentrations similar to those described above; for example, from about 5 to about 70 weight percent, and preferably about 15 weight percent.




PCMs that are not micro-encapsulated or otherwise contained can also be processed into concentrate pellets via the liquid injection of the PCM into the concentrate pellet melt extrusion process, or by the co-feeding of solid PCM with the concentrate pellet's dispersing-polymer.




Liquid PCM can be thoroughly filtered and mixed to insure homogeneity prior to injection. Liquid injection of the PCM can occur at any time in the pellet melt extrusion process, but preferably it occurs as late in the process as is possible in order to insure adequate mixing and in order to minimize exposure of the PCM to high temperature. By using this late-stage PCM addition method, exposure of the PCM to high temperatures and to any subsequent degradation or loss of PCM is reduced.




Solid PCM can be processed into concentrate pellets by simply co-feeding the solid PCM and the pellet dispersing or matrix polymer resin into the feed throat of the pellet melt extruder. Solid PCMs can also be side stuffed into the pellet melt extruder in order to prevent feed throat plugging.




The above processes yield concentrate pellets having PCM concentrations in about the 5 to 70% weight percent range, and preferably in about the 15 to 25% weight percent range.




This invention provides temperature regulating benefits that are achieved by adding PCMs to synthetic articles such as fibers, films, foams and injection-molded members, which articles that are made by extrusion processes of which the melt spin manufacturing of fibers is a non-limiting example.




In accordance with this invention, at least one water-based PCM is added to a melted dispersing-polymer that has an affinity for the PCM. For example, if the PCM comprises a plurality of individual PCM volumes, with each volume encased within a shell (i.e., a mPCM), then the dispersing polymer is selected so as to have an affinity for the material of which the shells are formed.




As this first melt is heated, the PCM is uniformly dispersed throughout the first melt, and the water is driven off of the first melt. Upon cooling, the resulting solid is mechanically processed, such as by pulverizing, to form granules that contain the PCM.




A second polymer, which can be called a matrix polymer, is then melted, and the above-mentioned granules are added to this second melt. This second polymer can be called an article-specific polymer since it is selected to have an affinity for the dispersing-polymer, and to also have physical properties that are desirable for the final extruded article.




Upon cooling of this second melt, the resulting solid is processes to form concentrate pellets. These concentrate pellets are then usable to form synthetic articles such as fibers, films, foams and injection-molded devices by way of an extrusion processes; for example, synthetic fibers are made by way of a melt spin process.




A variety of polymers, homopolymers, copolymers or blends of the polymers can be used as the matrix polymer. Non-limiting examples of such matrix polymers are (1) polyamides such as Nylon 6, Nylon 6/6, Nylon 12, polyaspartic acid, polyglutamic acid; (2) polyamines; (3) polyimides; (4) polyacrylics such as polyacrylamide, polyacrylonitrile, and esters of methacrylic acid and acrylic acid; (5) polycarbonates such as polybisphenol A carbonate, and polypropylene carbonate; (6) polydienes such as polybutadiene, polyisoprene, and polynorbornene; (7) polyepoxides; (8) polyesters such as polyethylene terephthalate, polybutylene terephthalate, polytrimethylene terephthalte, polycaprolactone, polyglycolide, polylactide, polyhydroxybutyrate, polyhydroxyvalerate, polyethylene adipate, polybutylene adipate and polypropylene succinate, (9) polyethers such as polyethylene glycol (polyethylene oxide), polybutylene glycol, polypropylene oxide, polyoxymethylene (paraformaldehyde), polytetramethylene ether (polytetrahydrofuran), polyepichlorohydrin; (10) polyflourocarbons; (11) formaldehyde polymers such as urea-formaldehyde, melamine-formaldehyde, and phenol formaldehyde; (12) natural polymers such as cellulosics, chitosans, lignins, and waxes; (13) polyolefins such as polyethylene, polypropylene, polybutylene, polybutene, polyoctene; (14) polyphenylenes such as polyphenylene oxide, polyphenylene sulfide and polyphenylene ether sulfone; (15) silicon containing polymers such as polydimethyle siloxane, and polycarbomethyl silane; (16) polyurethanes; (17) polyvinyls such as polyvinyl butryal, polyvinyl alcohol, polyvinyl acetate, polystyrene, polymethylstyrene, polyvinyl chloride, polyvinyl pyrrolidone, polymethyl vinyl ether, polyethyl vinyl ether, polyvinyl methyl ketone; (18) polyacetals; and (19) polyarylates.




The PCM may be dispersed in a variety of dispersing polymeric materials. Non-limiting examples of these dispering polymers include those listed above, they may be homopolymers or copolymers, and they may vary in molecular weight, functionality, and polymer chain architecture. Non-limiting examples include homopolymers of polyethylene, polypropylene, Nylon 12, polybutylene terephthalate, and copolymers such as polyethylene-co-vinyl acetate, polyethylene-co-acrylic acid, polybutylene terphthalate-co-polytetramethylene terephthalate, and polylauryllactam-block-polytetrahydrofuran.




High or low molecular weight materials may be used with lower molecular weight polymers being preferred for the dispersing polymer.




The functionality of the polymers can also be varied; for example, with the addition of amine, amide, carboxyl, hydroxyl, esters, ethers, epoxide, anhydrides, isocyanates, silanes, ketones, and aldehydes.




The polymer architecture may also be varied, examples being homopolymers, copolymers, linear polymers, branched polymers, block polymers, star polymers, comb polymers, dendritic polymers, graft copolymers and other combinations where branch arms or grafts may be the same or a different homopolymer or copolymer, and branch arms or grafts may be added in a controlled or a random manner.




EXAMPLE 1




As an example, about 5.0 pounds of a low molecular weight polyethylene homopolymer (A-C16 polyethylene, drop point of 102° C., manufactured by Honeywell Specialty Chemical) was added to a wet flushing apparatus, and the homopolymer was then slowly melted and mixed at from about 110 to about 130° C. Once the entire homopolymer was melted, about 8.47 pounds of a mPCM wet cake (micro PCM lot# M42-31, 59.0% solids, manufactured by MicroTek Laboratories, Inc.) was slowly added to the molten homopolymer over about a 30 minute time period.




Water was flashed off as the mPCM disperse within the homopolymer. Mixing of the dispersion continued until less than about 0.15 weight percent of the water remained (as measured using Karl-Fischer titration). The dispersion was then cooled and chopped for further processing, the chopped granules contained about 50 weight percent mPCM.




Melt spinnable concentrate pellets were then manufactured by dry blending about 30-pounds of the above-described granules with about 70-pounds of a high molecular weight fiber grade polypropylene thermoplastic resin (Polypropylene homopolymer 6852 from PB Amoco Polymers).




The resulting dry blend was then extruded using a 2½-inch single screw extruder with all zones set at about 230-degrees C., with a screw speed of about 70 rpm, with 150 mesh screens, and with a nitrogen purge, thus producing concentrate pellets of the invention.




The above-extruded extrudable/melt spinable concentrate pellets were then oven-dried overnite at about 50-degrees C. and at about 1 mm Hg of vacuum.




The concentrate pellets containing about 15 weight percent of mPCM, were then extruded/melt spun at temperatures between about 230 and 265-degrees C., and preferably at about 235 to 245-degrees C.




Filaments were spun/wound at takeup speeds of up to about 1600 meters per minute (mpm), and yielded from about 20 to about 6 deniers per filament of melt spun fibers having a temperature regulating characteristic with reversible thermal storage properties as was provided by the mPCM. Using Differential Scanning Calorimeter (DSC) testing, these fibers provided between about 17.5 and 23.2 J/g of thermal energy storage capacity.




DSC Testing and Analysis




Differential Scanning Calorimeter (DSC) measurements of the above fibers were made using a Perkin Elmer Pyris 1 instrument. Cooling was accomplished using a FTS Systems Intercoller 1. Data analysis was performed using a Perkin Elmer Pyris Thermal Analysis System and Software for Windows, version 3.72.




Test samples were prepared in Perkin Elmer hermetically sealed aluminum sample pans, and testing was performed while the test samples were continuously subjected to N


2


flow.




Test conditions consisted of 1) cooling the test samples to about minus 10-degrees C., followed by 2) isothermal hold for about 1 minute at minus 10-degrees C., and 3) heating from minus 10-degrees C. to about 50-degrees C. at a rate of about 5-degrees C. per minute, followed by 4) isothermal hold for about 1 minute at 50-degrees C., and then 5) cooling from 50-degrees C. to about minus 10-degrees C. at a rate of about 5-degrees C. per minute.




While the methods disclosed herein have been described with reference to particular steps performed in a particular order, it will be understood that these steps may be combined, sub-divided, or re-ordered to form an equivalent method without departing from the teachings of the present invention. Accordingly, unless specifically indicated herein, the order and grouping of the steps is not a limitation of the present invention.




While the invention has been particularly shown and described with reference to preferred embodiments thereof, it will be understood by those skilled in the art that various other changes in form and detail may be made without departing from the spirit and scope of the invention.



Claims
  • 1. A method of making polymer-based pellets that have utility in extrusion and melt spun manufacturing processes, comprising:melting a dispersing polymer to form a melt; adding a wet cake of a phase change material to said melt to form a dispersion; heating said dispersion to reduce a water content of said dispersion; cooling said dispersion to form a solid; and processing said solid to form polymer-based pellets containing said phase change material.
  • 2. The method of claim 1 wherein processing said solid includes:blending a thermoplastic polymer with said solid prior to forming said polymer-based pellets.
  • 3. The method of claim 2 wherein said dispersing polymer is a low molecular weight polymer having an affinity for said phase change material, and wherein said thermoplastic polymer is a high molecular weight polymer having an affinity for said low molecular weight polymer.
  • 4. The method of claim 2 wherein said dispersing polymer is a low molecular weight polymer, and wherein said thermoplastic polymer is a high molecular weight polymer selected from the group consisting of polyamides, polyamines, polyimides, polyacrylics, polycarbonates, polydienes, polyepoxides, polyesters, polyethers, polyflouocarbons, formaldehyde polymers, natural polymers, polyolefins, polyphenylenes, silicon containing polymers, polyurethanes, polyvinyls, polyacetals, and polyarylates.
  • 5. The method of claim 1 wherein said polymer-based pellets each contain from about 10 to about 30 weight percent of said phase change material.
  • 6. The method of claim 1 wherein said wet cake of said phase change includes from about 60 to about 70 weight percent of said phase change material.
  • 7. The method of claim 1 wherein said dispersing polymer is a low molecular weight polymer.
  • 8. The method of claim 1 wherein said dispersing polymer is a polyethylene homopolymer.
  • 9. The method of claim 1 wherein said phase change material is an encapsulated phase change material.
  • 10. The method of claim 1 wherein said phase change material is physically contained by a material selected from the group consisting of silica, fumed silica, and zeolite.
  • 11. The method of claim 1 wherein processing said solid to form said polymer-based pellets includes an extrusion step.
  • 12. The method of claim 1 wherein heating said dispersion includes heating said dispersion until said water content of said dispersion is less than about 0.15 weight percent.
  • 13. The method of claim 12 wherein said polymer-based pellets each contain from about 15 to about 25 weight percent of said phase change material.
  • 14. A method of manufacturing polymer-based pellets that are useable in extrusion and melt spun processes to form plastic articles, comprising:providing phase change material; providing a low molecular weight polymer having an affinity for said phase change material; providing a high molecular weight polymer having an affinity for said low molecular weight polymer and having physical characteristics compatible with an intended use of said plastic articles; melting said low molecular weight polymer to form a first melt; generally uniformly blending said phase change material into said first melt to form a first blend; cooling said first blend to form a first solid; processing said first solid to form granules; melting said high molecular weight polymer to form a second melt; generally uniformly blending said granules into said second melt to form a second blend; cooling said second blend to form a second solid; and processing said second solid to form said polymer-based pellets.
  • 15. The method of claim 14 wherein said polymer-based pellets each contain from about 10 to about 30 weight percent of said phase change material.
  • 16. The method of claim 14 wherein:said low molecular weight polymer is selected from the group consisting polyethylene, polypropylene, Nylon 12, polybutylene terephthalate, polyethylene-co-vinyl acetate, polyethylene-co-acrylic acid, polybutylene terphthalate-co-polytetramethylene terephthalate, and polylauryllactam-block-polytetrahydrofuran; and said high molecular weight polymer is selected from the group consisting of polyamides, polyamines, polyimides, polyacrylics-, polycarbonates, polydienes, polyepoxides, polyesters, polyethers, polyflourocarbons, formaldehyde polymers, natural polymers, polyolefins, polyphenylenes, silicon containing polymers, polyurethanes, polyvinyls, polyacetals, and polyarylates.
  • 17. The method of claim 14 wherein said phase change material is an encapsulated phase change material.
  • 18. The method of claim 14 wherein said phase change material is physically confined to a plurality of physical volumes by a material selected from the group consisting of silica, fumed silica, and zeolite.
  • 19. The method of claim 14 wherein processing said first solid and processing said second solid each include an extrusion step.
  • 20. The method of claim 14 wherein blending said phase change material into said first melt includes adding a wet cake of said phase change material to said first melt to form said first blend, and the method further comprises heating said first blend until a water content of said first blend is reduced to less than about 0.15 weight percent.
  • 21. The method of claim 20 wherein said polymer-based pellets each contain from about 15 to about 25 weight percent of said phase change material.
  • 22. The method of claim 14 wherein said phase change material is microencapsulated within a plurality of hollow shells, and wherein said low molecular weight polymer includes a constituent having an affinity for said hollow shells.
  • 23. The method of claim 14 wherein said phase change material is encased in a plurality of nylon shells, and wherein said low molecular weight polymer includes a nylon constituent.
  • 24. The method of claim 14 wherein blending said phase change material into said first melt includes adding a water-based form of said phase change material to said first melt to form said first blend, and the method further comprises heating said first blend until a water content of said first blend is generally eliminated.
  • 25. The method of claim 24 wherein said water-based form of said phase change material is a wet cake of said phase change material.
  • 26. The method of claim 25 wherein said wet cake of said phase change includes from about 60 to about 70 weight percent of said phase change material.
  • 27. A method of manufacturing polymer-based pellets that are useable in an extrusion/melt spun process to produce synthetic fibers, comprising:providing a water-based form of a phase change material; providing a low molecular weight polymer having an affinity for said phase change material; providing a high molecular weight polymer having an affinity for said low molecular weight polymer and having physical characteristics compatible with an intended use of said synthetic fibers; melting said low molecular weight polymer to form a first melt; blending said water-based form of said phase change material into said first melt to form a first blend; heating said first blend until a water content of said first blend is generally eliminated; cooling said first blend to form a first solid; physically processing said first solid to form granules; melting said high molecular weight polymer to form a second melt; generally uniformly blending said granules into said second melt to form a second blend; cooling said second blend to form a second solid; and physically processing said second solid to form said polymer-based pellets.
  • 28. The method of claim 27 wherein said polymer-based pellets each contain from about 10 to about 30 weight percent of said phase change material.
  • 29. The method of claim 27 wherein said phase change material is encapsulated within a plurality of hollow shells, and wherein said low molecular weight polymer has an affinity for said hollow shells.
  • 30. The method of claim 27 wherein physically processing said first solid and physically processing said second solid each includes an extrusion step followed by a pulverizing step.
  • 31. The method of claim 27 wherein heating said first blend includes heating said first blend until said water content of said first blend is reduced to less than about 0.15 weight percent.
  • 32. The method of claim 27 wherein said water-based form of said phase change is a wet cake of said phase change material.
  • 33. The method of claim 32 wherein said wet cake of said phase change includes from about 1 to about 90 weight percent of said phase change material.
CROSS-REFERENCE TO RELATED APPLICATIONS

This patent application claims the benefit of U.S. provisional patent application Serial No. 60/234,150, filed Sep. 21, 2000. This application incorporates by reference the disclosure of the following co-pending U.S. provisional patent applications, owned by the assignee of the present application: “Melt Spinnable Multi-component Fibers Having Enhanced Reversible Thermal Properties,” by Monte Magill, Serial. No. 60/234,410, filed Sep. 21, 2000 (now non-provisional patent application Ser. No. 09/960,591, filed Sep. 21, 2001; and “Thermally Stable Phase Change Material For Use In Temperature Regulating Fibers, Fabrics And Textiles,” by Monte Magill and Mark Hartmann, Serial No. 60/234,149, filed Sep. 21, 2000 (now non-provisional patent application Ser. No. 09/960,901, filed Sep. 21, 2001.

US Referenced Citations (139)
Number Name Date Kind
4003426 Best et al. Jan 1977 A
4111189 Dizon Sep 1978 A
4122203 Stahl Oct 1978 A
4169554 Camp Oct 1979 A
4178727 Prusinski et al. Dec 1979 A
4213448 Hebert Jul 1980 A
4219072 Barlow, Sr. Aug 1980 A
4237023 Johnson et al. Dec 1980 A
4258696 Gopal Mar 1981 A
4259401 Chahroudi et al. Mar 1981 A
4277357 Boardman Jul 1981 A
4290416 Maloney Sep 1981 A
4294078 MacCracken Oct 1981 A
4332690 Kimura et al. Jun 1982 A
4360442 Reedy et al. Nov 1982 A
4403644 Hebert Sep 1983 A
4403645 MacCracken Sep 1983 A
4462390 Holdridge et al. Jul 1984 A
4498459 Korin et al. Feb 1985 A
4504402 Chen et al. Mar 1985 A
4505953 Chen et al. Mar 1985 A
4513053 Chen et al. Apr 1985 A
4532917 Taff et al. Aug 1985 A
4572863 Benson et al. Feb 1986 A
4572864 Benson et al. Feb 1986 A
4585572 Lane et al. Apr 1986 A
4587279 Salyer et al. May 1986 A
4587404 Smith May 1986 A
4615381 Maloney Oct 1986 A
4617332 Salyer et al. Oct 1986 A
4637888 Lane et al. Jan 1987 A
4690769 Lane et al. Sep 1987 A
4702853 Benson et al. Oct 1987 A
4708812 Hatfield Nov 1987 A
4711813 Salyer Dec 1987 A
4727930 Bruckner et al. Mar 1988 A
4746479 Hanaki et al. May 1988 A
4747240 Voisinet et al. May 1988 A
4756958 Bryant Jul 1988 A
4797160 Salyer Jan 1989 A
4807696 Colvin et al. Feb 1989 A
4825939 Salyer et al. May 1989 A
4828542 Hermann May 1989 A
4851291 Vigo et al. Jul 1989 A
4856294 Scaringe et al. Aug 1989 A
4871615 Vigo et al. Oct 1989 A
4908166 Salyer Mar 1990 A
4908238 Vigo et al. Mar 1990 A
4911232 Colvin et al. Mar 1990 A
4924935 Van Winckel May 1990 A
4964402 Grim et al. Oct 1990 A
4983798 Eckler et al. Jan 1991 A
4988543 Houle et al. Jan 1991 A
5007478 Sengupta Apr 1991 A
5008133 Herbet et al. Apr 1991 A
5053446 Salyer Oct 1991 A
5085790 Hormansdorfer Feb 1992 A
5106520 Salyer Apr 1992 A
5115859 Roebelen, Jr. et al. May 1992 A
5162074 Hills Nov 1992 A
5202150 Benson et al. Apr 1993 A
5211949 Salyer May 1993 A
5220954 Longardner et al. Jun 1993 A
5224356 Colvin et al. Jul 1993 A
5254380 Salyer Oct 1993 A
5282994 Salyer Feb 1994 A
5290904 Colvin et al. Mar 1994 A
5366645 Sobottka Nov 1994 A
5366801 Bryant et al. Nov 1994 A
5370814 Salyer Dec 1994 A
5381670 Tippmann et al. Jan 1995 A
5386701 Cao Feb 1995 A
5415222 Colvin et al. May 1995 A
5424519 Salee Jun 1995 A
5435376 Hart et al. Jul 1995 A
5477917 Salyer Dec 1995 A
5499460 Bryant Mar 1996 A
5501268 Stovall et al. Mar 1996 A
5507337 Rafalovich et al. Apr 1996 A
5532039 Payne et al. Jul 1996 A
5552075 Salyer Sep 1996 A
5565132 Salyer Oct 1996 A
5626936 Alderman May 1997 A
5637389 Colvin et al. Jun 1997 A
5647226 Scaringe et al. Jul 1997 A
5669584 Hickey Sep 1997 A
5677048 Pushaw Oct 1997 A
5687706 Goswami et al. Nov 1997 A
5707735 Midkiff et al. Jan 1998 A
5722482 Buckley Mar 1998 A
5750962 Hyatt May 1998 A
5755216 Salyer May 1998 A
5755987 Goldstein et al. May 1998 A
5755988 Lane et al. May 1998 A
5763335 Hermann Jun 1998 A
5765389 Salyer Jun 1998 A
5770295 Alderman Jun 1998 A
5785884 Hammond Jul 1998 A
5788912 Salyer Aug 1998 A
5804266 Salyer Sep 1998 A
5804297 Colvin et al. Sep 1998 A
5851338 Pushaw Dec 1998 A
5855999 McCormack Jan 1999 A
5884006 Frohlich et al. Mar 1999 A
5885475 Salyer Mar 1999 A
5897952 Vigo et al. Apr 1999 A
5899088 Purdum May 1999 A
5911923 Work et al. Jun 1999 A
5932129 Hyatt Aug 1999 A
5935157 Harmon Aug 1999 A
5955188 Pushaw Sep 1999 A
5976400 Muffett et al. Nov 1999 A
5997762 Haget et al. Dec 1999 A
5999699 Hyatt Dec 1999 A
6004662 Buckley Dec 1999 A
6025287 Hermann Feb 2000 A
6047106 Salyer Apr 2000 A
6048810 Baychar Apr 2000 A
6077597 Pause Jun 2000 A
6079404 Salyer Jun 2000 A
6099555 Sabin Aug 2000 A
6099894 Holman Aug 2000 A
6108489 Frohlich et al. Aug 2000 A
6109338 Butzer Aug 2000 A
6116330 Salyer Sep 2000 A
6119573 Berens et al. Sep 2000 A
6120530 Nuckols et al. Sep 2000 A
6125645 Horn Oct 2000 A
6136217 Haget et al. Oct 2000 A
6170561 O'Grady Jan 2001 B1
6171647 Holman Jan 2001 B1
6179879 Robinson et al. Jan 2001 B1
6183855 Buckley Feb 2001 B1
6185742 Doherty Feb 2001 B1
6197415 Holman Mar 2001 B1
6207738 Zuckerman et al. Mar 2001 B1
6214303 Hoke et al. Apr 2001 B1
6217993 Pause Apr 2001 B1
6230444 Pause May 2001 B1
Foreign Referenced Citations (28)
Number Date Country
4307065 Jun 1994 DE
0 088 370 Feb 1986 EP
0 306 202 Mar 1989 EP
61218683 Sep 1986 JP
06017042 Jan 1994 JP
08 311716 Nov 1996 JP
10102050 Apr 1998 JP
2000160450 Jun 2000 JP
2126813 Feb 1999 RU
WO 8707854 Dec 1987 WO
WO 9315625 Aug 1993 WO
WO 9324241 Dec 1993 WO
WO 9529057 Nov 1995 WO
WO 9534609 Dec 1995 WO
WO 9731081 Aug 1997 WO
WO 9743512 Nov 1997 WO
WO 9842929 Oct 1998 WO
WO 9845208 Oct 1998 WO
WO 9846669 Oct 1998 WO
WO 9925549 May 1999 WO
WO 0061360 Oct 2000 WO
WO 0065100 Nov 2000 WO
WO 0135511 May 2001 WO
WO 0138810 May 2001 WO
WO 0212607 Feb 2002 WO
WO 0224789 Mar 2002 WO
WO 0224830 Mar 2002 WO
WO 0224992 Mar 2002 WO
Provisional Applications (1)
Number Date Country
60/234150 Sep 2000 US