(1) Field of the Invention
The method disclosed herein allows for the melting of cesium germanium halides without decomposition and a direct synthesis without the introduction of possible contaminants.
(2) Description of Related Art
Cesium germanium halides are a highly promising class of material for the nonlinear optical frequency conversion of laser sources. These materials promise unique capabilites for conversion from the visible to the far-infrared, with the possibility of periodic poling.
Nonlinear Optical Frequency Conversion
Nonlinear optical (NLO) frequency conversion techniques allow the wavelengths of laser sources to be changed to fit a given application. In all such techniques, the light from a pump laser is passed through an NLO material and nonlinearities in the interaction of the laser with the material give rise to new optical frequencies.
Common examples of NLO frequency converters include second-harmonic generation (SHG) and optical parametric oscillation (OPO), the latter of which is illustrated in
Pump light at a frequency, ωP (ω=2πc/nλ, where c is the speed of light and n is the refractive index), is brought into an optical cavity enclosing an NLO crystal. Light is generated at two new frequencies, the signal, ωS and the idler, ωI, where, by convention, ωS>ωI. The cavity is generally designed to confine and oscillate one or more of the three frequencies involved. The NLO conversion process must satisfy conservation of energy:
ωP=ωS+ωI (1)
The process must also satisfy conservation of momentum, or phasematching. Traditional phasematching methods require satisfying Eq. 2:
kP=kS−kI (2)
As the indices of refraction of a material generally vary with frequency, the condition in Equation 2 is generally met by adjusting the polarizations of the three fields with respect to the optical axes of a birefringent crystal.
The efficiency of this conversion process (η) depends on the length of interaction (L), the input power (P), and the effective nonlinear coefficient of the crystal (deff):
So, increasing the effective nonlinear coefficient greatly increases the conversion efficiency at a given power, while increasing the pathlength increases the power at the expense of increasing the sensitivity to deviations from perfect phasematching. Birefringent walkoff, where the extraordinary ray propagates in a slightly different direction than the ordinary ray, often limits achievable interaction lengths. The dependence on pump power means that high peak power pump sources, such as Q-switched or mode-locked lasers, are often preferred over CW pumps.
Nonlinear Optical Materials
The key component of a nonlinear optical frequency converter is the NLO material. As most technologically significant NLO frequency conversion methods are based on three wave mixing processes, good NLO materials must possess a large second-order optical nonlinear susceptibility, or χ(2), where deff=χ(2)/2. For χ(2) to be greater than zero, the material must not possess inversion symmetry; this limitation severely limits the number of available materials. A good NLO material must also be transparent at all of the wavelengths involved in the conversion process, as robust as possible, and have a high damage threshold. It must be possible to phase match the desired process, so the material must either be sufficiently birefringent or made into a periodically-poled structure. Finally, the material should be as environmentally stable and robust as possible.
There are two broad classes of nonlinear optical material currently used in frequency conversion applications: oxides and semiconductors. The oxides include such common materials as potassium titanyl phosphate (KTiOPO4, or KTP), β-barium borate (β-BaB2O4, or BBO), and lithium niobate (LiNbO3). These materials are generally transparent in the visible and the near infrared (to ˜3 μm), and can be pumped with readily-available laser sources, such as Nd:YAG, near 1 μm. They can be birefringently phase matched over a large range, and periodic poling has been demonstrated in KTiOPO4 (PPKTP) and LiNbO3 (PPLN). PPLN has been a particularly successful material, finding use in many applications and enabling high-efficiency CW OPO designs.
The latter class, semiconductors, includes primarily materials developed for use in the mid-infrared at wavelengths longer than 1.5 μm, such as zinc germanium phosphide (ZnGeP2, or ZGP) and silver gallium selenide (AgGaSe2). Due to significant absorption in the visible and near-infrared, none of these materials are compatible in practice with 1 μm pump sources.
The cesium germanium halides (CsGeX3, for X=Cl, Br, I) are an emerging class of NLO materials that hold the promise of replacing both oxide and semiconductor materials in many applications. Though they were first synthesized many years ago, it is primarily since the publication of an improved synthesis and a patent on their use as nonlinear optical materials in 1998 that they have come to the attention of the nonlinear optics community.
Reports on powders have shown that they are transparent from the visible through the far-infrared, with no absorbing regions in between, and that they can be phase matched for frequency doubling of 1 μm lasers. They have also demonstrated high nonlinear coefficients (deff of ˜10 pm/V for CsGeBr3, compared with ˜4 pm/V for KTP), with evidence for the ability to birefringently phasematch the frequency doubling of lasers with wavelengths around 1 μm.
Solution Synthesis of CsGeCl3 and CsGeBr3
All published methods for the synthesis of CsGeCl3 and CsGeBr3 are carried out in aqueous solutions. The typical reaction used involves the reduction of Ge(IV) to Ge(II) by an excess of hypophosphorous acid:
H3PO2+2GeO2+4HX+2CsX→2CsGeX3+2H2O+H3PO4 (7)
This reaction is effective in generating the desired CGX, but it can leave behind residual reactants or products, and drying the CGX by conventional methods may not remove the residual water. An infrared spectrum of CsGeCl3 produced by this method is shown in
Thus, it is critical that uncontaminated material be produced. Purification by recrystallization (dissolving the compound in a minimal amount of hot solvent, then letting the solvent cool) has the potential to remove many of the contaminants, but residual water will continue to be a problem.
Melt Stability of CsGeCl3 and CsGeBr3
As mentioned above, the solution synthesis route to CsGeX3 generally produces material that is contaminated with water. To remove this water, it would be desirable to purify the material via directional solidification (whereby a charge is melted and solidified slowly from one end to the other and the contaminated material that solidifies last is discarded) or zone refining. A stable melt is also required for growing single crystals from the melt.
While both cesium germanium chloride and cesium germanium bromide can be melted (with both melting around 355° C.), they have issues with decomposition due to the relative instability of Ge(II) oxidation state compared to Ge(0) and Ge(IV). If they are melted under vacuum, under an inert atmosphere, or under GeX4, they can decompose with reduction of the Ge(II) and release of halogen gas:
CsGeX3→CsX+Ge(0)+X2 (8)
They can also disproportionate:
2CsGeX3→2CsX+Ge(0)+GeX4 (9)
If, instead of vacuum or an inert atmosphere, the halogen is used as a cover gas, then the Ge(II) can oxidize to Ge(IV):
CsGeX3+X2→CsX+GeX4 (10)
Evidence for all of these processes have been observed for X=Cl. Under high-pressure (above 100 torr) atmospheres of Cl2, condensation of GeCl4 (indicating the action of the latter reaction, above) was evident. Under vacuum, lower-pressure Cl2, argon, or GeCl4 atmospheres, the formation of black particles was observed in the melt, indicating the presence of Ge(0) and the action of one or both of the former reactions.
The method described herein allows for the melting of cesium germanium halides without decomposition, as would be needed to grow crystals of these materials from the melt. In addition, it offers a direct synthesis of these materials without the use of water or the introduction of other possible contaminants.
Methods and Apparatus
In order to inhibit the decomposition of the cesium germanium halides, we have developed the technique of using germanium dihalides (GeCl2 and GeBr2) as the cover gases. In addition, the use of these gases allows for the direct, gas-phase synthesis of cesium germanium halides.
Germanium dihalides are not generally stable enough for long-term storage, so they need to be made in situ. At high temperatures, this can be done by reacting Ge(0) with GeX4 vapor:
Ge(0)+GeX4→2GeX2 (11)
The neutral germanium reduces the Ge(IV) in the tetrahalide to Ge(II), picking up the two leftover halide ions to make two equivalents of GeX2. The GeX2 gas itself is nonreactive with CsGeX3, as it has the same oxidation state. It will, however, react with CsX to produce CsGeX3:
CsX+GeX2→CsGeX3 (12)
Thus, if the CsGeX3 begins to decompose, the presence of GeX2 vapor will recompose it.
An apparatus to carry out melting of CGX under GeX2 utilizes four basic components: an ampoule of CGX, an ampoule of Ge(0), a room-temperature reservoir of GeX4, and an enclosure that allows all of these things to share an atmosphere. A typical apparatus shown for the in situ generation of GeCl2 to stabilize a melt of CGC is shown in
A charge of CGC 5 (˜10 g) is loaded into one round-bottomed fused silica tube 4, while a charge of Ge(0) 7 (˜1 g) is loaded into another round-bottomed tube (6). Both tubes are then loaded into a larger fused silica outer vessel 3, which is capped with a PTFE plug 1 that is sealed with Viton o-rings 2. A borosilicate glass transfer tube 8 is fit into this plug, again with Viton o-rings, and a similar plug arrangement is fit to the other side of the transfer tube. This plug is inserted in a borosilicate flask 9 with a sidearm 11. The sidearm is split into two arms, one for the injection of GeCl4 10 (which is not present in the flask upon setup) and the other for attachment to a vacuum system. The injection arm features a PTFE stopcock 12 and is capped with a PTFE septum 13 that allows for the insertion of a needle. The vacuum arm also has a PTFE stopcock 14.
After loading, the tube end of the apparatus is placed in a vertical tube furnace such that the two glass ampoules it contains 4,6 are completely within the heated volume. The system is evacuated for several hours to remove the room air and any residual water that may be present, then ˜5 g of GeCl4 10 is injected into the flask 9 using a syringe with a needle that is pushed through the PTFE septum [13]. Very soon after injection, both PTFE stopcocks 12,14 are closed, leaving the GeCl4 to boil and fill the enclosed volume to its vapor pressure (about 200 torr at 293 K). Once the atmosphere is established, the temperature of the furnace is brought up to 360° C. to melt the CGC. At this temperature, the GeCl4 will react with the Ge(0) to generate the desired GeCl2 gas.
The reaction Eq. 12 offers the possibility of direct, vapor-phase synthesis of CsGeX3. This produces material that has never been exposed to water, reducing or eliminating the need for further purification. To implement this synthesis, the glass ampoule 4 containing the CGC charge in the apparatus of
To analyze the success of these procedures, powder x-ray diffraction (XRD) measurements were taken of four samples: wet-synthesized CGC, CGC melted under GeCl2 using the procedures outlined above, CGC melted under ˜25 torr of Cl2, and the material collected from a vapor-phase synthesis run. The data from these measurements are shown in
These results indicate that these methods are already successful in their aims. The significantly reduced quantity of CsCl in the CGC that was melted under GeCl2 compared to that which was melted under Cl2 indicates a significant improvement in the stability of the melt. The results from the vapor-phase synthesis run show unequivocal production of CGC.
Currently, the only growth method for cesium germanium halide crystals is a growth from an aqueous solution. This yields very small crystals, and water contamination, which seriously impairs their utility as nonlinear optical materials, is unavoidable. The methods presented here allow cesium germanium halides to be melted without decomposition, enabling the melt growth of single crystals of these materials. In addition, these methods allow the production of cesium germanium halides without any use of aqueous solutions, allowing for a much higher potential purity and a concomitant increase in the usefulness of the result material.
As described above, this method may be used for melt stabilization and vapor-phase synthesis of both cesium germanium chloride (CsGeCl3) and cesium germanium bromide (CsGeBr3).
The above description is that of a preferred embodiment of the invention. Various modifications and variations are possible in light of the above teachings. It is therefore to be understood that, within the scope of the appended claims, the invention may be practiced otherwise than as specifically described. Any reference to claim elements in the singular, e.g., using the articles “a,” “an,” “the,” or “said” is not construed as limiting the element to the singular.
This application claims priority to and benefits of U.S. patent application Ser. No. 13/675,890 filed on Nov. 13, 2012 which is a non-provisional of and claims priority to U.S. Patent Application No. 61/560,515 filed Nov. 16, 2011, both of which are herein incorporated by reference in the entirety.
Number | Name | Date | Kind |
---|---|---|---|
4194807 | Gliemeroth | Mar 1980 | A |
4776868 | Trotter et al. | Oct 1988 | A |
6815014 | Gabelnick et al. | Nov 2004 | B2 |
8043980 | Kouvetakis et al. | Oct 2011 | B2 |
20020177244 | Hsu et al. | Nov 2002 | A1 |
20030176734 | Chaturvedi et al. | Sep 2003 | A1 |
20050082624 | Gousev et al. | Apr 2005 | A1 |
20060078679 | Elers et al. | Apr 2006 | A1 |
20070074541 | Badding et al. | Apr 2007 | A1 |
20090029530 | Kunii | Jan 2009 | A1 |
20090087496 | Katusic et al. | Apr 2009 | A1 |
20090137103 | Yamazaki | May 2009 | A1 |
20100183818 | Hwang et al. | Jul 2010 | A1 |
Number | Date | Country | |
---|---|---|---|
20150123034 A1 | May 2015 | US |
Number | Date | Country | |
---|---|---|---|
61560515 | Nov 2011 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 13675890 | Nov 2012 | US |
Child | 14577711 | US |