The present invention relates to a member fastening structure and a clip for fastening a member, wherein a projecting part having at least one inclined surface and a projecting wall for contacting with the inclined surface of the projecting part are provided between an installation member and a leg member, whereby the structure of at least the projecting wall can be made simple and convenient.
There is previously known a fastener, in which cam parts to contact with each other are provided respectively on a female fastener and a male fastener (see: Patent Document 1, page 4, left column, lines 4 to 8; same page, left column, last line to same page, right column line 3; and FIG. 1).
The cam part of the above female fastener of the past is provided rising in an inclined form (see: Patent Document 1, page 4, left column, lines 7 to 8; and FIG. 1).
Patent Document 1: U.S. Pat. No. 2,512,362
However, because the cam part of the above female fastener of the past is provided rising in an inclined form in a circumferential direction of an annular recessed step part, the structure becomes asymmetrical with respect to front to back in the circumferential direction, and there is a problem that production of the female fastener is difficult.
That is, for example, in the case when the female fastener of the past is injection-molded using a mold, the structure of the mold is made complex, and therefore the work factor of mold-drawing and the work factor of design are increased as a result. Also, with the female fastener of the past, because the structure of the mold is complex, there is a drawback that it is difficult for the designer to notice poor conditions in the mold and in molding, and there is a high probability that the same kinds of poor conditions will arise.
Particularly in the case of a product that is symmetrical on the left and right of a vehicle, such as a bumper retainer, the cam part of the above female fastener of the past must be drawn asymmetrically left to right, the work factor of drawing is increased, and design errors and mold production errors are brought about.
Therefore, the present invention was created in consideration of the problems of the abovementioned prior art, and an object thereof is to be able to simplify the structure of at least the projecting wall.
The present invention was created in order to achieve the abovementioned object, and the member fastening structure according to the present invention firstly is configured with the following.
(1) Installation member (for example, grommet)
(2) Leg member (for example, pin)
The installation member (for example, grommet) is provided with the following configuration.
(3) Collar-form part
The collar-form part has a through-hole in the thickness direction.
(4) Elastic leg piece
The elastic leg pieces are placed in a series in a cylindrical form on another side than that of the collar-form part to form a cylindrical part connecting through to the through-hole of the collar-form part, and have raised parts facing inner faces.
The above leg member (for example, pin) is provided with the following configuration.
(5) Flange
(6) Wide-diameter part and narrow-diameter part
The wide-diameter part and the narrow-diameter part are integrally placed projecting from the flange and are provided continuing at least toward a leading-end side.
Secondly, a cam part is placed rising in a circumferential direction of the wide-diameter part from the narrow-diameter part of the leg member (for example, pin).
Thirdly, the member fastening structure is such that the raised parts of the elastic leg pieces ride up on the cam part by insertion of the leg member (for example, pin) into the installation member (for example, grommet) so that the elastic leg pieces are spread open.
Fourthly, the following configuration is provided between the installation member (for example, grommet) and the leg member (for example, pin).
(7) Projecting part
The projecting wall has at least one inclined surface.
(8) Projecting wall
The projecting wall is for contacting with the inclined surface of the projecting part and guiding in a direction of removing the leg member (for example, pin) from the installation member (for example, grommet) in a case when the leg member (for example, pin) is rotated in a state in which the elastic leg pieces are spread open.
The member fastening structure according to the present invention may be characterized by the following points.
Firstly, the projecting wall is provided on the installation member (for example, grommet).
Secondly, the projecting wall is formed in a symmetrical form with respect to front to back in a circumferential direction centered on the through-hole.
In this case, by providing the projecting wall on the installation member, the structure of the installation member, as well as the production, can be made simple and convenient. In addition to this, by forming the projecting wall provided on the installation member in a symmetrical form with respect to front to back centered on the through-hole, the structure of the installation member, as well as the production, can be made one level more simple and convenient.
The member fastening structure according to the present invention may be characterized by the following points.
Firstly, the projecting part is formed on a lower side of the flange of the leg member (for example, pin).
Secondly, the projecting wall is formed on the collar-form part of the installation member (for example, grommet).
In this case, by forming the projecting part on the lower side of the flange of the leg member, the projecting wall can be formed on the collar-form part of the installation member.
The member fastening structure according to the present invention may be characterized by the following points.
Firstly, the projecting part (for example, lock-releasing part) is formed between the wide-diameter part and the narrow-diameter part of the leg member (for example, pin).
Secondly, the projecting wall (for example, second raised part) is formed on the elastic leg piece (for example, second elastic leg piece) of the installation member (for example, grommet).
In this case, by forming the projecting part between the wide-diameter part and the narrow-diameter part of the leg member, the projecting wall can be formed on the elastic leg piece of the installation member.
Also, the first clip according to the present invention firstly has the following configuration.
(1) Grommet
(2) Pin
The above grommet has the following configuration.
(3) Collar-form part
(4) Leg part
The leg part is provided hanging down from the collar-form part.
(5) Through-hole
The through-hole runs through the leg part from the collar-form part.
The above pin has the following configuration.
(6) Shaft part
The shaft part is capable of increasing the leg part in diameter by being inserted into the through-hole.
(7) Flange
The flange extends from the shaft part and has a larger diameter than the through-hole.
Secondly, a recessed part and a raised part (for example, second raised part), for preventing movement in an axial direction of the shaft part in the through-hole by fitting together elastically in a state in which the leg part is made capable of being increased in diameter, are provided, either one on either part, between the leg part and the shaft part.
Thirdly, a lock-releasing part, for being elastically contacted by the raised part (for example, second raised part) having come out from the recessed part and for allowing movement in the axial direction of the shaft part in the through-hole in a case when the flange is rotated in a state in which the recessed part and the raised part (for example, second raised part) are fitted together, is provided in a circumferential direction of the recessed part.
Fourthly, an inclined surface, for urging in a direction that the shaft part comes out from the through-hole using an elastic return force of the raised part (for example, second raised part) elastically contacting with the lock-releasing part, is provided on the lock-releasing part.
Furthermore, the second clip according to the present invention firstly has the following configuration.
(1) Grommet
(2) Pin
The above grommet has the following configuration.
(3) Collar-form part
(4) Leg part
The leg part is provided hanging down from the collar-form part.
(5) Through-hole
The through-hole runs through the leg part from the collar-form part.
The above pin has the following configuration.
(6) Shaft part
The shaft part is capable of increasing the leg part in diameter by being inserted into the through-hole.
(7) Flange
The flange extends from the shaft part and has a larger diameter than the through-hole.
Secondly, a recessed part and a raised part (for example, second raised part), for preventing movement in an axial direction of the shaft part in the through-hole by fitting together elastically in a state in which the leg part is made capable of being increased in diameter, are provided, either one on either part, between the leg part and the shaft part.
Thirdly, a lock-releasing part, for being elastically contacted by the raised part (for example, second raised part) having come out from the recessed part and for allowing movement in the axial direction of the shaft part in the through-hole in a case when the flange is rotated in a state in which the recessed part and the raised part (for example, second raised part) are fitted together, is provided in a circumferential direction of the recessed part.
Fourthly, an elastic body endowed with elasticity is provided on a perimeter edge of the flange.
Fifthly, a wall part, for elastically contacting with the elastic body in a state in which the leg part is made capable of being increased in diameter, is provided on the collar-form part.
Sixthly, urging is carried out in a direction that the shaft part comes out from the through-hole by an elastic return force having been accumulated in the elastic body in a case when the flange is rotated in the state in which the leg part is made capable of being enlarged in diameter.
According to the member fastening structure according to the present invention, effects such as the following are exhibited.
By providing a projecting part having at least one inclined surface and a projecting wall for contacting with the inclined surface of the projecting part between the installation member and the leg member, the structure of at least the projecting wall can be made simple and convenient.
The first clip for fastening a member according to the present invention can provide an optimal clip for the member fastening structure according to the present invention. In addition to this, in the case when the flange is rotated in a state in which the pin is locked to the grommet, urging can be carried out in the direction of removing the shaft part of the pin from the through-hole of the grommet using the elastic return force of the projecting part elastically contacting with the inclined surface of the lock-releasing part.
The second clip for fastening a member according to the present invention also can provide an optimal clip for the member fastening structure according to the present invention. In addition to this, in the case when the flange is rotated in a state in which the pin is locked to the grommet, urging can be carried out in the direction of removing the shaft part of the pin from the through-hole of the grommet by the elastic return force accumulated in the elastic body of the flange.
In
An installation hole 21 for installing the clip 30 is provided on the base 20 as illustrated in
The installation hole 21 is formed in a square shape, but the present invention is not limited to this, and the installation hole 21 may be in a noncircular shape in which the clip 30 does not rotate.
Meanwhile, an automobile body is illustrated as an example of the base 20, but the present invention is not limited to this, and is not limited to use for automobiles, and may be used for other vehicles, or buildings, furniture, office equipment, or the like.
Also, a bumper is illustrated as an example of the part, but the present invention is not limited to this. Also, the bumper retainer (not illustrated) and the clip 30 are considered as a portion of the part, but this point is to be discussed as “modes of parts.”
Furthermore, the clip 30 is configured as a portion of the bumper retainer, but the present invention is not limited to this, and the clip 30 may be configured separately from the bumper retainer.
The clip 30, broadly divided, has the following configuration, as illustrated in
The following (1) to (3) are to be described.
(1) Grommet 40 (installation member)
(2) Pin 50 (leg member)
(3) Packing 60
The configuration of the clip 30 is not limited to the above (1) to (3).
The grommet 40 configures a portion of the bumper retainer (not illustrated), is bound to the base 20 by being installed in the installation hole 21 of the base 20 and inserting a pin 50 to be described, as illustrated in
The grommet 40 is configured as a portion of the bumper retainer, but the present invention is not limited to this, and the grommet may be configured separately from the bumper retainer. Also, the grommet 40 is illustrated as an example of the installation member, but the present invention is not limited to this.
Specifically, the grommet 40 has the following parts, as illustrated in
The following (1) and (2) are to be described.
(1) Collar-form part 70
(2) Leg part 80
The parts of the grommet 40 are not limited to the above (1) and (2).
The pin 50 is for fastening the grommet 40 to the base 20 by being inserted in to the grommet 40, as illustrated in
A pin is illustrated as the leg member, but the leg member is not limited to this.
Specifically, the pin 50 has the following parts, as illustrated in
The following (1) and (2) are to be described.
(1) Shaft part 90
(2) Flange 100
The parts of the grommet 40 are not limited to the above (1) and (2).
The packing 60 is positioned between the base 20 and the grommet 40 as illustrated in
The collar-form part 70 configures a portion of the bumper retainer (not illustrated), and contacts with the base 20, as illustrated in
Specifically, the collar-form part 70 is formed in an oblong disk shape in planar section, and the outer diameter is set larger than the inner diameter of the installation hole 21 of the base 20.
The collar-form part 70 is configured as a portion of the bumper retainer, but the present invention is not limited to this, and the collar-form part 70 may be formed separately from the bumper retainer. Also, the collar-form part 70 is placed directly in contact with the base, but the present invention is not limited to this, and the collar-form part 70 may be placed indirectly in contact with the base 20 by way of the bumper retainer in the case when being configured separately from the bumper retainer.
The collar-form part 70 has the following parts, as illustrated in
The following (1) to (3) are to be described.
(1) Through-hole 71
(2) Wall part 72
(3) Projecting wall 73
The parts of the collar-form part 70 are not limited to the above (1) to (3).
The through-hole 71 is for the shaft part 90 of the pin 50 to be inserted through, as illustrated in
Specifically, the through-hole 71 is formed in a circular shape in the center of the collar-form part 70, and runs through from top to bottom, that is, in the vertical direction in
The wall part 72 extends toward the direction of insertion of the pin 50, as illustrated in
Specifically, the wall part 72 is centered on the through-hole 71, is shaped in an annular rib form being one size larger, and projects from an upper face of the collar-form part 70. The wall part 72 is formed in a trapezoidal shape in section with an inclined surface 74 being oriented toward the center of the through-hole 71. The inclined surface 74 is positioned on an inner wall, more specifically an inner side face, of the wall part 72, and is inclined downward toward the direction of the through-hole 71. Also, a top face 75, being an upper face of the wall part 72, is formed in parallel with an upper face of the wall part 72, and a connecting part 76 is formed on a corner part between the top face 75 and the inclined surface 74.
The projecting wall 73 is positioned between the through-hole 71 and the wall part 72 as illustrated in
Specifically, four projecting walls 73 are formed radially centered on the through-hole 71, projecting from the upper face of the collar-form part 70 and being formed in symmetrical shapes with respect to front to back in the circumferential direction of the collar-form part 70. Each projecting wall 73 is formed in an “arrowhead” or “arrow mark” shape in planar section, and a triangularly shaped pointed tip of the tip part of the “arrowhead” or “arrow mark” is oriented toward the through-hole 71. Inclined surfaces 77 and 77, being positioned on the front and back in the circumferential direction and being inclined in a tapered form, are formed on both sides of the triangular tip part of the projecting wall 73.
The projecting wall 73 contacts with the projecting part 103 projecting from a lower face of the flange 100 of the pin 50 to be described. That is, when the shaft part 90 of the pin 50 is inserted deeply in the through-hole 71 of the grommet 40, the projecting part 103 projecting from the lower face of the flange 100 is positioned on the upper face of the collar-form part 70. When the pin 50 is rotated in this state, the projecting part 103 and the projecting wall 73 projecting from the upper face of the collar-form part 70 contact with each other. When the pin 50 is rotated further, the flange 100 of the pin 50 is guided in the direction of floating up from the upper face of the collar-form part 70 of the grommet 40 by the contact between an inclined surface 104, to be described, of the projecting part 103 and either inclined surface 77 of the inclined surfaces 77 and 77 on both sides of the projecting wall 73.
The leg part 80 hangs down from the periphery of the through-hole 71, and has a plurality, for example a total of four, first and second elastic leg pieces 110 and 120 for coupling with the hole edge of the installation hole 21 provided on the base 20 by insertion of the pin 50, as illustrated in
A total of four elastic leg pieces 110 and 120 are provided, but the present invention is not limited to this, and at least one pair is possible.
Also, the external shape of the leg part 80, being configured with the total of four first and second elastic leg pieces 110 and 120, nearly matches the internal shape of the installation hole 21 of the base 20.
Two first elastic leg pieces 110 of the total of four first and second elastic leg pieces 110 and 120 are mutually opposite at a distance, and a vertically extending rib-form first raised part 111 is provided on each of the mutually opposite inner faces, as illustrated in
The first elastic leg pieces 110 are inserted into the installation hole 21 of the base 20, and in that state, the shaft part 90 of the pin 50 to be described is inserted by way of the through-hole 71, whereby the rib-form first raised part 111 is pushed by the outer perimeter of the shaft part 90, whereby the first elastic leg pieces 110 are spread open in the direction of being moved apart from each other, as illustrated in
Meanwhile, two second elastic leg pieces 120 of the total of four first and second elastic leg pieces 110 and 120 are mutually facing each other at a distance, and a claw-form second raised part 121, being bent in an L-shape in cross-section, is provided on each of the mutually opposite inner faces of the leading-end parts, as illustrated in
The second elastic leg pieces 120 are inserted into the installation hole 21 of the base 20, and in that state, the shaft part 90 of the pin 50 to be described is inserted by way of the through-hole 71, whereby the claw-form second raised part 121 is fitted into a recessed part 94, to be described, of the shaft part 90, whereby movement in the direction of insertion of the shaft part 90 of the pin 50 is prevented, as illustrated in
The shaft part 90 hangs down from the flange 100 to be described, as illustrated in
Specifically, the shaft part 90 hangs down from the lower face of the flange 100, the entire body is formed in a roughly square-columnar shape, and a leading-end part is pointed in a tapered form.
The shaft part 90 has the following parts, as illustrated in
The parts of the shaft part 90 are not limited to the following (1) to (6).
(1) Wide-diameter part 91
The wide-diameter part 91 is positioned at midcourse of the length of the shaft part 90, and is set to a comparatively wide diameter, as illustrated in
The wide-diameter part 91 spreads open the first elastic leg pieces 110 by coming into the interval of the first elastic leg pieces 110 when the shaft part 90 of the pin 50 is inserted into the hollow inner part of the leg part 80 by way of the through-hole 71, as illustrated in
(2) Narrow-diameter part 92
The narrow-diameter part 92 is positioned on the leading-end part of the shaft part 90, and is set to a narrower diameter compared with the wide-diameter part 91, as illustrated in
The first elastic leg pieces 110 are not spread open at a position where narrow-diameter part 92 comes into the interval of the first leg pieces 110, as illustrated in
(3) Cam part 93
The cam part 93 is positioned between the wide-diameter part 91 and the narrow-diameter part 92, and becomes gradually thicker going toward the wide-diameter part 91 from the narrow-diameter part 92, as illustrated in
As illustrated in
(4) Recessed part 94
The recessed part 94 is formed on the wide-diameter part 91 and sinks in a recessed form as illustrated in
The claw-form second raised part 121 of the second elastic leg piece 120 is fitted into the recessed part 94, whereby movement in the axial direction of the shaft part 90 of the pin 50 against the grommet 40 is prevented, as illustrated in
(5) Slip-out-preventing part 95
The slip-out-preventing part 95 is positioned on the leading-end part of the shaft part 90 adjacent to the narrow-diameter part 92, is thicker than the narrow-diameter part 92, and extends in a tapered umbrella shape or conical shape, as illustrated in
The slip-out-preventing part 95 contacts with the rib-form first raised parts 111 of the first elastic leg pieces 110 when the shaft part 90 of the pin 50 is inserted into the hollow inner part of the leg part 80 by way of the through-hole 71, and passes through the interval of the first raised parts 111 in a manner so as to push open the first elastic leg pieces 110. When the slip-out-preventing part 95 passes through the interval of the first raised parts 111, the first elastic leg pieces 110 return by the return force of the resin, whereby the shaft part 90 is prevented from slipping out.
At the same time, the slip-out-preventing part 95 contacts with the claw-form second raised parts 121 of the second elastic leg pieces 120, and passes through the interval of the second raised parts 121 in a manner so as to push open the second elastic leg pieces 120. When the slip-out-preventing part 95 passes through the interval of the second raised parts 121, the second elastic leg pieces 120 return by the return force of the resin, whereby the shaft part 90 is prevented from slipping out.
(6) Guide rib 96
A total of four guide ribs 96 are formed following the axial direction of the shaft part 90, extending radially from the center of the shaft part 90, as illustrated in
The guide ribs 96 are fitted inside the gaps between adjacent first elastic leg pieces 110 and second elastic leg pieces 120 when the shaft part 90 of the pin 50 is inserted into the hollow inner part of the leg part 80 by way of the through-hole 71, so that the shaft part 90 of the pin 50 inside the hollow inner part of the leg part 80 does not rotate inadvertently.
The flange 100 extends in a disk form from the upper-end part of the shaft part 90, and its outer diameter is set larger than the inner diameter of the through-hole 71.
Specifically, the flange 100 has the following parts, as illustrated in
The parts of the flange 100 are not limited to the following (1) to (3).
(1) Elastic body 101
The elastic body 101 is thinly formed, extending in a straight shape from the outer perimeter of the flange 100, as illustrated in
Specifically, the elastic body 101 extends in an annular form from the lower side of the flange 100. In the case when the thickness of the flange 100 is set to 2 mm, for example, the thickness of the elastic body 101 is set to one eighth, being 0.25 mm.
The elastic body 101 contacts with the projecting wall 73 projecting from the upper face of the collar-form part 70 of the grommet 40. That is, when the shaft part 90 of the pin 50 is inserted into the through-hole 71 of the grommet 40, the lower face of the elastic body 101 contacts with the top face 75 being the upper wall of the wall part 72 projecting from the upper face of the collar-form part 70. When the shaft 90 is inserted more deeply, the lower face of the elastic body 101 is pushed by the angular connecting part 76 between the top face 75 and the inclined surface 74 being positioned on the inner side face of the wall part 72, and becomes in a bent-back state as illustrated in
(2) Jig-coupling part 102
The jig-coupling part 102, although not illustrated, is for coupling with, for example, a “+” (plus) screwdriver or other jig, and has, for example, a + (plus) slot.
A screwdriver is illustrated as an example of a jig, but [the present invention] is not limited to this. Also, the jig-coupling part 102 is not limited to a + slot.
(3) Projecting part 103
The projecting part 103 is positioned on the lower side of the flange 100, projects outward in the radial direction from the outer perimeter of the shaft part 90, and has at least one inclined surface 104, as illustrated in
Specifically, the projecting part 103 is formed in a triangular-columnar shape, and the inclined surface 104 is oriented in the outer perimeter direction of the shaft part 90. A pair of projecting parts 103 is formed in the diameter direction of the shaft part 90.
A pair of projecting parts 103 is formed, but the present invention is not limited to this, and one or three or more may be formed. Also, one inclined surface 104 is formed on one side in the circumferential direction of the flange 100, but the present invention is not limited to this, and although not illustrated, two inclined surfaces may be formed on both sides in the circumferential direction of the flange 100, and the projecting parts 103 may be formed in symmetrical shapes with respect to front to back in the circumferential direction of the flange 100. Thus, by forming the projecting parts in symmetrical shapes with respect to front to back in the circumferential direction, the production of the pin 50 is made simple and convenient, and directionality in the method of rotation of the pin 50 is eliminated, whereby the operability can be improved.
The projecting part 103 contacts with the projecting wall 73 projecting from the upper face of the collar-form part 70 of the grommet 40, as illustrated in
The method of installation of the clip 30 including the grommet 40 and the pin 50 having the above configuration is next described.
First, the pin 50 and the packing 60 are assembled in advance on the grommet 40.
The grommet 40 may be installed with the pin 50 and the packing 60 when installing on the base 20.
First, the leg part 80 of the grommet 40 is inserted correctly in the center hole 61 of the packing 60, and the packing 60 is positioned beneath the lower face of the collar-form part 70.
Next, the shaft part 90 of the pin 50 is inserted correctly in the through-hole 71 of the grommet 40 as illustrated in
When the shaft part 90 of the pin 50 is inserted, the shaft part 90 of the pin 50 is inserted into the hollow inner part of the leg part 80 by way of the through-hole 71. After that, the slip-out-preventing part 95 on the leading-end part of the shaft part 90 contacts with the first raised parts 111 of the first elastic leg pieces 110 and the second raised parts 121 of the second elastic leg pieces 120, and passes through the interval of the first raised parts 111 and the interval of the second raised parts 121 in a manner so as to push open the first elastic leg pieces 110 and the second raised parts 121, and the first raised parts 111 and the second raised parts 121 are positioned on the narrow-diameter part 92 of the shaft part 90. Therefore, the shaft part 90 does not slip out from the hollow inner part of the leg part 80, and the pin 50 is provisionally fastened to the grommet 40.
Next, the leg part 80 of the grommet 40 is inserted correctly in the installation hole 21 of the base 20 as illustrated in
When the leg part 80 of the grommet 40 is inserted, the lower face of the collar-form part 70 contacts with the upper surface of the base 20 by way of the packing 60.
After that, the flange 100 of the pin 50 is pushed into the grommet 40 as illustrated in
When the pin 50 is pushed in, the shaft part 90 advances through the hollow inner part of the leg part 80, and the first elastic leg pieces 110 of the grommet 40 are pushed open by the wide-diameter part 91, whereby outer diameter of the leg part 80 of the grommet 40 is spread open as illustrated in
At the same time, the claw-form second raised parts 121 of the second elastic leg pieces 120 of the grommet 40 are fitted inside the recessed parts 94 of the pin 50 as illustrated in
Meanwhile, the elastic body 101 of the pin 50 contacts with the projecting wall 73 projecting from the upper face of the collar-form part 70 of the grommet 40 as illustrated in
The method of removal of the installed clip 30, on the other hand, is described.
Although not illustrated, a “+” (plus) screwdriver or other jig is coupled in the jig-coupling part 102, being a + (plus) slot, of the pin 50, and the flange 100 of the pin 50 is rotated in one direction, for example, counterclockwise.
When the flange 100 of the pin 50 is rotated, the projecting part 103 projecting from the lower face of the flange 100 contacts with the projecting wall 73 projecting from the upper face of the collar-form part 70.
When the flange 100 of the pin 50 is rotated further, as illustrated in
When the flange 100 of the pin 50 ascends, the shaft part 90 moves in the direction of coming out from the hollow inner part of the leg part 80, that is, upward, whereby the claw-form second raised parts 121 of the second elastic leg pieces 120 of the grommet 40, having been fitted in the recessed parts 94 of the shaft 90, are decoupled. Therefore, the first elastic leg pieces 110 of the grommet 40 move from the wide-diameter part 91 to the narrow-diameter part 92 of the shaft part 90, whereby the outer diameter of the leg part 80 of the grommet 40 contracts.
Therefore, the leg part 80 of the grommet 40 can be pulled out from the installation hole 21 of the base 20.
At this time, the pin 50 maintains the state of being provisionally fastened to the grommet 40.
A second embodiment of the present invention is next described using
A characteristic of the present embodiment is that a projecting wall 200 projecting from the upper face of the collar-form part 70 of the grommet 40 is formed as an oblong in planar section, as illustrated in
The oblong projecting wall 200 has a symmetrical shape with respect to front to back in the circumferential direction of the collar-form part 70.
Also, in the description of the present embodiment, the same symbols are used for the same portions of the configuration as in the first embodiment previously described using
A third embodiment of the present invention is next described using
A characteristic of the present embodiment is in that a projecting wall 210 projecting from the upper face of the collar-form part 70 of the grommet 40 is formed as a rectangle in planar section, as illustrated in
The rectangular projecting wall 210 has a symmetrical shape with respect to front to back in the circumferential direction of the collar-form part 70.
The projecting wall 73 is formed in an “arrowhead” or “arrow mark” shape in planar section in the first embodiment previously described using
Also, in the description of the present embodiment, the same symbols are used for the same portions of the configuration as in the first embodiment, and the descriptions are omitted.
A fourth embodiment of the present invention is next described using
A characteristic of the present embodiment is that a wall part 400 projecting from the upper face of the collar-form part 70 of the grommet 40 is formed in a step form as illustrated in
That is, the wall part 400 is configured with an inclined surface 401 being inclined diagonally upward in the outer perimeter direction from the upper face of the collar-form part 70, a top face 402 being an upper face of the wall part 400, and a connecting part 403 being positioned in a corner part between the inclined surface 401 and the top face 402.
Also, in the description of the present embodiment, the same symbols are used for the same portions of the configuration as in the first embodiment, and the descriptions are omitted.
A fifth embodiment of the present invention is next described using
A characteristic of the present embodiment is firstly that the “projecting part 103” and the “inclined surface 104” of the pin 50 (leg member) of the first embodiment previously described using
Secondly, a characteristic of the present embodiment is that the “projecting wall 73” and the “inclined surface 77” of the grommet 40 (installation member) of the first embodiment previously described are omitted, and in place of these, the “second raised part 121” of the second elastic leg piece 120 of the grommet 40 (installation member) is used also as a “projecting wall,” as illustrated in
A plurality of lock-releasing parts 500 is provided radially, for example a total of four at 90-degree intervals, in the circumferential direction of the shaft part 90 of the pin 50, as illustrated in
An inclined surface 501, contracting in diameter toward the direction of the narrow-diameter part 92, that is, being inclined downward, is formed on the outer side face of the lock-releasing part 500, as illustrated in
Four lock-releasing parts 500 are provided, but [the present invention] is not limited to this, and one, two, three, or five or more may be provided.
Also, in the description of the present embodiment, the same symbols are used for the same portions of the configuration as in the first embodiment, and the descriptions are omitted.
The method of installation of the clip 30 including the grommet 40 and the pin 50 having the above configuration is first described.
When the shaft part 90 of the pin 50 is inserted into the through-hole 71 of the grommet 40, the claw-form second raised parts 121 of the second elastic leg pieces 120 are fitted into the recessed parts 84 of the shaft part 90 and are thereby locked, as illustrated in
At this time, the lower face of the elastic body 101 of the pin 50 is pushed by the wall part 72 projecting from the upper face of the collar-form part 70 of the grommet 40 and becomes in a bent-back state, as illustrated in
Also, in the present embodiment, although not illustrated, the first elastic leg pieces 110 of the grommet 40 are spread open whereby the grommet 40 is fastened to the base 20, as illustrated in
The method of removal of the installed clip 30 is next described.
When the flange 100 of the pin 50 is rotated 45 degrees, the claw-form second raised parts 121 having been fitted into the recessed parts 94 of the shaft part 90 move from the recessed parts 94 to the lock-releasing parts 500, and ride up on the lock-releasing parts 500, as illustrated in
At this time, as illustrated in
Therefore, movement in the axial direction of the shaft part 90 of the pin 50 becomes possible, and the shaft part 90 moves in the direction of coming out from the hollow inner part of the leg part 80, that is, upward. At this time, the claw-form second raised parts 121 move toward the narrow-diameter part 92 of the shaft part 90, and can no longer return to the recessed parts 94.
At the same time, the claw-form second raised parts 121 contact with the inclined surfaces 501 of the lock-releasing parts 500 when riding up on the lock-releasing parts 500, as illustrated in
At this time, as illustrated in
In the present embodiment, because the angle of inclination of the inclined surfaces 501 is set gently, the locked state cannot be released by the second force F2 alone, but the locked state is released by a combined force with the first force F1 (F1+F2). It is also possible to make the angle of inclination of the inclined surfaces 501 as a steep gradient, whereby the locked state can be released by the second force F2 alone.
The entire contents of the specification, claims, drawings, and abstract of Japanese Patent Application No. 2010-102506 filed on Apr. 27, 2010 are incorporated by reference herein as a disclosure of the specification of the present invention.
Number | Date | Country | Kind |
---|---|---|---|
2010-102506 | Apr 2010 | JP | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/JP2011/059734 | 4/20/2011 | WO | 00 | 12/20/2012 |