This application claims priority under 35 U.S.C. §119 to Japanese Patent Application No. 2017-018238 filed on Feb. 3, 2017, the entire content of which is hereby incorporated by reference.
The present invention relates to a member, a liquid ejecting head chip, a liquid ejecting head, a liquid ejecting apparatus, and a cutting method.
In the related art, as an apparatus that records an image or letters on a recording medium by discharging a droplet-like ink to the recording medium such as a recording sheet, an ink jet printer (liquid ejecting apparatus) including an ink jet head (liquid ejecting head) is provided.
For example, U.S. Pat. No. 8,091,987 discloses a configuration in which a pump room is arranged on an inner side, an ink is introduced from an outside, and the ink is brought back to the outside, in a two-row type ink jet head in which two rows of nozzle holes are arranged.
For example, from a viewpoint of improving manufacturing efficiency, it is preferable that a member constituting an ink jet head or the like is cut out from a parent material which can be easily cut. However, it may be difficult to cut a parent material in accordance with the type of a material for forming the parent material, and thus manufacturing efficiency may be decreased. If it is difficult to cut the parent material, precision for a cut surface may be decreased.
To solve the above problems, an object of the present invention is to provide a member which can be easily cut from a parent material and in which it is possible to improve precision for a cut surface, a liquid ejecting head chip, a liquid ejecting head, a liquid ejecting apparatus, and a cutting method.
According to an aspect of the present invention, a member is formed by being cut from a parent material so as to have a cut surface. The member includes a base material and a filler. The base material is included in the parent material. The filler is buried in a space provided in the parent material and has cuttability which is better than that of the base material. The base material and the filler are exposed to the cut surface together.
According to this configuration, the base material and the filler are exposed to the cut surface together. Thus, in comparison to a case where the parent material is configured only by the base material, it is possible to secure a large area of the filler having cuttability which is better than that of the base material, in the cut surface of the parent material, and to reduce a load when the parent material is cut. Accordingly, it is possible to provide the member which can be easily cut from the parent material and in which it is possible to improve precision for the cut surface.
In the member, the filler may be provided at both end portions of the cut surface.
According to this configuration, in comparison to a case where the filler is provided only at one end portion of the cut surface, it is possible to secure a large area of the filler having cuttability which is better than that of the base material, in the cut surface of the parent material, and to reduce a load when the parent material is cut. In addition, it is possible to reduce a load on a portion at which cutting starts and a portion at which cutting ends, when the parent material is cut. Accordingly, it is possible to more easily cut the member from the parent material.
In the member, the member may be a component of a liquid ejecting head chip. An opening for causing a liquid to flow may be formed at at least a portion of the cut surface.
According to this configuration, since the member which can be easily cut from the parent material and in which it is possible to improve precision for the cut surface is used as a member of a liquid ejecting head chip, this configuration is advantageous from a viewpoint of improving manufacturing efficiency of the member of the liquid ejecting head chip and product precision.
In the member, the base material may be brittler than the filler.
According to this configuration, even in a case where the base material is brittler than the filler, it is possible to secure a large area of the filler having cuttability which is better than that of the base material, in the cut surface of the parent material. Thus, it is possible to reduce a load when the parent material is cut. Accordingly, this configuration is preferable from a viewpoint of suppressing an occurrence of a situation in which the member is broken or crushed due to brittleness of the base material and cutting the member from the parent material further easily.
In the member, it is preferable that the base material is any one or more substances selected from the group consisting of carbon, silicon, silicon dioxide, and boron nitride.
According to this configuration, the configuration is preferable from a viewpoint of suppressing an occurrence of a situation in which the member is broken or crushed due to brittleness of the base material and cutting the member from the parent material further easily.
In the member, it is preferable that the base material is harder than the filler.
From a viewpoint of increasing hardness of the member, it is considered that the base material is set to be harder than the filler in the member. However, in a case where the base material is set to be harder than the filler, it may be more difficult to cut the base material.
On the contrary, according to this configuration, even in a case where the base material is set to be harder than the filler, it is possible to secure a large area of the filler having cuttability which is better than that of the base material in the cut surface of the parent material. Thus, it is possible to reduce a load when the parent material is cut. Accordingly, this configuration is preferable from a viewpoint of increasing hardness of the member and further easily cutting the member from the parent material.
In the member, it is preferable that the base material is any one or more substances selected from the group consisting of silicon, silicon carbide, aluminum oxide, gallium nitride, lithium tantalate, lithium niobate, and ceramics.
According to this configuration, this configuration is preferable from a viewpoint of increasing hardness of the member and further easily cutting the member from the parent material.
In the member, it is preferable that the cut surface is also configured to be a bonding surface to which a second member is bonded, and the filler has adhesiveness which is better than that of the base material.
According to this configuration, in comparison to a case where the member is configured of only the base material, it is possible to secure a large area of the filler having adhesiveness which is better than that of the base material, in the cut surface of the member, which also functions as the bonding surface for the second member. Thus, it is possible to improve adhesiveness between the cut surface of the member and the second member.
A method of modifying the member by surface treatment is provided as a method of improving adhesiveness of the member. However, even though the member is modified by surface treatment, a cut surface obtained after a bonded body (stacked body) of the member and another member is cut is not modified by the surface treatment. A method of modifying a cut surface with surface treatment whenever a member is cut is also considered. However, this method is not preferable because working man-hours are taken. On the contrary, according to this configuration, since it is possible to secure a large area of the filler having adhesiveness which is better than that of the base material in the cut surface of a member, this configuration is preferable because modifying a cut surface with surface treatment is not required and working man-hours are not taken.
In the member, it is preferable that the filler is any one or more kinds of materials selected from the group consisting of an adhesive, resist, rubber, plastic, and a hardenable material.
According to this configuration, this configuration is more preferable from a viewpoint of improving adhesiveness of the cut surface of the member and the second member.
In the member, it is preferable that the base material is any one or more substances selected from the group consisting of carbon, polyethylene, polypropylene, polyacetal, and fluororesin.
According to this configuration, this configuration is more preferable from a viewpoint of improving adhesiveness of the cut surface of the member and the second member, because the base material has adhesiveness lower than that of the filler.
According to another aspect of the present invention, a liquid ejecting head chip includes an actuator plate in which a plurality of channels which extend in a first direction are arranged at a distance in a second direction which is orthogonal to the first direction. The actuator plate corresponds to the above-described member.
According to this configuration, in the liquid ejecting head chip in which the actuator plate corresponds to the above-described member, it is possible to easily produce the actuator plate and to improve precision of a cut surface. Thus, it is possible to improve manufacturing efficiency and product precision.
According to still another aspect of the present invention, a liquid ejecting head includes a pair of actuator plates, a return plate, and a flow passage plate. In the actuator plate, a plurality of channels which extend in a first direction are arranged at a distance in a second direction which is orthogonal to the first direction. The pair of actuator plates are disposed so as to face each other in a third direction which is orthogonal to the first direction and the second direction. The return plate is disposed on an opening end side of the channels in the pair of actuator plates. In the return plate, a circulation passage which communicates with the channel is formed. The flow passage plate is disposed between the pair of actuator plates. In the flow passage plate, an inlet flow passage into which a liquid flows and an outlet flow passage which communicates with the circulation passage are formed so as to be arranged in the first direction. The flow passage plate corresponds to the above-described member. The flow passage plate and the return plate are bonded to each other on the cut surface.
According to this configuration, in the two-row type liquid ejecting head in which the flow passage plate corresponds to the above-described member, it is possible to easily produce the flow passage plate and to improve precision of a cut surface. Thus, it is possible to improve manufacturing efficiency and product precision.
According to still another aspect of the present invention, a liquid ejecting apparatus includes the liquid ejecting head and a moving mechanism. The moving mechanism relatively moves the liquid ejecting head and a recording medium.
According to this configuration, in the liquid ejecting apparatus which includes the two-row type liquid ejecting head, it is possible to easily produce the flow passage plate and to improve precision of a cut surface. Thus, it is possible to improve manufacturing efficiency and product precision.
According to still another aspect of the present invention, a cutting method includes a parent material forming step of forming a parent material which includes a base material and in which a space is formed, a filler burying step of burying a filler having cuttability which is better than that of the base material, in the space, and a parent material cutting step of cutting the parent material along the same plane so as to cause the base material and the filler to be exposed to a cut surface together.
According to this method, the parent material is cut along the same plane so as to cause the base material and the filler to be exposed to the cut surface together. Thus, in comparison to a case where the parent material is configured only by the base material, it is possible to secure a large area of the filler having cuttability which is better than that of the base material, in the cut surface of the parent material, and to reduce a load when the parent material is cut. Accordingly, it is possible to provide the member which can be easily cut from the parent material and in which it is possible to improve precision for the cut surface.
In the cutting method, the filler may be provided at a cutting start position and a cutting end position of the parent material.
According to this method, in comparison to a case where the filler is provided at only one of the cutting start position and the cutting end position of the parent material, it is possible to secure a large area of the filler having cuttability which is better than that of the base material, in the cut surface of the parent material, and to reduce a load when the parent material is cut. In addition, it is possible to reduce a load on a portion at which cutting starts and a portion at which cutting ends, when the parent material is cut. Accordingly, it is possible to more easily cut the member from the parent material.
According to the present invention, it is possible to provide a member which can be easily cut from a parent material and in which it is possible to improve precision for a cut surface, a liquid ejecting head chip, a liquid ejecting head, a liquid ejecting apparatus, and a cutting method.
Hereinafter, an embodiment according to the present invention will be described with reference to the drawings. In the embodiment, as an example of a liquid ejecting apparatus which includes a liquid ejecting head including a liquid ejecting head chip (simply referred to as “a head chip” below) according to the present invention, an ink jet printer (simply referred to as “a printer” below) that performs recording on a recording medium by using an ink (liquid) will be described. In the drawings used in the following descriptions, members are assumed to have a size which allows recognition of each of the members. Thus, the scale of each of the members is appropriately changed.
As illustrated in
The transporting means 2 and 3 transport the recording medium P in the X-direction. Specifically, the transporting means 2 includes a grit roller 11, a pinch roller 12, and a driving mechanism (not illustrated) such as a motor. The grit roller 11 is provided to extend in the Y-direction. The pinch roller 12 is provided to extend in parallel to the grit roller 11. The driving mechanism rotates the shaft of the grit roller 11 so as to rotate the grit roller 11. The transporting means 3 includes a grit roller 13, a pinch roller 14, and a driving mechanism (not illustrated). The grit roller 13 is provided to extend in the Y-direction. The pinch roller 14 is provided to extend in parallel to the grit roller 13. The driving mechanism (not illustrated) rotates the shaft of the grit roller 13 so as to rotate the grit roller 13.
A plurality of ink tanks 4 are provided to be arranged in one direction. In the embodiment, the plurality of ink tanks 4 respectively correspond to ink tanks 4Y, 4M, 4C, and 4K that accommodate inks of four colors which are yellow, magenta, cyan, and black. In the embodiment, the ink tanks 4Y, 4M, 4C, and 4K are disposed side by side in the X-direction.
As illustrated in
The pressure pump 24 applies pressure to the inside of the ink supply tube 21, and thus an ink is sent to the ink jet head 5 through the ink supply tube 21. Thus, the ink supply tube 21 side has positive pressure in comparison to the ink jet head 5.
The suction pump 25 depressurizes the ink discharge tube 22, and thus suctions an ink from the ink jet head 5 through the ink discharge tube 22. Thus, the ink discharge tube 22 side has negative pressure in comparison to the ink jet head 5. The ink may be circulated between the ink jet head 5 and the ink tank 4 through the circulation flow passage 23, by driving of the pressure pump 24 and the suction pump 25.
As illustrated in
The driving mechanism 34 is disposed between the guide rails 31 and 32 in the X-direction. The driving mechanism 34 includes a pair of pulleys 35 and 36, an endless belt 37, and a driving motor 38. The pair of pulleys 35 and 36 is arranged at a distance in the Y-direction. The endless belt 37 is wound around the pair of pulleys 35 and 36. The driving motor 38 rotates and drives one pulley 35.
The carriage 33 is linked to the endless belt 37. A plurality of ink jet heads 5 are mounted in the carriage 33. In the embodiment, the plurality of ink jet heads 5 respectively correspond to ink jet heads 5Y, 5M, 5C, and 5K that discharge inks of four colors which are yellow, magenta, cyan, and black. In the embodiment, the ink jet heads 5Y, 5M, 5C, and 5K are disposed side by side in the Y-direction.
As illustrated in
A pair of head chips 40A and 40B are a first head chip 40A and a second head chip 40B. Descriptions will be made below focusing on the first head chip 40A. In the second head chip 40B, component which are the same as those of the first head chip 40A are denoted by the same reference signs, and detailed descriptions thereof will not be repeated.
The first head chip 40A includes an actuator plate 51 and a cover plate 52.
The appearance of the actuator plate 51 is a rectangular plate shape which is long in the X-direction and is short in the Z-direction. In the embodiment, the actuator plate 51 is a so-called Chevron type stacked substrate in which two piezoelectric substrates having polarization directions which are different from each other in a thickness direction (Y-direction) are stacked (see
A plurality of channels 54 and 55 are formed in a first main surface (actuator plate-side first main surface) of the actuator plate 51 in the Y-direction. In the embodiment, the actuator plate-side first main surface refers to an inner side surface 51f1 of the actuator plate 51 in the Y-direction (referred to as “an AP-side-Y-direction inner side surface 51f1” below). Here, the inner side in the Y-direction means the center side of the ink jet head 5 in the Y-direction (the flow passage plate 41 side in the Y-direction). In the embodiment, an actuator plate-side second main surface is an outer side surface of the actuator plate 51 in the Y-direction (indicated by the reference sign of 51f2 in the drawings).
Each of the channels 54 and 55 is formed to have a straight-line shape which extends in the Z-direction (first direction). The channels 54 and 55 are alternately formed to be spaced from each other in the X-direction (second direction). The channels 54 and 55 are defined from each other by a drive wall 56 formed by the actuator plate 51. One channel 54 is a discharge channel (ejection channel) 54 with which an ink is filled. The other channel 55 is a non-discharge channel (non-ejection channel) 55 with which an ink is not filled.
An upper end portion of the discharge channel 54 is terminated in the actuator plate 51. A lower end portion of the discharge channel 54 is opened in a lower end surface of the actuator plate 51.
As illustrated in
The extension portion 54a has a groove depth which is constant over the entirety thereof in the Z-direction. The raise-and-cut portion 54b has a groove depth which gradually becomes shallow while being raised upwardly.
As illustrated in
As illustrated in
The extension portion 55a has a groove depth which is constant over the entirety thereof in the Z-direction. The length of the extension portion 55a in the non-discharge channel 55 in the Z-direction is longer than the length of the extension portion 54a (see
As illustrated in
An actuator plate-side common pad 62 (referred to as “an AP-side common pad 62” below) is formed on an inner side surface of a portion 51e (referred to as “an AP-side tail portion 51e” below) of the actuator plate 51, which is positioned over the discharge channel 54, in the Y-direction. The AP-side common pad 62 is formed to extend from an upper end of the common electrode 61 to an inner side surface of the AP-side tail portion 51e in the Y-direction. That is, the lower end portion of the AP-side common pad 62 is connected to the common electrode 61 in the discharge channel 54. The upper end portion of the AP-side common pad 62 is terminated on the inner side surface of the AP-side tail portion 51e in the Y-direction. The AP-side common pad 62 is connected to the common electrode 61. As illustrated in
As illustrated in
As illustrated in
As illustrated in
The cover plate 52 is formed of a material which has insulating properties, and has thermal conductivity which is equal to or greater than that of the actuator plate 51. For example, in a case where the actuator plate 51 is formed of PZT, the cover plate 52 is preferably formed of PZT or silicon. Thus, it is possible to reduce temperature variation in the actuator plate 51 and to cause the temperature of an ink to be uniform. Thus, it is possible to cause a discharge speed of an ink to be uniform and to improve printing stability. In the embodiment, the cover plate 52 is formed of a material which has thermal conductivity which is equal to or greater than that of the flow passage plate 41.
A liquid supply passage 70 is formed in the cover plate 52. The liquid supply passage 70 penetrates the cover plate 52 in the Y-direction (third direction) and communicates with the discharge channel 54. The liquid supply passage 70 includes a common ink room 71 and a plurality of slits 72. The common ink room 71 is formed in a manner that the inner side of the cover plate 52 is opened in the Y-direction. The plurality of slits 72 communicate with the common ink room 71. The slits 72 are opened in the outer side of the cover plate 52 in the Y-direction and are disposed to be spaced from each other in the X-direction. The common ink room 71 individually communicates with the discharge channels 54 through the slit 72, respectively. The common ink room 71 does not communicate with the non-discharge channel 55.
As illustrated in
The slits 72 are formed in the CP-side-Y-direction outer side surface 52f1. The slits 72 are disposed at positions which face the common ink room 71 in the Y-direction. The slit 72 communicates with the common ink room 71 and the discharge channel 54. The width of the slit 72 in the X-direction is substantially equal to the width of the discharge channel 54 in the X-direction.
In the cover plate 52, a common electrode 65 (referred to as “an in-liquid-supply-passage electrode 65” below) is formed on the inner surface of the liquid supply passage 70. That is, the in-liquid-supply-passage electrode 65 is formed in the entirety of the common ink room 71 and in the entirety of the slit 72.
As illustrated in
The CP-side common pad 66 faces the AP-side common pad 62 in the Y-direction. As illustrated in
As illustrated in
As illustrated in
As illustrated in
A cover plate-side individual wiring 69 (referred to as “a CP-side individual wiring 69” below) is formed in the cover plate 52. The CP-side individual wiring 69 is formed to be divided in the X-direction, at the upper end portion of the CP-side-Y-direction outer side surface 52f1. The CP-side individual wiring 69 includes a cover plate-side individual pad 69a (referred to as “a CP-side individual pad 69a” below) and an individual terminal 69b. The CP-side individual pad 69a is disposed at a position corresponding to the AP-side individual wiring 64 when the actuator plate 51 and the cover plate 52 are bonded to each other. The individual terminal 69b is formed in a manner that the individual terminal 69b is inclined to be positioned outwardly in the X-direction as coming to the upper side from the CP-side individual pad 69a, and then the individual terminal 69b extends to have a straight-line shape.
That is, when the actuator plate 51 and the cover plate 52 are bonded to each other, the CP-side individual pad 69a and the AP-side individual wiring 64 are electrically connected to each other. A plurality of CP-side individual pads 69a are arranged at a distance in the X-direction. The distance (array pitch) between two CP-side individual pads 69a which are adjacent to each other is substantially constant. The plurality of CP-side individual pads 69a and a plurality of CP-side common pads 66 face each other one by one in the Z-direction. In other words, each of the CP-side individual pads 69a and each of the CP-side common pads 66 are disposed to be aligned on a straight line in the Z-direction.
The individual terminal 69b extends to the upper end of the CP-side tail portion 52e on the outer side surface thereof in the Y-direction. Thus, the individual electrode 63 formed in the inner surface of each of the non-discharge channels 55 is electrically connected to the flexible substrate 45 (see
A plurality of individual terminals 69b are arranged to be spaced from each other in the X-direction. The distance (array pitch) between two individual terminals 69b which are adjacent to each other is substantially constant. The plurality of individual terminals 69b are arranged between the plurality of common terminals 68 (common terminal groups) which are arranged in the X-direction. The array pitch between the individual terminals 69b and the array pitch between the common terminals 68 are substantially equal to each other.
Arrangement Relationship of Pair of Actuator Plates
As illustrated in
The discharge channel 54 and the non-discharge channel 55 of the second head chip 40B are arranged so as to be shifted in the X-direction by the half pitch of the array pitch between the discharge channel 54 and the non-discharge channel 55 of the first head chip 40A. That is, the discharge channels 54 of the head chips 40A and 40B are arranged in zigzags, and the non-discharge channel 55 of the head chips 40A and 40B are arranged in zigzags.
That is, as illustrated in
The flow passage plate 41 is sandwiched between the first head chip 40A and the second head chip 40B in the Y-direction. The flow passage plate 41 is formed by an assembly of a plurality of members. As illustrated in
The flow passage plate 41 corresponds to a member 100 which includes a base material 101 and a filler 103. The filler 103 is buried in a space 102 provided in the base material 101 and has cuttability which is better than that of the base material 101. That is, the member 100 constitutes the flow passage plate 41 in the ink jet head 5. The base material 101 and the filler 103 have a plurality of cut surfaces F obtained by being cut along the same plane. The base material 101 and the filler 103 are exposed together in the cut surface F. The plurality of cut surfaces F includes an upper surface and a lower surface of the flow passage plate 41, and one end surface and the other end surface thereof in the X-direction. Among the plurality of cut surfaces F, the lower surface of the flow passage plate 41 also functions as a bonding surface to which the return plate (second member) 43 is bonded. In the embodiment, a portion (the base material 101 portion) of the member 100 is included in the parent material 130 (see
The filler 103 is cut easier than the base material 101. The filler 103 is provided at both end portions of the cut surface F. Specifically, the filler 103 is provided at both end portions of the upper surface of the flow passage plate 41 in the X-direction and at both end portions of the lower surface of the flow passage plate 41 in the X-direction, among the plurality of cut surfaces F. In other words, the filler 103 is provided at both upper and lower end portions of one end surface of the flow passage plate 41 in the X-direction and at both upper and lower end portions of the other end surface of the flow passage plate 41 in the X-direction. The filler 103 is disposed on an outer circumference of the cut surface (bonding surface) F, so as to surround the flow passages (inlet flow passage 74 and outlet flow passage 75) in the flow passage plate 41.
Openings 74a, 75a, and 75b for causing an ink (liquid) to flow are formed at at least a portion of the cut surface F. Specifically, the openings 74a, 75a, and 75b are formed in surfaces other than the upper surface of the flow passage plate 41 among the plurality of cut surfaces F. That is, the openings 74a, 75a, and 75b are respectively formed in the lower surface of the flow passage plate 41, one end surface thereof in the X-direction, and the other end surface thereof in the X-direction among the plurality of cut surfaces F. The opening 74a of the inlet flow passage 74 is formed on the one end surface of the flow passage plate 41 in the X-direction. The openings 75a and 75b of the outlet flow passage 75 are respectively formed in the lower surface of the flow passage plate 41 and the other end surface of the flow passage plate 41 in the X-direction.
It is difficult to cut the base material 101 in comparison to the filler 103. In the embodiment, the base material 101 is brittler than the filler 103. Here, “brittleness” means that a cut target is easily collapsed by an external force applied during working. That is, it is difficult to cut the base material 101 because the base material 101 is brittler than the filler 103. For example, the base material 101 is any one or more substances selected from the group consisting of carbon (carbon fiber reinforced plastic: CFRP), silicon (Si), silicon dioxide (SiO2), and boron nitride (BN).
It is also difficult to adhere the base material 101 in comparison to the filler 103. A contact angle of the base material 101 with water is greater than a contact angle of the filler 103 with water. That is, the filler 103 has water repellency which is better than that of the base material 101. Specifically, the contact angle of the base material 101 with water is equal to or greater than 90 degrees and equal to or smaller than 180 degrees. A method of measuring the contact angle is performed by using a contact angle meter (model DM-401) manufactured by Kyowa Interface Science Co., LTD.
For example, the base material 101 is any one or more substances selected from the group consisting of carbon (carbon fiber reinforced plastic: CFRP), polyethylene (PE), polypropylene (PP), polyacetal (POM), and fluororesin.
The filler 103 has adhesiveness which is better than that of the base material 101. Here, an expression of “being excellent adhesiveness” means being able to withstand a force which is larger than an external force which causes members to be separated from each other on an adhering surface after adhering, without being separated. The contact angle of the filler 103 with water is smaller than the contact angle of the base material 101 with water. That is, the filler 103 has hydrophilicity which is better than that of the base material 101. Specifically, the contact angle of the filler 103 with water is equal to or greater than 0 degree and smaller than 90 degrees.
For example, the filler 103 is any one or more kinds of materials selected from the group consisting of an adhesive, resist, rubber, plastic, and a hardenable material.
For example, the adhesive includes a resin adhesive, a silicon adhesive, a rubber adhesive, and a hot melt type adhesive.
As the resist, permanent resist is provided. For example, the resist includes photoresist, screen printing resist, and etching resist.
For example, the rubber includes synthetic rubber such as nitrile rubber and acrylic rubber.
For example, the hardenable material includes thermosetting resin and photocurable resin.
The CP-side-Y-direction inner side surface 52f2 in the first head chip 40A is bonded to a first main surface 41f1 (surface directed toward the first head chip 40A) of the flow passage plate 41 in the Y-direction. The CP-side-Y-direction inner side surface 52f2 in the second head chip 40B is bonded to a second main surface 41f2 (surface directed toward the second head chip 40B) of the flow passage plate 41 in the Y-direction.
The flow passage plate 41 is formed of a material which has insulating properties, and has thermal conductivity which is equal to or greater than that of the cover plate 52. For example, in a case where the cover plate 52 is formed of silicon, the flow passage plate 41 is preferably formed of silicon or carbon. Thus, it is possible to reduce temperature variation in the cover plate 52 between the head chips 40A and 40B. Therefore, it is possible to reduce temperature variation in the actuator plate 51 between the head chips 40A and 40B and to cause the temperature of an ink to be uniform. Thus, it is possible to cause a discharge speed of an ink to be uniform and to improve printing stability.
An inlet flow passage 74 and an outlet flow passage 75 are formed in each of the main surfaces 41f1 and 41f2 of the flow passage plate 41. The inlet flow passage 74 individually communicates with the common ink room 71. The outlet flow passage 75 individually communicates with the circulation passage 76 of the return plate 43. In the flow passage plate 41, the inlet flow passage 74 and the outlet flow passage 75 are formed to be arranged in the Z-direction. A portion (inlet flow-passage forming member) of the flow passage plate 41, which forms the inlet flow passage 74 is formed of a material having thermal conductivity which is equal to or greater than that of the actuator plate 51. A portion (outlet flow-passage forming member) of the flow passage plate 41, which forms the outlet flow passage 75 is formed of a material having thermal conductivity which is equal to or greater than that of the actuator plate 51. In the embodiment, a portion (main body portion) of the flow passage plate 41, which corresponds to the base material 101 is integrally formed of the same member, and is formed of a material having thermal conductivity which is equal to or greater than that of the cover plate 52.
The inlet flow passage 74 is recessed from each of the main surfaces 41f1 and 41f2 of the flow passage plate 41 toward the inner side thereof in the Y-direction. One end portion of the inlet flow passage 74 in the X-direction is opened in one end surface of the flow passage plate 41 in the X-direction. The inlet flow passage 74 is inclined to be positioned downwardly, as coming to the other end side thereof in the X-direction from one end surface of the flow passage plate 41 in the X-direction. Then, the inlet flow passage 74 is bent toward the other end side thereof in the X-direction, and extends to have a straight-line shape. As illustrated in
The inlet flow passage 74 stores an inlet liquid storage unit 74s that temporarily stores an ink before the ink flows into the common ink room 71. As illustrated in
As illustrated in
As illustrated in
The outlet flow passage 75 is connected to the outlet manifold (not illustrated) on the other end surface of the flow passage plate 41 in the X-direction. The outlet manifold is connected to the ink discharge tube 22 (see
The outlet flow passage 75 includes an outlet liquid storage unit 75s which temporarily stores an ink flowing out from the circulation passage 76. As illustrated in
As illustrated in
When the section in
As illustrated in
The appearance of the return plate 43 is a rectangular plate shape which is long in the X-direction and is short in the Y-direction. The return plate 43 is collectively bonded to lower end surfaces of the head chips 40A and 40B and the flow passage plate 41. In other words, the return plate 43 is disposed on the opening end side of the discharge channels 54 in the first head chip 40A and the second head chip 40B. The return plate 43 is a spacer plate which is interposed between the opening ends of the discharge channels 54 in the first head chip 40A and the second head chip 40B, and the upper end of the nozzle plate 44. A plurality of circulation passages 76 that respectively connect the discharge channels 54 in the head chips 40A and 40B to the outlet flow passage 75 are formed in the return plate 43. The plurality of circulation passages 76 include first circulation passages 76a and second circulation passages 76b. The plurality of circulation passages 76 penetrate the return plate 43 in the Z-direction.
As illustrated in
The first circulation passage 76a extends in the Y-direction. The inner side end portion of the first circulation passage 76a in the Y-direction is positioned on an inner side from the CP-side-Y-direction inner side surface 52f2 of the first head chip 40A in the Y-direction. The inner side end portion of the first circulation passage 76a in the Y-direction communicates with the inside of the outlet flow passage 75. The outer side end portion of the first circulation passage 76a in the Y-direction individually communicates with the inside of the corresponding discharge channel 54 in the first head chip 40A.
The cross-sectional area obtained when a portion of the discharge channel 54 in the first head chip 40A, which faces the return plate 43 is cut out at a plane which is orthogonal to the flowing direction of an ink is referred to as “a channel-side flow passage cross-sectional area” below. Here, the portion of the discharge channel 54 in the first head chip 40A, which faces the return plate 43 means a portion (boundary portion) at which the discharge channel 54 and the first circulation passage 76a are in contact with each other. That is, the channel-side flow passage cross-sectional area means an opening area of a downstream side end of the discharge channel 54 of the first head chip 40A in the flowing direction of an ink.
The cross-sectional area obtained when the first circulation passage 76a is cut out at a plane which is orthogonal to the flowing direction of an ink is referred to as “a circulation passage-side flow passage cross-sectional area” below. That is, the circulation passage-side flow passage cross-sectional area means a cross-sectional area when the first circulation passage 76 is cut out at a plane which is orthogonal to an extension direction of the first circulation passage 76.
In the embodiment, the circulation passage-side flow passage cross-sectional area is smaller than the channel-side flow passage cross-sectional area. Thus, in comparison to a case where the circulation passage-side flow passage cross-sectional area is greater than the channel-side flow passage cross-sectional area, it is possible to suppress the occurrence of so-called crosstalk (crosstalk from the circulation passage 76 side) in which pressure fluctuation in the channel, which occurs, for example, when an ink is discharged propagates as a pressure wave, to another channel and the like through the flow passage. Thus, it is possible to obtain excellent discharge performance (printing stability).
As illustrated in
The second circulation passage 76b extends in the Y-direction. The inner side end portion of the second circulation passage 76b in the Y-direction is positioned on an inner side from the CP-side-Y-direction inner side surface 52f2 of the second head chip 40B in the Y-direction. The inner side end portion of the second circulation passage 76b in the Y-direction communicates with the inside of the outlet flow passage 75. The outer side end portion of the second circulation passage 76b in the Y-direction individually communicates with the inside of the corresponding discharge channel 54 in the second head chip 40B.
As illustrated in
As illustrated in
As illustrated in
Meanwhile, the non-discharge channel 55 does not communicate with the nozzle holes 78a and 78b, and is covered from a lower part by the return plate 43.
Next, an operation method of the printer 1 in a case where letters, figures, or the like are recorded on a recording medium P by using the printer 1 will be described.
A state where the four ink tanks 4 illustrated in
As illustrated in
Since the inks of four colors are appropriately discharged to the recording medium P by the ink jet heads 5 during a period when the carriage 33 moves with reciprocating, letters, an image, or the like can be recorded on a recording medium P.
Here, motion of each of the ink jet heads 5 will be described.
In a vertical circulation type ink jet head 5 in the edge shoot type as in the embodiment, firstly, the pressure pump 24 and the suction pump 25 illustrated in
If moving with reciprocating is started by the carriage 33 (see
If the volume of the discharge channel 54 is increased by the deformation of the two drive walls 56, an ink in the common ink room 71 is guided into the discharge channel 54 through the corresponding slits 72. The ink guided into the discharge channel 54 propagates in the discharge channel 54 in a form of a pressure wave. The driving voltage applied between the electrodes 61 and 63 reaches the zero at a timing when the pressure wave reaches the nozzle hole 78.
Thus, the drive wall 56 is restored, and the volume of the discharge channel 54, which has been temporarily increased returns to the original volume.
With this operation, pressure in the discharge channel 54 is increased, and thus the ink is pressurized. As a result, it is possible to discharge the ink from the nozzle hole 78. At this time, when the ink passes through the nozzle hole 78, the ink is discharged in a form of an ink droplet having a droplet shape. Thus, as described above, letters, an image, or the like can be recorded on the recording medium P.
The operation method of the ink jet head 5 is not limited to the above-described details. For example, a configuration in which the drive wall 56 in a normal state is deformed to the inner side of the discharge channel 54, and thus the discharge channel 54 is, for example, recessed toward the inner side thereof may be made. In this case, this configuration may be realized by setting the voltage applied between the electrodes 61 and 63 to a voltage reversed to the above-described voltage, or by setting the polarization direction of the actuator plate 51 to be reversed without changing the applied direction of the voltage. In addition, a pressurized force of an ink when being discharged may increase in a manner that the discharge channel 54 is deformed bulging outwardly, and then deforms recessed to the inner side.
Next, a manufacturing method of the ink jet head 5 will be described. The manufacturing method of the ink jet head 5 in the embodiment includes a head chip production step, a flow-passage plate production step, a various-plate bonding step, and a return-plate-and-like bonding step. The head chip production step may be performed for the head chips 40A and 40B, by using the similar method. Thus, in the following descriptions, the head chip production step for the first head chip 40A will be described.
In the embodiment, the head chip production step includes a wafer preparation step, a mask pattern forming step, a channel forming step, and an electrode forming step, as steps on the actuator plate side.
As illustrated in
Then, the front surface (one piezoelectric wafer 110a) of the actuator wafer 110 is ground. In the embodiment, a case where the piezoelectric wafers 110a and 110b having the same thickness are stuck to each other is described. However, piezoelectric wafers 110a and 110b having a thickness different from each other may be stuck to each other in advance.
As illustrated in
As illustrated in
The order of the steps in the mask pattern forming step and the channel forming step which are described above may be reversed so long as the mask pattern 111 can be formed to have a desired shape. In the above-described mask pattern forming step, the mask material at a portion positioned in a region of forming the discharge channels 54 and the non-discharge channels 55 may be removed in advance.
The electrode forming step includes a degreasing step, an etching step, a lead leaching step, a catalyst impartation step, a mask removal step, a plating step, and a plating film removal step.
In the degreasing step, contaminants such as oils and fats, which are attached to the actuator wafer 110 are removed.
In the etching step, the actuator wafer 110 is etched by an ammonium fluoride solution or the like. Thus, an adhesive force between a plating film formed in the plating step, and the actuator wafer 110 is improved.
In the lead leaching step, in a case where the actuator wafer 110 is formed of PZT, lead in the front surface of the actuator wafer 110 is removed. Thus, a catalyst suppression effect of lead on the surface of the actuator wafer 110 is suppressed.
For example, the catalyst impartation step is performed by a sensitizer and activator method. As illustrated in
The catalyst impartation step may be performed by a method other than the above-described sensitizer and activator method. For example, the catalyst impartation step may be performed by a catalyst accelerator method. In the catalyst accelerator method, the actuator wafer 110 is immersed in a colloidal solution of tin and palladium. Then, the actuator wafer 110 is immersed in an acidic solution (for example, hydrochloric acid solution) so as to be activated. Thus, metal palladium is precipitated on the front surface of the actuator wafer 110.
Then, as illustrated in
As illustrated in
As illustrated in
Instead of the laser beam L, a dicer may be used. The plating film removal step is not limited to removing of the portion of the metal film 114, which is positioned on the bottom surface of the non-discharge channel 55. For example, in a catalyst removal step, a portion of the catalyst 113, which is positioned on the bottom surface of the non-discharge channel 55 may be removed. Specifically, in the catalyst removal step, scanning with a laser beam L may be performed in the Z-direction, in a state where the bottom surface of the non-discharge channel 55 is irradiated with the laser beam L. Thus, the portion of the catalyst 113, which is irradiated with the laser beam L may be selectively removed.
Then, the mounting tape 112 is peeled off, and the actuator wafer 110 is fragmented by using a dicer or the like. Accordingly, the above-described actuator plate 51 (see
In the embodiment, the head chip production step includes a common ink room forming step, a slit forming step, a recess portion forming step, and an electrode-and-wiring forming step, as steps of the cover plate side.
As illustrated in
As illustrated in
In the recess portion forming step, as illustrated in
Each of the common ink room forming step, the slit forming step, and the recess portion forming step is not limited to sand blasting, and may be performed by dicing, cutting, or the like.
Then, as illustrated in
Specifically, in the electrode-and-wiring forming step, as illustrated in
After the electrode-and-wiring forming step ends, the mask is removed from the entire surface of the cover plate 52.
The actuator plates 51 are bonded to the cover plates 52, and thereby the head chips 40A and 40B are produced. Specifically, the AP-side-Y-direction inner side surface 51f1 is stuck to the CP-side-Y-direction outer side surface 52f1.
Flow-passage Plate Production Step
The flow-passage plate production step in the embodiment includes a cutting method in the embodiment. The cutting method in the embodiment includes a parent material forming step of forming the parent material 130 which includes the base material 101 and in which the space 102 is formed, a filler burying step of burying the filler 103 having cuttability which is better than that of the base material 101, in the space 102, and a parent material cutting step of cutting the parent material 130 along the same plane so as to cause the base material 101 and the filler 103 to be exposed to the cut surface F together. In the embodiment, the parent material 130 corresponds to a flow passage wafer 130. For example, carbon is used as a material of forming the base material 101 (flow passage wafer 130).
In the embodiment, the parent material forming step includes a flow passage forming step of forming the inlet flow passage 74 and the outlet flow passage 75, and a space-and-like forming step of forming a through-hole 132 which function as the space 102, and a groove 133 which is lined up with the through-hole 132.
As illustrated in
In addition, in the flow passage forming step (flow passage forming step of the back surface side), sand blasting or the like is performed on the flow passage wafer 130 from the back surface side, through a mask (not illustrated), and thereby the inlet flow passage 74 and the outlet flow passage 75 are formed. Each of the steps in the flow passage forming step is not limited to sand blasting, and may be performed by dicing, cutting, and the like.
In the space-and-like forming step, sand blasting or the like is performed on the flow passage wafer 130 from the front surface side or the back surface side, through a mask (not illustrated), and thereby the through-hole 132 which functions as the space 102 and the groove 133 which is lined up with the through-hole 132 are formed. Each of the steps in the flow passage forming step is not limited to sand blasting, and may be performed by dicing, cutting, and the like. The space-and-like forming step may be performed in a step which is the same as the flow passage forming step.
In the space-and-like forming step, the through-hole 132 which penetrates the flow passage wafer 130 in the Y-direction is formed, for example, between two inlet flow passages 74 which are adjacent to each other in the Z-direction. In the space-and-like forming step, the groove 133 which is recessed toward the inner side of the flow passage wafer 130 in the Y-direction is formed at both ends of the flow passage wafer 130 in the X-direction. That is, the groove 133 is formed such that an opening end of the groove 133 is positioned at a cutting start position J1 and a cutting end position J2 of the flow passage wafer 130.
In the filler burying step, the filler 103 is buried in the through-hole 132 and the groove 133 in the flow passage wafer 130. In the embodiment, the filler 103 is buried in the entirety of the through-hole 132 and the groove 133. In the filler burying step, the filler 103 is provided at the cutting start position J1 and the cutting end position J2 of the flow passage wafer 130. For example, a resin adhesive is used as the filler 103. For example, the adhesive is caused to flow into the through-hole 132 and the groove 133 in the flow passage wafer 130, and then is cured.
Then, in the parent material cutting step, the flow passage wafer 130 is fragmented by using dicing or the like. Specifically, the flow passage wafer 130 is cut along the X-direction central axis (virtual line D1) of the groove 133. Then, the flow passage wafer 130 is cut along a Z-direction axis (virtual line D2) of the through-holes 132 which are positioned at both ends thereof in the X-direction. The flow passage wafer 130 is cut along the virtual lines D1 and D2, and thus a cut surface of the flow passage wafer 130 and a cut surface of the filler 103 (cured adhesive) appear in the same plane. Thus, the flow passage plate 41 (see
The parent material cutting step is not limited to dicing, and may be performed by laser, sand blasting, or the like.
Cutting the flow passage wafer 130 becomes easy or different, for example, depending on compatibility between the material of the flow passage wafer 130 and cutting means. Therefore, it is preferable that the material of the flow passage wafer 130, which has favorable compatibility with the cutting means is selected in accordance with the type of the cutting means.
For example, in a case where dicing is used as the cutting means, from a viewpoint of suppressing an occurrence of a situation in which a blade is pushed against the material, as the material of the flow passage wafer 130, a soft material is more preferable than a hard material such as aluminum oxide (alumina, Al2O3) and silicon carbide (SiC).
From a viewpoint of suppressing collapse or clogging of the blade, as the material of the flow passage wafer 130, a material having low hardness and low bending strength is more preferable than a material such as metal (for example, Au (gold)), which has ductile or than a material such as resin and glass, which has stickiness.
For example, in a case where laser is used as the cutting means, reflectivity and the like have an influence on easy cutting. Thus, as the material of the flow passage wafer 130, resin having low reflectivity is more preferable than metal.
For example, in a case where sand blasting is used as the cutting means, from a viewpoint of suppressing sinking of an abrasive material, as the material of the flow passage wafer 130, a material having low hardness and low bending strength is more preferable than a soft material such as resin.
Examples of the material having low hardness and low bending strength include a material which includes a component such as mica, which has high cleavability and a material which has a layered structure (carbon, boron nitride).
Then, as illustrated in
Thus, a plate bonded body 5A is produced.
After all the plates in a wafer state are stuck to each other, chip division (fragmentation) may be performed.
Then, the return plate 43 and the nozzle plate 44 are bonded to the plate bonded body 5A. Specifically, the upper surface of the return plate 43 is adhered to opening end surfaces of the discharge channels 54 in the plate bonded body 5A. That is, the return plate 43 is bonded to the lower surface (bonding surface) of the flow passage plate 41, which is one of cut surfaces.
Then, the upper surface of the nozzle plate 44 is adhered to the lower surface of the return plate 43. Then, the flexible substrate 45 (see
With the above steps, the ink jet head 5 in the embodiment is completed.
As described above, the member 100 according to the embodiment is formed by being cut from the parent material 130, and has a cut surface F. The member 100 includes the base material 101 and the filler 103. The base material 101 is included in the parent material 130. The filler 103 is buried in the space 102 provided in the parent material 130 and has cuttability which is better than that of the base material 101. The base material 101 and the filler 103 are exposed to the cut surface F together.
According to the embodiment, the base material 101 and the filler 103 are exposed to the cut surface F together. Thus, in comparison to a case where the parent material 130 is configured only by the base material 101, it is possible to secure a large area of the filler 103 having cuttability which is better than that of the base material 101, in the cut surface F of the parent material 130, and to reduce a load when the parent material 130 is cut. Accordingly, it is possible to provide the member 100 which can be easily cut from the parent material 130 and in which it is possible to improve precision for the cut surface F.
In the embodiment, the filler 103 is provided at both end portions of the cut surface F.
According to the embodiment, in comparison to a case where the filler 103 is provided only at one end portion of the cut surface F, it is possible to secure a large area of the filler 103 having cuttability which is better than that of the base material 101, in the cut surface F of the parent material 130, and to reduce a load when the parent material 130 is cut. In addition, it is possible to reduce a load on a portion at which cutting starts and a portion at which cutting ends, when the parent material 130 is cut. Accordingly, it is possible to more easily cut the member 100 from the parent material 130. In the embodiment, it is possible to secure a large area of the filler 103 having adhesiveness which is better than that of the base material 101, at both the end portions of the cut surface F. Thus, it is possible to further improve adhesiveness between the cut surface F of the member 100 (in the embodiment, the lower surface of the flow passage plate 41) and the second member (in the embodiment, return plate 43).
In the embodiment, the member 100 corresponds to the flow passage plate 41 in the ink jet head 5, and the openings 74a, 75a, and 75b for causing an ink to flow are formed at at least the portion of the cut surface F.
According to the embodiment, since the member 100 which can be easily cut from the parent material 130 (in the embodiment, flow passage wafer 130) is used as the flow passage plate 41 in the ink jet head 5, there is advantages in that manufacturing efficiency of the flow passage plate 41 and product precision are improved.
In the embodiment, the base material 101 is brittler than the filler 103.
According to the embodiment, even in a case where the base material 101 is brittler than the filler 103, it is possible to secure a large area of the filler 103 having cuttability which is better than that of the base material 101, in the cut surface F of the parent material 130. Thus, it is possible to reduce a load when the parent material 130 is cut. Accordingly, this configuration is preferable from a viewpoint of suppressing an occurrence of a situation in which the member is broken or crushed due to brittleness of the base material 101 and cutting the member 100 from the parent material 130 further easily.
In the embodiment, the base material 101 is any one or more substances selected from the group consisting of carbon, silicon, silicon dioxide, and boron nitride.
According to the embodiment, the configuration is preferable from a viewpoint of suppressing the occurrence of a situation in which the member 100 is broken or crushed due to brittleness of the base material 101 and cutting the member 100 from the parent material 130 further easily.
In the embodiment, the cut surface F also functions as the bonding surface to which the second member (in the embodiment, return plate 43) is bonded, and the filler 103 has adhesiveness which is better than that of the base material 101.
According to the embodiment, in comparison to a case where the member 100 is configured of only the base material 101, it is possible to secure a large area of the filler 103 having adhesiveness which is better than that of the base material 101, in the cut surface F (in the embodiment, the lower surface of the flow passage plate 41) of the member 100, which also functions as the bonding surface for the second member. Thus, it is possible to improve adhesiveness between the cut surface F (in the embodiment, the lower surface of the flow passage plate 41) of the member 100 and the second member (in the embodiment, return plate 43). Accordingly, it is possible to prevent an occurrence of leakage such as ink leakage. In the embodiment, even in a case where the opening 75a is provided in the cut surface F (in the embodiment, the lower surface of the flow passage plate 41) of the member 100, it is possible to improve adhesiveness between the lower surface of the flow passage plate 41 and the return plate 43. Thus, it is possible to avoid an occurrence of a situation in which the adhering portion is peeled off by an influence of an external force, pressure (when an ink is pressurized), and the like. In particular, in the embodiment, the filler 103 is disposed on the outer circumference of the bonding surface so as to surround the flow passages (inlet flow passage 74 and outlet flow passage 75) in the flow passage plate 41. Thus, it is possible to more effectively avoid the occurrence of a situation in which the adhering portion is peeled off by an influence of an external force, pressure (when an ink is pressurized), and the like.
In the embodiment, the filler 103 is any one or more kinds of materials selected from the group consisting of an adhesive, resist, rubber, plastic, and a hardenable material.
According to the embodiment, the configuration is preferable from a viewpoint of improving adhesiveness between the cut surface F of the member 100 (in the embodiment, the lower surface of the flow passage plate 41) and the second member (in the embodiment, return plate 43). In the embodiment, even in a case where the base material 101 is brittler than the filler 103, if the filler 103 is the above-described substance, it is possible to improve shape maintainability of the member 100 after the parent material 130 has been cut, because the filler 103 has shape maintainability which is better than that of the base material 101.
In the embodiment, the base material 101 is any one or more substances selected from the group consisting of carbon, polyethylene, polypropylene, polyacetal, and fluororesin.
According to the embodiment, since the base material 101 has adhesiveness lower than that of the filler 103, the configuration is preferable from a viewpoint of improving adhesiveness between the cut surface F of the member 100 (in the embodiment, the lower surface of the flow passage plate 41) and the second member (in the embodiment, return plate 43).
In the embodiment, the ink jet head 5 includes the pair of actuator plates 51, the return plate 43, and the flow passage plate 41. The pair of actuator plates 51 are disposed to face each other in the Y-direction. In the actuator plate 51, the plurality of channels 54 and 55 which extend in the Z-direction are arranged at a distance in the X-direction. The return plate 43 is disposed on the opening end side of the channels 54 and 55 in the pair of actuator plates 51. In the return plate 43, the circulation passages 76 which respectively communicate with the channels 54 and 55 are formed. The flow passage plate 41 is disposed between the pair of actuator plates 51. In the flow passage plate 41, the inlet flow passage 74 into which an ink flows and the outlet flow passage 75 which communicates with the circulation passages 76 are arranged in the Z-direction. The flow passage plate 41 corresponds to the above-described member 100. The flow passage plate 41 and the return plate 43 are bonded to each other on the cut surface F.
According to this configuration, in the two-row type ink jet head 5 in which the flow passage plate 41 corresponds to the above-described member 100, it is possible to easily produce the flow passage plate 41 and to improve precision of the cut surface. Thus, it is possible to improve manufacturing efficiency and product precision. In the embodiment, it is possible to secure a large area of the filler 103 having adhesiveness which is better than that of the base material 101, at both the end portions of the cut surface F of the member 100. Thus, it is possible to further improve adhesiveness between the flow passage plate 41 and the return plate 43.
In the embodiment, in the ink jet head 5, the inlet flow passage 74 stores the inlet liquid storage unit 74s which temporarily stores an ink before the ink flows into the common ink room 71, and extends in the X-direction.
According to the embodiment, since the inlet liquid storage unit 74s which extends in the X-direction is provided, it is possible to transfer heat through the ink. Thus, it is easy to cause the temperature of the actuator plate 51 to be uniform.
In the embodiment, in the ink jet head 5, the outlet flow passage 75 includes the outlet liquid storage unit 75s which temporarily stores an ink flowing out from the circulation passage 76 and extends in the X-direction.
According to the embodiment, since the outlet liquid storage unit 75s which extends in the X-direction is provided, it is possible to transfer heat through the ink. Thus, it is easy to cause the temperature of the actuator plate 51 to be uniform. In the embodiment, since the inlet liquid storage unit 74s and the outlet liquid storage unit 75s (two liquid storage units 74s and 75s) are provided, it is easy to cause the temperature of the actuator plate 51 to be uniform, in comparison to a case where any one of the inlet liquid storage unit 74s and the outlet liquid storage unit 75s is provided.
In the embodiment, in the ink jet head 5, the inlet flow passage 74 is opened in the one end surface of the flow passage plate 41 in the X-direction.
According to the embodiment, in comparison to a case where the inlet flow passage 74 is opened in the one end surface of the flow passage plate 41 in the Z-direction, it is possible to reduce the length of the ink jet head 5 in the Z-direction, on the inflow side of an ink. In comparison to a case where the inlet flow passage 74 is opened in the one end surface of the flow passage plate 41 in the Y-direction, it is possible to reduce the thickness (length of the ink jet head 5 in the Y-direction) of the ink jet head 5 on the inflow side of an ink.
In the embodiment, in the ink jet head 5, the outlet flow passage 75 is opened in the other end surface of the flow passage plate 41 in the X-direction.
According to the embodiment, in comparison to a case where the outlet flow passage 75 is opened in the one end surface of the flow passage plate 41 in the Z-direction, it is possible to reduce the length of the ink jet head 5 in the Z-direction, on the outflow side of an ink. In comparison to a case where the outlet flow passage 75 is opened in the one end surface of the flow passage plate 41 in the Y-direction, it is possible to reduce the thickness (length of the ink jet head 5 in the Y-direction) of the ink jet head 5 on the outflow side of an ink. In the embodiment, since the inlet flow passage 74 is opened in the one end surface of the flow passage plate 41 in the X-direction and the outlet flow passage 75 is opened in the other end surface of the flow passage plate 41 in the X-direction, high practical benefit is obtained in that the length of the ink jet head 5 in the Z-direction and the thickness (length of the ink jet head 5 in the Y-direction) of the ink jet head 5 are reduced.
In the embodiment, in the ink jet head 5, when the cross-sectional area when a portion of the channels 54 and 55, which faces the return plate 43 is cut out at a plane which is orthogonal to the flowing direction of an ink is set to be the channel-side flow passage cross-sectional area, and the cross-sectional area when the circulation passage 76 is cut out at the plane which is orthogonal to the flowing direction of an ink is set to be the circulation passage-side flow passage cross-sectional area, the circulation passage-side flow passage cross-sectional area is smaller than the channel-side flow passage cross-sectional area.
According to the embodiment, in comparison to a case where the circulation passage-side flow passage cross-sectional area is greater than the channel-side flow passage cross-sectional area, it is possible to suppress the occurrence of so-called crosstalk (crosstalk from the circulation passage 76 side) in which pressure fluctuation in a channel, which occurs, for example, when an ink is discharged propagates as a pressure wave, to another channel and the like through the flow passage. Thus, it is possible to obtain excellent discharge performance (printing stability).
In the embodiment, in the ink jet head 5, an inlet flow-passage partition wall 41a which partitions the inlet flow passage 74 into one side of the pair of actuator plates 51 and the other side thereof in the Y-direction is provided in the flow passage plate 41.
According to the embodiment, pressure fluctuation in the channel, which occurs when an ink is discharged is blocked by the inlet flow-passage partition wall 41a. Accordingly, it is possible to suppress the occurrence of so-called crosstalk in which the pressure fluctuation propagates as a pressure wave, to another channel and the like through the flow passage between the actuator plates 51. Thus, it is possible to obtain excellent discharge performance (printing stability).
In the embodiment, in the ink jet head 5, an outlet flow-passage partition wall 41b which partitions the outlet flow passage 75 into one side of the pair of actuator plates 51 and the other side thereof in the Y-direction is provided in the flow passage plate 41.
According to the embodiment, pressure fluctuation in the channel, which occurs when an ink is discharged is blocked by the outlet flow-passage partition wall 41b. Accordingly, it is possible to suppress the occurrence of so-called crosstalk in which the pressure fluctuation propagates as a pressure wave, to another channel and the like through the flow passage between the actuator plates 51. Thus, it is possible to obtain excellent discharge performance (printing stability).
In the embodiment, in the ink jet head 5, the inlet flow-passage forming member of the flow passage plate 41, which forms the inlet flow passage 74 is formed of a material having thermal conductivity which is equal to or greater than that of the actuator plate 51.
According to the embodiment, it is possible to reduce temperature variation at a portion of a part between the actuator plates 51, which overlaps the inlet flow-passage forming member of the flow passage plate 41 in the Y-direction, and to cause the temperature of an ink to be uniform. Thus, it is possible to cause a discharge speed of an ink to be uniform and to improve printing stability.
In the embodiment, in the ink jet head 5, the outlet flow-passage forming member of the flow passage plate 41, which forms the outlet flow passage 75 is formed of a material having thermal conductivity which is equal to or greater than that of the actuator plate 51.
According to the embodiment, it is possible to reduce temperature variation at a portion of a part between the actuator plates 51, which overlaps the outlet flow-passage forming member of the flow passage plate 41 in the Y-direction, and to cause the temperature of an ink to be uniform. Thus, it is possible to cause a discharge speed of an ink to be uniform and to improve printing stability.
In the embodiment, in the ink jet head 5, the portion (main body portion) of the flow passage plate 41, which corresponds to the base material 101 is integrally formed of the same member.
According to the embodiment, in comparison to a case where the portion (main body portion) of the flow passage plate 41, which corresponds to the base material 101 is formed by an assembly of a plurality of members, it is possible to reduce manufacturing man-hours of the flow passage plate 41. In addition, in comparison to a case where the main body portion of the flow passage plate 41 is formed by an assembly of a plurality of members, it is possible to improve dimensional accuracy of the flow passage plate 41. In the embodiment, since the entirety of the main body portion of the flow passage plate 41 is formed of a material having thermal conductivity which is equal to or greater than that of the actuator plate 51, it is possible to reduce temperature variation at a portion of a part between the actuator plates 51, which overlaps the main body portion of the flow passage plate 41 in the Y-direction, and to cause the temperature of an ink to be uniform. Thus, it is possible to cause a discharge speed of an ink to be uniform and to further improve printing stability.
In the embodiment, the ink jet head 5 may further include a pair of cover plates 52 which is disposed to face each other in the Y-direction with the flow passage plate 41 interposed between the pair of cover plates 52. In the cover plate 52, the liquid supply passage 70 which penetrates the cover plate 52 in the Y-direction and communicates with the channels 54 and 55 is formed. The cover plate 52 is stacked on the AP-side-Y-direction inner side surface 51f1 so as to close the plurality of channels 54 and 55.
According to the embodiment, since the pair of cover plates 52 are further included, it is possible to concentrate flow passages of an ink, which includes the liquid supply passage 70, between the pair of actuator plates 51. Therefore, in comparison to a configuration in which an ink is introduced from the outside and the ink is brought back to the outside, it is possible to reduce the thickness (length of the ink jet head 5 in the Y-direction) of the ink jet head 5 as thin as possible.
In the embodiment, in the ink jet head 5, the cover plate 52 is formed of a material having thermal conductivity which is equal to or greater than that of the actuator plate 51 and is equal to or smaller than that of the flow passage plate 41.
According to the embodiment, it is possible to reduce temperature variation at a portion of a part between the actuator plates 51, which overlaps the cover plate 52 in the Y-direction, and to cause the temperature of an ink to be uniform. Thus, it is possible to cause a discharge speed of an ink to be uniform and to improve printing stability.
In the embodiment, in the ink jet head 5, the CP-side-Y-direction outer side surface 52f1 functions as the connection surface to which the flexible substrate 45 is connected.
According to the embodiment, in comparison to a case where the CP-side-Y-direction inner side surface 52f2 functions as the connection surface, it is possible to easily perform connection work between the flexible substrate 45 and an electrode terminal (common terminal 68 and the individual terminal 69b) on the connection surface.
In the embodiment, in the ink jet head 5, the CP-side tail portion 52e of the cover plate 52, which has the connection surface and extends out of one end surface of the actuator plate 51 in the Z-direction in a stacked state of the actuator plate 51 and the cover plate 52 may be provided in the cover plate 52. A portion of the flow passage plate 41, which overlaps the CP-side tail portion 52e in the Y-direction may be set to be the solid member 41c.
According to the embodiment, in comparison to a case the portion of the flow passage plate 41, which overlaps the CP-side tail portion 52e in the Y-direction is set to be a hollow member, it is possible to avoid poor crimping occurring by a space between members at a time of connection, when the flow passage plate 41 and the cover plate 52 are connected to each other. For example, when the flow passage plate 41 and the cover plate 52 are connected to each other, it is possible to avoid an occurrence of cracks, chipping, or the like in the flow passage plate 41.
In the embodiment, the ink jet head 5 includes the head chips 40A and 40B.
According to the embodiment, in the two-row type ink jet head 5 which includes the head chips 40A and 40B, it is possible to easily produce the flow passage plate 41 and to improve precision of the cut surface. Thus, it is possible to improve manufacturing efficiency and product precision.
The printer 1 according to the embodiment includes the above-described ink jet head 5, and moving mechanisms 2, 3, and 7 that relatively move the ink jet head 5 and a recording medium P.
According to the embodiment, in the printer 1 which includes the two-row type ink jet head 5, it is possible to easily produce the flow passage plate 41 and to improve precision of the cut surface. Thus, it is possible to improve manufacturing efficiency and product precision. In addition, it is possible to reduce the thickness and the weight of the ink jet head 5. Since the thickness of the ink jet head 5 is reduced, the ink jet head 5 easily operates. Thus, it is possible to improve convenience. Since the weight of the ink jet head 5 is reduced, required power of a driving source such as a motor is reduced. Thus, low power consumption, reduction in size of a motor, and the like are realized, and thus it is possible to reduce cost.
The cutting method in the embodiment includes a parent material forming step of forming the parent material 130 which includes the base material 101 and in which the space 102 is formed, a filler burying step of burying the filler 103 having cuttability which is better than that of the base material 101, in the space 102, and a parent material cutting step of cutting the parent material 130 along the same plane so as to cause the base material 101 and the filler 103 to be exposed to the cut surface F together.
According to the embodiment, the parent material 130 is cut along the same plane so as to cause the base material 101 and the filler 103 to be exposed to the cut surface F together. Thus, in comparison to a case where the parent material 130 is configured only by the base material 101, it is possible to secure a large area of the filler 103 having cuttability which is better than that of the base material 101, in the cut surface F of the parent material 130, and to reduce a load when the parent material 130 is cut. Accordingly, it is possible to provide the member 100 which can be easily cut from the parent material 130 and in which it is possible to improve precision for the cut surface F.
In the embodiment, in the filler burying step, the filler 103 is provided at the cutting start position J1 and the cutting end position J2 of the parent material 130.
According to the embodiment, in comparison to a case where the filler 103 is provided at only one of the cutting start position J1 and the cutting end position J2 of the parent material 130, it is possible to secure a large area of the filler 103 having cuttability which is better than that of the base material 101, in the cut surface F of the parent material 130, and to reduce a load when the parent material 130 is cut. In addition, it is possible to reduce a load on a portion at which cutting starts and a portion at which cutting ends, when the parent material 130 is cut. Accordingly, it is possible to more easily cut the member 100 from the parent material 130.
The technical range of the present invention is not limited to the above-described embodiment. Various modifications may be added in a range without departing from the gist of the present invention.
For example, in the above-described embodiment, as an example of the liquid ejecting apparatus, the ink jet printer 1 is described as an example. However, it is not limited to the printer. For example, a fax machine, an on-demand printer, and the like may be used as the liquid ejecting apparatus.
In the above-described embodiment, the two-row type ink jet head 5 in which two rows of nozzle holes 78 are arranged is described. However, it is not limited thereto. For example, an ink jet head 5 in which the number of rows of nozzle holes is equal to or greater than three may be provided, or an ink jet head 5 in which one row of nozzle holes is arranged may be provided.
In the above-described embodiment, a configuration in which the discharge channels 54 and the non-discharge channels 55 are alternately arranged is described. However, it is not limited to only this configuration. For example, the present invention may be applied to a so-called three-cycle type ink jet head in which an ink is discharged from all channels in order.
In the above-described embodiment, a configuration in which the Chevron type is used as the actuator plate is described. However, it is not limited thereto. That is, an actuator plate of a monopole type (polarization direction is one in the thickness direction) may be used.
In the above-described embodiment, a configuration in which the inlet flow passage 74 is opened in the one end surface of the flow passage plate 41 in the X-direction is described. However, it is not limited to only this configuration.
For example, the inlet flow passage 74 may be opened in one end surface of the flow passage plate 41 in the Z-direction, or the inlet flow passage 74 may be opened in one end surface of the flow passage plate 41 in the Y-direction.
In the above-described embodiment, a configuration in which the outlet flow passage 75 is opened in the outer end surface of the flow passage plate 41 in the X-direction is described. However, it is not limited to only this configuration. For example, the outlet flow passage 75 may be opened in one end surface of the flow passage plate 41 in the Z-direction, or the outlet flow passage 75 may be opened in one end surface of the flow passage plate 41 in the Y-direction.
In the above-described embodiment, a configuration in which the circulation passage-side flow passage cross-sectional area is smaller than the channel-side flow passage cross-sectional area is described. However, it is not limited to only this configuration. For example, the circulation passage-side flow passage cross-sectional area may be set to be equal to or greater than the channel-side flow passage cross-sectional area.
In the above-described embodiment, a configuration in which the CP-side-Y-direction outer side surface 52f1 functions as the connection surface of the flexible substrate 45 is described. However, it is not limited to only this configuration. For example, the CP-side-Y-direction inner side surface 52f2 may function as the connection surface.
In the above-described embodiment, a configuration in which the portion of the flow passage plate 41, which overlaps the CP-side tail portion 52e in the Y-direction is set to be the solid member 41c is described. However, it is not limited to only this configuration. For example, the portion of the flow passage plate 41, which overlaps the CP-side tail portion 52e in the Y-direction may be set to be a hollow member.
In the above-described embodiment, a configuration in which the flow passage plate 41 is formed by an assembly of a plurality of members is described. However, it is not limited to only this configuration. For example, the flow passage plate 41 may be integrally formed by the same member.
In the above-described embodiment, a configuration in which the main body portion (base material 101) of the flow passage plate 41 is integrally formed by the same member is described. However, it is not limited to only this configuration. For example, the main body portion (base material 101) of the flow passage plate 41 may be formed by an assembly of a plurality of members.
In the above-described embodiment, a configuration in which the parent material 130 corresponds to the flow passage wafer 130 is described. However, it is not limited to only this configuration. For example, the parent material 130 may include a wafer other than the flow passage wafer 130. That is, the base material 101 may be included at at least a portion of the parent material 130.
In the above-described embodiment, a configuration in which the member 100 includes the base material 101 and the filler 103 which is buried in the space 102 provided in the base material 101 and has cuttability which is better than that of the base material 101 is described. However, it is not limited to only this configuration. For example, the member 100 may not include the filler 103 and include only the base material 101 in which the space 102 is formed.
In the above-described embodiment, a configuration in which the portion (the base material 101 portion) of the member 100 is included in the parent material 130 is described. However, it is not limited to only this configuration. For example, the entirety of the member 100 may be included in the parent material 130. That is, at least a portion of the member 100 may be included in the parent material 130.
In the above-described embodiment, a configuration in which the flow passage plate 41 corresponds to the member 100 is described. However, it is not limited to only this configuration. For example, the actuator plate 51 may correspond to the member 100. The component (such as the cover plate 52) other than the flow passage plate 41 in the ink jet head 5 may correspond to the member 100. A component other than the ink jet head 5 (other than the printer 1) in an apparatus may correspond to the member 100.
In the above-described embodiment, a configuration in which the base material 101 is a single member is described. However, it is not limited to only this configuration. For example, the base material 101 may have a multilayer laminated structure.
In the above-described embodiment, a configuration in which the space 102 is formed of a simple substrate (single layer) is described. However, it is not limited to only this configuration. For example, the space 102 may be configured by multiple layers. That is, the space 102 may correspond to a gap between boundary surfaces in the base material 101 having a laminated structure. The space 102 also includes a case where the space 102 is formed of two materials or more which includes the base material 101. For example, the space 102 includes a through-hole, a bottomed hole, a groove, a slit, and the like which are provided in the base material 101, and also further includes a space formed between the base materials 101.
In the above-described embodiment, a configuration in which the filler 103 is buried in the entirety of the space 102 is described. However, it is not limited to only this configuration. For example, the filler 103 may be buried at a portion of the space 102. That is, the filler 103 may be buried at at least a portion of the space 102.
In the above-described embodiment, a configuration in which the base material 101 is brittler than the filler 103 is described. However, it is not limited to only this configuration. For example, the base material 101 may be harder than the filler 103. That is, it is difficult to cut the base material 101 because the base material 101 is harder than the filler 103. Specifically, the Mohs hardness of the base material 101 is equal to or greater than 7 and equal to or smaller than 10. The new Mohs hardness (corrected Mohs hardness) of the base material 101 is equal to or greater than 8 and equal to or smaller than 15.
For example, the base material 101 is any one or more substances selected from the group consisting of silicon (Si), silicon carbide (SiC), aluminum oxide (alumina, Al2O3), gallium nitride (GaN), lithium tantalate (LT), lithium niobate (LN), and ceramics.
From a viewpoint of increasing hardness of the member 100, it is considered that the base material 101 is set to be harder than the filler 103 in the member 100. However, in a case where the base material 101 is set to be harder than the filler 103, it may be more difficult to cut the base material 101.
On the contrary, according to this configuration, even in a case where the base material 101 is set to be harder than the filler 103, it is possible to secure a large area of the filler 103 having cuttability which is better than that of the base material 101 in the cut surface F of the parent material 130. Thus, it is possible to reduce a load when the parent material 130 is cut. Accordingly, this configuration is preferable from a viewpoint of increasing hardness of the member 100 and further easily cutting the member 100 from the parent material 130.
The base material 101 is more preferable the above-described substance, from a viewpoint of increasing hardness of the member 100 and further easily cutting the member 100 from the parent material 130.
The base material 101 may be brittler and harder than the filler 103. That is, since the base material 101 is brittler and harder than the filler 103, the base material 101 may be difficult to cut the base material 101.
Examples of determination criteria of cuttability include the lifespan of a tool, a cutting temperature, a chip, cutting resistance, a finished surface, and a working time. Specifically, as the lifespan of a tool becomes shorter or unstable, the lifespan of a tool influences deterioration of cuttability more largely. As the cutting temperature is increased, the cutting temperature influences deterioration of cuttability more largely. As the chip is stretched or vibrates largely, the chip influences deterioration of cuttability more largely. As the cutting resistance becomes higher, the cutting resistance influences deterioration of cuttability more largely. As burrs easily appear on the finished surface, this influences deterioration of cuttability more largely. As the working time becomes longer, the working time influences deterioration of cuttability more largely.
In the following modification examples, components which are the same as those in the embodiment are denoted by the same reference signs, and descriptions thereof will not be repeated.
For example, as illustrated in
A clearance groove 81 (referred to as “an electrode clearance groove 81” below) of the transverse common electrode 80 may be formed in the inner side surface of the AP-side tail portion 51e in the Y-direction. In the electrode clearance groove 81, a portion of the inner side surface of the AP-side tail portion 51e in the Y-direction, which is positioned between the AP-side common pad 62 and the AP-side individual wiring 64 extends in the X-direction. The electrode clearance groove 81 faces the transverse common electrode 80 in the Y-direction. The electrode clearance groove 81 is disposed at a position corresponding to that of the transverse common electrode 80 when the actuator plate 51 and the cover plate 52 are bonded to each other. That is, when the actuator plate 51 and the cover plate 52 are bonded to each other, the transverse common electrode 80 is disposed in the electrode clearance groove 81.
In this modification example, the transverse common electrode 80 which is connected to the plurality of CP-side common pads 66 and extends in the X-direction is formed on the CP-side-Y-direction outer side surface 52f1.
According to this modification example, it is possible to preliminarily connect the plurality of CP-side common pads 66 by the transverse common electrode 80. Thus, it is possible to improve reliability for electrical connection of the plurality of CP-side common pads 66, in comparison to a case where the plurality of CP-side common pads 66 are connected to only the in-liquid-supply-passage electrode 65.
In this modification example, the electrode clearance groove 81 which extends in the X-direction and faces the transverse common electrode 80 in the Y-direction is formed in the inner side surface of the AP-side tail portion 51e in the Y-direction.
According to this modification example, when the actuator plate 51 and the cover plate 52 are bonded to each other, the transverse common electrode 80 can be accommodated in the electrode clearance groove 81. Thus, it is possible to avoid an occurrence of short circuit between the electrode on the actuator plate 51 side (for example, AP-side individual wiring 64), and the transverse common electrode 80.
For example, as illustrated in
The common lead wiring 67 extends upwardly on the CP-side-Y-direction inner side surface 52f2 from the upper end of the common ink room 71 along the CP-side-Y-direction inner side surface 52f2. Then, the common lead wiring 67 is drawn up to the upper end portion of the CP-side-Y-direction outer side surface 52f1 through the through-hole 90 at the upper end portion of the cover plate 52. In other words, the common lead wiring 67 is drawn up to the outer side surface of the CP-side tail portion 52e in the Y-direction, through a through-electrode 91 in the through-hole 90. Thus, common electrodes 61 formed on the inner surface of each of the plurality of discharge channels 54 is electrically connected to the flexible substrate 45 in the common terminal 68, through the AP-side common pad 62, the CP-side common pad 66, the in-liquid-supply-passage electrode 65, and the common lead wiring 67.
For example, the through-electrode 91 is formed only on an inner circumferential surface of the through-hole 90 by vapor deposition or the like. The through-hole 90 may be full with the through-electrode 91 by using a conductive paste or the like.
In this modification example, the plurality of through-holes 90 which penetrate the cover plate 52 in the Y-direction and are arranged to be spaced from each other in the X-direction are formed at the upper end portion of the CP-side tail portion 52e. The common lead wiring 67 is connected to the in-liquid-supply-passage electrode 65 and the flexible substrate 45 through the through-hole 90.
According to this modification example, in comparison to a case where the common lead wiring 67 is connected to the in-liquid-supply-passage electrode 65 and the flexible substrate 45 along the recess portion 73 (see
In addition, in the range without departing from the gist of the present invention, the components in the above-described embodiment may be appropriately substituted with known components, or the above-described modification examples may be appropriately combined.
Number | Date | Country | Kind |
---|---|---|---|
2017-018238 | Feb 2017 | JP | national |