This application is based upon and claims the benefit of priority from the corresponding Japanese Patent Application No. 2013-107643, filed on May 22, 2013, the entire contents of which are incorporated herein by reference.
The present disclosure relates to a member moving mechanism that connects two members and that, by moving one member, causes the other member to move, and to image forming apparatuses, such as copiers and printers, that include such a member moving mechanism.
Some image forming apparatuses such as printers have a mechanism (member moving mechanism) in which a member provided inside a cabinet of an image forming apparatus is moved in conjunction with opening of a cover member. In such a member moving mechanism, a link or a wire is used as a connecting member for connecting two members. With such a member moving mechanism, it is possible to move one member so as to cause the other member to move via the connecting member.
A known example of such a member moving mechanism employs a belt member to connect first and second moving members designed to reciprocate in different directions and is also provided with a guide member for guiding the belt member such that a moving direction of the belt member is changed at least once, and thereby, it is possible to dispose the belt member as the connecting member with a higher degree of freedom and to facilitate the assembly of the member moving mechanism.
According to one aspect of the present disclosure, a member moving mechanism includes a moving member, a moved member, a belt member, a belt-member guide member, an openable-closable cover, a first biasing member, and a second biasing member. The moving member is movable in a first positive direction and a first negative direction that is opposite to the first positive direction. The moved member moves in a second positive direction that is different from both the first positive and negative directions in conjunction with movement of the moving member in the first positive direction, and the moved member moves in a second negative direction that is opposite to the second positive direction in conjunction with movement of the moving member in the first negative direction. The belt member connects the moving member to the moved member. The belt-member guide member regulates a moving direction of the belt member. The openable-closable cover is engaged with the moving member. The first biasing member biases the moved member in the second negative direction. The second biasing member has a biasing force that is larger than that of the first biasing member, and biases the moving member in the first positive direction. When the openable-closable cover moves in an opening direction, the moving member is caused to move in the first positive direction by the biasing force of the second biasing member, and when the openable-closable cover moves in a closing direction, the moving member moves in the first negative direction against the biasing force of the second biasing member.
Still other objects and specific advantages of the present disclosure will become apparent from the following descriptions of preferred embodiments.
These and/or other aspects and advantages of the invention will become apparent and more readily appreciated from the following description of the embodiments, taken in conjunction with the accompanying drawings of which:
Hereinafter, embodiments of the present disclosure will be described with reference to the accompanying drawings.
The image forming apparatus 1 includes the apparatus main body M, an image forming section GK that forms a predetermined toner image on paper T as a transfer material in the form of sheet based on predetermined image information, and a paper feeding/ejecting section KH that feeds the paper T to the image formation section GK and ejects the paper T after the toner image is formed on the paper T. The exterior shape of the apparatus main body M is constituted by a case body BD as a cabinet.
As shown in a
In the image forming section GK, charging by the charging section 10, exposure by the LSU 4, development by the developing device 16, transfer by the transfer roller 8, and neutralization by the neutralizer 12, and cleaning by the drum cleaning section 11 are sequentially performed in order with respect to the surface of the photosensitive drum 2.
The photosensitive drum 2 is configured with, for example, an aluminum drum element tube and a photosensitive layer laid thereon, and disposed to be rotatable in a direction indicated by an arrow about a shaft extending in a direction orthogonal to a direction in which paper T is conveyed through a paper conveying path L. The photosensitive drum 2 has its photosensitive layer charged by the charging section 10, which will be described later, and then, the photosensitive layer is irradiated with a laser beam from the LSU 4 such that an electrostatic latent image is formed through attenuation of electric charge. Preferred as the photosensitive layer is, for example, but not limited to, amorphous silicon (a-Si), which is high in durability, or an organic photosensitive layer (OPC), which produces little ozone in charging and contributes to a high-resolution image.
The charging section 10 is disposed to face the surface of the photosensitive drum 2, and uniformly charges the surface of the photosensitive drum 2 either negatively (negative polarity) or positively (positive polarity). The LSU 4 is disposed apart from the surface of the photosensitive drum 2, and includes a laser light source, a polygon mirror, a polygon mirror driving motor, and the like, none of which are illustrated in the drawings.
The developing device 16 causes toner to adhere to an electrostatic latent image formed on the photosensitive layer of the photosensitive drum 2 to form a toner image thereon, and is provided with, for example, a developing roller 17 that is disposed facing the surface of the photosensitive drum 2 and an agitating roller 18 for agitating toner. Toner is supplied to the developing device 16 from a toner cartridge 5 via a toner supply section 6. It should be noted that a single-component developer (henceforth referred to simply as toner as well) composed only of magnetic toner component is accommodated in the developing device 16.
The transfer roller 8 transfers the toner image formed on the surface of the photosensitive drum 2 onto a sheet of paper without disturbing the toner image. The sheet of paper is conveyed along the paper conveying path L to the transfer roller 8. An unillustrated transfer-bias applying section applies to the transfer roller 8 a transfer bias having a polarity opposite to that of the toner.
The neutralizer 12 is disposed to face the surface of the photosensitive drum 2. The neutralizer 12 irradiates the surface of the photosensitive drum 2 with light to thereby neutralize (neutralize electric charge of) the surface of the photosensitive drum 2 after the transfer of the toner image is performed by the transfer roller 8.
The cleaning section 11 is provided with, for example, a cleaning roller and a cleaning blade which are in linear contact with the photosensitive drum 2 along the longitudinal direction thereof. The cleaning section 11 removes attached matter remaining on the surface of the photosensitive drum 2, such as residual toner and toner external additives, after the toner image is transferred onto the paper T.
The fixing section 9 fixes the toner image on the paper T by melting, and applying pressure to, the toner of the toner image that has been transferred onto the paper T. The fixing section 9 is provided with a heating roller 9a to which heat is applied by a heater, and a pressing roller 9b that is pressed against the heating roller 9a. The paper T is conveyed while being nipped in a nip section (fixing nip section) between the heating roller 9a and the pressing roller 9b, and thereby the toner transferred onto the paper T is melted and pressed to be fixed on the paper T.
Next, a description will be given of the paper feeding/ejecting section KH. As shown in a
A sheet of paper T placed on the paper stacking plate 60 is sent into the paper conveying path L by a cassette paper feeding section 51 that is disposed at an end portion on a paper-feeding side of the paper cassette 52 (an end portion on the right side in
The apparatus main body M is provided with a manual paper feeding section 64 on the front side (the right side in
The apparatus main body M is provided with a paper ejecting section 50 at an upper portion thereof. In the paper ejecting section 50, the paper T is ejected to outside the apparatus main body M by a third roller pair 53. Details of the paper ejecting section 50 will be described later.
The paper conveying path L through which the paper T is conveyed is provided with a first paper conveying path L1 extending from the cassette paper feeding section 51 to a transfer nip N, a second paper conveying path L2 extending from the transfer nip N to the fixing section 9, a third paper conveying path L3 extending from the fixing section 9 to the paper ejecting section 50, the manually-fed paper conveying path La that leads the paper T fed from the manual paper feeding section 64 into the first paper conveying path L1, and a return paper conveying path Lb where the paper conveyed from a downstream side to an upstream side through the third paper conveying path L3 is turned upside down and led back into the first paper conveying path L1 in an upside-down state.
Moreover, in the middle of the first paper conveying path L1, a first junction portion P1 and a second junction portion P2 are provided. In the middle of the third paper conveying path L3, a first branching portion Q1 is provided. The first junction portion P1 is where the manually-fed paper conveying path La joins the first paper conveying path L1. The second junction portion P2 is where the return paper conveying path Lb joins the first paper conveying path L1. The first branching portion Q1 is where the return paper conveying path Lb branches off the third paper conveying path L3, and the first branching portion Q1 has a first roller pair 54a and a second roller pair 54b. The first and second roller pairs 54a and 54b share a common roller.
In the middle of the first paper conveying path L1 (specifically, between the second junction portion P2 and the transfer roller 8), there are disposed a sensor for detecting the paper T, as well as a regist roller pair 80 for correcting skew (diagonal feeding) of the paper T, and for adjusting timing of feeding the paper T with respect to the formation of a toner image in the image forming section GK. The sensor is disposed immediately before the regist roller pair 80 in a conveying direction in which the paper T is conveyed (on an upstream side in the conveying direction). The regist roller pair 80 performs the skew correction and the timing adjustment based on detection-signal information received from the sensor, and conveys the paper T.
The return paper conveying path Lb is a paper conveying path provided for the purpose of causing another side (unprinted side) of the paper T that is a side opposite to a side on which printing has already been performed to face the photosensitive drum 2 in a case of performing a double-side printing on the paper T. Through the return paper conveying path Lb, it is possible to reverse and convey the paper T, which is conveyed from the first branching portion Q1 to the paper ejecting section 50 by the first roller pair 54a, back into the first paper conveying path L1 with the second roller pair 54b, and to convey the paper T to an upstream side of the regist roller pair 80 disposed upstream from the transfer roller 8. In the transfer nip N, a predetermined toner image is transferred onto the unprinted side of the paper T turned over through the return paper conveying path Lb.
The paper ejecting section 50 is provided at an end portion of the third paper conveying path L3. The paper ejecting section 50 is disposed at an upper side in the apparatus main body M. The paper ejecting section 50 is open toward the front side of the apparatus main body M (the right side in
On the open side of the paper ejecting section 50, an ejected paper stacking section M1 is provided. The ejected paper stacking section M1 is provided at an upper face (exterior face) of the apparatus main body M. The ejected paper stacking section M1 is formed as a downward depression in the upper face of the apparatus main body M. A bottom face of the ejected paper stacking section M1 is formed of a top cover member M2 as an opening and closing member which constitutes part of the upper face of the apparatus main body M. Sheets of paper T having a predetermined toner image formed thereon and having been ejected from the paper ejecting section 50 are stacked on the upper face of the top cover member M2 where the ejected paper stacking section M1 is formed. It should be noted that a paper-detecting sensor (not shown) is disposed in a predetermined position of each paper conveying path.
In the image forming apparatus 1 of the present embodiment, as shown in
Next, a description will be given of an image forming operation of the image forming apparatus 1 of the present embodiment. In the image forming operation, first, in the image forming section GK, the charging section 10 uniformly charges the surface of the photosensitive drum 2, and then, based on image information received from an external device such as a personal computer (PC), the LSU 4 irradiates a laser beam (light rays) onto the surface of the photosensitive drum 2 to thereby form an electrostatic latent image thereon based on the image data. Thereafter, the developing device 16 causes toner to adhere to the electrostatic latent image to form a toner image.
Toward the image forming section GK where the toner image has been formed as described above, a sheet of paper T is conveyed from the paper cassette 52 (or the manual paper feeding tray 65), through the paper conveying path L and the regist roller pair 80 at a predetermined timing. In the image forming section GK, the toner image on the surface of the photosensitive drum 2 is transferred onto the sheet of paper T by the transfer roller 8. Subsequently, the sheet of paper T onto which the toner image has been transferred is removed from the photosensitive drum 2 to be conveyed to the fixing section 9, where heat and pressure are applied to the sheet of paper T, and thereby the toner image is fixed on the sheet of paper T.
In which way the sheet of paper T is to be conveyed after the fixing section 9 is determined by the first branching portion Q1. In a case where an image is formed on one side alone, the sheet of paper T is directly ejected by the third roller pair 53 through the paper ejecting section 50 onto the ejected paper stacking section M1.
On the other hand, in a case where an image is formed on each side of the sheet of paper T, the sheet of paper T is once conveyed toward the third roller pair 53 after passing through the fixing section 9, but after an rear edge of the sheet of paper T passes the first branching portion Q1, the third roller pair 53 is made to rotate reversely such that the sheet of paper T is led backward into the return paper conveying path Lb, to be conveyed back to the regist roller pair 80 with its sides turned over. Then, a next image formed on the photosensitive drum 2 is transferred onto the unprinted side of the sheet of paper T by the transfer roller 8, and then, after the sheet of paper T is conveyed to the fixing section 9 for the toner image to be fixed thereon, the sheet of paper T is ejected through the paper ejecting section 50 onto the ejected paper stacking section M1.
As shown in
The moved member 120 moves in directions different from both the first positive and negative directions D11 and D12, specifically, in a second positive direction D21 (which is a direction orthogonal to the first positive and negative directions D11 and D12) or in a second negative direction D22 which is opposite to the second positive direction D21.
The belt member 130 is a belt-shaped member connecting the moving member 110 to the moved member 120. The belt member 130 is formed of a flexible sheet material. As a result, it is possible to reduce the flexural radius of the belt member 130, and thus to insert and dispose the belt member 130 through a small gap or the like. Thus, it is possible to reduce the space for installing the belt member 130, and thus to achieve a compact member moving mechanism 100. Examples of the belt member 130 include a plastic member such as polyethylene terephthalate (PET), an elastic member such as rubber, and a metal member. A thickness of the belt member 130 is 1 mm or less, for example.
As shown in
It should be noted that the one end portion and the other end portion of the belt member 130 in its longitudinal direction have a similar configuration, and also, the connected portion 111 of the moving member 110 and the connected portion 121 of the moved member 120 have a similar configuration. Hence, in each of
In the one end portion of the belt member 130 in the longitudinal direction, to a connection portion between the belt member 130 and the connected portion 111 of the moving member 110, there is attached an elastically fittable connection retaining clip 150. Likewise, in the other end portion of the belt member 130 in the longitudinal direction, to a connection portion between the belt member 130 and the connected portion 121 of the moved member 120, there is attached another elastically fittable connection retaining clip 150.
The connection retaining clip 150 has the following: a first plate portion 151 that is in elastic contact with an exterior surface of the belt member 130 between the two first holes 131 or between the two second holes 132; a second plate portion 152 that is in elastic contact with an interior surface of the connected portion 111 or of the connected portion 121, and a plate connecting portion 153 that connects the plate portions 151 and 152 to each other. The connection retaining clips 150 are each formed by bending a spring plate material.
As shown in
With this configuration, a very simple connection is achieved between the moving member 110 and the belt member 130 and between the moved member 120 and the belt member 130 in terms of structure and assembly. Thus, it is possible to reduce production cost of the member moving mechanism 100 as a whole.
Next, descriptions will be given of a linkage structure between the top cover member M2 in the image forming apparatus 1 and the member moving mechanism 100 that operates in conjunction with the opening and closing of the top cover member M2, and of a linkage structure between the member moving mechanism 100 and a cleaning member 190 connected o the moved member 120 in the member moving mechanism 100.
As shown in
As shown in
The moved member 120 is provided with a cutout hole 123. The cutout hole 123 is provided in order not to block light emitted through the light transmitting window 161 of the optical sensor 160 when the moved member 120 is positioned at its original position (home position), that is, when the top cover member M2 is closed. The moved member 120 is provided with a wiper 190 that is attached, as a cleaning member, to a lower face of the moved member 120 in the vicinity of the cutout hole 123.
Since the member moving mechanism 100 is provided with the above configuration, in conjunction with the movement of the moved member 120 in the second positive direction D21 and the second negative direction D22, the wiper 190 moves back and forth in sliding contact with the light transmitting window 161 of the optical sensor 160 to clean the light transmitting window 161 as a target of cleaning.
On the other hand, as shown in
More specifically, the belt-member guide member 140 is constituted by an arc-shaped first guide member 141 and a second guide member 142 that is U-shaped in section. The first guide member 141 is in sliding contact with one face of the belt member 130 to turn the belt member 130 so as to change the moving direction of the belt member 130 by substantially 90 degrees, from a moving direction in which a back-face side of the belt member 130 moves horizontally in a position along a vertical plane to another moving direction in which a front-face side of the belt member 130 moves downward in a position along a vertical plane. The second guide member 142 is in sliding contact with one face of the belt member 130, and changes the moving direction of the belt member 130 by substantially 90 degrees, from a downward moving direction to a moving direction in which the front and back faces of the belt member 130 move horizontally in a position along a horizontal plane.
As shown in
As shown in
As shown in
As shown in
Since the member moving mechanism 100 is configured as described above, in conjunction with rotation of the top cover member M2 in the opening direction (clockwise direction in
Next, with reference to
When the top cover member M2 is in a closed state, the boss 113 of the moving member 110 is pressed by the engagement piece 175 to be located at one end (right end in
In this state, when the top cover member M2 rotates in the opening direction (clockwise direction in
In conjunction with the movement of the moving member 110 in the first positive direction D11, the moved member 120, which is connected to the moving member 110 via the belt member 130, moves in the second positive direction D21. In conjunction with the moved member 120 thus moving in the second positive direction D21, the wiper 190 moves in the same direction (the second positive direction D21) to slide on, and thereby clean, the light transmitting window 161 of the optical sensor 160.
Further, in conjunction with the moved member 120 moving in the second positive direction D21, the first coil spring 182 is pulled and stretched. As a result, a biasing force is generated (charged) to move the moved member 120 in the second negative direction D22.
Then, when the top cover member M2 rotates in the closing direction (counterclockwise direction in
In conjunction with movement of the moving member 110 in the first negative direction D12, the biasing force of the first coil spring 182 causes the moved member 120 to move in the second negative direction D22. In conjunction with the movement of the moved member 120 in the second negative direction D22, the wiper 190 moves in the same direction (the second negative direction D22) to slide on, and thereby clean, the light transmitting window 161 of the optical sensor 160 again.
As has been discussed above, according to the member moving mechanism 100 of the present embodiment, by adopting the belt member 130 that is excellent in flexibility as a member for connecting the moving member 110 to the moved member 120, it is possible to make it easier to avoid interference of the belt member 130 with various drive units and mechanisms such that the degree of freedom in installation of the belt member 130 is increased. Besides, since the bending direction of the belt member 130 is easily determined, it is easy to install the belt member 130 in assembling the member moving mechanism 100.
Moreover, the member moving mechanism 100 of the present embodiment includes the first coil spring 182 that applies a biasing force to the second moving member 120 in the second negative direction D22, and the second coil spring 176 that applies a biasing force to the moving member 110 in the first positive direction D11. With this configuration, a biasing force is applied to the belt member 130 in a pulling direction via the moving member 110, and thus, it is possible to reduce slack of the belt member 130.
Moreover, the first coil spring 182 is able to utilize movement of the moved member 120 in the second positive direction D21 to thereby generate (store) a biasing force to cause the moved member 120 to move back in the second negative direction D22. Thus, it is possible to provide a simple and very inexpensive structure of a drive section of the member moving mechanism 100 for moving the moving member 110 and the moved member 120 back and forth in positive and negative directions.
Moreover, in the member moving mechanism 100 of the present embodiment, the biasing force of the second coil spring 176 is set to be larger than that of the first coil spring 182. This allows the boss 113 of the moving member 110 to press the engaging piece 175 of the top cover member M2 in the first positive direction D11 (opening direction). And, when the top cover member M2 rotates in the opening direction, the moving member 110 is caused to move in the first positive direction D11 by the biasing force of the second coil spring 176; and when the top cover member M2 rotates in the closing direction, the moving member 110 moves in the first negative direction D12 against the biasing force of the second coil spring 176.
With this configuration, the second coil spring 176 applies a biasing force to the top cover member M2 in the opening direction via the moving member 110. As a result, the biasing force of the second coil spring 176 acts as an auxiliary force in opening the top cover member M2, and this helps reduce a burden on a user in the opening operation. Furthermore, the biasing force of the second coil spring 176 acts as a damper in closing the top cover member M2, and this helps improve user safety in the closing operation. Thus, there is no need of dedicatedly providing a member as an auxiliary force giving mechanism or as a damper, and this makes it possible to reduce the number of components and the cost of the image forming apparatus 1.
Moreover, the image forming apparatus 1 of the present embodiment includes the member moving mechanism 100, the top cover member M2, the optical sensor 160, and the wiper 190 that is connected to the moved member 120 in the member moving mechanism 100 and performs cleaning of the optical sensor 160 while moving in conjunction with the movement of the moved member 120 in the second positive direction D21. Also, the moving member 110 in the member moving mechanism 100 moves in the first positive direction D11 in conjunction with opening of the top cover member M2.
Thus, according to the image forming apparatus 1 of the present embodiment, for example, it is possible to move the wiper 190 via the moving member 110, the belt member 130, and the moved member 120 of the member moving mechanism 100 in conjunction with opening and closing of the top cover member M2 of the image forming apparatus 1 performed for replacement of the toner cartridge 5 or the like, to thereby clean the light transmitting window 161 of the optical sensor 160.
Since the optical sensor 160 is disposed inside the apparatus main body M, the required number of times (frequency) of cleaning of the light transmitting window 161 is not so great. Thus, according to the present embodiment, the light transmitting window 161 is cleaned in conjunction with opening and closing of the top cover member M2, which is generally performed a number of times (frequency) that is greater than the number of times (frequency) cleaning of the light transmitting window 161 is required to be performed. As a result, it is possible to eliminate need of providing a special moving mechanism for the wiper 190, and a mechanism for counting the number of times, or frequency, of the cleaning. Moreover, it is possible to clean the light transmitting window 161 of the optical sensor 160 securely and sufficiently without forgetting to.
The second coil spring 176 is not provided, and the moving member 110 is biased by the first coil spring 182 (see
In the member moving mechanism 100 of the present embodiment, the first coil spring 182, which applies a biasing force to the moved member 120 in the second negative direction D22, applies a biasing force to the moving member 110 in the first negative direction D12 via the belt member 130. And, by the boss 113 of the moving member 110 abutting the engaging piece 175 of the top cover member M2 on the first positive direction-D11 side of the engaging piece 175, movement of the moving member 110 in the first negative direction D12 is regulated. With this configuration, a biasing force in the pulling direction is continuously applied to the belt member 130, and this makes it possible to reduce slack of the belt member 130.
Furthermore, in the member moving mechanism 100 of the present embodiment, the boss 113 of the moving member 110 presses the engaging piece 175 of the top cover member M2 in the first negative direction D12. When the top cover member M2 rotates in the opening direction, the moving member 110 is caused to move in the first negative direction D12 by the biasing force of the first coil spring 182, and when the top cover member M2 rotates in the closing direction, the moving member 110 moves in the first positive direction D11 against the biasing force of the first coil spring 182.
With this configuration, the first coil spring 182 applies a biasing force in the opening direction, via the belt member 130 and the moving member 110, to the top cover member M2. As a result, the biasing force of the first coil spring 182 acts as an auxiliary force in opening the top cover member M2, and this helps reduce a burden on the user in the opening operation. Furthermore, the biasing force of the first coil spring 182 acts as a damper in closing the top cover member M2, and this helps improve user safety in the closing operation. Thus, as in the first embodiment, there is no need of dedicatedly providing a member as an auxiliary force giving mechanism or as a damper, and this makes it possible to reduce the number of components and the cost of the image forming apparatus 1.
It should be understood that the present disclosure is not limited to the above embodiments, and various modifications are possible within the scope of the present disclosure. For example, in the above embodiments, the member moving mechanism 100 is applied to link operations between the opening and closing of the top cover member M2 and the wiper 190, but this is not meant as a limitation, and the member moving mechanism 100 may be used for linking operations between, for example, the manual paper feeding section 64 and the wiper 190.
Furthermore, the belt-member guide member 140 may change the moving direction of the belt member 130 only once, or three or more times.
Moreover, the application of the present disclosure is not limited to a monochrome printer as shown in
The present disclosure is usable in a member moving mechanism where two members are connected to each other by a belt member such that one of the two members is caused to move by moving the other. By making use of the present disclosure, it is possible to make a biasing force of a first biasing member that serves to reduce slack of a belt member act as an auxiliary force in opening an openable-closable cover or as a damper in closing the openable-closable cover. Thus, it is not necessary to provide any dedicated members for such an auxiliary force or a damper, and this helps reduce the number of components and the cost.
Although a few embodiments of the present invention have been shown and described, it would be appreciated by those skilled in the art that changes may be made in this embodiment without departing from the principles and spirit of the invention, the scope of which is defined in the claims and their equivalents.
Number | Date | Country | Kind |
---|---|---|---|
2013-107643 | May 2013 | JP | national |