This disclosure relates to methods and systems for purifying cells and/or viruses, particularly microorganisms in a sample, particularly in preparation for diagnostics systems.
Diagnostic systems that detect cells and/or viruses are of clinical and diagnostic interest. Detection of cells and/or viruses is often prevented or complicated by the presence of contaminants that interfere with collection or detection of the cells and/or viruses. This may be particularly true for cells or viruses that are adhered or fixed to a solid surface prior to detection.
Additionally, operator variability may adversely impact the quality of specimen. Specimen quality is dependent on patient factors including but not limited to differences between patients, and the presence or absence of various interfering substances. In many cases, the specimen is split and analyzed using various diagnostic tests. Therefore, purifying samples reliably and cost-effectively to remove inhomogeneities helps to improve the likelihood of relevant statistical sampling of cells and/or viruses therein.
Methods and systems for purifying one or more microorganisms are provided. In some examples, the method includes adding a biological sample containing contaminants and one or more cells (such as microbial cells), to a well disposed (e.g., present) in a porous filter medium. The porous filter medium contains pores smaller than the one or more cells (such as microbial cells), thereby preventing the one or more cells from entering the porous filter medium. In some examples, the pores are about 200 nm to about 2000 nm in diameter, such as about 200 nm, about 400 nm, about 800 nm or about 2000 nm. The porous filter medium is contacted with a buffer disposed (e.g., present) in one or more reservoirs adjacent to the porous filter medium to initiate diffusion. An electrical potential is applied across the porous filter medium to cause the contaminants to enter the porous filter medium through one or more walls of the well, while retaining the one or more cells (such as microbial cells) in the well. The cells and/or viruses can be removed from the well, and optionally adhered or fixed to a surface, or detected. In one embodiment, the microbial cells and/or viruses are retained in the well by embedding in the medium. The medium including the embedded cells and/or viruses may be excised or otherwise removed and transferred to a glass slide or other solid surface. The medium may then be cut or sectioned to correspond to the respective wells. The medium can then be dried, Gram stained, and the microbial cells/viruses detected.
Described herein are various embodiments of systems and methods for purifying cells (such as microbial cells) and/or viruses in a biological sample. A sample containing cells (such as microbial cells) and/or viruses is added to a well disposed in a medium. A potential is applied across the medium to cause contaminants to enter the medium through one or more walls of said well which retain cells (such as microbial cells) and/or viruses in the well. The cells and/or viruses can then be removed from the well. The cells and/or viruses may also remain in or on the wall of the well, and/or the wall/well may be excised for further analysis.
The systems and methods described herein may concentrate microbial cells and/or viruses from a low content specimen or sample in the wells, thereby removing or reducing potentially interfering debris and resulting in more readable specimens. For example, the disclosed methods and systems may be used in testing of CSF (cerebro-spinal fluid) specimens or other hypocellular specimens. In such samples, bacterial organisms can be localized in 5×5 field of view capture areas (100× objective magnification) to minimize time-consuming searching during microscopic examination. A system having multiple wells may also be used to support parallel processing of sample aliquots for concurrent analyses by multiple downstream methods.
An exemplary embodiment of the system is depicted in
The sample is added to a well disposed in a medium, preferably formed in the medium. In some embodiments, a plastic well may also be disposed in the medium, in addition to well(s) formed in the medium. An electrical potential is applied to the well causing contaminant material to enter the medium while the cells and/or viruses accumulate on the wall of the well. In some embodiments, the cells and/or viruses may be localized on the wall of the well. Cells and/or viruses remain in the well, thereby purifying the sample. The sample may be mixed during or after a time period of the applied electric field. In some embodiments, the process can be repeated until separation of contaminants that interfere with adhesion to a detection surface has been achieved. The well can then be rinsed, and cells and/or viruses recovered. In some embodiments, the wall of the well where the cells and/or viruses have accumulated may be excised or otherwise removed from the rest of the gel medium. Alternatively, the electrical potential can be briefly reversed in polarity to displace the cells and/or viruses from the wall prior to rinsing and recovery. Mixing, applying a potential, and/or reversing polarity of applied field can be performed iteratively to further purify the sample.
In some embodiments, the sample volume recovered is less than, and sometimes substantially less than, the initial sample volume in the wells. In one embodiment, a barrier, such as an impermeable plastic sheet, is inserted into the wells and used to reduce the volume in the wells, thereby further concentrating the cells and/or viruses in the well and providing a reduced sample volume for recovery.
Systems, including electrophoresis boxes and electrodes, can be obtained from Thermo Fisher (Waltham, Mass.) under the EC-Apparatus brand name (e.g., product number EC 250-90).
Following excision, the excised portion of the medium may be fixed, for example, for staining or extracting molecular samples for analysis. In some embodiments, and as shown in
In some embodiments, the cells and/or viruses may be localized on the wall of the well by, or with the help of, a localization device.
While
Dyes can be used in samples to pre-label or added to provide a tracking dye for purposes of a quantitative reference or sample transfer quality control indicator. Examples of dyes include colorants, bio-active adjuncts such as labeled antibodies, vital stains, mortal stains (such as propidium iodide and the like). Zwitterionic or neutrally charged dye molecules can be used to monitor electro-osmotic flow.
The potential applied across the medium effective for removal of contaminants can be applied for a variable time and is dependent on the sample conductivity. For samples retrieved using normal saline and having a conductivity near that of normal saline, for example, the potential can be applied from 1 to 60 minutes.
In some embodiments, the method includes an asymmetric alternating potential. In other embodiments, the potential is a constant potential. In various embodiments, the applied potential induces electro-osmotic flow that is used to remove contaminants having a neutral charge. The potential can be reversed in polarity to displace cells and/or viruses from the surface of the medium. In some embodiments, the method includes applying a tangential flow across the medium to remove non-permeable contaminants from the surface of the medium. The tangential flow may be applied by flowing the sample over the medium. The tangential flow may be generated using additional buffer that is not the sample. The flow can be continuously cycled over the medium.
When a sample is taken from a patient, there are various components in the sample. For example, in a patient suffering from pneumonia, a sample may include saline, anionic and cationic species, pulmonary surfactants, bacteria, mucus, blood, host cells such as white blood cells, and/or lung tissue cells. Mucus components include, but are not limited to, mucoidal glycoproteins, proteins, extra-cellular nucleic acids, F-actin, lysed white blood cell fragments. Blood components may include, but are not limited to, red cells, white cells, platelets, and plasma. Plasma components may include, but are not limited to, sugar, fat, protein and salt solution, platelets, blood clotting factors, sugars, lipids, vitamins, minerals, hormones, enzymes, antibodies, and other proteins including heme, albumins, immunoglobulins, fibrinogens, regulatory proteins, lipoproteins (chylomicrons, VLDL, LDL, HDL), transferrin, prothrombin, enzymes, proenzymes, residual antibiotics used to treat the patient, and hormones. Lung tissue components include host epithelial cells (intact or lysed). The cells in the alveolar walls of the lung produce and secrete pulmonary surfactant. Pulmonary surfactant is a mixture of phospholipids and proteins. White blood cells may also be present in lung samples. All the above components may be solubilized.
In some embodiments, the cells include blood cells, fungal cells, bacterial cells, or microorganisms including parasites. Examples of blood cells include red blood cells and white blood cells. In some variations, the white blood cells can be neutrophils.
In various embodiments, microorganisms can include bacteria, fungi, algae, and protozoa. In one aspect, the microorganisms are bacteria. The microorganisms can be pathogenic to humans and animals. Suitable microorganisms include any of those well established in the medical art and those novel pathogens and variants that emerge from time to time. Exemplary bacteria that can be detected with the disclosed methods and devices include, but are not limited to, genera such as Bacillus, Vibrio, Escherichia, Shigella, Salmonella, Mycobacterium, Clostridium, Cornyebacterium, Streptococcus, Staphylococcus, Haemophilus, Neissena, Yersinia, Pseudomonas, Chlamydia, Bordetella, Treponema, Stenotrophomonas, Acinetobacter, Enterobacter, Klebsiella, Proteus, Serratia, Citrobacter, Enterococcus, Legionella, Mycoplasma, Chlamydophila, Moraxella, Morganella, and other human pathogens encountered in medical practice. Included in the genera are various species. For example, Klebsiella includes, but is not limited to, Klebsiella pneumoniae, Klebsiella ozaenae, Klebsiella rhinoscleromatis, Klebsiella oxytoca, Klebsiella planticola, Klebsiella terrigena, and Klebsiella ornithinolytica. Examples of viruses include viroids.
Similarly, microorganisms may comprise fungi. Exemplary fungi that can be purified and/or detected with the disclosed methods and devices include, but are not limited to, genera such as Candida, Aspergillus, and other human pathogens encountered in medical practice. Exemplary viruses that can be detected with the disclosed methods and devices include, but are not limited to, orthomyxoviruses (e.g., influenza virus), paramyxoviruses (e.g., respiratory syncytial virus, mumps virus, measles virus), adenoviruses, rhinoviruses, coronaviruses, reoviruses, togaviruses (e.g., rubella virus), parvoviruses, poxviruses (e.g., variola virus, vaccinia virus), enteroviruses (e.g., poliovirus, coxsackievirus), hepatitis viruses (including hepatitis A, B, and C), herpesviruses (e.g., Herpes simplex virus, varicella-zoster virus, cytomegalovirus, Epstein-Barr virus), rotaviruses, Norwalk viruses, hantavirus, arenavirus, rhabdovirus (e.g., rabies virus), retroviruses (including HIV, HTLVI and II), papovaviruses (e.g., papillomavirus), polyomaviruses, picornaviruses, and the like.
For example, viruses that can be purified and/or detected with the disclosed methods include positive-strand RNA viruses and negative-strand RNA viruses. Exemplary positive-strand RNA viruses include, but are not limited to: Picornaviruses (such as Aphthoviridae [for example foot-and-mouth-disease virus (FMDV)]), Cardioviridae; Enteroviridae (such as Coxsackie viruses, Echoviruses, Enteroviruses, and Polioviruses); Rhinoviridae (Rhinoviruses)); Hepataviridae (Hepatitis A viruses); Togaviruses (examples of which include rubella; alphaviruses (such as Western equine encephalitis virus, Eastern equine encephalitis virus, and Venezuelan equine encephalitis virus)); Flaviviruses (examples of which include Dengue virus, West Nile virus, and Japanese encephalitis virus); Calciviridae (which includes Norovirus and Sapovirus); and Coronaviruses (examples of which include SARS coronaviruses, such as the Urbani strain). Exemplary negative-strand RNA viruses include, but are not limited to: Orthomyxyoviruses (such as the influenza virus), Rhabdoviruses (such as Rabies virus), and Paramyxoviruses (examples of which include measles virus, respiratory syncytial virus, and parainfluenza viruses).
DNA viruses that can be purified and/or detected with the disclosed methods include, but are not limited to: Herpesviruses (such as Varicella-zoster virus, for example the Oka strain; cytomegalovirus; and Herpes simplex virus (HSV) types 1 and 2), Adenoviruses (such as Adenovirus type 1 and Adenovirus type 41), Poxviruses (such as Vaccinia virus), and Parvoviruses (such as Parvovirus B19).
Retroviruses that can be purified and/or detected with the disclosed methods include, but are not limited to: human immunodeficiency virus type 1 (HIV-1), such as subtype C; HIV-2; equine infectious anemia virus; feline immunodeficiency virus (FIV); feline leukemia viruses (FeLV); simian immunodeficiency virus (SIV); and avian sarcoma virus.
Bacteria can be classified as gram-negative or gram-positive. Exemplary gram-negative bacteria that can be purified and/or detected with the disclosed methods include, but are not limited to: Escherichia coli (e.g., K-12 and O157:H7), Shigella dysenteriae, and Vibrio cholerae. Exemplary gram-positive bacteria that can be purified and/or detected with the disclosed methods include, but are not limited to: Bacillus anthracis, Staphylococcus aureus, pneumococcus, gonococcus, and streptococcal meningitis.
Examples of bacteria that can be purified and/or detected with the disclosed methods, include without limitation: Acinetobacter baumanii, Actinobacillus sp., Actinomycetes, Actinomyces sp. (such as Actinomyces israelii and Actinomyces naeslundii), Aeromonas sp. (such as Aeromonas hydrophila, Aeromonas veronii biovar sobria (Aeromonas sobria), and Aeromonas caviae), Anaplasma phagocytophilum, Alcaligenes xylosoxidans, Acinetobacter baumanii, Actinobacillus actinomycetemcomitans, Bacillus sp. (such as Bacillus anthracis, Bacillus cereus, Bacillus subtilis, Bacillus thuringiensis, and Bacillus stearothermophilus), Bacteroides sp. (such as Bacteroides fragilis), Bartonella sp. (such as Bartonella bacilliformis and Bartonella henselae, Bifidobacterium sp., Bordetella sp. (such as Bordetella pertussis, Bordetella parapertussis, and Bordetella bronchiseptica), Borrelia sp. (such as Borrelia recurrentis, and Borrelia burgdorferi), Brucella sp. (such as Brucella abortus, Brucella canis, Brucella melintensis and Brucella suis), Burkholderia sp. (such as Burkholderia pseudomallei and Burkholderia cepacia), Campylobacter sp. (such as Campylobacter jejuni, Campylobacter coli, Campylobacter lari and Campylobacter fetus), Capnocytophaga sp., Cardiobacterium hominis, Chlamydia trachomatis, Chlamydophila pneumoniae, Chlamydophila psittaci, Citrobacter sp. Coxiella burnetii, Corynebacterium sp. (such as, Corynebacterium diphtheriae, Corynebacterium jeikeum and Corynebacterium), Clostridium sp. (such as Clostridium perfringens, Clostridium difficile, Clostridium botulinum and Clostridium tetani), Eikenella corrodens, Enterobacter sp. (such as Enterobacter aerogenes, Enterobacter agglomerans, Enterobacter cloacae and Escherichia coli, including opportunistic Escherichia coli, such as enterotoxigenic E. coli, enteroinvasive E. coli, enteropathogenic E. coli, enterohemorrhagic E. coli, enteroaggregative E. coli and uropathogenic E. coli) Enterococcus sp. (such as Enterococcus faecalis and Enterococcus faecium) Ehrlichia sp. (such as Ehrlichia chafeensia and Ehrlichia canis), Erysipelothrix rhusiopathiae, Eubacterium sp., Francisella tularensis, Fusobacterium nucleatum, Gardnerella vaginalis, Gemella morbillorum, Haemophilus sp. (such as Haemophilus influenzae, Haemophilus ducreyi, Haemophilus aegyptius, Haemophilus parainfluenzae, Haemophilus haemolyticus and Haemophilus parahaemolyticus, Helicobacter sp. (such as Helicobacter pylori, Helicobacter cinaedi and Helicobacter fennelliae), Kingella kingii, Klebsiella sp. (such as Klebsiella pneumoniae, Klebsiella granulomatis and Klebsiella oxytoca), Lactobacillus sp., Listeria monocytogenes, Leptospira interrogans, Legionella pneumophila, Leptospira interrogans, Peptostreptococcus sp., Moraxella catarrhalis, Morganella sp., Mobiluncus sp., Micrococcus sp., Mycobacterium sp. (such as Mycobacterium leprae, Mycobacterium tuberculosis, Mycobacterium intracellulare, Mycobacterium avium, Mycobacterium bovis, and Mycobacterium marinum), Mycoplasm sp. (such as Mycoplasma pneumoniae, Mycoplasma hominis, and Mycoplasma genitalium), Nocardia sp. (such as Nocardia asteroides, Nocardia cyriacigeorgica and Nocardia brasiliensis), Neisseria sp. (such as Neisseria gonorrhoeae and Neisseria meningitidis), Pasteurella multocida, Plesiomonas shigelloides. Prevotella sp., Porphyromonas sp., Prevotella melaninogenica, Proteus sp. (such as Proteus vulgaris and Proteus mirabilis), Providencia sp. (such as Providencia alcalifaciens, Providencia rettgeri and Providencia stuartii), Pseudomonas aeruginosa, Propionibacterium acnes, Rhodococcus equi, Rickettsia sp. (such as Rickettsia rickettsii, Rickettsia akari and Rickettsia prowazekii, Orientia tsutsugamushi (formerly: Rickettsia tsutsugamushi) and Rickettsia typhi), Rhodococcus sp., Serratia marcescens, Stenotrophomonas maltophilia, Salmonella sp. (such as Salmonella enterica, Salmonella typhi, Salmonella paratyphi, Salmonella enteritidis, Salmonella cholerasuis and Salmonella typhimurium), Serratia sp. (such as Serratia marcesans and Serratia liquifaciens), Shigella sp. (such as Shigella dysenteriae, Shigella flexneri, Shigella boydii and Shigella sonnei), Staphylococcus sp. (such as Staphylococcus aureus, Staphylococcus epidermidis, Staphylococcus hemolyticus, Staphylococcus saprophyticus), Streptococcus sp. (such as Streptococcus pneumoniae (for example chloramphenicol-resistant serotype 4 Streptococcus pneumoniae, spectinomycin-resistant serotype 6B Streptococcus pneumoniae, streptomycin-resistant serotype 9V Streptococcus pneumoniae, erythromycin-resistant serotype 14 Streptococcus pneumoniae, optochin-resistant serotype 14 Streptococcus pneumoniae, rifampicin-resistant serotype 18C Streptococcus pneumoniae, tetracycline-resistant serotype 19F Streptococcus pneumoniae, penicillin-resistant serotype 19F Streptococcus pneumoniae, and trimethoprim-resistant serotype 23F Streptococcus pneumoniae, chloramphenicol-resistant serotype 4 Streptococcus pneumoniae, spectinomycin-resistant serotype 6B Streptococcus pneumoniae, streptomycin-resistant serotype 9V Streptococcus pneumoniae, optochin-resistant serotype 14 Streptococcus pneumoniae, rifampicin-resistant serotype 18C Streptococcus pneumoniae, penicillin-resistant serotype 19F Streptococcus pneumoniae, or trimethoprim-resistant serotype 23F Streptococcus pneumoniae), Streptococcus agalactiae, Streptococcus mutans, Streptococcus pyogenes, Group A streptococci, Streptococcus pyogenes, Group B streptococci, Streptococcus agalactiae, Group C streptococci, Streptococcus anginosus, Streptococcus equismilis, Group D streptococci, Streptococcus bovis, Group F streptococci, and Streptococcus anginosus Group G streptococci), Spirillum minus, Streptobacillus moniliformi, Treponema sp. (such as Treponema carateum, Treponema petenue, Treponema pallidum and Treponema endemicum, Tropheryma whippelii, Ureaplasma urealyticum, Veillonella sp., Vibrio sp. (such as Vibrio cholerae, Vibrio parahemolyticus, Vibrio vulnificus, Vibrio parahaemolyticus, Vibrio vulnificus, Vibrio alginolyticus, Vibrio mimicus, Vibrio hollisae, Vibrio fluvialis, Vibrio metchnikovii, Vibrio damsela and Vibrio fumisii), Yersinia sp. (such as Yersinia enterocolitica, Yersinia pestis, and Yersinia pseudotuberculosis) and Xanthomonas maltophilia among others.
Protozoa that can be detected with the disclosed methods include, but are not limited to: Plasmodium, Leishmania, Acanthamoeba, Giardia, Entamoeba, Cryptosporidium, Isospora, Balantidium, Trichomonas, Trypanosoma, Naegleria, and Toxoplasma. Exemplary fungi include, but are not limited to, Coccidiodes immitis and Blastomyces dermatitidis.
The methods and systems described herein can be used to identify host cells harboring viruses. In some examples, the cells are first purified, and subsequently the cells are manipulated to either produce viruses, or to identify nucleic acids in the cells.
The biological sample can be obtained from any number of sources, including, but not limited to, bodily fluids (including, but not limited to, blood, urine, serum, lymph, saliva, anal and vaginal secretions, perspiration, peritoneal fluid, pleural fluid, effusions, ascites, and purulent secretions, lavage fluids, drained fluids, brush cytology specimens, biopsy tissue, explanted medical devices, infected catheters, pus, biofilms and semen) of virtually any organism, including mammalian samples and human samples, as well as environmental samples (including, but not limited to, air, agricultural, water and soil samples). In addition, samples can be taken from food processing, which can include both input samples (e.g., grains, milk or animal carcasses), samples in intermediate steps of processing, as well as finished food ready for the consumer. The method can be used for veterinary applications. The methods can be also used for the analysis of milk in the diagnosis and treatment of mastitis, and the analysis of respiratory samples for the diagnosis of bovine respiratory disease. Furthermore, the methods provide for the rapid detection of the presence of potential biological warfare agents in a sample.
Biological samples can range from less than a milliliter to up to a liter for certain respiratory lavage fluids, and can further range in bacterial concentration from less than one bacterium to greater than 109 bacteria per milliliter. Furthermore, the sample can be present in blood, urine, sputum, lavage fluid or other medium. The sample can be concentrated prior to using the described methods for purifying cells and/or viruses from the sample. Sample concentration both concentrates the sample so that bacteria that are present in small numbers can all be effectively introduced into the system and adequately sampled, as well as so the background liquid medium can be normalized, or in some cases eliminated or reduced, to have consistent properties upon introduction to the system. Sample concentration can be performed by centrifugation, combining samples, removing solvents, and the like. It should be noted, however, that certain samples provided in the description can be used without concentration or other modification.
The rapid detection of various cells and/or viruses is useful for a patient suffering from various diseases and disorders. For example, pneumonia can result from a variety of causes, including infection with bacteria, viruses, fungi, or parasites, as well as chemical or physical injury to the lungs. However, some samples of cells and/or viruses contain contaminants that interfere with their detection. Purification of a microorganism (or virus or other cell), and detection of the type and amount of a microorganism (or virus or other cell) present in a sample, are helpful to diagnose and treat a patient effectively.
In other embodiments, the cells are selectively lysed. For example in the case of intracellular targets, the mammalian cells can be lysed, releasing intracellular microorganisms prior to, during, or after the purification described herein.
Contaminants
Contaminants are removed from the biological sample into the medium. Contaminants that can be removed using the disclosed methods and devices include ionic species, including, but not limited to, mono or divalent cations and anions, released intracellular materials, phospholipids, extracellular proteins, mucins, pulmonary surfactants, mucus plugs, pus, glycoproteins, and nucleic acids. Removing contaminants avoids other time intensive preparation steps such as vortexing and centrifugation. In various aspects, the removed contaminants interfere with cells (such as microbial cells) and/or virus surface immobilization, detection, and imaging. Cells and/or viruses remain in the well, and can be recovered. In certain aspects of the purification methods, certain components, such as cellular membrane fragments and larger cellular fragments, are not removed from the sample.
Medium
Organogels, xerogels, and aerogels may also be utilized as the medium. Aerogels include, but are not limited to, silica aerogel, carbon aerogels, alumina, cadmium, and selenide aerogels. Organic aerogels, such as SEAgel, are made of agar. Aerogels made of chalcogens such as sulfur, selenium, and other elements may also be of utility.
In various embodiments, the medium is a hydrogel. In some embodiments, hydrogels are a network of polymer chains that are hydrophilic. Hydrogels can be highly absorbent natural or synthetic polymers, and in some instances can contain over 99% water. In general, hydrogels are solid, yet porous media.
The concentration of the hydrogel affects the migration speed of the contaminants through the hydrogel. Increasing the concentration of the hydrogel decreases the pore size within the hydrogel. Additionally, contaminants with smaller molecules move faster and migrate further than contaminants with larger molecules.
The charge of the hydrogel also affects the migration speed of the contaminants through the hydrogel. Each contaminant molecule migrates to the electrode that carries a charge opposite of that of the contaminant molecule. Most biological materials have a net negative surface charge. Some have a net positive charge if the material has an excess of amines or other positively-charge moieties exposed to the surface. The charge is considered neutral if it is a balance of positive and negative, or uncharged, such as complexes coated with neutral materials that envelope and screen charged materials within. The uncharged material will migrate in the direction of electro-osmotic flow, if present.
The pH of the hydrogel also affects the migration speed of the contaminants and the targets. In some embodiments, the pH is selected to enhance mobility of the contaminants relative to the cells and/or viruses. In some embodiments, a pH may be selected such that the cells and/or viruses are substantially near the isoelectric point, minimizing the cells' and/or viruses' mobility relative to the contaminants. In other embodiments, the pH may be selected to be substantially different from the isoelectric point such that the direction of the cells' and/or viruses' mobility is reversed relative to the contaminants.
In some embodiments, a medium contains nutrients that promote the viability of the cells and/or viruses.
Media used in the systems described can separate contaminant molecules based on both their size and their charge.
The hydrogel's porosity is directly related to the concentration of agarose in the medium. Various levels of effective viscosity can be selected, depending on the experimental objectives.
Examples of hydrogels are alginates, as disclosed in Gadkari, 2007, “Optimal hydrogels for fast and safe delivery of bioactive compounds”, Thesis of Drexel University; ethyl-vinyl-acetate copolymer as disclosed in U.S. Pat. No. 3,854,480; esters of hydantoic acid as disclosed in U.S. Pat. No. 3,792,081, olefin saturated polyester 500-8000, polyethylene glycol (PEG) 200-1500, ethyl-vinyl-acetate copolymer 20-40% VA (20-30K), chlorinated polyethylene 25-45% Cl—(20-30K), ethyl-ethylacrylate copolymer 20-40% EA (20-30K), and ethylene vinyl chloride copolymer 25-45% Cl—(20-30K) as disclosed in U.S. Pat. No. 3,938,515; methyl-methacrylate copolymer and glyceryl-methyacrylate copolymer as disclosed in U.S. Pat. No. 3,957,362; ethylene-vinyl-actetate copolymer 4-80% VA (20-30K) as disclosed in U.S. Pat. No. 4,069,307; polysiloxanes as disclosed in U.S. Pat. No. 4,136,250; hydrophilic dihydroxyalkyl acrylate and insoluble copolymer as disclosed in U.S. Pat. No. 4,267,295; cellulose triacetate as disclosed in U.S. Pat. No. 4,220,152; acrylamide, vinylpyrrolidone, and polyethyleneoxide diol as disclosed in U.S. Pat. No. 4,423,099; poly-amino acid homopolymers and copolymers as disclosed in U.S. Pat. No. 4,351,337; poly-glutamic acid ethyl-glutamate copolymer (5-50% GA, 80-500 KDa) as disclosed in U.S. Pat. No. 4,450,150; polyoxyethlyene-polyoxypropylene copolymer thermoset as disclosed in U.S. Pat. No. 4,478,822; vinyl cross-linked copolymers of insoluble and soluble monoolefinic esters as disclosed in U.S. Pat. No. 4,548,990; copolymers with N-vinyl-2-pyrrolidone and methacrylates as disclosed in U.S. Pat. No. 4,693,884; polyanhydride as disclosed in U.S. Pat. No. 4,657,543; colpolymer of poly(alkylene oxide) and cyclic ester of alpha hydroxy acid (glycolide) as disclosed in U.S. Pat. No. 4,882,168; polyacrylonitrile-nitric acid copolymer as disclosed in U.S. Pat. No. 5,218,039; N-morpholinoethyl methacrylate and 2-hydroxyethyl methacrylate copolymer as disclosed in U.S. Pat. No. 4,857,313; crosslinked copolymers of vinyl pyrrolidone and allylamine as disclosed in U.S. Pat. No. 4,772,484; water soluble polyacetals having molecular weights from about 5,000-30,000 as disclosed in U.S. Pat. No. 4,713,441; thermoplastic hydrogels of polyvinyl pyrrolidone (PVP) and polyvinyl acetate (PVA), and gelatin as disclosed in U.S. Pat. No. 5,002,792; alginic acid with Ca++, Ba++ or Zn++, pectic acid with Ca++, Ba++ or Zn++, hyaluronic acid with Ca++, Ba++ or Zn++, polyglucuronic acid with Ca++, Ba++ or Zn++, polymanuronic acid with Ca++, Ba++ or Zn++, polygalacturonic acid with Ca++, Ba++ or Zn++, polyarabinic acid with Ca++, Ba++ or Zn++, and kappa-carrageenan with Ca++, Ba++ or Zn++, as disclosed in U.S. Pat. No. 5,089,606; charged side-chain polyphosphazenes with Ca++ cross-linking as disclosed in U.S. Pat. No. 5,149,543; carboxymethylcellulose as disclosed in U.S. Pat. No. 5,208,037; agarose as disclosed in U.S. Pat. No. 3,961,628; polyacrylamide as disclosed in U.S. Pat. No. 6,391,937; pluronic 127, N-isopropylacrylamide (NiPAM); and blends (block co-polymer, etc.) of all the above listed hydrogels.
Agarose is a linear polymer, made up of the repeating monomeric unit of agarobiose. Agarobiose is a disaccharide made up of D-galactose and 3,6-anhydro-L-galactopyranose. Agarose pectin or sulfonated agarose can be used as the hydrogel. Agarose can be obtained from Lonza (Rockland, Me.) under the brand name SeaKem™. In certain embodiments, the concentration of the agarose gel for effectively removing contaminants is from 0.1-2.0% w/v.
Purified agarose hydrogels may be purchased for use in the described method. An example of a commercial purified hydrogel can be obtained from Invitrogen (Carlsbad, Calif.) under the brand name E-Gel® EX Starter.
Polyacrylamide is a polymer (—CH2CHCONH2—) formed from acrylamide subunits. It can be synthesized as a simple linear-chain structure or cross-linked, typically using N,N′-methylenebisacrylamide. In the cross-linked form, polyacrylamide is highly water-absorbent, forming a soft gel. Polyacrylamide can be obtained from BioRad (Hercules, Calif.).
Purified polyacrylamide hydrogels may be purchased for use in the described method. An example of a commercial purified hydrogel can be obtained from BioRad (Hercules, Calif.).
Preconditioning of a medium can be performed. Preconditioning of a medium is often done to remove impurities found in the medium. For example, providing a potential across a hydrogel helps mobile impurities to migrate outside of the hydrogel. The potential can be, for example, 50V, 75V, 95V, 100V, 150V, 200V, 250V, 300V, 350V, 400V or 500V. In various embodiments, the potential can be provided for a period of time, such as at least 2 minutes, at least 5 minutes, at least 10 minutes, at least 15 minutes, at least 30 minutes, at least 45 minutes, at least 60 minutes, at least 120 minutes, or at least 180 minutes.
In various embodiments, the medium can be a filter. Examples of filters include those available from Pall Corporation (Port Washington, N.Y.), such as hydrophilic polypropylene, ahydrophilic, low binding material with pore sizes of 0.2 μm and 0.45 μm; polytetrafluoroethylene (PTFE), a hydrophobic, high binding material with pore sizes of 0.2 μm, 0.45 μm, 1 μm, 2 μm and 3 μm; glass fiber, a hydrophilic, moderate binding material with a pore size of 1 μm; nylon, a hydrophilic, low binding material with pore sizes of 0.2 μm and 0.45 μm; polyvinylidene fluoride (PVDF), a hydrophilic, low binding material with pore sizes of 0.2 μm and 0.45 μm; PES (Supor®), a hydrophilic, low binding material with pore sizes of 0.1 μm, 0.2 μm, 0.45 μm, and 0.8 μm; vinyl/acrylic copolymer, a hydrophobic material that may be used for air sampling and has pore sizes of 0.45 μm and 0.8 μm; polyvinyl chloride (PVC), which may also be used for air sampling and has pore sizes of 5 μm; hydrophilic mixed cellulose esters, a high binding material with a pore size of 0.45 μm; hydrophilic acrylic copolymer, which may be used as a pre-filter on a support and has pore sizes of 0.2 μm, 0.45 μm, 0.8 μm, 1.2 μm, 3 μm, and 5 μm; and nitrocellulose, a high binding material with a pore size of 0.2 μm. Examples of filters available from Millipore (Billerica, Mass.) include PTFE (LCR), a hydrophilic, moderate binding material with pore sizes of 0.2 μm and 0.45 μm; PVDF (Durapore™), a hydrophilic, low binding material with pore sizes of 0.2 μm and 0.45 μm; PTFE (Fluoropore™), a hydrophilic, low binding material with pore sizes of 0.2 μm and 0.45 μm; nylon, a hydrophilic, low binding material with pore sizes of 0.2 μm and 0.45 μm; glass fiber, a hydrophilic, moderate binding material with a pore size of 1 μm; and hydrophilic mixed cellulose esters, a high binding material with exemplary pore sizes of 0.2 μm, 0.45 μm, and 0.8 μm. Filters can have pore sizes of greater than or equal to about 0.01 μm, 0.05 μm, or 0.1 μm, 0.2 μm, 0.4 μm, 0.6 μm, 0.8 μm, 1.0 μm, 1.5 μm, 2.0 μm, 2.5 μm, 3.0 μm, 4.0 μm, or 5.0 μm. Filters can have pore sizes of less than or equal to about 5.0 μm, 4.0 μm, 3.0 μm, 2.5 μm, 2.0 μm, 1.5 μm, 1.0 μm, 0.8 μm, 0.6 μm, 0.4 μm, 0.2 μm, 0.05 μm, or 0.01 μm.
In various embodiments the method includes adding a chemical agent to the medium to increase the permeability of the medium and/or increase the ability of the contaminant to enter the medium.
Examples of chemical agents include reducing agents, including, but not limited to, dithiothreitol (DTT), tris(2-carboxyethyl)phosphine (TCEP), and mercaptoethanol reducing agents; denaturing agent using surfactants, including, but not limited to, sodium lauryl sulfates, non-ionic surfactants such as Triton X-100, Tween-20, or chaotropic agents, including, but not limited to, urea, thiourea, or guanidinium chloride; chelating agents that can coordinate molecules such as calcium, magnesium, and other divalent and trivalent ions (including metal ions), including ethylenediaminetetraacetic acid (EDTA) and ethylene glycol tetraacetic acid (EGTA); cleavage agents including proteases, nucleases, glyconases, lipases; and excipients such as polyethylene glycol. In some embodiments a combination of one or more chemical agents can be utilized.
Viscous gels include cellulose ethers (such as hydroxylethyl cellulose or Methocel™ (Dow (Midland, Mich.)) and soluble polymer viscosity modifiers (such as polyethylene glycol, polyvinylpyrrolidone, dextrans, pluronic surfactants, and alginates). In a viscous gel, the pore size is not defined. The separation is based on retarded flow of the cells in the viscous medium.
In some embodiments, agents can be added to or used to treat the medium to control electroosmotic flow. In some embodiments, it may be desirable to increase or decrease electroosmotic flow.
Sample Mixing
To analyze a representative sample, the sample should be substantially uniform. In some embodiments, the homogenization of a sample can be done by a sample mixing or stirring step. Mixing the sample acts to re-suspend any caked material formed on the walls of the well.
In various embodiments, the method includes mixing a sample using a pipette tip. See, for example, the pipette tip 228 in
Buffer Solutions
In various embodiments, the method includes placing a buffer in contact with the medium.
In some embodiments, the mixing parameters of the buffer are designed to maximize the removal of debris and non-target material.
In some embodiments, the buffer can be replenished to prevent accumulation of undesirable electrophoresis products. For example, undesirable effects pH gradients generated at the cathode and anode and in proximity to the sample can be substantially minimized by buffer replenishment or replacement, potentially using continuous flow.
In various embodiments, electrophoretic buffers utilize pairs of redox mediators. In certain embodiments, these redox mediators facilitate low voltage electrophoresis that permits cell viability to be maintained. These redox mediators may also enable the use of electrode materials that have limited utility in high voltage electrophoresis (for example, indium tin oxide, “ITO” electrodes). In addition, these redox mediators find use in “closed systems” (i.e., systems not open to the atmosphere). In closed systems, bubble formation and generation of other reactive species during the electrophoresis step, which can cause a number of problems, is prevented, and closed systems also help to prevent the exposure of the technician to potentially infectious samples, as well as reducing problems associated with discarding biological samples
In some embodiments, the buffer is placed in a reservoir in contact with the medium. In various embodiments, the medium is not submerged in the buffer.
Buffers include, for example, various electrophoresis buffers including zwitterionic buffers, neutral buffers such as phosphate-buffered saline (PBS), lower or higher pH buffers, and hypotonic or hypertonic buffers. In some embodiments, borate and other selected ions and counter-ions are included to facilitate effective electrophoresis.
In some embodiments, the buffer solution includes histidine and tris(hydroxymethyl)aminomethane. Histidine has low conductivity. Tris(hydroxymethyl)aminomethane has some conductivity but has low mobility. Histidine has pKa values close to physiological values providing adequate buffering capacity. Tris(hydroxymethyl)aminomethane can be obtained from Sigma-Aldrich (St. Louis, Mo.) as Trizma® base (Sigma, T1503).
In some embodiments, the sample (in 150 mM NaCl) is desalted to remove cationic and anionic species that may interfere with subsequent analysis. In some embodiments, desalting allows successful concentration and capture of the microorganism.
Electrophoretic mobility can be buffer dependent due to zeta potential variability with salt concentration, valency of salts present in the buffer, and the pH of the buffer. Bacteria can lose charge as the concentration of salt increases or as the pH is lowered below a certain pH, for example, pH 5.0. Divalent and trivalent salts are more effective quenchers than monovalent salts. For example, CaCl2 is more effective than NaCl to quench a charge. Certain agents such as chelators, including, but not limited to, ethylenediaminetetraacetic acid (EDTA) and ethylene glycol tetraacetic acid (EGTA), both available from Sigma-Aldrich, can be used to control the concentration of charged species in the sample.
Wells
As shown in
In a rectangular or square bottomed well, sample solution can wick up the walls of the well. In a triangular shaped well, the sample solution does not tend as strongly to wick up the walls, making it easier to remove the microorganism from the well. In some embodiments, the triangular shaped well is narrowest at the bottom and widest at the top of the well. The well-forming teeth 304 shown in
The samples can have high solids (e.g., from 1%-50% weight/volume of solid components). Minimizing the well width minimizes the caking of the solids on the well walls. In some embodiments, the well is 0.0025 inches wide at the widest point.
Chambers
In various embodiments, the method uses a system 900 wherein one or a plurality of chambers 953 can be formed in a medium 920. The chambers 953 are molded into the gel 920 and have an inlet and outlet port (954 and 955) as shown in
Electrodes
In various embodiments of the method, an electrode or a plurality of electrodes may be contained within the well or chamber. Additionally, in various embodiments, the electrode or plurality of electrodes may be in contact with the medium or separated a distance from the medium. The electrode or plurality of electrodes may be connected to the medium using salt bridges, buffer, redox mediators, or other conductive charge transfer methods used by those skilled in the art or familiar with techniques used in applications for establishing faradaic current. In some embodiments the electrodes are in physical contact with the chamber walls.
In various embodiments, conductive materials may be utilized to distort the electric field resulting in localized concentration of cells and/or viruses. Electric field distortion may utilize material conductivity differences to accomplish the said localization.
Retention of the Cells and/or Viruses
In various embodiments, the method includes retaining the microorganism. Cells and/or viruses are retained by various filters that exclude the targets (microorganism) from penetrating, for example, tube walls, microchannels (horizontal or vertical), or any geometry that uses a capture surface (specific or nonspecific), mazes, fluidic dead space (eddy cul-de-sacs), and microwells of approximate cellular scale.
Detection Surface
In some embodiments, the method includes retention of cells (such as microbial cells) and/or viruses on a positively charged surface. For example, cells (such as microbial cells) and/or viruses can be captured onto a positively charged detection surface. In other embodiments, the cells and/or viruses may be retained by embedding in the medium.
Detection surfaces are disclosed in, for example, U.S. Pat. No. 6,844,028, incorporated by reference herein in its entirety. Detection surfaces can include those coated with poly-L-lysine, polyethylenimine, or other cationic polymers. Additionally, detection surfaces can include hydrophobic surface coatings.
After the contaminants are removed from the sample by the medium, the microorganism can be detected by a system. In some embodiments, the system comprises an optical sensing system. In some embodiments, the system comprises a microscope.
In some embodiments, the system is an automated system.
In various embodiments, the sequential or simultaneous use of a plurality of electrophoresis electrodes allows multidimensional electrophoresis, i.e., the solution may be targeted, “mixed,” or “stirred” in the vicinity of a detection surface to further increase the kinetics of binding. For example, polarities can be reversed to allow cells and/or viruses that may not have bound to the detection surface to travel back “over” the surface, resulting in increased binding. Also, electrodes may be located and field polarity switched according to a programmed sequence so as to provide agitation in two dimensions of a plane, or in three dimensions.
Detection of the Microorganism
In various embodiments, the method includes detecting one or more microorganisms present in the biological sample. In general, biosensor devices are designed to fit into a detection unit, and generally utilize a number of components, which can either be “on-chip” (e.g., part of a biosensor cartridge) or “off-chip” (where some of the components are part of separate device or devices into which the biosensor cartridge fits). These components include, but are not limited to, one or a plurality (e.g., an array) of detection surface(s), concentration modules (which, as outlined herein, frequently are configured with the detection surface(s)), detection modules (again, frequently configured with the detection surface(s)), input and output ports, channels, pumps, mixers, valves, heaters, fluid reservoirs (including sample reservoirs, reagent reservoirs, and buffer reservoirs), concentration controllers (e.g., in the case of electrophoresis, electrical controllers), and data collection and analysis (e.g., computer) components.
An example of a microorganism diagnostic system is described in U.S. patent application Ser. No. 10/888,828 filed Jul. 8, 2004, issued as U.S. Pat. No. 7,687,239, and U.S. application Ser. No. 11/303,803, filed Dec. 16, 2005, issued as U.S. Pat. No. 7,341,841, both of which are incorporated herein by reference in their entirety.
Low levels of cells and/or viruses can be detected with this method. Cells can be measure in terms of cells per mL, colony forming units (CFU, or units) per mL for fungi and/or bacterial microorganisms, and viruses can be measured in particles per mL or plaque forming units per mL (PFU). Levels of cells and/or viruses are described in units per volume, typically per mL volume. Those skilled in the art understand the specific units are typically reported as appropriate for a given target. For exemplary purposes, the concentration ranges below are reported in generic units per mL. For example, levels of 0.1 to 1×108 units/mL can be detected. In various embodiments, cells and/or viruses of levels less than 5×108 units/mL, 3×108 units/mL, 1×108 units/mL, 0.8×108 units/mL, 0.6×108 units/mL, 0.4×108 units/mL, 0.2×108 units/mL, or 0.1×108 units/mL, can be detected.
Membrane-Assisted Purification of Bacterial Cells from Samples
Although gel purification is suitable for some diagnostic applications, it can be desirable to use a different approach for removing contaminants, such as background ions and molecules (e.g., proteins) from biological samples, while retaining pathogenic organisms (e.g., bacteria, viruses). In some instances, excessive amounts of ions and extraneous molecules can inhibit the capture and retention of cells during electrokinetic concentration. Moreover, such ions and extraneous molecules may also interfere with identification and antibiotic susceptibility testing of microbes in the biological sample.
Blood testing protocols that utilize a variant of gel electrophoresis, e.g., gel electro-filtration (GEF), can reduce the concentration of ions and molecules in blood samples. Despite the success of GEF at cleaning samples prior to testing, the process has deficiencies. Agarose, the raw material for the gel used in the filtration process, is not cultivated, but instead is harvested from seaweed naturally grown in the ocean. This creates an undesirable supply risk due to fluctuations in weather, seasons, etc. As a natural product, the sourced seaweed material generally produces agarose that varies in properties, necessitating the need for extensive testing of new batches of source material. Another undesirable quality of GEF is the soft mechanical structure of the gel component, which leads to significant manufacturing challenges. Gel stability concerns also necessitate the need to refrigerate commercial products containing agarose during transportation and storage. The soft mechanical structure of gel makes prepackaged products containing agarose prone to tearing, leading to gel ‘chunks’ in the prepackaged sample wells and reservoirs. Pipetting errors due to the presence of gel chunks in such wells and reservoirs can impair sample testing in an automated system.
Due to these disadvantages, non-gel based methods (e.g., those that do not utilize agarose) were developed to prepare biological samples before the identification and antimicrobial susceptibility testing of microbial cells in the sample. An alternative to gel electro-filtration is to utilize solid state membranes in lieu of a gel matrix (e.g., a membrane not made of a gel such as agarose) to perform separation by size exclusion. Such sample preparation strategies that employ porous filter membranes are referred to herein as membrane-assisted purification (“MAP”).
The working principle behind GEF is electrophoresis, which is the movement of charged objects in an electric field. With this approach, ions and charged molecules are separated from the sample volume by driving them to migrate into the gel matrix and away from the sample well. Without intending to be bound by theory, it is thought that electrophoresis is a contributor to MAP cleanup performance, but that diffusion and electro-osmosis also play a significant and potentially dominant role.
The examples disclosed herein highlight some modes of operation for MAP sample preparation. Common among them all is the solid state approach, which is easier for manufacturing and does not require refrigerated storage of packaged products. The manmade filter materials are highly reproducible and do not exhibit the large variation in performance that may be associated with naturally sourced agarose gel material. Finally, elimination of gel from commercially produced sample preparation kits reduces the chances for pipetting errors associated with gel ‘chunks’ in automated instruments that conduct microbial identification and antimicrobial testing of samples.
Exemplary MAP Device Description
The MAP device separates a sample volume from one or more fluid reservoirs via a filter membrane (referred to herein as a porous filter medium) as shown in
During the MAP process, the sample buffer is exchanged with the reservoir buffer. As the buffer exchange occurs, objects larger than the pore size of the porous filter medium are prevented from leaving the sample well (e.g., are retained in the sample well). The reservoir buffer may be tailored to achieve a desired objective. For example, a bacteria-containing patient sample can be added to the sample well and growth media could be used in the fluid reservoirs. In this embodiment, concentrations of unwanted material in the sample decrease and are replaced by growth media, while the sample well retains the relatively large pathogenic cells. The final result would be cells suspended in growth media and free of undesirable background contaminants, such as proteins.
The physical principles driving the MAP buffer exchange include a combination of diffusion, electrophoresis, and electro-osmosis. The choice in pH and salt concentrations of the reservoir buffer and upfront preparation of the sample can be adjusted to achieve the desired combination of these buffer exchange effects. Additionally, electrophoretic and electro-osmotic effects may be controlled via electrodes in the buffer reservoirs and sample well. A range of voltages can be applied to achieve the electrophoretic and electro-osmotic effects, for example AC or DC voltages ranging from about 1 V to about 200 V, 50 V to 125 V, 50 V to 100 V, 75 V to 100 V, or 85 V to 95 V, such as a DC voltage of 95 V.
Thus, provided herein are methods for purifying one or more microbial cells, such as one or more different genus or species of bacteria, in a biological sample. In some examples, at least two different genus and/or microbial species are purified (such as 2 to 50, 2 to 25, 2 to 20, 2 to 10, or 2 to 5 different genus and/or microbial species), such as E. coli and Acinetobacter baumannii, or Klebsiella oxytoca and Klebsiella planticola. Exemplary biological samples include cerebrospinal fluid, urine, a respiratory specimen, blood or plasma (other examples are provided herein). Such samples may contain undesirable contaminants, such as proteins, salt, or ions (or other reagents, such as those described above). The disclosed methods can include adding a biological sample containing contaminants and one or more microbial cells to a well disposed in a porous filter medium. The porous filter medium includes pores smaller than the one or more microbial cells, thereby preventing the one or more microbial cells from entering the porous filter medium. In some examples, the pore sizes of the porous filter medium are about 200 nm to 20 μm in diameter, such as about 100 nm to 2000 nm in diameter, about 200 nm to 2000 nm in diameter, such as 200 nm, 400 nm, 800 nm or 2000 nm in diameter. In some examples, the porous filter medium includes polyvinylidene fluoride, track-etched polycarbonate, nitrocellulose, nylon, polyethersulfone, or combinations thereof. The porous filter medium is contacted with a buffer disposed in one or more reservoirs adjacent to the porous filter medium to initiate diffusion. Exemplary buffers include those that include histidine and tris(hydroxymethyl)aminomethane, as well as the other examples described above. An electrical potential (such as AC or DC) is applied across the porous filter medium to cause the contaminants to enter the porous filter medium through one or more walls of the well, while retaining the one or more microbial cells in the well. In some examples, the electrical potential is applied for about 5 minutes to about 15 minutes, such as 10 to 12 minutes, such as 5, 6, 7, 8, 9, 10, 11, 12, 13, 14 or 15 minutes. In some examples, AC or DC voltages ranging from about 1 V to about 200 V, 50 V to 125 V, 50 V to 100 V, 75 V to 100 V, or 85 V to 95 V, such as a DC voltage of 95 V are used. In some examples, the electrical potential includes a field polarity and the field polarity is switched according to a programmed sequence. The method can further include applying a tangential flow to the porous filter medium to remove non-permeable contaminants from the surface of the porous filter medium. The method can further include concentrating in the well the one or more microbial cells. The method can also include subsequently removing the one or more microbial cells from the well. In some examples, the buffer is replenished prior to removing the one or more microbial cells from the well. In some examples, the adding step and the applying step are repeated one or more times (such as 1 to 100 times, 1 to 20 times, or 1 to 10 times, such as 1 2, 3, 4, 5, 6, 7, 8, 9 or 10 times) prior to removing the one or more microbial cells from the well.
In some examples, the biological sample is mixed, for example prior to or after adding the sample to the well (or both before and after). In some examples, the biological sample is mixed, for example before application of the electrical potential, during application of the electrical potential, after application of the electrical potential, or combinations thereof. Exemplary mixing methods include one or more of stirring the sample, repeatedly passing the sample through a pipette tip, and repeatedly forcing the sample through tubing connected to a syringe. In some examples, a chemical agent (such as one or more of those described above) is added to the biological sample to increase permeability of the porous filter medium to the contaminants.
In some examples, the disclosed methods can decrease the amount of one or more contaminants (such as protein, NADH, and/or salt) in the sample within about 10 to 15 minutes (such as within about 10, 11, 12, 13, 14 or 15 minutes) of applying the electrical potential. In some examples, the disclosed methods can decrease the amount of one or more contaminants (such as protein, NADH, and/or salt) in the sample by at least 25%, at least 30%, at least 40%, at least 45%, at least 50%, at least 55%, or at least 60% within about 10 to 15 minutes (such as within about 5, 6, 7, 8, 9, 10, 11, 12, 13, 14 or 15 minutes) of applying the electrical potential.
In some examples, the disclosed methods do not significantly alter the amount of the one or more microbes (such as bacterial cells) in the sample within about 10 to 15 minutes (such as within about 10, 11, 12, 13, 14 or 15 minutes) of applying the electrical potential. In some examples, the disclosed methods do not significantly alter the amount or number of the one or more microbes (such as bacterial cells), in the sample by more than 20%, 15%, 10%, or 5% (such as within about 5, 6, 7, 8, 9, 10, 11, 12, 13, 14 or 15 minutes) of applying the electrical potential.
The following examples are provided for illustration purposes and are not intended to limit scope. Other variants will be readily apparent to one of ordinary skill in the art and are encompassed by the appended claims.
The examples described below anticipate a wide range of specimen variability. Processes may be adapted to a given specimen type, for example, first homogenizing the specimen if desirable. Next an aliquot (sample) of the specimen may be obtained, and then purified, to remove debris and other interfering materials. Purification may be achieved by placing the sample in a medium containing a well and applying a potential laterally across the medium to retain cells and pass contaminants into the medium.
Gel Preparation
10 grams of agarose powder (SeaKem, LE Agarose) was mixed with 1 L of buffered solution containing 100 mM histidine (Sigma, H8000) and 2.5 mM Trizma® base (Sigma, T1503). The final concentration of agarose slurry was 1.0% (w/v). The solution was boiled to melt the agarose powder and the molten agarose was stored in liquid form at 40° C. until use.
Gel Casting
Those familiar in the art of gel slab electrophoresis recognize that solid inserts or combs are routinely used to create a void volume in a gel slab that is later utilized for sample loading. Gel electrophoresis combs are generally nominally 1-2 mm thick, capable of holding nominally 100 μL of sample volume. In this example, a custom equilateral V-shaped well was used. The well had sides 1 cm long and a thickness of nominally 0.6 mm (0.025″). The comb was inserted into a gel box container (E-C Apparatus, EC 250-90) and the box filled with the molten agarose submerging a portion of the comb. The agarose was allowed to cool to room temperature forming an agarose gel. The comb was removed from the solidified agarose and the void volume of the comb formed a well in the material. The V-shaped well enabled facile recovery of the sample volume from the well, described in further detail below.
Pretreatment of the Agarose Gel Medium
The gel box containing the agarose gel medium having triangular wells was placed in an electrophoresis apparatus and then submerged in a run buffer containing 100 mM histidine and 2.5 mM Trizma® base. A 250 volt potential was applied for 1 hr. The applied potential yielded 22 mA of current. The pretreated gels were removed from the electrophoresis apparatus and transferred to a closed container and stored submerged in fresh run buffer until use.
Specimen Homogenization
A remnant specimen having a known level of bacteria was homogenized by pouring into a syringe connected to 0.02″ (0.5 mm) inner diameter PEEK tubing and forcing through the PEEK tubing 10 times at a flow rate of approximately 0.1 mL/sec to liquefy the specimens. The specimen was then filtered through 5 μm track etch polycarbonate filters (SPI Pore, E5013-MB). A 1 mL sample aliquot of the specimen was processed as described below. An aliquot of the specimen was also reserved as a control.
A control or a known clinical sample (e.g., with a known concentration of bacteria) can be compared to the unknown sample.
Assessment of the Sample
The sample was diluted to a final nominal bacterial concentration of 1.5×103CFU/mL. 50 μL of the diluted sample was plated in triplicate on Mueller Hinton Agar (MHA) and placed in the incubator overnight. The number of colonies counted on the overnight incubated plates divided by the plated volume and multiplied by dilution factor yielded the actual number of input Klebsiella oxytoca bacteria in CFU/mL.
The sample was diluted 10-fold and the optical density read was acquired at 625 nm to assess the amount of particulate debris in the sample.
Sample Loading
The pretreated gels were placed in the gel box and apparatus, patted dry, and excess liquid was removed from the triangular wells using 0.2 mm thick flat capillary plastic pipette tips (Fisher 07-200-519). The well was filled with a 20 μL sample of the homogenized specimen.
Sample Treatment
Histidine/Tris run buffer was added to the apparatus so that the liquid level was below the top of the gel slab. The sample was electrophoresed for 5 minutes at 250 volts and the samples were hydrodynamically sheared by pipetting the sample volume up and down 5× using a capillary pipette tip. The samples were electrophoresed again for 5 minutes at 250 volts and the samples then hydrodynamically sheared by pipetting the sample volume up and down 5× using a capillary pipette tip.
Post-Treatment Assessment of Spiked Sample
The treated sample was diluted to a final concentration of 1.5×103 CFU/mL. 50 μL of the diluted sample was plated in triplicate on Mueller Hinton Agar (MHA) and place in the incubator overnight. The number of colonies counted on the overnight incubated plates divided by the plated volume and multiplied by dilution factor yielded the actual number of Klebsiella oxytoca bacteria recovered in CFU/mL.
The treated sample was diluted 10-fold and then the optical density read was acquired at 625 nm to assess the amount of particulate debris remaining in the sample.
Results
Electrode Configuration and Circuit Details
The 20 μL of recovered sample volume was diluted with 40 μL of 10 mM ascorbic acid and then introduced into a flow cell (described below) for electrokinetic concentration.
For comparison purposes, a 20 μL of a non-treated sample was diluted with 40 μL of 10 mM ascorbic acid and then introduced into a flow cell (described below) for electrokinetic concentration.
Flow Cell Construction
Bacteria 401 suspended in redox active EKB were contacted with uniform transparent electrodes constructed from transparent ITO coated glass (Delta Technologies, Stillwater, Minn.) or polyester film (Sheldahl, Northfield, Minn.). A potential was applied to the conductive ITO surfaces completing the circuit, establishing a faradaic current and an electric field between the electrodes and enabling bacterial electrokinetic concentration (EKC) and surface capture, as illustrated in
Bacterial Suspension and Surface Concentration Experiments
Studies were performed by loading the flow cells with samples, with the power supply turned off, and then inserting the flow cells onto the microscope stage. The microscope acquired images at the bottom flow cell surface during subsequent steps. The power supply was connected and cells electrokinetically concentrated to the flow cell's bottom surface by application of a 1.4V DC fixed potential. The top electrode (flow cell ceiling) was connected to the negative power supply terminal, and the bottom electrode (flow cell floor) was connected to the positive terminal. The applied potential resulted in complete bacterial concentration in less than 3 minutes. After 300 seconds, a −1.0 V DC fixed potential was applied for an additional 60 seconds to measure the degree of irreversible binding of the sample debris and bacteria on the flow cell floor. The digital microscope acquired images every 3-7 seconds during concentration.
Digital Microscopy Setup
An Olympus IX-71 inverted microscope equipped with a 12-bit, 1200×1600 pixel array monochrome CCD digital camera (MicroFire, Leeds Precision Instruments, Minneapolis, Minn.) was used for image acquisition. The transmitted illumination cone, created with an IX-PH3 annular ring placed in a 0.55 NA transmitted light condenser, was 33.4° from the normal to the microscope's focal plane. The illumination cone, after refraction through the flow cell's air-glass-ITO-liquid interfaces (described below), resulted in a 24.5° forward scatter angle-of-incidence relative to the focal plane normal. The forward scatter angle-of-incidence relative to the flow cell's air-plastic-ITO-liquid interfaces was not calculated. In all formats, a dark image was obtained in the absence of scatterers, as the illumination cone passed outside the 20×, 0.4 NA microscope objective's (LCPlanFl Olympus, Leeds Precision Instruments) imaging cone. The presence of scatterers resulted in the appearance of bright objects on a dark image background (dark-field image for objects within the focal depth). The system field-of-view was 444×592 μm with corresponding 0.37 μm pixel resolution. The imaging system's depth-of-focus and image depth were 5.8 μm and 3.8 mm respectively. Constant camera exposure and gain settings were maintained when relative intensity comparisons were performed, as in the case of growth experiments described below.
Accumulation Time Results
The objects are solid material, such as cells, viruses, and cellular debris that are immobilized on a sample surface.
Bacterial Growth
After cell immobilization, the flow cell was rinsed with 10 times the internal cell volume of 1/10th strength cation-adjusted Mueller-Hinton Broth (CAMHB) growth media (Difco, Sparks, Md.). 100 μL of liquefied Mueller Hinton Agar (MHA) was loaded into the flow cell and then cooled to room temperature, solidifying into a hydrogel.
Time Lapse Imaging
Direct observation of bacterial growth was performed by inserting the disposable 32-channel flow cell assembly into a custom benchtop automated instrument that combined digital microscopy, motion control, and image analysis software. The system was enclosed in an incubator maintained at 35° C. The motorized microscope stage enabled automated XY translation, location logging, and memory with 10 μm repeatability. The system automatically focused and acquired surface images of adherent bacteria at programmed time intervals for multiple fields-of-view during an experiment. The system used the fiducial markings to autofocus and mechanically align (±1 pixel) the fields-of-view prior to image acquisition. Unless stated otherwise, a single field-of-view contained sufficient numbers of cells for analysis, and automated analysis routines counted the number of growing clones.
Growth Results
The number of growing clones observed using the digital microscope method was compared with the number of expected growing clones, assuming 100% yield and a 1 to 1 correlation between growing colonies on MHA plates, to calculate a digital microscopy method efficiency. The medium method was compared to an alternative medium method wherein the gel was submerged. A total efficiency was calculated by multiplying the treatment recovery and digital microscopy efficiency.
The total efficiency for the medium method was highest when the gel slab was not submerged.
This Example describes experiments exploring the preparation of clinically relevant bacteria-containing blood samples for analysis in an automated microbial identification and antimicrobial susceptibility instrument. Results are shown utilizing MAP devices comprising structures that resemble tubs with various membranes comprising various pore sizes and material types.
Preparation of MAP Devices
The MAP devices used contain three fluidic regions separated by filter paper membranes. In one set of experiments, various types of paper filter membranes were used (polycarbonate, polyvinylidene fluoride (PVDF), nitrocellulose, nylon, polyethersulfone) while keeping the pore size approximately constant. In another set of experiments, various pore sizes were tested while keeping the material type constant. Each reservoir was filled with 6.1 mL of 12.5 mM L-histidine for all experiments.
Preparation of Sample
Clinically relevant samples were prepared to mimic positive blood cultures as they appear in the clinical lab. A 0.5 McFarland sample of Acinetobacter baumannii (ATCC 19606) was prepared in 90% saline solution. The solution was diluted 1:20 (vol:vol) with donor blood, and then 10 mL of the resulting solution was added to a commercially available blood culture bottle. The blood culture bottle was incubated in a related blood culture instrument until the instrument flagged the bottle as positive for bacteria (typically in about 10 hours with a resulting cell concentration of 108 CFU/mL). After positivity was determined, the solution from the bottle culture bottle was diluted 1:30 (vol:vol) with 12.5 mM L-Histidine. The MAP sample wells were emptied of buffer fluid (if any was present) and the sample solution was added to the sample well of each MAP device. Unused sample was retained for use as a control for future quantification of protein and bacterial cell concentrations.
Filtration
Each MAP device was allowed to sit on a laboratory bench at room temperature while sample filtration occurred. During the filtration process, sample buffer exchanged with the 12.5 mM L-histidine buffer of the reservoirs flanking both sides of the sample well. To quantify filtration performance versus time, 10 μL aliquots were removed periodically (approximately every 10 minutes) from each device's sample well and absorbance data was immediately collected on a Nanodrop 2000 UV-Vis spectrophotometer.
Cell Retention
Post-filtration bacterial cell concentrations were quantified and compared to unfiltered control samples. This was accomplished using a staining assay performed in an automated instrument system designed to identify microorganisms in patient samples and determine antimicrobial susceptibility of the identified microorganisms. The automated assay begins with electrokinetic capture of cells for subsequent microscopic imaging as described in Example 1. Each sample was diluted 1:1 by volume in 2 mM L-dopa, followed by loading each sample into a series of microfluidic flow channels (5 channels per sample, 20 μL per flow channel). Electrokinetic capture was then performed by applying 1.6 V for 5 minutes between two indium tin oxide (ITO) electrodes located on opposing sides of the sample volume. Cells migrate under the influence of the resulting electric field and are captured on the poly-L-lysine coated ITO anode. After electrokinetic capture the flow channel volumes were washed with 80% ethanol and allowed to sit for 5 minutes to facilitate permeabilization of the cell wall. Lastly, each flow channel was rinsed with 1 μM propidium iodide stain, after which each flow channel was imaged under the instrument system's fluorescence microscope. Twenty-four fluorescence images were collected per flow channel, comprising 14 mm2 of imaging area per channel. Imaging was performed under 520 nm green laser illumination and image collection was through a bandpass filter around 590 nm in order to clearly resolve fluorescently labeled cells. The instrument system's automated image analysis was employed to count individual cells in the fluorescent images.
Example 2 provides results from MAP processes that do not utilize external control of the electrical environment during sample cleaning. The incorporation of electrodes into the process allows for additional control over the electrophoretic and electro-osmotic effects which can change the rate of buffer exchange.
Preparation of MAP Devices
MAP devices were prepared as in Example 2, but with the addition of a gold coated stainless steel electrode located in each of the two buffer reservoirs on either side of the sample well as depicted in
Preparation of Sample
Sample preparation was similar to Example 2, but an Escherichia coli (ATCC 25922) isolate was cultured in a commercially available blood culture bottle. After establishing blood culture bottle positivity, the sample was diluted 1:1 in Mueller-Hinton Broth and then 1:20 in 12.5 mM L-Histidine containing 0.01% sodium dodecyl sulfate before loading into the MAP sample well defined between membrane filters.
Filtration
A MAP device was allowed to sit on a laboratory bench at room temperature with a 95 V bias maintained across the two gold electrode pins situated in the buffer reservoirs of the MAP device, as illustrated in
The amount of contaminating salt removed from the blood sample during the MAP process that included exposure to 95 V for about 11 min (
All directional references (e.g., proximal, distal, upper, lower, upward, downward, left, right, lateral, front, back, top, bottom, above, below, vertical, horizontal, clockwise, and counterclockwise) are only used for identification purposes to aid the reader's understanding of the present invention, and do not create limitations, particularly as to the position, orientation, or use of the invention. Connection references (e.g., attached, coupled, connected, and joined) are to be construed broadly and may include intermediate members between a collection of elements and relative movement between elements unless otherwise indicated. As such, connection references do not necessarily imply that two elements are directly connected and in fixed relation to each other. The exemplary drawings are for purposes of illustration only, and the dimensions, positions, order and relative sizes reflected in the drawings attached hereto may vary.
Numerous and varied other arrangements can be readily devised by those skilled in the art without departing from the spirit and scope of the description. Moreover, all statements herein reciting principles, aspects and embodiments, as well as specific examples thereof, are intended to encompass both structural and functional equivalents thereof. Additionally, it is intended that such equivalents include both currently known equivalents as well as equivalents developed in the future, i.e., any elements developed that perform the same function, regardless of structure. All references cited herein are incorporated by reference in their entirety.
This application is a continuation-in-part of U.S. patent application Ser. No. 15/236,021, filed Aug. 12, 2016, which in turn is a continuation of U.S. patent application Ser. No. 14/004,145, filed Oct. 16, 2013, now U.S. Pat. No. 9,434,937 which is a U.S. National Phase filing under 35 U.S.C. § 371 of PCT/US2012/028139, filed Mar. 7, 2012, and claims priority from U.S. Provisional Patent Application No. 61/449,824, filed Mar. 7, 2011, all of which are incorporated herein by reference in their entirety.
Number | Name | Date | Kind |
---|---|---|---|
2666355 | Trurnit | Jan 1954 | A |
3493772 | Daughters, II et al. | Feb 1970 | A |
3532790 | Greenberg et al. | Oct 1970 | A |
3637313 | Upatnieks | Jan 1972 | A |
3792081 | Higuchi et al. | Feb 1974 | A |
3811036 | Perry | May 1974 | A |
3832532 | Praglin et al. | Aug 1974 | A |
3854480 | Zaffaroni | Dec 1974 | A |
3904293 | Gee | Sep 1975 | A |
3926564 | Giaever | Dec 1975 | A |
3935073 | Waters | Jan 1976 | A |
3938515 | Leeper et al. | Feb 1976 | A |
3957362 | Mancini et al. | May 1976 | A |
3961628 | Arnold | Jun 1976 | A |
4069307 | Higuchi et al. | Jan 1978 | A |
4070248 | Schmidt | Jan 1978 | A |
4076591 | Heden | Feb 1978 | A |
4136250 | Mueller et al. | Jan 1979 | A |
4199449 | Slejko | Apr 1980 | A |
4199499 | Smithwick, Jr. et al. | Apr 1980 | A |
4200493 | Wilkins et al. | Apr 1980 | A |
4220152 | Dresback | Sep 1980 | A |
4224439 | Ayers et al. | Sep 1980 | A |
4233847 | Walker | Nov 1980 | A |
4246343 | Wilkins et al. | Jan 1981 | A |
4259442 | Gayral | Mar 1981 | A |
4282287 | Giese | Aug 1981 | A |
4288543 | Sielaff et al. | Sep 1981 | A |
4313734 | Leuvering | Feb 1982 | A |
4325910 | Jordan | Apr 1982 | A |
4330440 | Ayers et al. | May 1982 | A |
4332476 | Stenberg et al. | Jun 1982 | A |
4351337 | Sidman | Sep 1982 | A |
4357142 | Schall, Jr. et al. | Nov 1982 | A |
4363634 | Schall, Jr. | Dec 1982 | A |
4383757 | Phillips | May 1983 | A |
4390343 | Walter | Jun 1983 | A |
4423099 | Mueller et al. | Dec 1983 | A |
4450150 | Sidman | May 1984 | A |
RE31712 | Giese | Oct 1984 | E |
4478822 | Haslam et al. | Oct 1984 | A |
4478914 | Giese | Oct 1984 | A |
4481137 | Ohnishi et al. | Nov 1984 | A |
4487839 | Kamentsky | Dec 1984 | A |
4500778 | Kusaka et al. | Feb 1985 | A |
4508832 | Carter et al. | Apr 1985 | A |
4509841 | Sakai et al. | Apr 1985 | A |
4521522 | Lundstrom et al. | Jun 1985 | A |
4537861 | Elings et al. | Aug 1985 | A |
4540881 | Hayashi et al. | Sep 1985 | A |
4548890 | Mueller et al. | Oct 1985 | A |
4548990 | Mueller et al. | Oct 1985 | A |
4558012 | Nygren et al. | Dec 1985 | A |
4588624 | Nygren et al. | May 1986 | A |
4613567 | Yasoshima et al. | Sep 1986 | A |
4626674 | Oinoue | Dec 1986 | A |
4643968 | Weaver | Feb 1987 | A |
4655595 | Bjork et al. | Apr 1987 | A |
4657543 | Langer et al. | Apr 1987 | A |
4661913 | Wu et al. | Apr 1987 | A |
4663296 | Revillet et al. | May 1987 | A |
4693884 | Kleiner et al. | Sep 1987 | A |
4693972 | Mansour et al. | Sep 1987 | A |
4713441 | Heller et al. | Dec 1987 | A |
4716123 | Wood | Dec 1987 | A |
4752567 | De Brabander et al. | Jun 1988 | A |
4764342 | Kelln et al. | Aug 1988 | A |
4772484 | Kitchell et al. | Sep 1988 | A |
4778758 | Ericsson et al. | Oct 1988 | A |
4805623 | Jobsis | Feb 1989 | A |
4814144 | Edelmann et al. | Mar 1989 | A |
4857313 | Song et al. | Aug 1989 | A |
4876208 | Gustafson et al. | Oct 1989 | A |
4877659 | Vince | Oct 1989 | A |
4882168 | Casey et al. | Nov 1989 | A |
4885077 | Karakelle et al. | Dec 1989 | A |
4933147 | Hollar et al. | Jun 1990 | A |
4959301 | Weaver et al. | Sep 1990 | A |
4993147 | Carpenter et al. | Feb 1991 | A |
5002792 | Vegoe | Mar 1991 | A |
RE33581 | Nicoli et al. | Apr 1991 | E |
5017009 | Schutt et al. | May 1991 | A |
5066465 | Kano et al. | Nov 1991 | A |
5079144 | Carr et al. | Jan 1992 | A |
5079172 | Hari et al. | Jan 1992 | A |
5082630 | Partin et al. | Jan 1992 | A |
5089606 | Cole et al. | Feb 1992 | A |
5149543 | Cohen et al. | Sep 1992 | A |
5173164 | Egen et al. | Dec 1992 | A |
5196527 | Ookuma et al. | Mar 1993 | A |
5208037 | Wright et al. | May 1993 | A |
5218039 | Stoy et al. | Jun 1993 | A |
5239170 | Hughlett | Aug 1993 | A |
5240618 | Caldwell et al. | Aug 1993 | A |
5288611 | Kohne | Feb 1994 | A |
5314805 | Haugland et al. | May 1994 | A |
5329461 | Allen et al. | Jul 1994 | A |
5350697 | Swope et al. | Sep 1994 | A |
5405783 | Pirrung et al. | Apr 1995 | A |
5466416 | Ghaed et al. | Nov 1995 | A |
5468606 | Bogart et al. | Nov 1995 | A |
5488567 | Allen et al. | Jan 1996 | A |
5491097 | Ribi et al. | Feb 1996 | A |
5494829 | Sandstrom et al. | Feb 1996 | A |
5496701 | Pollard-Knight | Mar 1996 | A |
5556764 | Sizto et al. | Sep 1996 | A |
5578460 | Ebersole et al. | Nov 1996 | A |
5599668 | Stimpson et al. | Feb 1997 | A |
5604099 | Erlich et al. | Feb 1997 | A |
5622868 | Clarke et al. | Apr 1997 | A |
5623707 | Kusaka | Apr 1997 | A |
5648652 | Sekiya et al. | Jul 1997 | A |
5656432 | Claverys et al. | Aug 1997 | A |
5789173 | Peck et al. | Aug 1998 | A |
5792622 | Botsford | Aug 1998 | A |
5824494 | Feldberg | Oct 1998 | A |
5828716 | Bisconte de Saint Julien | Oct 1998 | A |
5843651 | Stimpson et al. | Dec 1998 | A |
5849486 | Heller et al. | Dec 1998 | A |
5863754 | Bajard | Jan 1999 | A |
5866345 | Wilding et al. | Feb 1999 | A |
5872013 | Leunissen et al. | Feb 1999 | A |
5888760 | Godsey et al. | Mar 1999 | A |
5922593 | Livingston | Jul 1999 | A |
5939291 | Loewy et al. | Aug 1999 | A |
5958704 | Starzl et al. | Sep 1999 | A |
5976821 | Huston et al. | Nov 1999 | A |
5981268 | Kovacs et al. | Nov 1999 | A |
5993634 | Simpson et al. | Nov 1999 | A |
6017696 | Heller | Jan 2000 | A |
6043048 | Johnston et al. | Mar 2000 | A |
6051380 | Sosnowski et al. | Apr 2000 | A |
6054270 | Southern | Apr 2000 | A |
6086824 | Fanning et al. | Jul 2000 | A |
6096272 | Clark et al. | Aug 2000 | A |
6099803 | Ackley et al. | Aug 2000 | A |
6101946 | Martinsky | Aug 2000 | A |
6103479 | Taylor | Aug 2000 | A |
6107054 | Gibbs | Aug 2000 | A |
6122599 | Mehta | Sep 2000 | A |
6136171 | Frazier et al. | Oct 2000 | A |
6143247 | Sheppard, Jr. et al. | Nov 2000 | A |
6153400 | Matsumura et al. | Nov 2000 | A |
6153416 | Yuan | Nov 2000 | A |
6169394 | Frazier et al. | Jan 2001 | B1 |
6176620 | Obara | Jan 2001 | B1 |
6214560 | Yguerabide et al. | Apr 2001 | B1 |
6221592 | Schwartz et al. | Apr 2001 | B1 |
6241894 | Briggs et al. | Jun 2001 | B1 |
6242188 | Dattagupta et al. | Jun 2001 | B1 |
6245508 | Heller et al. | Jun 2001 | B1 |
6251615 | Oberhardt | Jun 2001 | B1 |
6251616 | Barbera-Guillem et al. | Jun 2001 | B1 |
6251624 | Matsumura et al. | Jun 2001 | B1 |
6264825 | Blackburn et al. | Jul 2001 | B1 |
6270953 | Malcus-Vocanson et al. | Aug 2001 | B1 |
6274384 | Starzl et al. | Aug 2001 | B1 |
6290839 | Kayyem et al. | Sep 2001 | B1 |
6372895 | Bentsen et al. | Apr 2002 | B1 |
6379897 | Weidenhammer et al. | Apr 2002 | B1 |
6391264 | Hammer et al. | May 2002 | B2 |
6391546 | Karube et al. | May 2002 | B1 |
6391577 | Mikkelsen et al. | May 2002 | B1 |
6391937 | Beuhler et al. | May 2002 | B1 |
6395506 | Pitner et al. | May 2002 | B1 |
6403367 | Cheng et al. | Jun 2002 | B1 |
6416969 | Matsumura et al. | Jul 2002 | B2 |
6432694 | Malmqvist | Aug 2002 | B1 |
6437551 | Krulevitch et al. | Aug 2002 | B1 |
6472166 | Wardlaw et al. | Oct 2002 | B1 |
6472228 | Wang et al. | Oct 2002 | B2 |
6548263 | Kapur et al. | Apr 2003 | B1 |
6551841 | Wilding et al. | Apr 2003 | B1 |
6565727 | Shenderov | May 2003 | B1 |
6573088 | Gemmell et al. | Jun 2003 | B2 |
6596532 | Hyman et al. | Jul 2003 | B1 |
6605453 | Ozkan et al. | Aug 2003 | B2 |
6607888 | Schwartz et al. | Aug 2003 | B2 |
6611765 | Boeufgras et al. | Aug 2003 | B2 |
6642682 | Perkins et al. | Nov 2003 | B1 |
6696286 | Halverson et al. | Feb 2004 | B1 |
6703819 | Gascoyne | Mar 2004 | B2 |
6716620 | Bashir et al. | Apr 2004 | B2 |
6809862 | Behnsen et al. | Oct 2004 | B2 |
6841379 | Matson | Jan 2005 | B2 |
6844028 | Mao et al. | Jan 2005 | B2 |
6872545 | Griner et al. | Mar 2005 | B2 |
6900030 | Pitner et al. | May 2005 | B2 |
6951714 | Giovannoni et al. | Oct 2005 | B2 |
7067194 | Mao et al. | Jun 2006 | B2 |
7108775 | Bahatt et al. | Sep 2006 | B2 |
7115384 | Clark et al. | Oct 2006 | B2 |
7123345 | Sugihara et al. | Oct 2006 | B2 |
7214299 | Armstrong | May 2007 | B2 |
7250775 | Collins et al. | Jul 2007 | B1 |
7258837 | Yager et al. | Aug 2007 | B2 |
7306924 | Gomez et al. | Dec 2007 | B2 |
7341841 | Metzger et al. | Mar 2008 | B2 |
7348183 | Fritsch et al. | Mar 2008 | B2 |
7397540 | Lundgren et al. | Jul 2008 | B2 |
7413891 | Bashir et al. | Aug 2008 | B2 |
7429355 | Bishop et al. | Sep 2008 | B2 |
7435579 | Bashir et al. | Oct 2008 | B2 |
7451646 | Cleland et al. | Nov 2008 | B2 |
7481977 | Percival et al. | Jan 2009 | B2 |
7510637 | Barlow et al. | Mar 2009 | B2 |
7561789 | Border et al. | Jul 2009 | B2 |
7564245 | Lee | Jul 2009 | B2 |
7576307 | Yazdanfar et al. | Aug 2009 | B2 |
7601300 | Blanton et al. | Oct 2009 | B2 |
7622078 | Pagés Pinyol | Nov 2009 | B2 |
7629029 | Mao et al. | Dec 2009 | B2 |
7642068 | Steiner et al. | Jan 2010 | B2 |
7651837 | Ohno et al. | Jan 2010 | B2 |
7670793 | Glencross | Mar 2010 | B2 |
7678256 | Davalos et al. | Mar 2010 | B2 |
7687239 | Goldberg et al. | Mar 2010 | B2 |
7689022 | Weiner et al. | Mar 2010 | B2 |
7723095 | Cleuziat et al. | May 2010 | B2 |
7754148 | Yu et al. | Jul 2010 | B2 |
7829275 | Franzen et al. | Nov 2010 | B2 |
7842504 | Devlin, Sr. | Nov 2010 | B2 |
7873268 | Segawa et al. | Jan 2011 | B2 |
7901624 | Hansen et al. | Mar 2011 | B2 |
7910062 | Yu et al. | Mar 2011 | B2 |
7955555 | Blecka et al. | Jun 2011 | B2 |
8014583 | Zahniser | Sep 2011 | B2 |
8029746 | Yu et al. | Oct 2011 | B2 |
8058078 | Hansen et al. | Nov 2011 | B2 |
8071319 | Metzger et al. | Dec 2011 | B2 |
8102276 | Sugiura | Jan 2012 | B2 |
8168443 | Yu et al. | May 2012 | B2 |
8178602 | Mao et al. | May 2012 | B2 |
8188438 | La | May 2012 | B2 |
8304245 | Kuypers et al. | Nov 2012 | B2 |
8323466 | Kim et al. | Dec 2012 | B2 |
8329437 | Ayliffe | Dec 2012 | B1 |
8335393 | Kotani | Dec 2012 | B2 |
8354307 | Lee | Jan 2013 | B2 |
8361298 | Sabin et al. | Jan 2013 | B2 |
8361299 | Sabin et al. | Jan 2013 | B2 |
8364409 | Rieder et al. | Jan 2013 | B2 |
8368964 | Xu et al. | Feb 2013 | B2 |
8372353 | Lee et al. | Feb 2013 | B2 |
8372600 | Sachs et al. | Feb 2013 | B2 |
8391582 | Weiner et al. | Mar 2013 | B2 |
8421484 | Prodan et al. | Apr 2013 | B2 |
8460887 | Goldberg et al. | Jun 2013 | B2 |
8478445 | Hansen et al. | Jul 2013 | B2 |
8481281 | Demirev et al. | Jul 2013 | B2 |
8508652 | Albu et al. | Aug 2013 | B2 |
8512636 | Blanton et al. | Aug 2013 | B2 |
8513001 | Weiss et al. | Aug 2013 | B2 |
8563298 | Lowery, Jr. et al. | Oct 2013 | B2 |
8603769 | Feng et al. | Dec 2013 | B2 |
8614056 | Davis et al. | Dec 2013 | B2 |
8635028 | Sengupta et al. | Jan 2014 | B2 |
8647835 | Walsh et al. | Feb 2014 | B2 |
8652800 | Walsh et al. | Feb 2014 | B2 |
8703061 | Guzman | Apr 2014 | B2 |
8709344 | Bishop et al. | Apr 2014 | B2 |
8765062 | Linder et al. | Jul 2014 | B2 |
8779779 | Wang et al. | Jul 2014 | B2 |
8780181 | Olesen et al. | Jul 2014 | B2 |
8804105 | Ayliffe | Aug 2014 | B2 |
8821814 | Cho et al. | Sep 2014 | B2 |
8828680 | Williams et al. | Sep 2014 | B2 |
8841118 | Robinson et al. | Sep 2014 | B2 |
8895255 | Goldberg et al. | Nov 2014 | B1 |
8911987 | Robinson et al. | Dec 2014 | B2 |
8932523 | Linder et al. | Jan 2015 | B2 |
8943588 | Speegle et al. | Jan 2015 | B1 |
8969072 | Robinson et al. | Mar 2015 | B2 |
8970826 | Liu et al. | Mar 2015 | B2 |
9007233 | Sugiura | Apr 2015 | B2 |
9048771 | Ohba et al. | Jun 2015 | B2 |
9057714 | Gomm et al. | Jun 2015 | B2 |
9090462 | Straus | Jul 2015 | B2 |
9133498 | Kwon et al. | Sep 2015 | B2 |
9150900 | Bishop et al. | Oct 2015 | B2 |
9213043 | Cook et al. | Dec 2015 | B2 |
9248422 | Ching et al. | Feb 2016 | B2 |
9274132 | Wilson et al. | Mar 2016 | B2 |
9290382 | Straus | Mar 2016 | B2 |
9353396 | Demirev et al. | May 2016 | B2 |
9405288 | Ogata | Aug 2016 | B2 |
9434937 | Metzger | Sep 2016 | B2 |
9567621 | Robinson et al. | Feb 2017 | B2 |
9657327 | Metzger et al. | May 2017 | B2 |
9677109 | Shamsheyeva et al. | Jun 2017 | B2 |
9714420 | Metzger et al. | Jul 2017 | B2 |
9841422 | Goldberg et al. | Dec 2017 | B2 |
20010009774 | Shin et al. | Jul 2001 | A1 |
20010053535 | Bashir et al. | Dec 2001 | A1 |
20020028489 | Ammann et al. | Mar 2002 | A1 |
20020028519 | Yguerabide et al. | Mar 2002 | A1 |
20020031795 | James et al. | Mar 2002 | A1 |
20020119455 | Chan | Aug 2002 | A1 |
20020127144 | Mehta | Sep 2002 | A1 |
20020148729 | Armstrong | Oct 2002 | A1 |
20020155490 | Skinner et al. | Oct 2002 | A1 |
20020155591 | Farina et al. | Oct 2002 | A1 |
20020164677 | Giovannoni et al. | Nov 2002 | A1 |
20020197709 | Van der Weide et al. | Dec 2002 | A1 |
20030023149 | Montemagno et al. | Jan 2003 | A1 |
20030032171 | Gemmell et al. | Feb 2003 | A1 |
20030032173 | Farina et al. | Feb 2003 | A1 |
20030036054 | Ladisch et al. | Feb 2003 | A1 |
20030119028 | Graves et al. | Jun 2003 | A1 |
20030124623 | Yager et al. | Jul 2003 | A1 |
20030134269 | Hirai et al. | Jul 2003 | A1 |
20030147132 | Behnsen et al. | Aug 2003 | A1 |
20030153023 | Starzl et al. | Aug 2003 | A1 |
20030157587 | Gomez et al. | Aug 2003 | A1 |
20030170613 | Straus | Sep 2003 | A1 |
20030186341 | Kuhn et al. | Oct 2003 | A1 |
20030211566 | Gazenko | Nov 2003 | A1 |
20030224436 | Nelson et al. | Dec 2003 | A1 |
20040052426 | Landesman | Mar 2004 | A1 |
20040089546 | Bahatt et al. | May 2004 | A1 |
20040168916 | Fuchs et al. | Sep 2004 | A1 |
20040189311 | Glezer et al. | Sep 2004 | A1 |
20050048599 | Goldberg et al. | Mar 2005 | A1 |
20050059105 | Alocilja et al. | Mar 2005 | A1 |
20050112544 | Xu et al. | May 2005 | A1 |
20050114041 | Gawad et al. | May 2005 | A1 |
20050118705 | Rabbitt et al. | Jun 2005 | A1 |
20050121596 | Kam et al. | Jun 2005 | A1 |
20050202523 | Shaw et al. | Sep 2005 | A1 |
20050208592 | Caron et al. | Sep 2005 | A1 |
20050213374 | Xu et al. | Sep 2005 | A1 |
20050221403 | Gazenko | Oct 2005 | A1 |
20050238652 | Tsuji et al. | Oct 2005 | A1 |
20050255445 | Van Damme et al. | Nov 2005 | A1 |
20050287572 | Mathies et al. | Dec 2005 | A1 |
20060120916 | Kolari et al. | Jun 2006 | A1 |
20060141618 | Yasuda et al. | Jun 2006 | A1 |
20060166184 | Yasuda et al. | Jul 2006 | A1 |
20060194307 | Yasuda et al. | Aug 2006 | A1 |
20060243594 | Schnelle et al. | Nov 2006 | A1 |
20070037225 | Metzger et al. | Feb 2007 | A1 |
20070202538 | Glezer et al. | Aug 2007 | A1 |
20070238146 | Tyler et al. | Oct 2007 | A1 |
20070298513 | Starzl et al. | Dec 2007 | A1 |
20080014181 | Ariff et al. | Jan 2008 | A1 |
20080046286 | Halsted | Feb 2008 | A1 |
20080072664 | Hansen et al. | Mar 2008 | A1 |
20080138799 | Cheng et al. | Jun 2008 | A1 |
20080193965 | Zeng et al. | Aug 2008 | A1 |
20080221805 | Andrews | Sep 2008 | A1 |
20080241858 | Metzger et al. | Oct 2008 | A1 |
20090012723 | Treado et al. | Jan 2009 | A1 |
20090051372 | Sethu et al. | Feb 2009 | A1 |
20090104689 | Kim et al. | Apr 2009 | A1 |
20090203063 | Wheeler et al. | Aug 2009 | A1 |
20090208072 | Seibel et al. | Aug 2009 | A1 |
20100048428 | Coyer et al. | Feb 2010 | A1 |
20100075340 | Javanmard | Mar 2010 | A1 |
20100099139 | Ben-David et al. | Apr 2010 | A1 |
20100120016 | Li et al. | May 2010 | A1 |
20100129858 | Walsh et al. | May 2010 | A1 |
20100248281 | Straus | Sep 2010 | A1 |
20100267165 | Bruls et al. | Oct 2010 | A1 |
20110023690 | Wilson | Feb 2011 | A1 |
20110042582 | Ingber et al. | Feb 2011 | A1 |
20110117577 | Reboud et al. | May 2011 | A1 |
20110136165 | Vojnovic et al. | Jun 2011 | A1 |
20110183856 | Agan et al. | Jul 2011 | A1 |
20110237446 | Treado et al. | Sep 2011 | A1 |
20110242308 | Igarashi et al. | Oct 2011 | A1 |
20110256617 | Cocchi et al. | Oct 2011 | A1 |
20120028342 | Ismagilov et al. | Feb 2012 | A1 |
20120077206 | Metzger et al. | Mar 2012 | A1 |
20120103817 | Omori et al. | May 2012 | A1 |
20120105837 | Ingber | May 2012 | A1 |
20120142032 | Morgan | Jun 2012 | A1 |
20120149584 | Olle | Jun 2012 | A1 |
20120169863 | Bachelet et al. | Jul 2012 | A1 |
20120223217 | Zheng et al. | Sep 2012 | A1 |
20120244519 | Olesen et al. | Sep 2012 | A1 |
20120258874 | Narain et al. | Oct 2012 | A1 |
20130017534 | Nickel et al. | Jan 2013 | A1 |
20130045878 | McCue | Feb 2013 | A1 |
20130089886 | Feng et al. | Apr 2013 | A1 |
20130115607 | Nielsen et al. | May 2013 | A1 |
20130183694 | Janetzko et al. | Jul 2013 | A1 |
20130217063 | Metzger et al. | Aug 2013 | A1 |
20130271060 | Messersmith et al. | Oct 2013 | A1 |
20130295588 | Watkins et al. | Nov 2013 | A1 |
20130295597 | DeWitte et al. | Nov 2013 | A1 |
20130324437 | Pogliano et al. | Dec 2013 | A1 |
20130345525 | Kline | Dec 2013 | A1 |
20140038171 | Metzger et al. | Feb 2014 | A1 |
20140179726 | Bajaj et al. | Jun 2014 | A1 |
20140199719 | Shih et al. | Jul 2014 | A1 |
20140234949 | Wasson et al. | Aug 2014 | A1 |
20140278136 | Shamsheyeva et al. | Sep 2014 | A1 |
20140278143 | Garstecki et al. | Sep 2014 | A1 |
20140323340 | Goldberg et al. | Oct 2014 | A1 |
20140343868 | Colwell et al. | Nov 2014 | A1 |
20150168290 | Shachaf | Jun 2015 | A1 |
20150225762 | Metzger et al. | Aug 2015 | A1 |
20150293270 | Jarvius et al. | Oct 2015 | A1 |
20150301002 | DeWitte et al. | Oct 2015 | A1 |
20150337351 | Metzger | Nov 2015 | A1 |
20160010138 | Shamsheyeva et al. | Jan 2016 | A1 |
20160051985 | Knight et al. | Feb 2016 | A1 |
20160238826 | Shields et al. | Aug 2016 | A1 |
20160279633 | Bachelet et al. | Sep 2016 | A1 |
20160289729 | Richards et al. | Oct 2016 | A1 |
20160348091 | Metzger et al. | Dec 2016 | A1 |
20170023599 | Richards et al. | Jan 2017 | A1 |
20170029864 | Straus | Feb 2017 | A1 |
20170218426 | Shamsheyeva et al. | Aug 2017 | A1 |
20180080932 | Goldberg et al. | Mar 2018 | A1 |
20180135093 | Ashby et al. | May 2018 | A1 |
Number | Date | Country |
---|---|---|
772760 | May 2004 | AU |
0498920 | Aug 1992 | EP |
1648286 | Apr 2006 | EP |
2 645 108 | Oct 2013 | EP |
2 987 851 | Feb 2016 | EP |
2 507 663 | Feb 2017 | EP |
1520733 | Aug 1978 | GB |
52102491 | Aug 1977 | JP |
58198759 | Nov 1983 | JP |
H11505405 | May 1999 | JP |
2001509008 | Jul 2001 | JP |
2002500892 | Jan 2002 | JP |
2002502597 | Jan 2002 | JP |
2002330799 | Nov 2002 | JP |
2003527601 | Sep 2003 | JP |
200481019 | Mar 2004 | JP |
2004513628 | May 2004 | JP |
WO 1989001162 | Feb 1989 | WO |
WO 8910566 | Nov 1989 | WO |
WO 1990011525 | Oct 1990 | WO |
WO 1991004491 | Apr 1991 | WO |
WO 1993013197 | Jul 1993 | WO |
WO 1994002831 | Feb 1994 | WO |
WO 1994011728 | May 1994 | WO |
WO 1995008640 | Mar 1995 | WO |
WO 1995028641 | Oct 1995 | WO |
WO 1996014431 | May 1996 | WO |
WO 1998022618 | May 1998 | WO |
WO 1998022808 | May 1998 | WO |
WO 1998040741 | Sep 1998 | WO |
WO 1999020789 | Apr 1999 | WO |
WO 1999037799 | Jul 1999 | WO |
WO 1999040174 | Aug 1999 | WO |
WO 1999058948 | Nov 1999 | WO |
WO 2000024941 | May 2000 | WO |
WO 2001031332 | May 2001 | WO |
WO 2001069230 | Sep 2001 | WO |
WO 2001079529 | Oct 2001 | WO |
WO 2002038724 | May 2002 | WO |
WO 2002088299 | Nov 2002 | WO |
WO 2003012525 | Feb 2003 | WO |
WO 2003022999 | Mar 2003 | WO |
WO 2003025208 | Mar 2003 | WO |
WO 2003048736 | Jun 2003 | WO |
WO 2003065009 | Aug 2003 | WO |
WO 2003073100 | Sep 2003 | WO |
WO 2005027714 | Mar 2005 | WO |
WO 2006015374 | Feb 2006 | WO |
WO 2006028601 | Mar 2006 | WO |
WO 2006066216 | Jun 2006 | WO |
WO 2006113930 | Oct 2006 | WO |
WO 2006135904 | Dec 2006 | WO |
WO 2009124068 | Oct 2009 | WO |
WO 2010062350 | Jun 2010 | WO |
WO 2010062352 | Jun 2010 | WO |
WO 2011035304 | Mar 2011 | WO |
WO 2012122314 | Sep 2012 | WO |
WO 2012162133 | Nov 2012 | WO |
WO 2013072069 | May 2013 | WO |
WO 2013130875 | Sep 2013 | WO |
WO 2013177277 | Nov 2013 | WO |
WO 2014040088 | Mar 2014 | WO |
WO 2014100456 | Jun 2014 | WO |
WO 2014145899 | Sep 2014 | WO |
WO 2014153194 | Sep 2014 | WO |
WO 2014169921 | Oct 2014 | WO |
WO 2016037051 | Mar 2016 | WO |
WO 2016207065 | Dec 2016 | WO |
Entry |
---|
Magnúsdóttir et al. (Collection of Capillary Electrophoresis Fractions on a Moving Membrane. From: Methods in Molecular Biology, vol. 162: Capillary Electrophoresis of Nucleic Acids, vol. 1: Introduction to the Capillary Electrophoresis of Nucleic Acids. 2001; 323-331). |
MS Bello Electrolytic modification of a buffer during a capillary electrophoresis run. Journal of Chromatography A, 1996; 744: 81-91. |
Jiang et al. Human Adenoviruses and Coliphages in Urban Runoff-Impacted Coastal Waters of Southern California. Appl. Environ. Microbiol. 2001; 67(1): 179-184. |
Alban et al. A novel experimental design for comparative two-dimensional gel analysis: Two-dimensional difference gel electrophoresis incorporating a pooled internal standard. Proteomics, 2003; 3: 36-44. |
Kremser, et al. Capillary electrophoresis of biological particles: Viruses, bacteria, and eukaryotic cells. Electrophoresis 2004, 25, 2282-2291. |
Pagola et al., “The structure of malaria pigment β-haematin,” Nature 404:307-310, 2000. |
U.S. Appl. No. 08/820,365, filed Mar. 12, 1997, now U.S. Pat. No. 5,958,704. |
U.S. Appl. No. 09/346,039, filed Jul. 6, 1999, now U.S. Pat. No. 6,274,384. |
U.S. Appl. No. 10/888,828, filed Jul. 8, 2004, now U.S. Pat. No. 7,687,239. |
U.S. Appl. No. 11/303,803, filed Dec. 16, 2005, now U.S. Pat. No. 7,341,841. |
U.S. Appl. No. 12/021,087, filed Jan. 28, 2008, now U.S. Pat. No. 8,071,319. |
U.S. Appl. No. 12/702,210, filed Feb. 8, 2010, now U.S. Pat. No. 8,460,887. |
U.S. Appl. No. 13/311,100, filed Dec. 5, 2011, now abandoned. |
U.S. Appl. No. 13/763,446, filed Feb. 8, 2013, now U.S. Pat. No. 8,895,255. |
U.S. Appl. No. 13/843,460, filed Mar. 15, 2013. |
U.S. Appl. No. 14/004,145, filed Oct. 16, 2013, now U.S. Pat. No. 9,434,937. |
U.S. Appl. No. 14/204,222, filed Mar. 11, 2014, now abandoned. |
U.S. Appl. No. 14/209,917, filed Mar. 13, 2014. |
U.S. Appl. No. 14/329,387, filed Jul. 11, 2014. |
U.S. Appl. No. 14/427,172, filed Mar. 10, 2015. |
U.S. Appl. No. 14/720,588, filed May 22, 2015. |
U.S. Appl. No. 14/772,376, filed Sep. 2, 2015. |
U.S. Appl. No. 15/003,604, filed Jan. 21, 2016. |
U.S. Appl. No. 15/085,953, filed Mar. 30, 2016. |
U.S. Appl. No. 15/236,021, filed Aug. 12, 2016. |
U.S. Appl. No. 15/283,922, filed Oct. 3, 2016. |
U.S. Appl. No. 15/484,250, filed Apr. 11, 2017. |
Palarasah et al., “Sodium Polyanethole Sulfonate as an Inhibitor of Activation of Complement Function in Blood Culture Systems,” J Clin Microbiol. 48:908-914, 2010. |
EP 13835702.5 Office Action dated Oct. 16, 2017 (9 pages). |
EP 16200084.8 Extended European Search Report dated Aug. 1, 2017 (17 pages). |
EP 16192372.7 Extended European Search Report and Written Opinion dated Feb. 28, 2018 (11 pages). |
Olsvik et al., “Magnetic Separation Techniques in Diagnostic Microbiology”, Clin Microbiol Rev. 7:43-54, 1994. |
Bloem et al., “Fully Automatic Determination of Soil Bacterium Numbers, Cell Volumes, and Frequencies of Dividing Cells by Confocal Laser Scanning Microscopy and Image Analysis,” Appl Environ Microbiol. 61:926-936, 1995. |
U.S. Appl. No. 15/827,187, filed Nov. 30, 2017. |
U.S. Appl. No. 15/849,297, filed Dec. 20, 2017. |
Inoue et al., “On-chip culture system for observation of isolated individual cells,” Lab on a Chip 1:50-55, 2001. |
Rodrigues and Kroll, “Rapid selective enumeration of bacteria in foods using a microcolony epifluorescence microscopy technique,” J Appl Bacteriol. 64:65-78, 1988. |
Zhu et al., “Filter-based microfluidic device as a platform for immunofluorescent assay of microbial cells,” Lab Chip 4:337-341, 2004. |
Accelerate Diagnostics: “Accelerate ID/AST,” Vimeo, May 18, 2015, pp. 1-6, XP054976621, Retrieved from the Internet: URL:https://vimeo.com/128112270 [retrieved on Jun. 22, 2016]. |
Accelerate Diagnostics: “Fast Phenotypic Antibiotic Susceptibility Testing: Connie Price, M.D.,” YouTube, Aug. 28, 2015, pp. 1-6, XP054976622, Retrieved from the Internet: URL:https://www.youtube.com/watch?v=1n1GW54atXE&index=3&list=PLsmqpsknnk2_ENp8Xd3BhK0vu9nfU0p6y [retrieved on Jun. 22, 2016]. |
Alere, Inc., “Adult Isolator Tube Solution Material Safety Data Sheet,” (2010). |
Aminian et al., “A Conformal Bayesian Network for Classification of Mycobacterium tuberculosis Complex Lineages,” BMC Bioinformatics, 11(Suppl 3): S4 (2010). |
Anzaldi et al., “Overcoming the Heme Paradox: Heme Toxicity and Tolerance in Bacterial Pathogens,” Infect. Immun. 78(12): 4977-4989 (2010). |
Ateya et al., “Volume Cytometry: Microfluidic Sensor for High-Throughput Screening in Real Time,” Analytical Chem., 77:1290-1294, (2005). |
Atlas and Snyder, Handbook of Media for Clinical Microbiology, 2006. CRC press. |
Bae et al., “Immunosensor for Detection of Yersinia Enterocolitica Based on Imaging Ellipsometry,” Analytical Chem., 76:1799-1803, (2004). |
Baker et al., “The Bactericidal Action of Synthetic Detergents,” J Exp Med. 74:611 620, 1941. |
Balaban et al., “Bacterial Persistence as a Phenotypic Switch,” Science, 305, pp. 1622-1625, (2004). |
Barton et al., “Measurement of Bacterial Growth Rates on Polymers,” J. Biomed. Mater Res., 32, pp. 271-278, (1996). |
Bayoudh el al., “Electrical Detection and Characterization of Bacterial Adhesion Using Electrochemical Impedance Spectroscopy-Based Flow Chamber,” Colloids and Surfaces A: Physicochem. Eng. Aspects, 318:291-300, (2008). |
Beaglehole, “Performance of a Microscopic Imaging Ellipsometer,” Rev. Sci. Instrum., 59:12, pp. 2557-2559, (1988). |
Belding et al., “Effect of Sodium Polyanetholesulfonate on Antimicrobial Systems in Blood,” Appl. Microbiol. 24(5): 691-698 (1972). |
Benecky et al., “Simultaneous Detection of Multiple Analytes Using Copalis Technology: A Reduction to Practice,” Clin. Chem., 44:9, pp. 2052-2054, (1998). |
Boehm et al., “On-Chip Microfluidic Biosensor for Bacterial Detection and Identification,” Sensors and Actuators, 126:508-514, (2007). |
Bridson, E.Y., and Gould, G.W., “Quantal Microbiology,” Lett. Appl. Microbiology, 30:95-98, (2000). |
Burnham C-1358: Poster—“Rapid Detection of Klebsiella pneumoniae Carbapenemase (KPC) Producing Isolates Using the BACcel™ Digital Microscopy System,” Presented at ASM 2013 May 18, 2013, Denver, CO. |
Burnham et al., “Rapid Ertapenem Susceptibility Testing and Klebsiella pneumoniae Carbapenemase (KPC) Phenotype Detection in Klebsiella pneumoniae Using Automated Microscopy of Immobilized Live Bacterial Cells,” J Clin Microbiol. 52:982-986, 2014. |
Cabrera et al., “Continuous Concentration of Bacteria in a Microfluidic Flow Cell Using Electrokinetic Techniques,” Electrophoresis 22:355-362, 2001. |
Chan et al., “Evaluation of Lysis Filtration as an Adjunct to Conventional Blood Culture,” J. Clin. Pathol. 39: 89-92 (1986). |
Cheung et al., “Microfluidic Impedance-Based Flow Cytometry,” Cytometry A, 77A, pp. 648-666, (2010). |
Choi et al., “Rapid antibiotic susceptibility testing by tracking single cell growth in a microfluidic agarose channel system,” Lab Chip 13:280-287, 2013. |
Cooper et al. D-4013: Poster—“Potential Impact of Rapid Phenotype Identification on Antimicrobial Prescribing,” Presented at the 48th ICAAC and IDSA Oct. 28, 2008, Washington, DC. |
Dai et al., “Electrokinetic Trapping and Concentration Enrichment of DNA in a Microfluidic Channel,” J. Am. Chem. Soc., 125″13026-13027, (2003). |
Daims et al., “Quantification of Uncultured Microorganisms by Fluorescence Microscopy and Digital Image Analysis,” Appl. Microbiol. Biotechnol., 75″237-248, (2007). |
De Brabander et al.. “Detection of Gold Probes With Video-Enhanced Contrast Microscopy: Nanovid Microscopy,” Amer. J., Anat. 185:282-295, (1989). |
Delehanty, J.B., and Ligler, F.S., “A Microarray Immunoassay for Simultaneous Detection of Proteins and Bacteria,” Anal. Chem., 74:5681-5687, (2002). |
Desai, M.J., and Armstrong, D.W., “Separation, Identification, and Characterization of Microorganisms by Capillary Electrophoresis,” Microbiology and Molecular Biology Reviews, 67, pp. 38-51, (2003). |
Dorn et al., “Blood Culture Technique Based on Centrifugation: Developmental Phase,” J. Clin. Micro. 3(3): 251-257 (1976). |
Douglas et al. Poster—“Rapid Microbiological Identification and Major Drug Resistance Phenotyping with Novel Multiplexed Automated Digital Microscopy (MADM) for Ventilator-Associated Pneumonia (VAP) Surveillance,” Presented at ATS 2011 May 16, 2011, Denver, CO. |
Douglas et al., Rapid Automated Microscopy for Microbiological Surveillance of Ventilator-associated Pneumonia, Am J Respir Crit Care Med. 191:566-573, 2015. |
Dwek et al., “Synchronization of Cell Division in Microorganisms by Percoll Gradients,” J. Bacteriol. 144(1):17-21 (1980). |
Elfwing et al., “Observing Growth and Division of Large Numbers of Individual Bacteria by Image Analysis,” Appl. Environ. Micro., 70, pp. 675-678, (2004). |
Elghanian et al., “Selective Colorimetric Detection of Polynucleotides Based on the Distance-Dependent Optical Properties of Gold Nanoparticles,” Science, 277, pp. 1078-1081, (1997). |
Ertl et al., “Electrochemical Biosensor Array for the Identification of Microorganisms Based on Lectin-Lipopolysaccharide Recognition,” Analytical Chem., 73: 4241-4248, (2001). |
Ertl et al., “Rapid Identification of Viable Escherichia coli Subspecies with Electrochemical Screen-Printed Biosensor Array,” Biosensors Bioelectronics, 18, pp. 907-916, (2003). |
Fun et al., “Encapsulating Bacteria in Agarose Microparticles Using Microfluidics for High-Throughput Cell Analysis and Isolation,” ACS Chem. Biol., 18:260-266, (2011). |
Fesenko et al., “Biosensing and Monitoring of Cell Populations Using the Hydrogel Bacterial Microchip,” Biosens Bioelectron. 20:1860-1865, 2005. |
Forero et al., “Automatic Identification Techniques of Tuberculosis Bacteria,” Proc. SPIE 5203, Applications of Digital Image Processing XXVI, (Tescher, A.G., Ed.) SPIE Proceedings, 5203:71-81, (2003). |
Friedman et al., “Precise Temporal Modulation in the Response of the SOS DNA Repair Network in Individual Bacteria,” PLoS Bio. 3:1261-1268, (2005). |
Gadkari, “Optimal Hydrogels for East and Safe Delivery of Bioactive Compounds,” A Thesis Submitted to the Faculty of Drexel University, (2007). |
Gamage et al. 2556: Poster—“Rapid Detection of Clinically Important Staphylococcus aureus Resistance Phenotypes Directly from Positive Blood Cultures Using Automated Microscopy,” Presented at ASM2014 May 20, 2014, Boston, MA. |
Gao et al., “Epipolarization Microscopic lmmunogold Assay: A Combination of lmmunogold Silver Staining, ELISA and Epipolarization Microscopy,” Biotech. & Histochem., 70:211-216, (1995). |
Gast, R.K. et al., “Detection of Salmonella entertidis in Incubated Pools of Egg Contents by Fluorescence Polarization and Lateral Flow Immunodiffusion,” Poultry Science, 82:687-690, (2003). |
Gawad et al., “Micromachined Impedance Spectroscopy Flow Cytometer for Cell Analysis and Particle Sizing,” Lab on a Chip, 1, pp. 76-82, (2001). |
Geerts et al., “Nanovid Microscopy,” Nature, 1991, 351:765-766, (1991). |
Geesey, and White,“Determination of Bacterial Growth and Activity at Solid-Liquid Interfaces,” Annu. Rev. Microbiol., 44:579-602, (1990). |
Gomez et al., “Microfluidic Biochip for Impedance Spectroscopy of Biological Species,” Biomedical Microdevices, 3:3, pp. 201-209, (2001). |
Greef et al., “Identification and Growth Rate Quantitation of Individual Bacterial Clones Using a Novel Microfluidic Concentration Device,” Accelr8 Technology Corporation (1 page), 2006. |
Hach Company, “Heterotrophic Bacteria, Pour Plate Method,” Edition 7 (10 pages), 2012. |
Hance et al. C-065: Poster—“A Rapid indirect Enzyme-Linked Immunosorbent Assay for Identification of Acinetobacter spp. from Cultured Isolates,” Presented at the American Society for Microbiology 108th General Meeting Jun. 2, 2008. |
Hance et al. K-392: Poster—“Rapid Identification of Live Acinetobacter spp. in Bronchoalveolar Lavage Specimens by Automated Immunofluorescence Microscopy,” Presented at the 47th ICAAC Sep. 27, 2007. |
Hance et al. P0539: Poster—“Pathogen Identification from Positive Blood Cultures Using Automated Sample Preparation and Automated Fluorescent in situ Hybridization (FISH),” Presented at ECCMID 2014, May 11, 2014, Barcelona, Spain. |
Hance et al. Poster 2032: Poster—“Rapid Bacterial Identification Directly from Positive Blood Cultures Using Automated Sample Preparation and Multiplexed Fluorescence in situ Hybridization (FISH),” ASM2014, Boston, MA May 20, 2014. |
Heileman et al., “Dielectric Spectroscopy as a Viable Biosensing Tool for Cell and Tissue Characterization and Analysis,” Biosensors and Bioelectronics, 49, pp. 348-359, (2013). |
Huang et al., “Electric Manipulation of Bioparticles and Macromolecules on Microfabricated Electrodes,” Analytical Chem., 73, pp. 1549-1559, (2001). |
Huang et al., “Lysozyme for Capture of Microorganisms on Protein Biochips,” Enzyme and Microbial. Technol., 33:958-966, (2003). |
Inverness Medical Group, “Wampole Isostat Microbial Tubes, Instructions for Use and Supplementary Application Notes,” (2008). |
Iregui et al., “Clinical Importance of Delays in the Initiation of Appropriate Antibiotic Treatment for Ventilator-Associated Pneumonia,” Chest 122:262-268, 2002. |
Isse et al., “Digital Transplantation Pathology: Combining Whole Slide Imaging, Multiplex Staining and Automated image Analysis,” Am J Transplant. 12:27-37, 2012. |
Jampachaisri et al., “Classification of oligonucleotide fingerprints: application for microbial community and gene expression analyses,” Bioinformatics 21: 3122-3130 (2005). |
Ji et al., “Real-time Detection of Bacterial Contamination in Dynamic Aqueous Environments Using Optical Sensors,” Analytical Chem., 76:1411-1418, (2004). |
Jin et al., “A Biosensor Concept Based on Imaging Ellipsometry for Visualization of Biomolecular Interactions,” Analytical Biochem., 232:69-72, (1995). |
Kastenholz, B. “Comparison of the Electrochemical Behavior of the High Molecular Mass Cadmium Proteins in Arabidopsis thaliana and in Vegetable Plants on Using Preparative Native Continuous Polyacrylamide Gel Electrophoresis (PNC-PAGE),” Electroanalysis 18:103-106 (2006). |
Kim and Soh, “Simultaneous Sorting of Multiple Bacterial Targets Using Integrated Dielectrophoretic-Magnetic Activated Cell Sorter,” Lab Chip 9:2313-2318, 2009. |
Kim et al., “Programmed Trapping of Individual Bacteria Using Micrometre-Size Sieves,” Lab on a Chip, 11, pp. 1089-1095, (2011). |
Koh et al., “Integrating Polymerase Chain Reaction, Valving, and Electrophoresis in a Plastic Device for Bacterial Detection,” Analytical Chem., 75:4591-4598, (2003). |
Kremser, et al., “Capillary Electrophoresis of Biological Particles: Viruses, Bacteria, and Eukaryotic Cells,” Electrophoresis 25: 2282-2291 (2004). |
Kubitschko et al.,“Sensitivity Enhancement of Optical Immunosensors with Nanoparticles,” Analytical Biochem., 253, pp. 112-122, (1997). |
Kuehn et al., “Automated Confocal Laser Scanning Microscopy and Semiautomated Image Processing for Analysis of Biofilms,” Appl. Environ. Microbio., 64:4115-4127, (1998). |
Kumar et al., “Duration of Hypotension Before Initiation of Effective Antimicrobial Therapy is the Critical Determinant of Survival in Human Septic Shock,” Crit Care Med. 34:1589-1596, 2006. |
Lagally et al., “Integrated Portable Genetic Analysis Microsystem for Pathogen/Infectious Disease Detection,” Analytical Chem., 76, pp. 3162-3170, (2004). |
Lawrence et al., “Computer-Enhanced Darkfield Microscopy for the Quantitative Analysis of Bacterial Growth and Behavior on Surfaces,” J. Microbial. Methods 10:123-138, (1989). |
Lerner, “Bayesian Fluorescence In Situ Hybridisation Signal Classification,” Artif. Intell. Med. 30: 301-316 (2004). |
Levin-Reisman et al., “Automated Imagining With ScanLag Reveals Previously Undetectable Bacterial Growth Phenotypes,” Nature Methods 7:737-739, 2010. |
Lisby et al. ePoster “Performance of the new Accelerate ID/AST System in Highly Resistant Acinetobacter baumannii Bloodstream Infection Isolates, Compared to Routine Laboratory Testing,” ECCMID Apr. 23, 2015, Copenhagen, Denmark. |
Liu et al., “CMEIAS: A Computer-Aided System for the Image Analysis of Bacterial Morphotypes in Microbial Communities,” Microb. Ecol., 41:173-194, (2001). |
Lloyd, D., and Hayes, A.J., “Vigour, Vitality and Viability of Microorganisms,” FEMS Microbio. Lett., 133:1-7, (1995). |
Lochhead, “Microfluidic Devices that Capture Bacteria for Growth and Kill Analysis,” Nov. 14, 2006, XP055207195, retrieved from the Internet: URL:http://acceleratediagnostics.com/docs/AVS_2006_Capture.pdf [retrieved on Aug. 11, 2015]. |
Luna et al.,“Appropriateness and Delay to initiate Therapy in Ventilator-Associated Pneumonia,” Eur Respir J. 27:158-164, 2006. |
Maeyama et al., “Confocal Imaging of Biofilm Formation Process Using Fluoroprobed Escherichia coli and Fluorostained Exopolysaccharide,” J. Biomed. Mater Res., 70:274-282, (2004). |
Magnusdottir, et al. “Collection of Capillary Electrophoresis Fractions on a Moving Membrane,” From Methods in Molecular Biology, vol. 162: Capillary Electrophoresis of Nucleic Acids, vol. 1: Introduction to the Capillary Electrophoresis of Nucleic Acids. 22: 323-331 (2001). |
Markx, G. H. et al., “Dielectrophoretic Separation of Cells: Continuous Separation,” Biotechnol. Bioeng., 45:337-343, (1995). |
Markx, G.H. et al., “Dielectrophoretic Characterization and Separation of Micro-Organisms” Microbiology, 140:585-591 (1994). |
Meinders et al., “In Situ Enumeration of Bacterial Adhesion in a Parallel Plate Flow Chamber—Elimination or in Focus Flowing Bacteria From the Analysis,” J. Microbiol. Methods, 16:119-124, (1992). |
Metzger et al. C-163: Poster—“Direct Observation of Inducible Clindamycin Resistance in Staphylococcus aureus Using Single Live Cell Imaging,” Presented at the American Society for Microbiology General Meeting May 23, 2006. |
Metzger C-032: Poster—“Direct Identification of Methicillin Resistant Staphylococcus aureus (MRSA) Using Small Numbers of Immobilized Cells and Response to Oxacillin (OCA) by Automated Growth Analysis,” Presented at the American Society for Microbiology 107th General Meeting, May 22, 2007. |
Metzger et al. D-892: Poster—“Identification of mecA in Staphylococcus aureus Using Small Numbers of Immobilized Cells and the Response to Cefoxitin (FOX) by Automated Growth Analysis,” Presented at the 47th ICAAC Sep. 28, 2007. |
Metzger et al. C-005: Poster—“Direct Identification of MRSA and MLSB Phenotypes in Staphylococcus aureus Using Small Numbers of Immobilized Cells,” Presented at the American Society for Microbiology 108th General Meeting Jun. 2, 2008. |
Metzger et al. C-145: Poster—“Direct Detection and Enumeration of Viable Bacteria in Human Bronchoalveolar Lavage Specimens Using Automated Growth Rate Analysis,” Presented at the American Society for Microbiology 108th General Meeting Jun. 2, 2008. |
Metzger et al. D-282: Poster—“Direct Identification of the ESBL Phenotype in Enterobacteriaceae Isolates Using Small Numbers of Immobilized Cells,” Presented at the 48th ICAAC and IDSA Oct. 25, 2008, Washington, DC. |
Metzger et al. C-207: Poster—“Rapid Identification of Resistance Phenotypes in Gram-Negative Bacilli Using Automated Digital Microscopy,” Presented at the 109th General Meeting of the ASM, Philadelphia, PA, May 23, 2009. |
Metzger et al. C-1140: Poster—“Rapid Quantitation and Identification of Pseudomonas aeruginosa, Staphylococcus aureus, and Acinetobacter baumannii In Bronchoalveolar Lavage Fluid,” Presented at the 110th General Meeting of the ASM May 24, 2010, San Diego, CA. |
Metzger et al. Poster: “Same-Day ID and Resistance Phenotyping Directly from Respiratory Specimens by Automated Microscopy,” Presented at ASM 2011, New Orleans, May 22, 2011. |
Metzger et al. Poster—“Automated 4-Hour Detection of Heteroresistant Vancomycin-Intermediate Staphylococcus aureus (hVISA),” Presented at ASM 2011 May 22, 2011, New Orleans. |
Metzger et al. D-791: Poster—“Direct-From-Remnant-Specimen Quantitative Identification Using Automated Microscopy,” Presented at the 50th ICAAC, Sep. 13, 2010, Boston, MA. |
Metzger and Dunne D-102: Poster—“Same-Shift ID Directly from Respiratory Specimens by Automated Microscopy,” Presented at 51st ICAAC Sep. 17, 2011, Chicago, IL. |
Metzger et al. C-157: Poster—“3-Hour ESBL Detection from Positive Blood Cultures Using Multiplexed Automated Digital Microscopy (MADM),” Presented at ASM 2012 Jun. 17, 2012, San Francisco, CA. |
Metzger et al. C-751: Poster—“Rapid and Automated Specimen Preparation for Clinical Microbiology,” Presented at ASM 2012 Jun. 17, 2012, San Francisco, CA. |
Metzger D-1410: Poster—“Same-Day Blood Culture with Digital Microscopy,” Presented at ICAAC 2012 Sep. 11, 2012, San Francisco, CA. |
Metzger et al., “Rapid Simultaneous Identification and Quantitation of Staphylococcus aureus and Pseudomonas aeruginosa Directly from Bronchoalveolar Lavage Specimens Using Automated Microscopy,” Diagn Microbiol Infect Dis. 79:160-165, 2014. |
Miller et al., “SOS Response Induction by Beta-Lactams and Bacterial Defense Against Antibiotic Lethality,” Science, 305:1629-1631, 2004. |
Mishra et al., “On-Chip Micro-Biosensor for the Detection of Human CD4+ Cells Based on AC Impedance and Optical Analysis,” Biosensors and Bioelectronics, 21:696-704, (2005). |
Moffitt et al., “The Single-Cell Chemostat: An Agarose-Based, Microfluidic Device for High-Throughput, Single-Cell Studies of Bacteria and Bacterial Communities,” Lab Chip 12:1487-1494, 2012. |
Mohamad et al., “Bacteria Identification from Microscopic Morphology Using Naïve Bayes,” IJCSEIT 4:1-9, 2014. |
Molin et al., “Rapid Detection of Bacterial Growth in Blood Cultures by Bioluminescent Assay of Bacterial ATP,” J. Clin. Microbiol. 18:521-525 (1983). |
Mueller et al., “Issues in Pharmacokinetics and Pharmacodynamics of Anti-Infective Agents: Kill Curves Versus MIC,” Antimicrob. Agents Chemother., 48:369-377, (2004). |
Oheim, “High-Throughput Microscopy Must Re-Invent the Microscope Rather Than Speed up its Functions,” Br. J. Pharmacol., 152:1-4, (2007). |
Okano et al., “Using Microparticle Labeling and Counting for Attomole-Level Detection in Heterogeneous Immunoassay,” Analytical Biochem., 202:120-125, (1992). |
Orjih, “Heme Polymerase Activity and the Stage Specificity of Antimalarial Action of Chloroquine,” J. Pharm. Exp. Ther. 282(1): 108-112 (1997). |
Ozkan et al., “Electro-Optical Platform for the Manipulation of Live Cells,” Langmuir, 19:1532-1538, (2003). |
Plowman, “Planar Integrated Optical Methods for Examining Thin Films and Their Surface Adlayers,” Biomaterials, 19:341-355, (1998). |
Price et al. ePoster “Rapid Identification and Antimicrobial Susceptibility Testing of Bacteria in Bloodstream Infections Using the Accelerate ID/AST Technology,” ECCMID Apr. 23, 2015, Copenhagen, Denmark. |
Price et al., “Rapid antibiotic Susceptibility Phenotypic Characterization of Staphylococcus aureus Using Automated Microscopy of Small Numbers of Cells,” J Microbiol Methods. 98:50-58, 2014. |
Probst et al.,“Polydimethylsiloxane Sub-Micron Traps for Single-Cell Analysis of Bacteria,” Micromachines, 4:357-369, (2013). |
Rabinovitch et al., “Removal and Inactivation of Staphylococcus epidermidis Biofilms by Electrolysis,” Applied and Environmental Microbiology, 72:6364-6366, (2006). |
Rajagopal et al., “Eight Gram-Negative Bacteria are 10,000 Times More Sensitive to Cationic Detergents than to Anionic Detergents,” Can J Microbiol. 49:775-779, 2003. |
RMM Product Matrix, http://rapidmicromethods.com/files/matrix.php, accessed Jul. 27, 2016. (13 pages). |
Rohner et al., “Advantage of Combining Resin with Lytic BACTEC Blood Culture Media,” J. Clin. Micro. 35(10): 2634-2638 (1997). |
Rohner et al., “Evaluation of the New Improved BHI-Lysis Blood Culture Medium for the BCB Roche System,” Eur. J. Clin. Micro. Infect. Dis. 10: 620-624, 1991. |
Rösch el al., “Chemotaxonomic Identification of Single Bacteria by Micro-Raman Spectroscopy: Application to Clean-Room-Relevant Biological Contaminations,” Applied and Environmental Microbiology, 71: 1626-1637, (2005). |
Rose et al., “Using the Membrane Filter in Clinical Microbiology,” Med. Lab. 3: 22-23, 29, 43, 1969. Note: The numbered pages omitted from this article are advertisements. |
Rowe et al., “Array Biosensor for Simultaneous Identification of Bacterial, Viral, and Protein Analytes,” Analytical Chem., 71:3846-3652, (1999). |
Salmon et al., “Video-Enhanced Differential Interference Contrast Light Microscopy,” BioTechniques, 7:624-633, (1989). |
Sapsford et al., “Detection of Campylobacter and Shigella Species in Food Samples Using an Array Biosensor,” Analytical Chem., 76:433-440, (2004). |
Schrot et al., “Method for Radiorespirometric Detection of Bacteria in Pure Cultures and in Blood,” Appl. Micro. 26(2): 867-873 (1973). |
Shamsheyeva et al. 2538: Poster—“Rapid Antimicrobial Susceptibility Testing of Non-Fermenting Gram-Negative Bacilli Directly from Positive Blood Cultures by Automated Microscopy,” Presented at ASM2014, May 20, 2014, Boston, MA. |
Shamsheyeva et al. 2555: Poster—“Evaluation of an Antimicrobial Susceptibility Testing Algorithm to Determine Minimum Inhibitory Concentration Using Growth of Immobilized Staphylococcal Cells Measured by Automated Microscopy,” Presented at ASM2014, May 20, 2014. Boston, MA. |
Shamsheyeva et al. D-873: Poster “Evaluation of an Antimicrobial Susceptibility Testing Algorithm for Gram-Positive Bacteria Directly from Positive Blood Culture Using Automated Microscopy Analysis of Susceptibility Patterns,” Presented at ICAAC Sep. 7, 2014, Washington, DC. |
Shamsheyeva et al. P0332: Poster—“Next Generation Automated Phenotypic Antibiotic Susceptibility Testing Utilizing Automated Microscopy Analysis of Bacterial Cells,” Presented at ECCMID 2014 May 10, 2014, Barcelona, Spain. |
Shamsheyeva et al. P0335: Poster—“5-Hour Antibiotic Susceptibility Testing of Enterococcus faecium and E. faecalis, and Acinetobacter baumannii Directly from Positive Blood Cultures Using Automated Microscopy,” Presented at ECCMID 2014 May 10, 2014, Barcelona, Spain. |
Sippy et al., “Rapid Electrochemical Detection and Identification of Catalase Positive Micro-Organisms”, Biosensors & Bioelectronics, 18:741-749, (2003). |
Stewart et al., “Aging and Death in an Organism that Reproduces by Morphologically Symmetric Division,” PLoS Biology, 3:295-300 (2005). |
Stimpson et al., “Real-Time Detection of DNA Hybridization and Melting on Oligonucleotide Arrays by Using Optical Wave Guides,” Genetics, Proc. Natl. Acad. Sci. USA, 92:6379-6383, (1995). |
Stuart, “The Value of Liquid for Blood Culture,” J. Clin. Path. 1: 311-314 (1948). |
Sun et al., “Single-Cell Microfluidic Impedance Cytometry: A Review,” Microfluidics and Nanofluidics, 8: 423-443, (2010). |
Suo et al., “Ummunoimmobilization of Living Salmonella for Fundamental Studies and Biosensor Applications,” in Salmonella—A Diversified Superbug, Chapter 25, pp. 497-522, (2012). |
Taton et al., “Two-Color Labeling of Oligonucleotide Arrays via Size-Selective Scattering of Nanoparticle Probes,” J. Am. Chem. Soc., 123:5164-5165, (2001). |
Tison, D.L., “Culture Confirmation of Escherichia coli Serotype 0157:H7 by Direct Immunofluorescence,” J. Clin. Microbio., 28, 612-613, (1990). |
Tokuda et al., “Optical and Electric Multifunctional CMOS Image Sensors for On-Chip Biosensing Applications,” Materials 4:84-102, 2011. |
Tsang et al., “Characterization of Murine Monoclonal Antibodies Against Serogroup B Salmonellae and Application as Serotyping Reagents,” J Clin Micro. 29:1899-1903, 1991. |
Unknown, “Bacterial Counts—Quantitative Analysis of Microbes,” Biology 251 General Microbiology Lab, Jul. 30, 2013, pp. 1-5, retrieved from internet: URL:http://biolabs.tmcc.edu/Micro%20Web/BacterialCounts.pdf [retrieved on Oct. 21, 2016]. |
van der Borden et al., Electric Current-Induced Detachment of Staphylococcus epidermidis Biofilms from Surgical Stainless Steel, Appl. Environ. Microbiol., 70:6871-6874, (2004). |
van Soestbergen and Lee, “Pour Plates or Steak Plates?,” Appl Microbiol. 18:1092-1093, 1969. |
Varshney et al., “A Label-Free, Microfluidics and Interdigitated Array Microelectrode-Based Impedance Biosensor in Combination with Nanoparticles Immunoseparation for Detection of Escherichia coli O157:H7 in Food Samples,” Sensors and Actuators, 128:99-107, (2007). |
Vega, et al., “Effect of Ionic Strength and Porosity on Ion Diffusion in Agarose Gels,” Summer Bioengineering Conference, Sonesta Beach Resort in Key Biscayne, Florida, 1-2 (2003). |
Vener et al., “A Novel Approach to Nonradioactive Hybridization Assay of Nucleic Acids Using Stained Latex Particles,” Analytical Biochem., 198, pp. 308-311, (1991). |
Von Haebler et al., “The Action of Sodium Polyanethol Sulphonate (“Liquoid”) on Blood Cultures,” J. Pathol. Bacteriol. 46(2): 245-252 (1938). |
Wallace et al. D-918: Poster—“Rapid identification of Gram-negative Bacteria in Positive Blood Culture Broth Using a Multiplex Fluorescence in situ Hybridization (FISH) Assay and Automated Microscopy,” Presented at ICAAC Sep. 7, 2014, Washington, DC. |
Weeratna et al., “Gene Expression Profiling: From Microarrays to Medicine”, J. Clin. Immunol, 24: 213-224, (2004). |
Willaert, “Cell Immobilization and its Applications in Biotechnology: Current Trends and Future Prospects,” in Fermentation Microbiology and Biotechnology, Chapter 12, p. 313-368, 2006. |
Wit, P., and Busscher, H.J., “Application of an Artificial Neural Network in the Enumeration of Yeasts and Bacteria Adhering to Solid Substrata,” J. Microbio. Methods, 32, pp. 281-290, (1998). |
Wu, et al., “Microfluidic Continuous Particle / Cell Separation via Electroosmotic-Flow-Tuned Hydrodynamic Spreading,” J. Micromech. Microeng., 17, pp. 1992-1999, (2007). |
Yang, et al., “Electrical/ Electrochemical Impedance for Rapid Detection of Foodborne Pathogenic Bacteria,” Biotechnology Advances, 26, pp. 135-150, (2008). |
Yeung et al.,“Bayesian Model Averaging: Development of an Improved Multi-Class, Gene Selection and Classification Tool for Microarray Data,” Bioinformatics 21: 2394-2402 (2005). |
Zhou, et al., “Automated Image Analysis for Quantitative Fluorescence In Situ Hybridization with Environmental Samples,” App. Environ. Microbio. 73(9):2956-2962 (2007). |
Zierdt et al., “Development of a Lysis-Filtration Blood Culture Technique,” J. Clin. Micro. 5(1): 46-50 (1977). |
Zierdt et al., “Lysis-Filtration Blood Culture Versus Conventional Blood Culture in a Bacteremic Rabbit Model,” J Clin Microbiol. 15:74-77, 1982. |
Zierdt, “Blood-Lysing Solution Nontoxic to Pathogenic Bacteria,” J. Clin. Micro., 15(1): 172-174 (1982). |
Zierdt, “Simplified Lysed-Blood Culture Technique,” J. Clin. Micro. 23(3): 452-455 (1986). |
CA 2,532,414 Office Action dated Jan. 27, 2014. |
CA 2,532,414 Office Action dated Mar. 26, 2015. |
EP 03716230.2, European Search Report dated Oct. 15, 2007. |
EP 04809482.5, European Office Action dated Jul. 10, 2014. |
EP 04809482.5, European Office Action dated Jun. 17, 2010. |
EP 04809482.5, European Office Action dated Mar. 13, 2008. |
EP 04809482.5, Supplementary European Search Report dated Oct. 19, 2007. |
EP 05854636.7, European Office Action dated Mar. 3, 2014. |
EP 05854636.7, European Search Report dated Feb. 13, 2013. |
EP 12754797.4, Intention to Grant dated May 21, 2015. |
EP 12754797.4, Supplementary European Search Report dated Sep. 24, 2014. |
EP 13835702.5, European Partial Supplementary Search Report dated Feb. 25, 2016 (8 pages). |
EP 13835702.5, European Supplementary Search Report dated Jun. 24, 2016 (12 pages). |
EP 13835702.5, Rules 70(2) and 70a(2) EPC Communication dated Jul. 12, 2016 (1 page). |
EP 14762411.8 Extended European Search Report dated Nov. 7, 2016 (11 pages). |
EP 14762411.8 Partial Supplementary European Search Report dated Jul. 29, 2016 (10 pages). |
EP 98911454, European Search Report dated Aug. 5, 2004. |
EP16200084.8 Partial European Search Report dated Mar. 1, 2017. |
PCT/US1998/04086, International. Preliminary Examination Report dated Jun. 11, 1999. |
PCT/US1998/04086, International Search Report dated Jul. 14, 1998. |
PCT/US1999/010917, International Search Report dated Jul. 30, 2001. |
PCT/US2003/006086, International Search Report dated Jun. 27, 2003. |
PCT/US2004/022025, International Preliminary Report on Patentability dated Sep. 26, 2006. |
PCT/US2004/022025, International Search Report dated Aug. 7, 2006. |
PCT/US2004/022025, Written Opinion dated Aug. 7, 2006. |
PCT/US2005/045961, International Preliminary Report on Patentability dated Oct. 30, 2007. |
PCT/US2005/045961, International Search Report dated Oct. 15, 2007. |
PCT/US2005/045961, Written Opinion dated Oct. 15, 2007. |
PCT/US2009/038988, International Preliminary Report on Patentability dated Oct. 5, 2010. |
PCT/US2009/038988, International Search Report and Written Opinion dated Jun. 8, 2009. |
PCT/US2012/028139, International Preliminary Report on Patentability dated Sep. 19, 2013. |
PCT/US2012/028139, International Search Report dated Sep. 28, 2012. |
PCT/US2012/028139, Search Report and Written Opinion dated Sep. 28, 2012. |
PCT/US2013/059104, International Preliminary Report on Patentability dated Mar. 10, 2015. |
PCT/US2013/059104, International Search Report and Written Opinion dated Jan. 10, 2014. |
PCT/US2014/030745, International Search Report and Written Opinion dated Aug. 27, 2014. |
PCT/US2015/032290; International Search Report and Written Opinion dated Aug. 24, 2015 (13 pages). |
PCT/US2016/025075 Invitation to Pay Additional Fees with Partial International Search dated Jul. 6, 2016. |
PCT/US2016/025075, International Search Report and Written Opinion dated Nov. 15, 2016 (36 pages). |
Number | Date | Country | |
---|---|---|---|
20170234781 A1 | Aug 2017 | US |
Number | Date | Country | |
---|---|---|---|
61449824 | Mar 2011 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 14004145 | US | |
Child | 15236021 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 15236021 | Aug 2016 | US |
Child | 15586132 | US |