The present invention relates to a membrane-electrode assembly, a method for manufacturing the membrane-electrode assembly, and a fuel cell which incorporates therein the membrane-electrode assembly, and particularly to a reinforced structure of a peripheral portion of a polymer electrolyte membrane.
Generally, a fuel cell is constructed by stacking a large number of cells, and each cell is constructed by sandwiching a membrane-electrode assembly (MEA) between a pair of electrically-conductive separators together with gaskets provided at a peripheral portion of the membrane-electrode assembly. The membrane-electrode assembly includes a polymer electrolyte membrane and a pair of electrodes provided to sandwich the polymer electrolyte membrane except for a peripheral portion of the polymer electrolyte membrane. Each electrode is constituted of a catalyst layer formed on the polymer electrolyte membrane and a gas diffusion layer provided on the catalyst layer. A reaction gas passage is concavely formed in a region (hereinafter referred to as “gas diffusion layer contacting region”) of an inner surface of each separator, the region contacting the gas diffusion layer of the membrane-electrode assembly. A fuel gas is supplied to the reaction gas passage of one of the separators as a reaction gas, an oxidizing gas is supplied to the reaction gas passage of the other separator as the reaction gas, and chemical reactions occur in respective electrodes. This generates electricity together with heat.
Regarding this conventional fuel cell, it is known that a portion of the polymer electrolyte membrane on which a peripheral portion of the electrode is formed deteriorates. Proposed as a countermeasure is reinforcing the peripheral portion of the polymer electrolyte membrane (see Patent Document 1 for example).
Patent Document 1: Japanese Unexamined Patent Application Publication No. 10-308228
However, in accordance with the fuel cell of Patent Document 1, it was actually difficult to efficiently manufacture the membrane-electrode assembly. To be specific, in accordance with the fuel cell of Patent Document 1, since the peripheral portion of the polymer electrolyte membrane is entirely reinforced, it is impossible to continuously reinforce the master roll of the polymer electrolyte membrane. In accordance with the fuel cell of Patent Document 1, after the master roll is cut into membrane pieces (hereinafter referred to as “polymer electrolyte membrane pieces”) used for the membrane-electrode assembly, the polymer electrolyte membrane pieces are reinforced individually. Therefore, it was impossible to efficiently manufacture the membrane-electrode assembly.
The present invention was made to solve the above problems, and an object of the present invention is to provide a membrane-electrode assembly capable of being manufactured efficiently, a method for manufacturing the membrane-electrode assembly, and a fuel cell which incorporates the fuel cell.
The present inventors have diligently studied to solve the above problems. As a result, the following finding was obtained.
As shown in
In such fuel cell, after an endurance test (continuous electric power generation operation under predetermined conditions) was carried out, the distribution of leakage rates (hereinafter referred to as “gas leakage rates”) of gas (to be precise, hydrogen) on a main surface of the membrane-electrode assembly 201 was measured. Thus, data shown in
Referring to
The reason why the deterioration of the portions corresponding to the right side 201b and the left side 201d of the peripheral portion of the polymer electrolyte membrane 201 is large is as follows. Since these portions (especially, an outer peripheral portion of the gas diffusion layer 3) contact the turned portions of the reaction gas passages 202 and 203 of the separators, a portion contacting the passage of the separator and a portion contacting a portion where the passage of the separator is not provided exist alternately in a direction along the right side 201b and the left side 201d. Therefore, guessingly, pressure applied to the polymer electrolyte membrane 201 by the fastening force of the cell stack becomes non-uniform in a direction along the right side 201b and the left side 201d, so that the deterioration of portions to which high pressure is applied becomes large. In contrast, the reason why the deterioration of the portions corresponding to the upper side 201a and the lower side 201c of the peripheral portion of the polymer electrolyte membrane 201 is small is as follows. Since these portions contact straight portions extending between turns of the reaction gas passages 202 and 203, any one of the portion contacting the passage of the separator and the portion contacting the portion where the passage of the separator is not provided exists in a direction along the upper side 201a and the lower side 201c, and these portions do not exist alternately. Therefore, guessingly, the pressure applied to the polymer electrolyte membrane 201 by the fastening force of the cell stack becomes uniform in a direction along the upper side 201a and the lower side 201c, so that the deterioration of the portions becomes small. Further, the reason why the deterioration of the portion corresponding to the lower side 201c of the peripheral portion of the polymer electrolyte membrane 201 is especially small is as follows. Guessingly, since the portion contacts downstream portions of the reaction gas passages 202 and 203, and the portion is adequately humidified by moisture generated by reactions of the reaction gases, the deterioration of the portion is especially small.
In accordance with this finding, it is revealed that it is necessary to form a reinforced portion at the peripheral portion corresponding to two sides of four sides of the polymer electrolyte membrane, the two sides being located along the turned portions of the serpentine-shaped reaction gas passage which are oriented in a column and formed on the separator, and it is unnecessary to form the reinforced portion at the peripheral portion corresponding to one side of the remaining two sides, the side being located along the downstream portions of the reaction gas passages.
Thus, the present inventors have made the present invention having the following constructions based on this finding.
A membrane-electrode assembly of the present invention comprises: a quadrate polymer electrolyte membrane; a pair of catalyst layers provided to sandwich the polymer electrolyte membrane except for a peripheral portion of the polymer electrolyte membrane; and a pair of gas diffusion layers provided respectively on the pair of the catalyst layers, the membrane-electrode assembly being incorporated into a fuel cell by being sandwiched between a pair of separators on each of which a reaction gas passage is concavely formed in a gas diffusion layer contacting region of an inner surface thereof, the gas diffusion layer contacting region being a region contacting the gas diffusion layer, wherein: on each of the separators, the reaction gas passage in the gas diffusion layer contacting region is formed to have a serpentine shape which extends from upstream to downstream in a direction from a side (hereinafter referred to as “first side”) of the polymer electrolyte membrane to a side (hereinafter referred to as “third side”) facing the first side along a side (hereinafter referred to as “second side”) adjacent to the first side while turning in directions along the first side; and reinforced portions for reinforcing the polymer electrolyte membrane are formed at a portion corresponding to the second side and a portion corresponding to a side (hereinafter referred to as “fourth side”) facing the second side in the peripheral portion of the polymer electrolyte membrane, and the reinforced portion is not formed at a portion corresponding to at least the third side in the peripheral portion of the polymer electrolyte membrane.
The reinforced portions may be formed only at the portion corresponding to the second side and the portion corresponding to the fourth side in the peripheral portion of the polymer electrolyte membrane.
The reinforced portion may be further formed at a portion corresponding to the first side in the peripheral portion of the polymer electrolyte membrane.
The polymer electrolyte membrane may include a membrane-like core on which a large number of through holes are formed and polymer electrolyte layers formed respectively on both surfaces of the core so as to fill the through holes, and the reinforced portions may be constituted of high-strength portions each of which is formed by forming the polymer electrolyte layer on a region of the core on which region the through holes are not formed.
The reinforced portion may be constituted of reinforcing members provided respectively on both surfaces of the polymer electrolyte membrane.
The reinforced portions formed at the portion corresponding to the second side and the portion corresponding to the fourth side in the peripheral portion of the polymer electrolyte membrane may be constituted of the high-strength portions, and the reinforced portion may be formed at the portion corresponding to the first side in the peripheral portion of the polymer electrolyte membrane such that reinforcing members are provided respectively on both surfaces of the polymer electrolyte membrane.
A fuel cell of the present invention comprises a plurality of stacked cells, each cell including: a membrane-electrode assembly having: a quadrate polymer electrolyte membrane; a pair of catalyst layers provided to sandwich the polymer electrolyte membrane except for a peripheral portion of the polymer electrolyte membrane; and a pair of electrically-conductive gas diffusion layers provided respectively on the pair of the catalyst layers; and a pair of separators on each of which a reaction gas passage is concavely formed in a gas diffusion layer contacting region of an inner surface thereof and which sandwich the membrane-electrode assembly such that the gas diffusion layer contacting region contacts the gas diffusion layer, wherein: on each of the separators, the reaction gas passage in the gas diffusion layer contacting region is formed to have a serpentine shape which extends from upstream to downstream in a direction from a side (hereinafter referred to as “first side”) of the polymer electrolyte membrane to a side (hereinafter referred to as “third side”) facing the first side along a side (hereinafter referred to as “second side”) adjacent to the first side while turning in directions along the first side; and reinforced portions for reinforcing the polymer electrolyte membrane are formed at a portion corresponding to the second side and a portion corresponding to a side (hereinafter referred to as “fourth side”) facing the second side in the peripheral portion of the polymer electrolyte membrane, and the reinforced portion is not formed at a portion corresponding to at least the third side in the peripheral portion of the polymer electrolyte membrane.
A method for manufacturing a membrane-electrode assembly of the present invention is a method for manufacturing a membrane-electrode assembly including: a quadrate polymer electrolyte membrane; a pair of catalyst layers provided to sandwich the polymer electrolyte membrane except for a peripheral portion of the polymer electrolyte membrane; and a pair of electrically-conductive gas diffusion layers provided respectively on the pair of the catalyst layers, the method comprising the steps of: preparing an elongate membrane-like core having a predetermined width; forming, on the core, a through hole formed region where a through hole penetrating in a thickness direction of the core is formed and a through hole non-formed region where the through hole is not substantially formed such that the through hole non-formed region forms a pair of strips respectively extending along both ends of the core, and the through hole formed region is located at a portion other than the through hole non-formed region; forming polymer electrolyte layers respectively on both surfaces of the core on which the through hole non-formed region and the through hole formed region are formed such that the polymer electrolyte layer fills the through hole, and forming an elongate polymer electrolyte membrane having a pair of high-strength portions which are formed by forming the polymer electrolyte layers respectively on the pair of the through hole non-formed regions; cutting the elongate polymer electrolyte membrane to form a membrane piece-shaped polymer electrolyte membrane having a predetermined length; and forming the pair of the catalyst layers and the pair of the gas diffusion layers respectively on both surfaces of the membrane piece-shaped polymer electrolyte membrane such that at least part of the catalyst layers and at least part of the gas diffusion layers are located between the pair of the high-strength portions.
A method for manufacturing a membrane-electrode assembly of the present invention is a method for manufacturing a membrane-electrode assembly including: a quadrate polymer electrolyte membrane; a pair of catalyst layers provided to sandwich the polymer electrolyte membrane except for a peripheral portion of the polymer electrolyte membrane; and a pair of electrically-conductive gas diffusion layers provided respectively on the pair of the catalyst layers, the method comprising the steps of: (A) preparing an elongate membrane-like core having a predetermined width; (B) forming, on the core, through hole formed regions where a through hole penetrating in a thickness direction of the core is formed and through hole non-formed regions where the through hole is not substantially formed such that the through hole non-formed regions extend in a width direction of the core so as to have a strip shape, the through hole non-formed regions are arranged at a predetermined pitch in a longitudinal direction of the core, and the through hole formed regions are arranged at portions other than the through hole non-formed regions; (C) forming polymer electrolyte layers respectively on both surfaces of the core on which the through hole non-formed regions and the through hole formed regions are formed such that the polymer electrolyte layer fills the through hole, and forming an elongate polymer electrolyte membrane having a plurality of high-strength portions which are formed by forming the polymer electrolyte layers on the plurality of the through hole non-formed regions; (D) cutting the elongate polymer electrolyte membrane at the plurality of the high-strength portions to form membrane piece-shaped polymer electrolyte membranes each of which includes a pair of the high-strength portions respectively at a pair of sides each having a length corresponding to the predetermined pitch and formed by the above cutting; and (E) forming the pair of the catalyst layers and the pair of the gas diffusion layers respectively on both surfaces of the membrane piece-shaped polymer electrolyte membrane such that at least part of the catalyst layers and at least part of the gas diffusion layers are located between the pair of the high-strength portions.
The method may further comprise the step of: (F) between the steps (C) and (D), providing a tape-shaped reinforcing member along at least one side end of the polymer electrolyte membrane, wherein: in the step (D), by cutting the elongate polymer electrolyte membrane at the plurality of the high-strength portions, the membrane piece-shaped polymer electrolyte membranes may be formed, each of which includes a pair of the high-strength portions respectively at a pair of sides each having a length corresponding to the predetermined pitch and formed by the above cutting and also includes the reinforcing member which is provided along a side between the pair of the sides and both of whose ends are cut; and in the step (E), the pair of the catalyst layers and the pair of the gas diffusion layers may be formed respectively on both surfaces of the membrane piece-shaped polymer electrolyte membrane such that at least part of the catalyst layers and at least part of the gas diffusion layers are located among the pair of the high-strength portions and the reinforcing member.
A membrane-electrode assembly of the present invention comprises: a quadrate polymer electrolyte membrane; a pair of catalyst layers provided to sandwich the polymer electrolyte membrane except for a peripheral portion of the polymer electrolyte membrane; and a pair of gas diffusion layers provided respectively on the pair of the catalyst layers, the membrane-electrode assembly being incorporated into a fuel cell by being sandwiched between a pair of separators on each of which a reaction gas passage is concavely formed in a gas diffusion layer contacting region of an inner surface thereof, the gas diffusion layer contacting region being a region contacting the gas diffusion layer, wherein a reinforced portion is not formed at a portion corresponding to a side extending along a downstream portion of the reaction gas passage in the peripheral portion of the polymer electrolyte membrane.
Moreover, the present inventors have examined the deterioration of the polymer electrolyte membrane in a case where the flows of the reaction gases are so-called counter flow. As a result, in the case of the counter flow, it is revealed that a portion corresponding to an upstream portion of an anode gas passage and a portion corresponding to an upstream portion of a cathode gas passage deteriorate largely in the peripheral portion of the rectangular polymer electrolyte membrane.
A membrane-electrode assembly of the present invention comprises: a quadrate polymer electrolyte membrane; a pair of catalyst layers provided to sandwich the polymer electrolyte membrane except for a peripheral portion of the polymer electrolyte membrane; and a pair of electrically-conductive gas diffusion layers provided respectively on the pair of the catalyst layers, the membrane-electrode assembly being incorporated into a fuel cell by being sandwiched between a pair of separators on each of which a reaction gas passage is concavely formed in a gas diffusion layer contacting region of an inner surface thereof, the gas diffusion layer contacting region being a region contacting the gas diffusion layer, wherein: on one of the separators, the reaction gas passage in the gas diffusion layer contacting region is formed to have a serpentine shape which extends from upstream to downstream in a direction from a side (hereinafter referred to as “first side”) of the polymer electrolyte membrane to a side (hereinafter referred to as “third side”) facing the first side along a side (hereinafter referred to as “second side”) adjacent to the first side while turning in directions along the first side; on the other separator, the reaction gas passage in the gas diffusion layer contacting region is formed to have a serpentine shape which extends from upstream to downstream in a direction from the third side of the polymer electrolyte membrane to the first side along a side (hereinafter referred to as “fourth side”) facing the second side while turning in directions along the third side; and reinforced portions for reinforcing the polymer electrolyte membrane are formed at a portion corresponding to the first side and a portion corresponding to the third side in the peripheral portion of the polymer electrolyte membrane, and the reinforced portion is not formed at a portion corresponding to the second side or a portion corresponding to the fourth side in the peripheral portion of the polymer electrolyte membrane. Further, the present inventors have examined the deterioration of the polymer electrolyte membrane in a case where the flows of the reaction gases are so-called cross flow. As a result, in the case of the cross flow, it is revealed that the portion corresponding to the upstream portion of the anode gas passage and the portion corresponding to the upstream of the cathode gas passage deteriorate largely in the peripheral portion of the rectangular polymer electrolyte membrane.
A membrane-electrode assembly of the present invention comprises: a quadrate polymer electrolyte membrane; a pair of catalyst layers provided to sandwich the polymer electrolyte membrane except for a peripheral portion of the polymer electrolyte membrane; and a pair of electrically-conductive gas diffusion layers provided respectively on the pair of the catalyst layers, the membrane-electrode assembly being incorporated into a fuel cell by being sandwiched between a pair of separators on each of which a reaction gas passage is concavely formed in a gas diffusion layer contacting region of an inner surface thereof, the gas diffusion layer contacting region being a region contacting the gas diffusion layer, wherein: on one of the separators, the reaction gas passage in the gas diffusion layer contacting region is formed to have a serpentine shape which extends from upstream to downstream in a direction from a side (hereinafter referred to as “first side”) of the polymer electrolyte membrane to a side (hereinafter referred to as “third side”) facing the first side along a side (hereinafter referred to as “second side”) adjacent to the first side while turning in directions along the first side; on the other separator, the reaction gas passage in the gas diffusion layer contacting region is formed to have a serpentine shape which extends from upstream to downstream in a direction from the second side of the polymer electrolyte membrane to a side (hereinafter referred to as “fourth side”) facing the second side along the first side while turning in directions along the second side; and reinforced portions for reinforcing the polymer electrolyte membrane are formed at a portion corresponding to the first side and a portion corresponding to the second side in the peripheral portion of the polymer electrolyte membrane, and the reinforced portion is not formed at a portion corresponding to the third side or a portion corresponding to the fourth side in the peripheral portion of the polymer electrolyte membrane. Moreover, a method for manufacturing a membrane-electrode assembly of the present invention is a method for manufacturing a membrane-electrode assembly including: a quadrate polymer electrolyte membrane; a pair of catalyst layers provided to sandwich the polymer electrolyte membrane except for a peripheral portion of the polymer electrolyte membrane; and a pair of electrically-conductive gas diffusion layers provided respectively on the pair of the catalyst layers, the method comprising the steps of: preparing an elongate membrane-like core having a predetermined width; forming, on the core, through hole formed regions where a through hole penetrating in a thickness direction of the core is formed and through hole non-formed regions where the through hole is not substantially formed such that the through hole non-formed regions extend in a width direction of the core so as to have a strip shape, the through hole non-formed regions are arranged at a predetermined pitch in a longitudinal direction of the core, and the through hole formed regions are arranged at portions other than the through hole non-formed regions; forming polymer electrolyte layers respectively on both surfaces of the core on which the through hole non-formed regions and the through hole formed regions are formed such that the polymer electrolyte layer fills the through hole, and forming an elongate polymer electrolyte membrane having a plurality of high-strength portions which are formed by forming the polymer electrolyte layers on the plurality of the through hole non-formed regions; providing a tape-shaped reinforcing member along one side end of the polymer electrolyte membrane; cutting the elongate polymer electrolyte membrane at portions in the vicinity of the plurality of the high-strength portions to form membrane piece-shaped polymer electrolyte membranes each of which includes the high-strength portion along a side having a length corresponding to the predetermined pitch and formed by the above cutting and also includes the reinforcing member which is provided along a side adjacent to the above side and both of whose ends are cut; and forming the pair of the catalyst layers and the pair of the gas diffusion layers respectively on both surfaces of the membrane piece-shaped polymer electrolyte membrane such that at least part of the catalyst layers and at least part of the gas diffusion layers are located among the high-strength portion, the reinforcing member and sides facing the high-strength portion and the reinforcing member.
The above object, other objects, features, and advantages of the present invention will be made clear by the following detailed explanation of preferred embodiments with reference to the attached drawings.
The present invention can provide a membrane-electrode assembly having the above-described construction and capable of being manufactured efficiently, a method for manufacturing the membrane-electrode assembly, and a fuel cell which incorporates therein the membrane-electrode assembly.
a) and 3(b) are schematic diagrams showing steps of manufacturing the membrane-electrode assembly of Embodiment 1 of the present invention.
a) and 5(b) are schematic diagrams showing steps of manufacturing the membrane-electrode assembly of Embodiment 2 of the present invention.
a) and 6(b) are schematic diagrams showing steps of manufacturing the membrane-electrode assembly of Embodiment 2 of the present invention.
a) and 15(b) are schematic diagrams showing steps of manufacturing the membrane-electrode assembly of Embodiment 8 of the present invention.
a) and 17(b) are schematic diagrams showing steps of manufacturing the membrane-electrode assembly of Embodiment 9 of the present invention.
a) and 18(b) are schematic diagrams showing steps of manufacturing a membrane-electrode assembly of Embodiment 10 of the present invention.
a) and 19(b) are schematic diagrams showing steps of manufacturing a membrane-electrode assembly of Embodiment 11 of the present invention.
Hereinafter, preferred embodiments of the present invention will be explained with reference to the drawings.
As shown in
The polymer electrolyte membrane (to be precise, polymer electrolyte membrane piece) 2 is constructed by forming polymer electrolyte layers respectively on both surfaces of a membrane-like core (core 51 shown in
The catalyst layer 5 is constituted of, for example, an electrically-conductive carrier carrying a catalyst, such as platinum. Preferably used as the material of the electrically-conductive carrier are, for example, ketjen and acetylene black.
The gas diffusion layer 3 is constituted of a porous conductor. Preferably used as the porous conductor are, for example, carbon nonwoven fabric and carbon paper.
Next, the arrangement of the high-strength portion 4 of the polymer electrolyte membrane 2 will be explained in detail.
In
A cooling water supplying manifold hole 23A is formed at a right-side portion of an upper end portion of the polymer electrolyte membrane 2. An oxidizing gas supplying manifold hole 22A is formed at an upper-side portion of a right end portion of the polymer electrolyte membrane 2. A fuel gas discharging manifold hole 21B is formed at a right-side portion of a lower end portion of the polymer electrolyte membrane 2, and an oxidizing gas discharging manifold hole 22B is formed at a left-side portion of the lower end portion of the polymer electrolyte membrane 2. A fuel gas supplying manifold hole 21A is formed at an upper-side portion of a left end portion of the polymer electrolyte membrane 2, and a cooling water discharging manifold hole 23B is formed at a lower-side portion of the left end portion of the polymer electrolyte membrane 2.
Respective separators are provided with manifold holes corresponding to the manifold holes 21A to 23B. By connecting the manifold holes of the polymer electrolyte membrane 2 and the separators, a fuel gas supplying manifold, a fuel gas discharging manifold, an oxidizing gas supplying manifold, an oxidizing gas discharging manifold, a cooling water supplying manifold and a cooling water discharging manifold are formed.
On an inner surface (surface contacting the membrane-electrode assembly 1) of an anode separator, a fuel gas passage A is formed as one of the reaction gas passages so as to extend from the fuel gas supplying manifold hole to the fuel gas discharging manifold hole. On an outer surface (surface opposite the inner surface) of the anode separator, a cooling water passage W is formed to extend from the cooling water supplying manifold hole to the cooling water discharging manifold hole.
On an inner surface (surface contacting the membrane-electrode assembly 1) of a cathode separator, an oxidizing gas passage C is formed as the other reaction gas passage so as to extend from the oxidizing gas supplying manifold hole to the oxidizing gas discharging manifold hole. On an outer surface (surface opposite the inner surface) of the cathode separator, a cooling water passage W is formed to extend from the cooling water supplying manifold hole to the cooling water discharging manifold hole.
Each of the fuel gas passage A, the oxidizing gas passage C and the cooling water passage W is formed to have a serpentine shape in a region inside the gas diffusion layer 3 when viewed from a thickness direction of the membrane-electrode assembly 1. In the present invention, a serpentine-shaped passage refers to a passage formed to microscopically curve to intersect with a direction 103 and macroscopically extend in the direction 103. In the present embodiment, the serpentine-shaped passage is formed to microscopically repeat a section which extends in a direction orthogonal to the vertical direction (direction along the right side 2b and the left side 2d) 103, that is, a lateral direction (direction along the upper side 2a and the lower side 2c) 104 for a predetermined distance, turns there, extends from there in a direction opposite the above direction along the lateral direction for a predetermined distance and turns there, and macroscopically extend in the vertical direction 103.
In light of preventing the flooding and the drying of the polymer electrolyte membrane, portions of the passages A, C and W extending between the turned portions are formed to be in parallel with each other. Note that flow directions of fluids in the portions of the passages A, C and W extending between the turned portions may be the same as each other or opposite to each other. Moreover, the portions of the passages extending between the turned portions may not be orthogonal to the direction 103 in which the passage macroscopically extends.
In the present embodiment, the reaction gas and the cooling water flow, in each cell, from the respective supplying manifolds to the respective passages A and C, flow from top to bottom while serpentining in the lateral direction, and are discharged from the respective discharging manifolds. In the present invention, such relation between the flow of the anode gas and the flow of the cathode gas is referred to as “parallel flow” (the term is generally used).
In the present embodiment, the high-strength portions 4 of the polymer electrolyte membrane are respectively formed in the shape of a strip extending along the right side 2b and the left side 2d that are sides along the turned portions of the serpentine-shaped passages A, C and W which are oriented in a column.
With this construction, since the strength of the peripheral portion (to be precise, the portion around the gas diffusion layer 3 (electrode)) of the polymer electrolyte membrane 2 which portion deteriorates largely in the endurance test and corresponds to the right side 2b and the left side 2d that are sides along the turned portions of the serpentine-shaped passages A, C and W which are oriented in a column is reinforced by the high-strength portions 4, it is possible to reduce the deterioration of the polymer electrolyte membrane 2. Moreover, since the reinforced portion decreases compared to the case where the peripheral portion of the polymer electrolyte membrane 2 is entirely reinforced, it is possible to efficiently manufacture the membrane-electrode assembly 1.
Next, a method for manufacturing the membrane-electrode assembly 1 constructed as above will be explained.
a) and 3(b) are schematic diagrams showing steps of manufacturing the membrane-electrode assembly of the present embodiment.
To manufacture the membrane-electrode assembly, first, a large number of through bores are formed on a master film of the core 51 by punching. The unprocessed core 51 is rolled up to be a roll (not shown), punching is carried out while pulling out the rolled core, and the processed core 51 is rolled to be a roll 52. The core 51 is processed (slit) to have a predetermined width (width of the polymer electrolyte membrane piece: length of the upper side 2a (lower side 2c)) L2. When punching, the through bores are not formed in predetermined strip-shaped regions 51a extending along both edges of the core 51, but are formed in the other region (hereinafter referred to as “through hole formed region”) 51b (
Next, the polymer electrolyte layers are formed respectively on both surfaces of the core 51 so as to fill the through bores. Also in this step, the unprocessed core is pulled out from the roll, and is rolled after the processing. Thus, the polymer electrolyte membrane 2 having the strip-shaped high-strength portions 4 is manufactured.
Next, as shown in
Next, as shown in
Thus, the membrane-electrode assembly 1 is manufactured.
In accordance with the above method for manufacturing the membrane-electrode assembly, since the high-strength portions 4 can be formed consecutively on the master film of the polymer electrolyte membrane 2 before cutting into membrane pieces (polymer electrolyte membrane pieces) used for the membrane-electrode assembly 1, it is possible to efficiently manufacture the membrane-electrode assembly 1.
In the present modification example, the core 51 is constituted of a porous “GORE-SELECT (II)” (Product Name) produced by Japan Gore-Tex, Inc. In the step shown in
In the present modification example, the core 51 is made of porous polytetrafluoroethylene (PTFE). In the step shown in
As above, in the present embodiment, since the high-strength portions 4 are formed only at portions corresponding to two facing sides in the peripheral portion of the polymer electrolyte membrane, the master roll of the polymer electrolyte membrane 2 can be processed to be reinforced. Therefore, it is possible to efficiently manufacture the membrane-electrode assembly. Moreover, since the reinforced portion of the peripheral portion of the polymer electrolyte membrane decreases, it is possible to efficiently manufacture the membrane-electrode assembly.
As shown in
Specifically, the polymer electrolyte membrane 2 is constituted of a polymer electrolyte membrane which does not include therein a core. A pair of plate-shaped reinforcing members 6 each having a predetermined width are respectively provided to extend along the right side 2b and the left side 2d at portions corresponding to the right side 2b and the left side 2d in the peripheral portion of the polymer electrolyte membrane 2. A pair of the reinforcing members 6 are formed respectively on both surfaces of the polymer electrolyte membrane 2. The catalyst layer 5 is formed such that both edges thereof contact a pair of the reinforcing members 6, respectively. The gas diffusion layer 3 is provided on the catalyst layer 5 and part of the reinforcing members 6. Preferably used as the material of the reinforcing member 6 is, for example, a resin, such as PPS and PTFE.
Next, a method for manufacturing the membrane-electrode assembly constructed as above will be explained.
a), 5(b), 6(a) and 6(b) are schematic diagrams showing steps of manufacturing the membrane-electrode assembly of the present embodiment.
In the present embodiment, first, as shown in
Next, as shown in
Next, as shown in
In accordance with the present embodiment explained as above, since the reinforced portion of the peripheral portion of the polymer electrolyte membrane decreases compared to the case where the peripheral portion of the polymer electrolyte membrane is entirely reinforced, it is possible to efficiently manufacture the membrane-electrode assembly 1.
As shown in
Specifically, the reinforcing member 6 is provided to extend along the upper side 2a at a portion corresponding to the upper side 2a in the peripheral portion of the polymer electrolyte membrane 2. The reinforcing members 6 are provided respectively on both surfaces of the polymer electrolyte membrane 2. The catalyst layer 5 is formed such that an upper side thereof contacts the reinforcing member 6. The gas diffusion layer 3 is provided on the catalyst layer 5 and part of the reinforcing member 6.
Next, a method for manufacturing the membrane-electrode assembly constructed as above will be explained.
The method for manufacturing the membrane-electrode assembly of the present embodiment is the same as the method for manufacturing the membrane-electrode assembly of Embodiment 1 from the start to the step of forming a pair of the catalyst layers 5 respectively on both surfaces of the polymer electrolyte membrane 2.
After the step, the reinforcing member 6 is provided on the polymer electrolyte membrane 2 so as to contact the upper side of the catalyst layer 5. Then, the gas diffusion layer 3 is formed on the catalyst layer 5 and part of the reinforcing member 6.
In accordance with the present embodiment explained as above, since the portion corresponding to the upper side 2a in the peripheral portion of the polymer electrolyte membrane 2 is also reinforced, it is possible to further decrease the deterioration of the polymer electrolyte membrane 2. Moreover, since the reinforced portion of the peripheral portion of the polymer electrolyte membrane decreases compared to the case where the peripheral portion of the polymer electrolyte membrane is entirely reinforced, it is possible to efficiently manufacture the membrane-electrode assembly 1.
A fuel cell 101 of the present embodiment is constructed such that a predetermined number of cells 9 are stacked, a current collector 10 and an end plate 11 are provided on each of both ends of the cells 9, and these members are fastened by a rod (not shown) at a predetermined pressure. The cell 9 is constructed such that a pair of gaskets 7A and 7B are provided respectively on the peripheral portions of both surfaces of the membrane-electrode assembly 1, and these members are sandwiched between an anode separator 8A and a cathode separator 8B. The membrane-electrode assembly 1 is constituted of any one of the membrane-electrode assemblies of Embodiments 1 to 3 and Embodiments 5 to 11 described below. In
The present embodiment can obtain the effects described in Embodiments 1 to 3 and effects which will be described in Embodiments 5 to 11.
Embodiment 5 of the present invention exemplifies a membrane-electrode assembly whose three sides are subjected to reinforcing necessary for the parallel flow. In other words, Embodiment 5 of the present invention is a modification example of the membrane-electrode assembly 1 according to Embodiment 4.
As shown in
Specifically, the high-strength portion 4 is formed to extend along the upper side 2a, the right side 2b and the left side 2d at the portions corresponding to the upper side 2a, the right side 2b and the left side 2d in the peripheral portion of the polymer electrolyte membrane 2.
To manufacture the membrane-electrode assembly constructed as above, first, the master film of the core is cut to have a predetermined length L in the shape of a rectangular membrane piece. Next, the rectangular membrane piece-shaped core is subjected to punching, so that the through hole non-formed region and the through hole formed region are formed on the membrane piece-shaped core. The through hole non-formed region is formed in the shape of an inverted U along three sides (sides which become the upper side 2a, the right side 2b and the left side 2d of the polymer electrolyte membrane 2 that is a membrane piece) of the membrane piece-shaped core at portions corresponding to the three sides. Then, the same steps as Embodiment 1 are carried out. To be specific, polymer electrolyte layers are formed respectively on both surfaces of the membrane piece-shaped core, and the core is formed into the polymer electrolyte membrane 2 that is the membrane piece. With this, as shown in
In accordance with the present embodiment, since the portion corresponding to the upper side 2a in the peripheral portion of the polymer electrolyte membrane 2 is also reinforced, it is possible to further decrease the deterioration of the polymer electrolyte membrane 2. Moreover, since the reinforced portion of the peripheral portion of the polymer electrolyte membrane decreases compared to the case where the peripheral portion of the polymer electrolyte membrane is entirely reinforced, it is possible to efficiently manufacture the membrane-electrode assembly 1.
Embodiment 6 of the present invention exemplifies a membrane-electrode assembly whose three sides are subjected to reinforcing necessary for the parallel flow. In other words, Embodiment 6 of the present invention is a modification example of the membrane-electrode assembly 1 according to Embodiment 4.
As shown in
Specifically, the reinforcing member 6 is provided to extend along the upper side 2a, the right side 2b and the left side 2d at the portions corresponding to the upper side 2a, the right side 2b and the left side 2d in the peripheral portion of the polymer electrolyte membrane 2. The reinforcing members 6 are provided respectively on both surfaces of the polymer electrolyte membrane 2. Moreover, the method for manufacturing the membrane-electrode assembly constructed as above is the same as the method for manufacturing the membrane-electrode assembly of Embodiment 2 except that three reinforcing members 6 are provided to respectively contact an upper end, left end and right end of each catalyst layer 5 after a pair of the catalyst layers 5 are formed respectively on both surfaces of the membrane piece-shaped polymer electrolyte membrane 2.
In accordance with the present embodiment, since the portion corresponding to the upper side 2a in the peripheral portion of the polymer electrolyte membrane 2 is also reinforced, it is possible to further reduce the deterioration of the polymer electrolyte membrane 2. Moreover, since the reinforced portion of the peripheral portion of the polymer electrolyte membrane decreases compared to the case where the peripheral portion of the polymer electrolyte membrane is entirely reinforced, it is possible to efficiently manufacture the membrane-electrode assembly 1.
Embodiment 7 of the present invention exemplifies a membrane-electrode assembly whose three sides are subjected to reinforcing necessary for the parallel flow. In other words, Embodiment 7 of the present invention is a modification example of the membrane-electrode assembly 1 according to Embodiment 4.
As shown in
A method for manufacturing the membrane-electrode assembly 1 constructed as above will be descried in the following embodiments in detail.
In accordance with the present embodiment as above, since the portion corresponding to the upper side 2a in the peripheral portion of the polymer electrolyte membrane 2 is also reinforced, it is possible to reduce the deterioration of the polymer electrolyte membrane 2. Moreover, since the reinforced portion of the peripheral portion of the polymer electrolyte membrane decreases compared to the case where the peripheral portion of the polymer electrolyte membrane is entirely reinforced, it is possible to efficiently manufacture the membrane-electrode assembly 1.
Embodiments 1 to 7 have exemplified embodiments in a case where the flows of the reaction gases are the parallel flow. Embodiment 8 of the present invention exemplifies an embodiment in a case where the flows of the reaction gases are a counter flow.
The following feature of the present embodiment is different from Embodiment 1, and features other than this are the same as those of Embodiment 1. In the present embodiment, as shown in
In the present embodiment, the positions and shapes of the reaction gas passages A and C and the cooling water passage W in a pair of the separators and all manifold holes in the membrane-electrode assembly 1 are the same as those in Embodiment 1. However, first, the cathode gas supplying manifold hole 22A and the cathode gas discharging manifold hole 22B in the membrane-electrode assembly 1 are opposite between the present embodiment and Embodiment 1. To be specific, in the present embodiment, the cathode gas discharging manifold hole 22B in Embodiment 1 is the cathode gas supplying manifold hole 22A, and the cathode gas supplying manifold hole 22A in Embodiment 1 is the cathode gas discharging manifold hole 22B. Therefore, in the cathode separator in the present embodiment, the cathode gas flows in the cathode gas passage C in a direction opposite that of Embodiment 1. As a result, in the present embodiment, when viewed from a thickness direction of the membrane-electrode assembly 1, the cathode gas macroscopically flows in a direction opposite the flow direction of the anode gas. To be specific, in the anode separator, the anode gas passage A in a region contacting the gas diffusion layer 3 is formed to have a serpentine shape extending from upstream to downstream along the right side 2b in a direction from the upper side 2a to the lower side 2c while turning in directions along the upper side 2a of the polymer electrolyte membrane 2, whereas in the cathode separator, the cathode gas passage C in a region contacting the gas diffusion layer 3 is formed to have a serpentine shape extending from upstream to downstream along the left side 2d in a direction from the lower side 2c to the upper side 2a while turning in directions along the lower side 2c of the polymer electrolyte membrane 2. Therefore, the relation between the flow of the anode gas and the flow of the cathode gas is the counter flow.
Secondly, the cooling water supplying manifold hole 23A and the cooling water discharging manifold hole 23B in the membrane-electrode assembly 1 are opposite between the present embodiment and Embodiment 1. To be specific, in the present embodiment, the cooling water discharging manifold hole 23B in Embodiment 1 is the cooling water supplying manifold hole 23A, and the cooling water supplying manifold hole 23A in Embodiment 1 is the cooling water discharging manifold hole 23B. Therefore, in the cathode separator and the anode separator in the present embodiment, the cooling water flows in the cooling water passage W in a direction opposite that of Embodiment 1. As a result, in the present embodiment, when viewed from a thickness direction of the membrane-electrode assembly 1, the cooling water macroscopically flows in a direction opposite the flow direction of the anode gas. Note that the cooling water macroscopically flows in the same direction as the cathode gas.
The present inventors have examined the deterioration of the polymer electrolyte membrane in the case of the counter flow as with the case of the parallel flow. As a result, in the case of the counter flow, it is revealed that the portion corresponding to the upper side 2a and the portion corresponding to the lower side 2c deteriorate the most in the peripheral portion of the rectangular polymer electrolyte membrane 2. The portion corresponding to the upper side 2a is a portion corresponding to an upstream portion (inlet side of the anode gas) of the anode gas passage A, and the portion corresponding to the lower side 2c is a portion corresponding to an upstream portion (inlet side of the cathode gas) of the cathode gas passage C.
In the membrane-electrode assembly 1 of the present embodiment, since the high-strength portions 4 are respectively formed at the portions corresponding to the upper side 2a and the lower side 2c in the peripheral portion of the polymer electrolyte membrane 2, it is possible to prevent these portions from deteriorating.
Next, a method for manufacturing the membrane-electrode assembly 1 of the present embodiment constructed as above will be explained.
a) and 15(b) are schematic diagrams showing steps of manufacturing the membrane-electrode assembly of the present embodiment. In
The method for manufacturing the membrane-electrode assembly of the present embodiment is the same as the method for manufacturing the membrane-electrode assembly of Embodiment 1 except for the following feature.
In the present embodiment, as shown in
Then, as shown in
In accordance with the method for manufacturing the membrane-electrode assembly of the present embodiment, the high-strength portions 4 necessary for the counter flow can be consecutively formed on the master film of the polymer electrolyte membrane 2 before the master film is cut into the membrane pieces (polymer electrolyte membrane pieces) used for the membrane-electrode assembly 1. Therefore, it is possible to efficiently manufacture the membrane-electrode assembly 1.
Note that the membrane-electrode assembly 1 of the present embodiment can be manufactured by the method for manufacturing the membrane-electrode assembly of Embodiment 1. In this case, in
In contrast, the method for manufacturing the membrane-electrode assembly of the present embodiment is applicable to the method for manufacturing the membrane-electrode assembly of Embodiment 1. In this case, in
Embodiment 9 of the present invention exemplifies an embodiment in a case where the flows of the reaction gases are a cross flow.
The following feature of the present embodiment is different from Embodiment 1, and features other than this are the same as those of Embodiment 1. In the present embodiment, as shown in
In the present embodiment, the positions and shapes of the anode gas passage A and the cooling water passage W in a pair of the separators and all manifold holes in the membrane-electrode assembly 1 are the same as those in Embodiment 1. However, the cathode gas passage C in the cathode separator is different from that of Embodiment 1, and is formed to be macroscopically orthogonal to the anode gas passage A when viewed from a thickness direction of the membrane-electrode assembly 1. To be specific, the relation between the flow of the anode gas and the flow of the cathode gas is the cross flow. Specifically, the cathode gas passage C is formed to microscopically repeat a section which extends in a direction orthogonal to the lateral direction (direction along the upper side 2a and the lower side 2c) 104, that is, the vertical direction (direction along the right side 2b and the left side 2d) 103 for a predetermined distance, turns there, extends from there in a direction opposite the above direction along the vertical direction for a predetermined distance and turns there, and macroscopically extend in the lateral direction 104. In contrast, the anode gas passage A is formed to macroscopically extend in the vertical direction 103, so that the anode gas passage A and the cathode gas passage C are macroscopically orthogonal to each other.
Next, a method for manufacturing the membrane-electrode assembly 1 of the present embodiment constructed as above will be explained.
The present inventors have examined the deterioration of the polymer electrolyte membrane in the case of the cross flow as with the case of the parallel flow. As a result, in the case of the cross flow, it is revealed that the portion corresponding to the upper side 2a and the portion corresponding to the right side 2b deteriorate the most in the peripheral portion of the rectangular polymer electrolyte membrane 2. The portion corresponding to the upper side 2a is a portion corresponding to the upstream portion (inlet side of the anode gas) of the anode gas passage A, and the portion corresponding to the right side 2b is a portion corresponding to the upstream portion (inlet side of the cathode gas) of the cathode gas passage C.
In the membrane-electrode assembly 1 of the present embodiment, since the reinforcing member 6 is provided at the portion corresponding to the upper side 2a in the peripheral portion of the polymer electrolyte membrane 2, and the high-strength portion 4 is formed at the portion corresponding to the right side 2b in the peripheral portion of the polymer electrolyte membrane 2, it is possible to prevent these portions from deteriorating.
Next, a method for manufacturing the membrane-electrode assembly 1 of the present embodiment constructed as above will be explained.
a) and 17(b) are schematic diagrams showing steps of manufacturing the membrane-electrode assembly of the present embodiment. In
The method for manufacturing the membrane-electrode assembly of the present embodiment is the same as the method for manufacturing the membrane-electrode assembly of Embodiment 1 except for the following feature.
In the present embodiment, first, the polymer electrolyte membrane is manufactured as follows. This step is the same as Embodiment 8 except that the width of the core (which will be the polymer electrolyte membrane) to be manufactured and the pitch of the through hole non-formed regions (which will be the reinforced portions) are different. Therefore, this step will be explained with reference to
Next, as shown in
Then, as shown in
In accordance with the method for manufacturing the membrane-electrode assembly of the present embodiment, since the high-strength portion 4 necessary for the counter flow can be formed consecutively on the master film of the polymer electrolyte membrane 2 and the reinforcing member 6 can be provided before cutting into the membrane pieces (polymer electrolyte membrane pieces) used for the membrane-electrode assembly 1, it is possible to efficiently manufacture the membrane-electrode assembly 1.
Embodiment 10 of the present invention exemplifies a method for efficiently manufacturing a membrane-electrode assembly whose three sides are subjected to reinforcing necessary for the parallel flow. In other words, Embodiment 10 of the present invention is a modification example of the method for manufacturing the membrane-electrode assembly 1 according to Embodiment 3.
a) and 18(b) are schematic diagrams showing steps of manufacturing the membrane-electrode assembly according to Embodiment 10 of the present invention. In
As shown in
In the present embodiment, as shown in
In accordance with the method for manufacturing the membrane-electrode assembly of the present embodiment, since the high-strength portion 4 can be formed consecutively on the master film of the polymer electrolyte membrane 2 and the reinforcing member 6 can be provided before cutting into the membrane pieces (polymer electrolyte membrane pieces) used for the membrane-electrode assembly 1, it is possible to efficiently manufacture the membrane-electrode assembly 1 whose three sides are subjected to reinforcing necessary for the parallel flow.
Embodiment 11 of the present invention shows a method for manufacturing the membrane-electrode assembly 1 according to Embodiment 3.
a) and 19(b) are schematic diagrams showing steps of manufacturing the membrane-electrode assembly of the present embodiment. In
The method for manufacturing the membrane-electrode assembly of the present embodiment is the same as the method for manufacturing the membrane-electrode assembly of Embodiment 1 except for the following feature.
In the present embodiment, first, the polymer electrolyte membrane is manufactured as follows. This step is the same as Embodiment 8. Therefore, this step will be explained with reference to
Next, as shown in
Then, as shown in
In accordance with the method for manufacturing the membrane-electrode assembly of the present embodiment, since the high-strength portion 4 can be formed consecutively on the master film of the polymer electrolyte membrane 2 and the reinforcing member 6 can be provided before cutting into the membrane pieces (polymer electrolyte membrane pieces) used for the membrane-electrode assembly 1, it is possible to efficiently manufacture the membrane-electrode assembly 1 whose three sides are subjected to reinforcing necessary for the parallel flow.
In the above embodiments, each of the high-strength portion 4 and the reinforcing member 6 each of which is provided to extend over the entire width or length of the membrane piece of the polymer electrolyte membrane 2 may be provided to extend over part of the entire width or length of the membrane piece of the polymer electrolyte membrane 2.
From the foregoing explanation, many modifications and other embodiments of the present invention are obvious to one skilled in the art. Therefore, the foregoing explanation should be interpreted only as an example, and is provided for the purpose of teaching the best mode for carrying out the present invention to one skilled in the art. The structures and/or functional details may be substantially modified within the spirit of the present invention.
A membrane-electrode assembly of the present invention is useful as a membrane-electrode assembly which can be efficiently manufactured.
A fuel cell of the present invention is useful as a fuel cell including a membrane-electrode assembly which can be efficiently manufactured.
A method for manufacturing a membrane-electrode assembly of the present invention is useful as a method for manufacturing a membrane-electrode assembly whose producibility is excellent.
Number | Date | Country | Kind |
---|---|---|---|
2005-179926 | Jun 2005 | JP | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/JP2006/312234 | 6/19/2006 | WO | 00 | 12/20/2007 |