The present invention relates to membrane filtration systems, and more particularly to those systems employing porous or permeable membranes located in a tank or cell open to atmosphere.
Any discussion of the prior art throughout the specification should in no way be considered as an admission that such prior art is widely known or forms part of common general knowledge in the field.
Porous membrane filtration systems require regular backwashing of the membranes to maintain filtration efficiency and flux while reducing transmembrane pressure (TMP) which rises as the membrane pores become clogged with impurities. Typically, during the backwash cycle the impurities are forced out of the membrane pores by pressurised gas, liquid or both into the feed tank or cell. The liquid containing impurities and deposits from the membranes is then drained or flushed from the tank.
The waste liquid displaced from the tank needs to be disposed of or reprocessed, usually in an environmentally safe manner, so any reduction in the volume of such waste liquid is seen as advantageous in terms of environmental impact and cost.
The draining or flushing of the tank, particularly when large arrays of membranes are used also requires time which results in down time of the filtration cycle. In order to reduce this down time large pumping systems are required to quickly drain and refill the tank. Where tanks or cells are arranged in banks and feed is used to refill the tank, a lowering in levels in other cells may be produced during the refill process. This again impinges on operating efficiency of the filtration system.
Further, in filtration systems employing gas bubble scouring of the membranes it has been found advantageous to confine the bubbles as much as possible in the region of the membranes to assist with the scouring process.
Reduction in backwash volume also reduces the volume of chemical cleaning agents required in some systems. This has the two-fold advantage of reducing cost in terms of chemical requirements while also reducing waste disposal problems.
It has been found advantageous to reduce the volume of feed liquid in the filtration cell to ameliorate the above problems and provide at least some of the advantages outlined above.
The present invention seeks to overcome one or more of the abovementioned problems of the prior art, provide one or more of the advantages outlined above or at least provide a useful alternative by reducing the feed volume presented to the porous membranes in a simple, cost effective manner.
According to one aspect, the present invention provides a method of reducing volume of feed liquid required in a membrane filtration system having a number of porous membranes submersed in a volume of feed liquid to be filtered, the method comprising the step of providing filler elements within said volume of feed liquid to be filtered.
Preferably, the filler elements substantially fill voids between the porous membranes while still permitting liquid flow communication with the membranes.
According to another aspect, the present invention provides a membrane filtration system having a number of porous membranes submersed in a volume of feed liquid to be filtered, wherein one or more filler members are provided in voids between said membranes to reduce said volume.
In one preferred form the membranes are porous hollow fibre membranes arranged in bundles to form membrane modules. The modules are submersed in a liquid volume provided in a tank or cell open to atmospheric pressure. In this form of the invention, the voids between the modules are at least partially filled by a filler member or members.
Preferably, the filler members are each formed of a number of elements which fit together to form an integral unit. This enables the filler members to be assembled around the membranes modules without the need for removal of the modules. This assists in initial set-up as well as with replacement and maintenance regimes.
The filler elements may comprise spheres, preferably hollow, which can be packed around the membranes to fill the voids. The spheres are preferably sized to avoid blocking or passing through any of the inlet/outlet ports or valves associated with the filtration system.
Preferred embodiments of the invention will now be described, by way of example only, with reference to the accompanying drawings, in which:
Referring to the drawings, the embodiments will be described in relation to a manifold and filtration system disclosed in our co-pending PCT Application No. WO 00/62908 (which is incorporated herein by cross-reference), however, it will be appreciated that the invention is equally applicable to other forms of filtration system requiring similar advantages.
The system includes a bank 5 of filter submodules 6 each attached in groups to a membrane filtration manifold 7. In this embodiment, the submodules 6 comprise elongate bundles of porous hollow fibre membranes (not shown) typically enclosed by a supporting cage (not shown). The submodules 6 are positioned within a feed tank or cell (not shown) and when the tank is filled the sub-modules are immersed in feed liquid. Each manifold 7 is connected to a filtrate conduit 8 for removal of filtrate.
During the backwash process, the fibre bundles of submodules 6 are cleaned externally by air bubbles or a mixture of air/liquid injected into each submodule to scrub the outer surfaces of the fibre membranes. The submodules 6 may also be further cleaned by backwashing liquid and/or gas through the fibre pores.
In accordance with this embodiment, in order to reduce backwash volume, each submodule 6 is encased partially by a number of filler members 9 which are segmented to allow each to fit closely around the elongate fibre bundles. In this embodiment, the filler members 9 are spaced from the upper and lower manifolds 7 to allow for flow of liquid and/or impurities in and out of the submodules 6. It will be appreciated that other arrangements to allow liquid flow can also be employed, for example, the filler members 9 could be spaced radially from the outer periphery of each fibre bundle submodule 6 or various shapes of filler member 9 could be used which allowed for liquid flow to and from the submodule 6 while still substantially filling the voids between each submodule 6.
In this system, which employs a gas bubble scouring method, the use of the filler members 9 provides an additional advantage of confining the gas bubbles within the submodules 6 and thus improving scouring efficiency.
As best shown in
The side filler segments 16 are generally T-shaped in cross-section with half-semi circular sides 17 of the same diameter as the central element 10.
The top and bottom surface 18 of the central element 10 are provided with a spacer peg 19 which positions the filler element 9 in a spatial relationship from the manifold 7 to allow fluid flow to and from the top and bottom of the fibre bundles.
The filler members 9 are desirably formed from material which is resistant to any destructive substances present in the feed stream as well as chemicals, gases, etc. which may be used in the backwash or other cleaning processes. The filler members 9 are also desirably of neutral buoyancy so they will remain in position during submersion of the submodules in the feed tank. They can be formed from foamed plastics material such as polyethylene foam or blow or rotor moulded plastic. When blow-moulded, the filler elements may be hollow to allow for filling with a fluid (usually water) to produce the required neutral buoyancy.
It will be appreciated that further embodiments and exemplifications of the invention are possible without departing from the spirit or scope of the invention described.
Number | Date | Country | Kind |
---|---|---|---|
PR0648 | Oct 2000 | AU | national |
This application is a continuation, under 35 U.S. § 120, of International Patent Application No. PCT/AU01/01248, filed on Oct. 3, 2001 under the Patent Cooperation Treaty (PCT), which was published by the International Bureau in English on Apr. 18, 2002, which designates the U.S. and claims the benefit of Australian Provisional Patent Application No. PR 0648, filed Oct. 9, 2000.
Number | Name | Date | Kind |
---|---|---|---|
3228876 | Mahon | Jan 1966 | A |
3693406 | Tobin | Sep 1972 | A |
3968192 | Hoffman et al. | Jul 1976 | A |
3992301 | Shippey et al. | Nov 1976 | A |
3993816 | Baudet et al. | Nov 1976 | A |
4188817 | Steigelmann | Feb 1980 | A |
4192750 | Elfes et al. | Mar 1980 | A |
4193780 | Cotton et al. | Mar 1980 | A |
4218324 | Hartmann et al. | Aug 1980 | A |
4248648 | Kopp | Feb 1981 | A |
4384474 | Kowalski | May 1983 | A |
4385150 | Miyake et al. | May 1983 | A |
4451369 | Sekino et al. | May 1984 | A |
4511471 | Müller | Apr 1985 | A |
4540490 | Shibata et al. | Sep 1985 | A |
4547289 | Okano et al. | Oct 1985 | A |
4609465 | Miller | Sep 1986 | A |
4614109 | Hoffman | Sep 1986 | A |
4632745 | Giuffrida et al. | Dec 1986 | A |
4636296 | Kunz | Jan 1987 | A |
4642182 | Drori | Feb 1987 | A |
4647377 | Miura | Mar 1987 | A |
4650586 | Ellis | Mar 1987 | A |
4656865 | Callan | Apr 1987 | A |
4660411 | Reid | Apr 1987 | A |
4670145 | Edwards | Jun 1987 | A |
4673507 | Brown | Jun 1987 | A |
4687561 | Kunz | Aug 1987 | A |
4688511 | Gerlach et al. | Aug 1987 | A |
4718270 | Storr | Jan 1988 | A |
4744240 | Reichelt | May 1988 | A |
4756875 | Tajima et al. | Jul 1988 | A |
4763612 | Iwanami | Aug 1988 | A |
4767539 | Ford | Aug 1988 | A |
4779448 | Gogins | Oct 1988 | A |
4784771 | Wathen et al. | Nov 1988 | A |
4793932 | Ford et al. | Dec 1988 | A |
4797211 | Ehrfeld et al. | Jan 1989 | A |
4810384 | Fabre | Mar 1989 | A |
4812235 | Seleman et al. | Mar 1989 | A |
4816160 | Ford et al. | Mar 1989 | A |
4840227 | Schmidt | Jun 1989 | A |
4846970 | Bertelsen et al. | Jul 1989 | A |
4876006 | Ohkubo et al. | Oct 1989 | A |
4876012 | Kopp et al. | Oct 1989 | A |
4921610 | Ford et al. | May 1990 | A |
4931186 | Ford et al. | Jun 1990 | A |
4935143 | Kopp et al. | Jun 1990 | A |
4952317 | Culkin | Aug 1990 | A |
4999038 | Lundberg | Mar 1991 | A |
5005430 | Kibler et al. | Apr 1991 | A |
5024762 | Ford et al. | Jun 1991 | A |
5066375 | Parsi et al. | Nov 1991 | A |
5066401 | Muller et al. | Nov 1991 | A |
5066402 | Anselme et al. | Nov 1991 | A |
5069065 | Sprunt et al. | Dec 1991 | A |
5076925 | Roesink et al. | Dec 1991 | A |
5079272 | Allegrezza et al. | Jan 1992 | A |
5094750 | Kopp et al. | Mar 1992 | A |
5104546 | Filson et al. | Apr 1992 | A |
H1045 | Wilson | May 1992 | H |
5137631 | Eckman et al. | Aug 1992 | A |
5138870 | Lyssy | Aug 1992 | A |
5151191 | Sunaoka et al. | Sep 1992 | A |
5151193 | Grobe et al. | Sep 1992 | A |
5158721 | Allegrezza et al. | Oct 1992 | A |
5192456 | Ishida et al. | Mar 1993 | A |
5194149 | Selbie et al. | Mar 1993 | A |
5198116 | Comstock et al. | Mar 1993 | A |
5209852 | Sunaoka et al. | May 1993 | A |
5211823 | Giuffrida et al. | May 1993 | A |
5221478 | Dhingra et al. | Jun 1993 | A |
5227063 | Langerak et al. | Jul 1993 | A |
5248424 | Cote et al. | Sep 1993 | A |
5297420 | Gilliland et al. | Mar 1994 | A |
5320760 | Freund et al. | Jun 1994 | A |
5353630 | Soda et al. | Oct 1994 | A |
5361625 | Ylvisaker | Nov 1994 | A |
5364527 | Zimmerman et al. | Nov 1994 | A |
5389260 | Hemp | Feb 1995 | A |
5401401 | Hickok | Mar 1995 | A |
5403479 | Smith et al. | Apr 1995 | A |
5405528 | Selbie et al. | Apr 1995 | A |
5417101 | Weich | May 1995 | A |
5419816 | Sampson et al. | May 1995 | A |
5451317 | Ishida et al. | Sep 1995 | A |
5470469 | Eckman | Nov 1995 | A |
5477731 | Mouton | Dec 1995 | A |
5480553 | Yamamori et al. | Jan 1996 | A |
5531848 | Brinda et al. | Jul 1996 | A |
5531900 | Raghaven et al. | Jul 1996 | A |
5543002 | Brinda et al. | Aug 1996 | A |
5554283 | Brinda et al. | Sep 1996 | A |
5607593 | Cote et al. | Mar 1997 | A |
5639373 | Mahendran et al. | Jun 1997 | A |
5643455 | Kopp et al. | Jul 1997 | A |
D396046 | Scheel et al. | Jul 1998 | S |
5783083 | Henshaw et al. | Jul 1998 | A |
D396726 | Sadr et al. | Aug 1998 | S |
D400890 | Gambardella | Nov 1998 | S |
5910250 | Mahendran et al. | Jun 1999 | A |
5914039 | Mahendran | Jun 1999 | A |
5918264 | Drummond et al. | Jun 1999 | A |
5942113 | Morimura | Aug 1999 | A |
5944997 | Pedersen et al. | Aug 1999 | A |
6024872 | Mahendran | Feb 2000 | A |
6039872 | Wu et al. | Mar 2000 | A |
6042677 | Mahendran et al. | Mar 2000 | A |
6048454 | Jenkins | Apr 2000 | A |
6077435 | Beck et al. | Jun 2000 | A |
6083393 | Wu et al. | Jul 2000 | A |
6146747 | Wang et al. | Nov 2000 | A |
6156200 | Zha et al. | Dec 2000 | A |
6159373 | Beck et al. | Dec 2000 | A |
6193890 | Pederson et al. | Feb 2001 | B1 |
6202475 | Selbie et al. | Mar 2001 | B1 |
6254773 | Biltoft | Jul 2001 | B1 |
6280626 | Miyashita et al. | Aug 2001 | B1 |
6294039 | Mahendran et al. | Sep 2001 | B1 |
6315895 | Summerton et al. | Nov 2001 | B1 |
6325928 | Pedersen et al. | Dec 2001 | B1 |
RE37549 | Mahendran et al. | Feb 2002 | E |
6354444 | Mahendran | Mar 2002 | B1 |
6440303 | Spriegel | Aug 2002 | B2 |
D462699 | Johnson et al. | Sep 2002 | S |
6524481 | Zha et al. | Feb 2003 | B2 |
6555005 | Zha et al. | Apr 2003 | B1 |
6635179 | Summerton et al. | Oct 2003 | B1 |
20020148767 | Johnson et al. | Oct 2002 | A1 |
20020153299 | Mahendran et al. | Oct 2002 | A1 |
20020195390 | Zha et al. | Dec 2002 | A1 |
20030075504 | Zha et al. | Apr 2003 | A1 |
20030089659 | Zha et al. | May 2003 | A1 |
20030136746 | Behman et al. | Jul 2003 | A1 |
Number | Date | Country |
---|---|---|
4 117 422 | Nov 1992 | DE |
0 463 627 | May 1995 | EP |
0 763 758 | Oct 1996 | EP |
1 052 012 | Nov 2000 | EP |
2 674 448 | Feb 1992 | FR |
2 253 572 | Sep 1992 | GB |
58-088007 | May 1983 | JP |
61-097006 | May 1986 | JP |
61-107905 | May 1986 | JP |
61-257203 | Nov 1986 | JP |
61-263605 | Nov 1986 | JP |
62-004408 | Jan 1987 | JP |
62-114609 | May 1987 | JP |
62-140607 | Jun 1987 | JP |
62-179540 | Aug 1987 | JP |
63-097634 | Apr 1988 | JP |
01-307409 | Dec 1989 | JP |
02-164423 | Jun 1990 | JP |
02-284035 | Nov 1990 | JP |
03-018373 | Jan 1991 | JP |
03-028797 | Feb 1991 | JP |
31-010445 | May 1991 | JP |
04-310223 | Nov 1992 | JP |
05-023557 | Feb 1993 | JP |
05-157654 | Jun 1993 | JP |
06-071120 | Mar 1994 | JP |
06-114240 | Apr 1994 | JP |
07-000770 | Jan 1995 | JP |
07-275665 | Oct 1995 | JP |
08-010585 | Jan 1996 | JP |
09-141063 | Jun 1997 | JP |
10-156149 | Jun 1998 | JP |
WO 9000434 | Jan 1990 | WO |
WO 9641676 | Dec 1996 | WO |
Number | Date | Country | |
---|---|---|---|
20030234221 A1 | Dec 2003 | US |
Number | Date | Country | |
---|---|---|---|
Parent | PCTAU01/01248 | Oct 2001 | US |
Child | 10406807 | US |