Membrane filtration system

Information

  • Patent Grant
  • 6872305
  • Patent Number
    6,872,305
  • Date Filed
    Wednesday, April 2, 2003
    21 years ago
  • Date Issued
    Tuesday, March 29, 2005
    19 years ago
Abstract
A method and apparatus for reducing volume of feed liquid required in a porous membrane filtration system having a number of porous membranes (6) submersed in a volume of feed liquid to be filtered is provided, the method comprising the step of providing filler elements (9) within said volume of feed liquid to be filtered.
Description
FIELD OF THE INVENTION

The present invention relates to membrane filtration systems, and more particularly to those systems employing porous or permeable membranes located in a tank or cell open to atmosphere.


BACKGROUND ART

Any discussion of the prior art throughout the specification should in no way be considered as an admission that such prior art is widely known or forms part of common general knowledge in the field.


Porous membrane filtration systems require regular backwashing of the membranes to maintain filtration efficiency and flux while reducing transmembrane pressure (TMP) which rises as the membrane pores become clogged with impurities. Typically, during the backwash cycle the impurities are forced out of the membrane pores by pressurised gas, liquid or both into the feed tank or cell. The liquid containing impurities and deposits from the membranes is then drained or flushed from the tank.


The waste liquid displaced from the tank needs to be disposed of or reprocessed, usually in an environmentally safe manner, so any reduction in the volume of such waste liquid is seen as advantageous in terms of environmental impact and cost.


The draining or flushing of the tank, particularly when large arrays of membranes are used also requires time which results in down time of the filtration cycle. In order to reduce this down time large pumping systems are required to quickly drain and refill the tank. Where tanks or cells are arranged in banks and feed is used to refill the tank, a lowering in levels in other cells may be produced during the refill process. This again impinges on operating efficiency of the filtration system.


Further, in filtration systems employing gas bubble scouring of the membranes it has been found advantageous to confine the bubbles as much as possible in the region of the membranes to assist with the scouring process.


Reduction in backwash volume also reduces the volume of chemical cleaning agents required in some systems. This has the two-fold advantage of reducing cost in terms of chemical requirements while also reducing waste disposal problems.


It has been found advantageous to reduce the volume of feed liquid in the filtration cell to ameliorate the above problems and provide at least some of the advantages outlined above.


DISCLOSURE OF THE INVENTION

The present invention seeks to overcome one or more of the abovementioned problems of the prior art, provide one or more of the advantages outlined above or at least provide a useful alternative by reducing the feed volume presented to the porous membranes in a simple, cost effective manner.


According to one aspect, the present invention provides a method of reducing volume of feed liquid required in a membrane filtration system having a number of porous membranes submersed in a volume of feed liquid to be filtered, the method comprising the step of providing filler elements within said volume of feed liquid to be filtered.


Preferably, the filler elements substantially fill voids between the porous membranes while still permitting liquid flow communication with the membranes.


According to another aspect, the present invention provides a membrane filtration system having a number of porous membranes submersed in a volume of feed liquid to be filtered, wherein one or more filler members are provided in voids between said membranes to reduce said volume.


In one preferred form the membranes are porous hollow fibre membranes arranged in bundles to form membrane modules. The modules are submersed in a liquid volume provided in a tank or cell open to atmospheric pressure. In this form of the invention, the voids between the modules are at least partially filled by a filler member or members.


Preferably, the filler members are each formed of a number of elements which fit together to form an integral unit. This enables the filler members to be assembled around the membranes modules without the need for removal of the modules. This assists in initial set-up as well as with replacement and maintenance regimes.


The filler elements may comprise spheres, preferably hollow, which can be packed around the membranes to fill the voids. The spheres are preferably sized to avoid blocking or passing through any of the inlet/outlet ports or valves associated with the filtration system.





BRIEF DESCRIPTION OF THE DRAWINGS

Preferred embodiments of the invention will now be described, by way of example only, with reference to the accompanying drawings, in which:



FIG. 1 shows a perspective view of a bank of filtration modules having filler members according to one embodiment of the invention;



FIG. 2 shows an enlarged perspective view of the upper portion of the bank of filtration modules of FIG. 1;



FIG. 3 shows an exploded view of the filler members of FIG. 1 as they would be assembled around a filtration module;



FIG. 4 shows an end elevation view of a central filler member of FIG. 3;



FIG. 5 shows a side elevation view of the filler member of FIG. 4;



FIG. 6 shows a perspective view of the filler member of FIG. 4;



FIG. 7 shows a plan view of the filler member of FIG. 4;



FIG. 8 shows an end elevation view of side filler member of FIG. 3;



FIG. 9 shows a side elevation view of the filler member of FIG. 8;



FIG. 10 shows a perspective view of the filler member of FIG. 8;



FIG. 11 shows a plan view of the filler member of FIG. 8; and



FIG. 12 shows a graph of transmembrane pressure over a period of time for two types of filtration system with a filler system being employed on one system part way through the test period.





DESCRIPTION OF PREFERRED EMBODIMENTS

Referring to the drawings, the embodiments will be described in relation to a manifold and filtration system disclosed in our co-pending PCT Application No. WO 00/62908 (which is incorporated herein by cross-reference), however, it will be appreciated that the invention is equally applicable to other forms of filtration system requiring similar advantages.


The system includes a bank 5 of filter submodules 6 each attached in groups to a membrane filtration manifold 7. In this embodiment, the submodules 6 comprise elongate bundles of porous hollow fibre membranes (not shown) typically enclosed by a supporting cage (not shown). The submodules 6 are positioned within a feed tank or cell (not shown) and when the tank is filled the sub-modules are immersed in feed liquid. Each manifold 7 is connected to a filtrate conduit 8 for removal of filtrate.


During the backwash process, the fibre bundles of submodules 6 are cleaned externally by air bubbles or a mixture of air/liquid injected into each submodule to scrub the outer surfaces of the fibre membranes. The submodules 6 may also be further cleaned by backwashing liquid and/or gas through the fibre pores.


In accordance with this embodiment, in order to reduce backwash volume, each submodule 6 is encased partially by a number of filler members 9 which are segmented to allow each to fit closely around the elongate fibre bundles. In this embodiment, the filler members 9 are spaced from the upper and lower manifolds 7 to allow for flow of liquid and/or impurities in and out of the submodules 6. It will be appreciated that other arrangements to allow liquid flow can also be employed, for example, the filler members 9 could be spaced radially from the outer periphery of each fibre bundle submodule 6 or various shapes of filler member 9 could be used which allowed for liquid flow to and from the submodule 6 while still substantially filling the voids between each submodule 6.


In this system, which employs a gas bubble scouring method, the use of the filler members 9 provides an additional advantage of confining the gas bubbles within the submodules 6 and thus improving scouring efficiency.


As best shown in FIGS. 3 to 11, the filler members 9 are formed from complementary segments comprising a central or core element 10 having two sets of parallel opposed semi-circular, in cross-section, channels 11 extending longitudinally along the length of the central element 10. The channels 11 have a diameter sized to accommodate and fit closely around the submodule 6. The sides 12 and inner edge 13 of the element 10 are provided with outwardly extending tabs or bosses 14 which mate with complementary slots 15 on other filler segments 16 to provide, in use, an integral filler member 9.


The side filler segments 16 are generally T-shaped in cross-section with half-semi circular sides 17 of the same diameter as the central element 10.


The top and bottom surface 18 of the central element 10 are provided with a spacer peg 19 which positions the filler element 9 in a spatial relationship from the manifold 7 to allow fluid flow to and from the top and bottom of the fibre bundles.


The filler members 9 are desirably formed from material which is resistant to any destructive substances present in the feed stream as well as chemicals, gases, etc. which may be used in the backwash or other cleaning processes. The filler members 9 are also desirably of neutral buoyancy so they will remain in position during submersion of the submodules in the feed tank. They can be formed from foamed plastics material such as polyethylene foam or blow or rotor moulded plastic. When blow-moulded, the filler elements may be hollow to allow for filling with a fluid (usually water) to produce the required neutral buoyancy.



FIG. 12 shows the effect on the transmembrane pressure characteristics of two filtration machines. The upper graph shows a machine without the filler members whereas the lower graph shows a machine with filler members employed part way through the test cycle. This graph demonstrates the improved effectiveness of the backwash when filler members are employed.


It will be appreciated that further embodiments and exemplifications of the invention are possible without departing from the spirit or scope of the invention described.

Claims
  • 1. A membrane filtration system comprising a plurality of porous hollow fiber membranes arranged in bundles forming membrane modules submerged in a feed liquid to be filtered and comprising at least one filler member positioned in a void between said membrane modules, wherein said filler member is immersed in said feed liquid to be filtered so as to occupy a space that would otherwise be occupied by feed liquid, wherein the void between the modules is at least partially filled with the filler member.
  • 2. A membrane filtration system according to claim 1 wherein the modules are submerged in said feed liquid in a tank or a cell open to an atmospheric pressure.
  • 3. A membrane filtration system according to claim 1 wherein the filler member comprises a number of elements which fit together to form an integral unit.
  • 4. A membrane filtration system according to claim 1 wherein said filler member is neutrally buoyant with respect to said feed liquid.
  • 5. A membrane filtration system according to claim 4 wherein said filler member is hollow and is configured to be filled with a fluid to provide said neutral buoyancy.
  • 6. A membrane filtration system according to claim 1 wherein said filler member is spherical in shape.
  • 7. A membrane filtration system according to claim 6 wherein said filler member is hollow and is configured to be filled with a fluid to provide said neutral buoyancy.
  • 8. A membrane filtration system according to claim 1 wherein the filler member comprises a plurality of complementary segments comprising a central element comprising two sets of parallel opposed semi-circular, in cross-section, channels extending longitudinally along a length of the central element, each channel have a diameter sized to accommodate and fit closely around a fibre bundle, and a plurality of side filler segments of generally T-shaped cross-section with half-semi circular sides of a same diameter as said channels configured to engage with said central element to form said filler member.
  • 9. A membrane filtration system according to claim 8 wherein each filler member comprises complementary engagement formations for engaging with associated engagement means on other filler members.
  • 10. A membrane filtration system according to claim 1 wherein the filler member comprises a foamed plastic material.
  • 11. A membrane filtration system according to claim 1 wherein the filler member comprises a blow-moulded plastic material.
  • 12. A membrane filtration system according to claim 1 wherein the filler member comprises a rotor-moulded plastic material.
  • 13. A membrane filtration system according to claim 1 comprising a plurality of filler members.
  • 14. A membrane filtration system according to claim 1 comprising a plurality of voids.
Priority Claims (1)
Number Date Country Kind
PR0648 Oct 2000 AU national
Parent Case Info

This application is a continuation, under 35 U.S. § 120, of International Patent Application No. PCT/AU01/01248, filed on Oct. 3, 2001 under the Patent Cooperation Treaty (PCT), which was published by the International Bureau in English on Apr. 18, 2002, which designates the U.S. and claims the benefit of Australian Provisional Patent Application No. PR 0648, filed Oct. 9, 2000.

US Referenced Citations (134)
Number Name Date Kind
3228876 Mahon Jan 1966 A
3693406 Tobin Sep 1972 A
3968192 Hoffman et al. Jul 1976 A
3992301 Shippey et al. Nov 1976 A
3993816 Baudet et al. Nov 1976 A
4188817 Steigelmann Feb 1980 A
4192750 Elfes et al. Mar 1980 A
4193780 Cotton et al. Mar 1980 A
4218324 Hartmann et al. Aug 1980 A
4248648 Kopp Feb 1981 A
4384474 Kowalski May 1983 A
4385150 Miyake et al. May 1983 A
4451369 Sekino et al. May 1984 A
4511471 Müller Apr 1985 A
4540490 Shibata et al. Sep 1985 A
4547289 Okano et al. Oct 1985 A
4609465 Miller Sep 1986 A
4614109 Hoffman Sep 1986 A
4632745 Giuffrida et al. Dec 1986 A
4636296 Kunz Jan 1987 A
4642182 Drori Feb 1987 A
4647377 Miura Mar 1987 A
4650586 Ellis Mar 1987 A
4656865 Callan Apr 1987 A
4660411 Reid Apr 1987 A
4670145 Edwards Jun 1987 A
4673507 Brown Jun 1987 A
4687561 Kunz Aug 1987 A
4688511 Gerlach et al. Aug 1987 A
4718270 Storr Jan 1988 A
4744240 Reichelt May 1988 A
4756875 Tajima et al. Jul 1988 A
4763612 Iwanami Aug 1988 A
4767539 Ford Aug 1988 A
4779448 Gogins Oct 1988 A
4784771 Wathen et al. Nov 1988 A
4793932 Ford et al. Dec 1988 A
4797211 Ehrfeld et al. Jan 1989 A
4810384 Fabre Mar 1989 A
4812235 Seleman et al. Mar 1989 A
4816160 Ford et al. Mar 1989 A
4840227 Schmidt Jun 1989 A
4846970 Bertelsen et al. Jul 1989 A
4876006 Ohkubo et al. Oct 1989 A
4876012 Kopp et al. Oct 1989 A
4921610 Ford et al. May 1990 A
4931186 Ford et al. Jun 1990 A
4935143 Kopp et al. Jun 1990 A
4952317 Culkin Aug 1990 A
4999038 Lundberg Mar 1991 A
5005430 Kibler et al. Apr 1991 A
5024762 Ford et al. Jun 1991 A
5066375 Parsi et al. Nov 1991 A
5066401 Muller et al. Nov 1991 A
5066402 Anselme et al. Nov 1991 A
5069065 Sprunt et al. Dec 1991 A
5076925 Roesink et al. Dec 1991 A
5079272 Allegrezza et al. Jan 1992 A
5094750 Kopp et al. Mar 1992 A
5104546 Filson et al. Apr 1992 A
H1045 Wilson May 1992 H
5137631 Eckman et al. Aug 1992 A
5138870 Lyssy Aug 1992 A
5151191 Sunaoka et al. Sep 1992 A
5151193 Grobe et al. Sep 1992 A
5158721 Allegrezza et al. Oct 1992 A
5192456 Ishida et al. Mar 1993 A
5194149 Selbie et al. Mar 1993 A
5198116 Comstock et al. Mar 1993 A
5209852 Sunaoka et al. May 1993 A
5211823 Giuffrida et al. May 1993 A
5221478 Dhingra et al. Jun 1993 A
5227063 Langerak et al. Jul 1993 A
5248424 Cote et al. Sep 1993 A
5297420 Gilliland et al. Mar 1994 A
5320760 Freund et al. Jun 1994 A
5353630 Soda et al. Oct 1994 A
5361625 Ylvisaker Nov 1994 A
5364527 Zimmerman et al. Nov 1994 A
5389260 Hemp Feb 1995 A
5401401 Hickok Mar 1995 A
5403479 Smith et al. Apr 1995 A
5405528 Selbie et al. Apr 1995 A
5417101 Weich May 1995 A
5419816 Sampson et al. May 1995 A
5451317 Ishida et al. Sep 1995 A
5470469 Eckman Nov 1995 A
5477731 Mouton Dec 1995 A
5480553 Yamamori et al. Jan 1996 A
5531848 Brinda et al. Jul 1996 A
5531900 Raghaven et al. Jul 1996 A
5543002 Brinda et al. Aug 1996 A
5554283 Brinda et al. Sep 1996 A
5607593 Cote et al. Mar 1997 A
5639373 Mahendran et al. Jun 1997 A
5643455 Kopp et al. Jul 1997 A
D396046 Scheel et al. Jul 1998 S
5783083 Henshaw et al. Jul 1998 A
D396726 Sadr et al. Aug 1998 S
D400890 Gambardella Nov 1998 S
5910250 Mahendran et al. Jun 1999 A
5914039 Mahendran Jun 1999 A
5918264 Drummond et al. Jun 1999 A
5942113 Morimura Aug 1999 A
5944997 Pedersen et al. Aug 1999 A
6024872 Mahendran Feb 2000 A
6039872 Wu et al. Mar 2000 A
6042677 Mahendran et al. Mar 2000 A
6048454 Jenkins Apr 2000 A
6077435 Beck et al. Jun 2000 A
6083393 Wu et al. Jul 2000 A
6146747 Wang et al. Nov 2000 A
6156200 Zha et al. Dec 2000 A
6159373 Beck et al. Dec 2000 A
6193890 Pederson et al. Feb 2001 B1
6202475 Selbie et al. Mar 2001 B1
6254773 Biltoft Jul 2001 B1
6280626 Miyashita et al. Aug 2001 B1
6294039 Mahendran et al. Sep 2001 B1
6315895 Summerton et al. Nov 2001 B1
6325928 Pedersen et al. Dec 2001 B1
RE37549 Mahendran et al. Feb 2002 E
6354444 Mahendran Mar 2002 B1
6440303 Spriegel Aug 2002 B2
D462699 Johnson et al. Sep 2002 S
6524481 Zha et al. Feb 2003 B2
6555005 Zha et al. Apr 2003 B1
6635179 Summerton et al. Oct 2003 B1
20020148767 Johnson et al. Oct 2002 A1
20020153299 Mahendran et al. Oct 2002 A1
20020195390 Zha et al. Dec 2002 A1
20030075504 Zha et al. Apr 2003 A1
20030089659 Zha et al. May 2003 A1
20030136746 Behman et al. Jul 2003 A1
Foreign Referenced Citations (34)
Number Date Country
4 117 422 Nov 1992 DE
0 463 627 May 1995 EP
0 763 758 Oct 1996 EP
1 052 012 Nov 2000 EP
2 674 448 Feb 1992 FR
2 253 572 Sep 1992 GB
58-088007 May 1983 JP
61-097006 May 1986 JP
61-107905 May 1986 JP
61-257203 Nov 1986 JP
61-263605 Nov 1986 JP
62-004408 Jan 1987 JP
62-114609 May 1987 JP
62-140607 Jun 1987 JP
62-179540 Aug 1987 JP
63-097634 Apr 1988 JP
01-307409 Dec 1989 JP
02-164423 Jun 1990 JP
02-284035 Nov 1990 JP
03-018373 Jan 1991 JP
03-028797 Feb 1991 JP
31-010445 May 1991 JP
04-310223 Nov 1992 JP
05-023557 Feb 1993 JP
05-157654 Jun 1993 JP
06-071120 Mar 1994 JP
06-114240 Apr 1994 JP
07-000770 Jan 1995 JP
07-275665 Oct 1995 JP
08-010585 Jan 1996 JP
09-141063 Jun 1997 JP
10-156149 Jun 1998 JP
WO 9000434 Jan 1990 WO
WO 9641676 Dec 1996 WO
Related Publications (1)
Number Date Country
20030234221 A1 Dec 2003 US
Continuations (1)
Number Date Country
Parent PCTAU01/01248 Oct 2001 US
Child 10406807 US