Membrane fusion proteins

Information

  • Patent Application
  • 20250092424
  • Publication Number
    20250092424
  • Date Filed
    September 13, 2024
    9 months ago
  • Date Published
    March 20, 2025
    2 months ago
Abstract
Nucleic acids and expression vectors, and host cells or vesicles containing them, are provided that encode polypeptides and fusion proteins capable of forming hetero-oligomeric complexes capable of inducing membrane or vesicle fusion, and their use as delivery vehicles.
Description
SEQUENCE LISTING STATEMENT

A computer readable form of the Sequence Listing is filed with this application by electronic submission and is incorporated into this application by reference in its entirety. The Sequence Listing is contained in the file created on Sep. 10, 2024 having the file name “23-1345-US.xml” and is 635,732 bytes in size.


BACKGROUND

Membrane fusion is a process of merging of two membranes. In a biological system, membrane fusion proteins catalyze this process by pulling two lipid bilayer membranes into close proximity and forcing them to merge into a single membrane. Enveloped viruses and some viral vectors such as lentiviral or retroviral vectors have membrane fusion proteins on their surface to efficiently fuse the viral membrane and host cell membrane to deliver their genetic material into cells. Therefore, membrane fusion proteins are potentially useful for intracellular drug delivery applications. However, natural membrane fusion proteins including viral envelope glycoproteins or SNARE proteins are hard to engineer and sometimes immunogenic or toxic for biological applications. Newly designed membrane fusion proteins might be advantageous over existing membrane fusion proteins since they could be modular and easier to engineer.


SUMMARY

In a first aspect, the disclosure provides nucleic acids encoding a polypeptide comprising the formula X1-X2-X3, wherein


X1 comprises an amino acid sequence at least 50%, 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the amino acid sequence selected from the group consisting of the bold font residues in SEQ ID NO: 149-208;


X2 comprises a juxtamembrane domain (JMD), wherein X2 comprises an amino acid sequence at least 50%, 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the amino acid sequence selected from the group consisting of SEQ ID NO:500-505; and


X3 comprises a transmembrane domain (TMD).


In one embodiment, X1 comprises an amino acid sequence at least 50%, 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the amino acid sequence of SEQ ID NO:156. In another embodiment, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, or all 13 of L8, L12, V15, V18, 121, M22, L28, V29, G33, 136, L39, L46, L53 are conserved (i.e., identical) in the polypeptide relative to SEQ ID NO:156. In a further embodiment, X2 comprises an amino acid sequence at least 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the amino acid sequence selected from the group consisting of SEQ ID NO:209-222 and 456. In one embodiment, X2 comprises an amino acid sequence at least 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the amino acid sequence selected from the group consisting of SEQ ID NO: 213 and 214. In another embodiment, X3 comprises an amino acid at least 50%, 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the amino acid sequence selected from the group consisting of SEQ ID NO: SEQ ID NO:223-234. In a further embodiment, the nucleic acid encodes a polypeptide comprising an amino acid sequence at least 50%, 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the amino acid sequence selected from the group consisting of SEQ ID NO:1-37, 147, and 236-289. In one embodiment, the nucleic acid encodes a polypeptide comprising an amino acid sequence at least 50%, 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the amino acid sequence of SEQ ID NO:8. In another embodiment, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, or all 13 of L8, L12, V15, V18, 121, M22, L28, V29, G33, 136, L39, L46, L53 are conserved (i.e., identical) in the polypeptide relative to SEQ ID NO: 8. In other embodiments, the nucleic acids encode a fusion protein that further comprises an amino acid sequence at least 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the amino acid sequence of SEQ ID NO: 290 or 291; optionally wherein the encoded polypeptide and the polypeptide domain are connected by an amino acid linker. In certain embodiments, the nucleic acid encodes a fusion protein comprising an amino acid sequence at least 50%, 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the amino acid sequence of SEQ ID NO:147 and 244-258.


In a second aspect, the disclosure provides nucleic acids encoding a polypeptide comprising an amino acid sequence at least 50%, 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the amino acid sequence selected from the group consisting of SEQ ID NO:310-316, wherein X1 is an amino acid linker. In one embodiment, the polypeptide comprises an amino acid sequence at least 50%, 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the amino acid sequence selected from the group consisting of SEQ ID NO: 314-316, wherein X1 is an amino acid linker. In another embodiment, the nucleic acid encodes a polypeptide comprising an amino acid sequence at least 50%, 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the amino acid sequence selected from the group consisting of SEQ ID NO:38-44.


In a third aspect, the disclosure provides nucleic acids encoding a polypeptide comprising the formula X1-X2-X3, wherein

    • X1 comprises an amino acid sequence at least 50%, 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the amino acid sequence selected from the group consisting of SEQ ID NO: 317-330;
    • X2 comprises a juxtamembrane domain (JMD); and
    • X3 comprises a transmembrane domain (TMD).


In one embodiment, X2 comprises an amino acid sequence at least 50%, 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the amino acid sequence selected from the group consisting of SEQ ID NO:331-332. In another embodiment, X3 comprises an amino acid at least 50%, 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the amino acid sequence selected from the group consisting of SEQ ID NO: 223-234. In a further embodiment, the polypeptide comprising an amino acid sequence at least 50%, 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the amino acid sequence selected from the group consisting of SEQ ID NO:45-63.


In a fourth aspect, the disclosure provides nucleic acids encoding a polypeptide comprising the formula X1-X2-X3, wherein

    • X1 comprises an amino acid sequence at least 50%, 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the amino acid sequence selected from the group consisting of the first set bold font residues in SEQ ID NO: 333-425, wherein the non-highlighted residues are amino acid linkers that may be substituted with any other amino acid linker;
    • X2 comprises a juxtamembrane domain (JMD); and
    • X3 comprises a transmembrane domain (TMD).


In one embodiment, X2 comprises an amino acid sequence at least 50%, 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the amino acid sequence selected from the group consisting of SEQ ID NO: 331-332 and 426-445. In another embodiment, X3 comprises an amino acid sequence at least 50%, 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the amino acid sequence selected from the group consisting of SEQ ID NO:223-234. In a further embodiment, the polypeptide formula comprises B1-B2-X1-X2-X3, wherein

    • B1 comprises the amino acid sequence at least 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% of SEQ ID NO:290 or 291; and
    • B2 comprises an optional amino acid linker, which may be present or absent.


In one embodiment, the polypeptide comprises an amino acid sequence at least 50%, 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the amino acid sequence selected from the group consisting of SEQ ID NO: 64-146, 148, and 446-455.


In all aspects, the nucleic acids may encode a polypeptide that further comprises a signal peptide at its amino-terminus, including but not limited to a signal peptide that comprises the amino acid sequence selected from the group consisting of SEQ ID NO: 292-309. In all aspects, the nucleic acids may comprise an expression vector comprising the nucleic acid operatively linked to a control sequence, such as a promoter.


The disclosure also provides polypeptides or fusion proteins encoded by the nucleic acid of any aspect or embodiment of the disclosure, and host cell comprising the nucleic acid, expression vector, polypeptide, and/or fusion protein of any aspect or embodiment of the disclosure. In one embodiment, the host cell comprises a membrane fusion protein complex anchored in a lipid bilayer membrane of the cell, wherein the membrane fusion protein complex comprises the following components:

    • (a) a polypeptide encoded by the nucleic acid of any embodiment of the first aspect of the disclosure; and
    • (b) a polypeptide encoded by the nucleic acid of any embodiment of the second aspect of the disclosure; and
    • (c) a polypeptide encoded by the nucleic acid of any embodiment of the third aspect of the disclosure;
    • wherein components (a)-(c) form a hetero-oligomeric complex anchored in a lipid bilayer membrane of the cell, wherein the hetero-oligomeric complex is capable of inducing membrane fusion.


In another embodiment, the host cell comprises a membrane fusion protein complex anchored in a lipid bilayer membrane of the cell, wherein the membrane fusion protein complex comprises the following components:

    • (a) a polypeptide encoded by the nucleic acid of any embodiment of the first aspect of the disclosure; and
    • (b) a polypeptide encoded by the nucleic acid of any embodiment of the fourth aspect of the disclosure;
    • wherein components (a)-(b) form a hetero-oligomeric complex anchored in a lipid bilayer membrane of the cell, wherein the hetero-oligomeric complex is capable of inducing membrane fusion.


The disclosure also provides vesicles, comprising one or more polypeptide or fusion protein of any aspect or embodiment herein incorporated into the lipid envelope of the vesicle. In various embodiments, the vesicle comprises a liposome, a lipid nanoparticle, a viral vector, or an enveloped particle that may optionally comprise any suitable cargo, including but not limited to a protein or nucleic acid cargo. In other embodiments, one or more polypeptide or fusion protein of any aspect or embodiment disclosed here are anchored on a surface of the liposome, the lipid nanoparticle, the viral vector, or the enveloped particle.


In one embodiment, the host cell or vesicle of any embodiment herein, further comprises a therapeutic or diagnostic moiety loaded in the host cell or vesicle.


The disclosure also provides kits. In one embodiment, the kit comprises

    • (a) a first host cell or vesicle comprising the nucleic acid of any embodiment of the first aspect of the disclosure; and
    • (b) a second host cell or vesicle comprising the nucleic acid of any embodiment of the second aspect of the disclosure, and the nucleic acid of any embodiment of the third aspect of the disclosure. In one embodiment, the first host cell or vesicle comprises a polypeptide encoded by the nucleic acid of any embodiment of the first aspect of the disclosure anchored in a lipid bilayer membrane of the cell or vesicle. In another embodiment, the second host cell or vesicle comprises a polypeptide encoded by the nucleic acid of any embodiment of the second aspect of the disclosure anchored in a lipid bilayer membrane of the cell or vesicle.


In another embodiment, the kit comprises

    • (a) a first host cell or vesicle comprising the nucleic acid of any embodiment of the first aspect of the disclosure; and
    • (b) a second host cell or vesicle comprising polypeptide encoded by the nucleic acid of any embodiment of the fourth aspect of the disclosure. In one embodiment, the first host cell or vesicle comprises a polypeptide encoded by the nucleic acid of any embodiment of the first aspect of the disclosure anchored in a lipid bilayer membrane of the cell or vesicle. In another embodiment, the second host cell or vesicle comprises a polypeptide encoded by the nucleic acid of any embodiment of the forth aspect of the disclosure anchored in a lipid bilayer membrane of the cell or vesicle.


The disclosure also provides methods for inducing membrane fusion. In one embodiment, the method comprises mixing

    • (a) a first host cell or vesicle comprising a polypeptide encoded by the nucleic acid of any embodiment of the first aspect of the disclosure anchored in a lipid bilayer membrane of the cell; and
    • (b) a second host cell or vesicle comprising a polypeptide encoded by the nucleic acid of any embodiment of the third aspect of the disclosure anchored in a lipid bilayer membrane of the cell; wherein the polypeptide encoded by the nucleic acid of any embodiment of the third aspect of the disclosure is non-covalently bound to a polypeptide encoded by the nucleic acid of any embodiment of the second aspect of the disclosure;
    • under conditions to promote fusion of the first host cell or vesicle and the second host cell or vesicle.


In another embodiment, the method comprises mixing:

    • (a) a first host cell or vesicle comprising a polypeptide encoded by the nucleic acid of any embodiment of the first aspect of the disclosure anchored in a lipid bilayer membrane of the cell; and
    • (b) a second host cell or vesicle comprising a polypeptide encoded by the nucleic acid of any embodiment of the fourth aspect of the disclosure;
    • under conditions to promote fusion of the first host cell or vesicle and the second host cell or vesicle.





DESCRIPTION OF THE FIGURES


FIG. 1. Syntaxin exists in a closed conformation that opens to initiate core-complex assembly (nucleation). ‘Zippering’ of the four-helix bundle towards the carboxyl terminus brings the synaptic vesicle and plasma membranes towards each other, which might lead to membrane fusion. After fusion, N-ethylmaleimide-sensitive fusion protein (NSF) and soluble NSF-attachment proteins (SNAPs) disassemble the cis-core complexes that remain on the same membrane to recycle them for another round of fusion. SNAP25, synaptosomal-associated protein of 25 kDa; SNARE, SNAP receptor. Figure and caption from Rizo & Sudhof, Nat Rev Neurosci 3, 641-653 (2002).



FIG. 2. Synthetic SNARE engineering trajectory.



FIG. 3. The structure of the neuronal SNARE complex. Predicted three-dimensional structure of human neuronal SNARE complex. The model was generated by the protein structure prediction method ColabFold3. VAMP2, SNAP25, and Syntaxin 1A (N001, N002, and N003). Transmembrane domains at the C terminus are on the right side of the structure.



FIG. 4. Fusion activity of MPNN-redesigned v-SP (SEQ ID: 1-18). The fusion activity of design #8 was evaluated in a cell-cell fusion assay. Design #8 was expressed in HEK293T cells (v-cells) and native t-SNAREs (SNAP25 and Syn1A) were expressed in another HEK293T population (t-cells). These proteins were expressed on the surface of HEK293T cells as flipped SNARE3 (thus “f” before the name of native SNARE proteins denotes “flipped”). The v- and t-cells were mixed together and after overnight incubation, cell-cell fusion was quantitatively assessed by reporter gene expression (RLU on the y-axis represents the relative luminescence unit that is calculated by reporter luciferase activity). As controls, fVAMP2-WT (native SNARE protein) and no SNARE expression were used.



FIG. 5. Fusion activity of single chain-t-SP (SEQ ID: 64-122). Design #8 (v-SP) and design #94 (sc-t-SP) were expressed in v- and t-cells respectively. The fusion activity of proteins was quantitatively measured by cell-cell fusion assay based on reporter gene expression. As controls, fVAMP2-WT, fSyn1A, and fSNAP25 (native SNARE proteins) and no SNARE expression were used.



FIG. 6. Fusion activity of shorter versions of sc-t-SP (SEQ ID: 123-127). Design #124 (sc-t-SP) has a 20-aa shorter length compared to parental sc-t-SPs (design #94), and has slightly weaker fusion activity compared to longer versions of sc-t-SPs, but the fusion activity was still significantly stronger than the native SNARE complex (fVAMP2-WT, fSyn1A, and fSNAP25). Design #8 was used as v-SP with sc-t-SPs. Fusion activity was measured by cell-cell fusion assay.



FIG. 7. Fusion activity of partially diffused sc-t-SP (SEQ ID: 128-146). The sc-t-SP design #143 has a partially diffused backbone compared to the parental sc-t-SP and has comparable fusion activity to design #94. Design #8 was used as v-SP with sc-t-SPs. Fusion activity was measured by cell-cell fusion assay.



FIG. 8. Inducible fusion activity of newly fusion proteins (SEQ ID: 147-148). The N termini of v-SP and sc-t-SP were fused with FKBP (design #147) and FRB (design #148), respectively, and expressed in HEK293T cells. Rapamycin was added to the mixture of v- and t-cells at the indicated concentrations, which induced heterodimerization of v- and t-SPs and cell-cell fusion in a dose-dependent manner. Fusion activity was measured by cell-cell fusion assay.





DETAILED DESCRIPTION

All references cited are herein incorporated by reference in their entirety. Within this application, unless otherwise stated, the techniques utilized may be found in any of several well-known references such as: Molecular Cloning: A Laboratory Manual (Sambrook, et al., 1989, Cold Spring Harbor Laboratory Press), Gene Expression Technology (Methods in Enzymology, Vol. 185, edited by D. Goeddel, 1991. Academic Press, San Diego, CA), “Guide to Protein Purification” in Methods in Enzymology (M. P. Deutshcer, ed., (1990) Academic Press, Inc.); PCR Protocols: A Guide to Methods and Applications (Innis, et al. 1990. Academic Press, San Diego, CA), Culture of Animal Cells: A Manual of Basic Technique, 2nd Ed. (R. I. Freshney. 1987. Liss, Inc. New York, NY), Gene Transfer and Expression Protocols, pp. 109-128, ed. E. J. Murray, The Humana Press Inc., Clifton, N.J.), and the Ambion 1998 Catalog (Ambion, Austin, TX).


As used herein, the singular forms “a”, “an” and “the” include plural referents unless the context clearly dictates otherwise.


All embodiments of any aspect of the disclosure can be used in combination, unless the context clearly dictates otherwise.


Unless the context clearly requires otherwise, throughout the description and the claims, the words ‘comprise’, ‘comprising’, and the like are to be construed in an inclusive sense as opposed to an exclusive or exhaustive sense; that is to say, in the sense of “including, but not limited to”. Words using the singular or plural number also include the plural and singular number, respectively. Additionally, the words “herein,” “above,” and “below” and words of similar import, when used in this application, shall refer to this application as a whole and not to any particular portions of the application.


As used herein, the amino acid residues are abbreviated as follows: alanine (Ala; A), asparagine (Asn; N), aspartic acid (Asp; D), arginine (Arg; R), cysteine (Cys; C), glutamic acid (Glu; E), glutamine (Gln; Q), glycine (Gly; G), histidine (His; H), isoleucine (Ile; I), leucine (Leu; L), lysine (Lys; K), methionine (Met; M), phenylalanine (Phe; F), proline (Pro; P), serine (Ser; S), threonine (Thr; T), tryptophan (Trp; W), tyrosine (Tyr; Y), and valine (Val; V).


Any N-terminal amino acids are optional, and may be deleted.


The polypeptides of all aspects and embodiments of the disclosure are able, for example, to form a heterooligomer with corresponding other protein(s) of the disclosure on a lipid bilayer membrane (as discussed in more detail below), followed by induction of merger of two membranes into a single continuous membrane.


VAMP2-Redesign (v-SNARE-Like Proteins (v-SPs))


In a first aspect, the disclosure provides nucleic acids encoding a v-SNARE-like protein (v-SP) polypeptide comprising the formula X1-X2-X3, wherein

    • X1 comprises an amino acid sequence at least 50%, 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the amino acid sequence selected from the group consisting of the bold font residues in SEQ ID NO:149-208;
    • X2 comprises a juxtamembrane domain (JMD), wherein X2 comprises an amino acid sequence at least 50%, 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the amino acid sequence selected from the group consisting of SEQ ID NO:500-505; and
    • X3 comprises a transmembrane domain (TMD).


As described in the examples, the disclosure provides a series of membrane fusion proteins that can induce cell-cell fusion when expressed on the surface of mammalian cells, or liposome fusion when displayed on the surface of liposomes. The designed proteins are based on the human neuronal SNARE complex (which is composed of three proteins, VAMP2, Syntaxin 1A or Syn1A, and SNAP25), which has a parallel four-helical bundle structure and transmembrane domains at the C-terminus of VAMP2 and Syn1A (see FIG. 1). VAMP2 is called v-SNARE, and Syn1A and SNAP25 are called t-SNARE since they exist on the vesicle (v-) or target (t-) membrane inside cells. The four alpha helices of the SNARE complex are composed of one helix from each of VAMP2 and Syn1A and two helices from SNAP25. The nucleic acids of this aspect encode the helix (X1 domain) and membrane domains (X2 and X3) of redesigned VAMP2 (hereafter v-SNARE-like proteins or v-SPs).


As further described in the examples, new sequences were generated that are believed to fold into the four-helix bundle structure like the parental SNARE complex, followed by engineering SNAP25 so that one of the two coiled-coil domains of SNAP25 is an anti-parallel coiled-coil (FIG. 2, first modification). By combining engineered SNAP25 which has one anti-parallel coiled-coil domain and Syn1A into a single protein, a two-component fusion machinery was generated (one v-SP and one t-SNARE, rather than three components of the original neuronal SNARE; FIG. 2, second modification). Based on the single chain t-SNARE (sc-t-SNARE) backbone, dozens of further sequences that are capable of inducing membrane fusion in a mammalian cell-cell fusion assay (5.s.7-5.s.12 in FIG. 2, third modification) were generated, including those that showed a 10-fold increased fusion efficiency compared to the parental neuronal SNARE complex. These sc-t-SNAREs are designated as single-chain t-SNARE-like proteins or sc-t-SPs.


The amino acid sequences of the encoded X1 domains (SEQ ID NO:149-208) are provided in Tables 1 and 2 below.









TABLE 1







>SEQ ID NO: 149



SSSSSEKLRETQAQVDEVVDIMRVNVDKVLERDQKLSELDDRADALQAGASQFETSAA






> SEQ ID NO: 150



NLASNRRLQQTSEEVREVNDIMRVNVDKVLERDQKLSELDDRADALQAGASQFETSAA






> SEQ ID NO: 151



NLASNRRLQQTQAQVDEVVDVMRDNRNLVDERDQKLSELDDRADALQAGASQFETSAA






> SEQ ID NO: 152



NLASNRRLQQTQAQVDEVVDIMRVNVDKVLRQGEQIDRLEDRADALQAGASQFETSAA






> SEQ ID NO: 153



NLASNRRLQQTQAQVDEVVDIMRVNVDKVLERDQKLSELDERADELEKSASQFETSAA






> SEQ ID NO: 154



NLASNRRLQQTQAQVDEVVDIMRVNVDKVLERDQKLSELDDRADALQAGAERLEENAT






> SEQ ID NO: 155



NLASNRRLQQTQAQVDEVVDIMRVNVDKVLERDQKLSELDDRADALQAGASQFETSAA






> SEQ ID NO: 156



SSSSNEKLRETLREVEDVKNIMEDNRRLVERQGRQIDRLEEKADDLERSAERLSDNSE






> SEQ ID NO: 157



SSSDSSKLRETEEETRDVIDIMRDNRRSVEERGRQIDRLEERADDLEDSAERLEENAK






> SEQ ID NO: 158



SGSSNERLREVSKEAREVREMAMDVKEKIEEQGRKIEELEEKAESLKDSAERFDENAK






> SEQ ID NO: 159



SGTTNEKLRKVSSEADEVKEMGMDVKEKVEEQGRKIEELEEKAEDLKDSAERFDENAK






> SEQ ID NO: 160



SGSSSEKLRQISSEAEEVKEMGMDILKKIEEQGEKIERLEEKAESLKDSAERFADNAK






> SEQ ID NO: 161



DGTSNERLRETSKEAREVRDMAMDNMKKVEEQGEKIEELEEKAEELKDSAERLDDNAK






> SEQ ID NO: 162



DGTSNEKLRETSEQAREVRDMALDNKEKIEEQGEKIDRLEEKAESLKDSAERFAENAK






> SEQ ID NO: 163



SEEMSKKLEETSKEVDEVLEIMEEIREMLEEQGRRIDRLEKKAEELEEGAEKFEELSE






> SEQ ID NO: 164



SEERKEKLEETLKEVDEVLEIMKENKEMLEEQGERLERLEEKAEELEEGAEKFEELAE






> SEQ ID NO: 165



SKERSEKLKETMEEVEEVLEIMKEIRRMMEEQGERIDRLEEKAEELEEGAEKFEELAE


















TABLE 2





#
amino acid sequence







N8
SSSSNEKLRETSREVEEVNDIMRDNRNLVDRQGEQIDRLEERADELKDSAERLSENSK



SEQ ID NO: 166





N13
SSSSNEKLRETQAQVDEVVDIMRVNVDKVLERDQKLSELDDRADALQAGASQFETSAA



SEQ ID NO: 167





N14
NLASNRRLQQTLREVEDVKNIMRVNVDKVLERDQKLSELDDRADALQAGASQFETSAA



SEQ ID NO: 168





N15
NLASNRRLQQTQAQVDEVVDIMEDNRRLVEERDQKLSELDDRADALQAGASQFETSAA



SEQ ID NO: 169





N16
NLASNRRLQQTQAQVDEVVDIMRVNVDKVLRQGRQIDRLEDRADALQAGASQFETSAA



SEQ ID NO: 170





N17
NLASNRRLQQTQAQVDEVVDIMRVNVDKVLERDQKLSELDEKADDLERSASQFETSAA



SEQ ID NO: 171





N18
NLASNRRLQQTQAQVDEVVDIMRVNVDKVLERDQKLSELDDRADALQAGAERLSDNSE



SEQ ID NO: 172





N21
NLASNRRLQQTLREVEDVKNIMEDNRRLVERQGRQIDRLEEKADDLERSAERLSDNSE



SEQ ID NO: 173





N22
SSSSNEKLRETQAQVDEVVDIMEDNRRLVERQGRQIDRLEEKADDLERSAERLSDNSE



SEQ ID NO: 174





N23
SSSSNEKLRETLREVEDVKNIMRVNVDKVLRQGRQIDRLEEKADDLERSAERLSDNSE



SEQ ID NO: 175





N24
SSSSNEKLRETLREVEDVKNIMEDNRRLVEERDQKLSELDEKADDLERSAERLSDNSE



SEQ ID NO: 176





N25
SSSSNEKLRETLREVEDVKNIMEDNRRLVERQGRQIDRLEDRADALQAGAERLSDNSE



SEQ ID NO: 177





N26
SSSSNEKLRETLREVEDVKNIMEDNRRLVERQGRQIDRLEEKADDLERSASQFETSAA



SEQ ID NO: 178





N34
SEEEEKKKEELKKKLKEALEEAKKAKELAKKALELAERQGRQIDRLEEKADDLERSAE



RLSDNSE



SEQ ID NO: 179





N35
EEEKEKKKEELKEKAKKALEEAKKTKELAKEALELAERQGRQIDRLEEKADDLERSAE



RLSDNSE



SEQ ID NO: 180





N36
SLEAEKKEKEEKEKKKKILELLKELLEETEELKEEAEEIKREVERQGRQIDRLEEKAD



DLERSAERLSDNSE



SEQ ID NO: 181





N37
ELEEELKKKEEEEKRKEILELLKELLEETEELKEEAEEIKEEVERQGRQIDRLEEKAD



DLERSAERLSDNSE



SEQ ID NO: 182





N38
SSSSNEKARETLREVEDVKNIMEDNRRLVERQGRQIDRLEEKADDLERSAERLSDNSE



SEQ ID NO: 183





N39
SSSSNEKLRETAREVEDVKNIMEDNRRLVERQGRQIDRLEEKADDLERSAERLSDNSE



SEQ ID NO: 184





N40
SSSSNEKLRETLREAEDVKNIMEDNRRLVERQGRQIDRLEEKADDLERSAERLSDNSE



SEQ ID NO: 185





N41
SSSSNEKLRETLREVEDAKNIMEDNRRLVERQGRQIDRLEEKADDLERSAERLSDNSE



SEQ ID NO: 186





N42
SSSSNEKLRETLREVEDVKNAMEDNRRLVERQGRQIDRLEEKADDLERSAERLSDNSE



SEQ ID NO: 187





N43
SSSSNEKLRETLREVEDVKNIAEDNRRLVERQGRQIDRLEEKADDLERSAERLSDNSE



SEQ ID NO: 188





N44
SSSSNEKLRETLREVEDVKNIMEDNRRAVERQGRQIDRLEEKADDLERSAERLSDNSE



SEQ ID NO: 189





N45
SSSSNEKLRETLREVEDVKNIMEDNRRLAERQGRQIDRLEEKADDLERSAERLSDNSE



SEQ ID NO: 190





N46
SSSSNEKLRETLREVEDVKNIMEDNRRLVERQARQIDRLEEKADDLERSAERLSDNSE



SEQ ID NO: 191





N47
SSSSNEKLRETLREVEDVKNIMEDNRRLVERQGRQADRLEEKADDLERSAERLSDNSE



SEQ ID NO: 192





N48
SSSSNEKLRETLREVEDVKNIMEDNRRLVERQGRQIDRAEEKADDLERSAERLSDNSE



SEQ ID NO: 193





N49
SSSSNEKLRETLREVEDVKNIMEDNRRLVERQGRQIDRLEEKADDAERSAERLSDNSE



SEQ ID NO: 194





N50
SSSSNEKLRETLREVEDVKNIMEDNRRLVERQGRQIDRLEEKADDLERSAERASDNSE



SEQ ID NO: 195





N52
SSSSNEKARETAREAEDVKNIMEDNRRLVERQGRQIDRLEEKADDLERSAERLSDNSE



SEQ ID NO: 196





N53
SSSSNEKARETAREVEDVKNIMEDNRRLVERQGRQIDRLEEKADDLERSAERLSDNSE



SEQ ID NO: 197





N54
SSSSNEKARETAREAEDAKNIMEDNRRLVERQGRQIDRLEEKADDLERSAERLSDNSE



SEQ ID NO: 198





N55
SSSSNEKARETAREAEDAKNAMEDNRRLVERQGRQIDRLEEKADDLERSAERLSDNSE



SEQ ID NO: 199





N56
SSSSNEKARETAREAEDAKNAAEDNRRLVERQGRQIDRLEEKADDLERSAERLSDNSE



SEQ ID NO: 200





N57
SSSSNEKARETLREVEDVKNIAEDNRRLVERQGRQIDRAEEKADDLERSAERLSDNSE



SEQ ID NO: 201





N58
SSSSNEKLKETLKEVEDVKNIMEDNKKLVEKQGKQIDKLEEKADDLEKSAEKLSDNSE



SEQ ID NO: 202





N59
SSSSNEKLEETLEEVEDVKNIMEDNEELVEEQGEQIDELEEKADDLEESAEELSDNSE



SEQ ID NO: 203





N60
SSSSNEKLRETLREVEDVKNIMEDNRRLVERQGRQIDRLEEKADDLEKSAERLSDNSE



SEQ ID NO: 204





N61
SSSSNEKLRETLREVEDVKNIMEDNRRLVERQGRQIDRLEEKADDLEESAERLSDNSE



SEQ ID NO: 205





N62
SSSSNEKLRETLREVEDVKNIMEDNRRLVERQGRQIDRLEEKADDLERTAERLSDNSE



SEQ ID NO: 206





N63
SSSSNEKLRETLREVEDVKNIMEDNRRLVERQGRQIDRLEEKADDLERAAERLSDNSE



SEQ ID NO: 207





N64
SSSSNEKLRETLREVEDVKNIMEDNRRLVERQGRQIDRLEEKADDLEREAERLSDNSE



SEQ ID NO: 208









In one embodiment, X1 comprises an amino acid sequence at least 50%, 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the amino acid sequence of SEQ ID NO:156. The X1 domain of SEQ ID NO:156 is present in the full length VAMP2 redesign of SEQ ID NO:8 (Table 5). Residues present at the interface between VAMP2 and sc-t-SP in SEQ ID NO:156 are L8, L12, V15, V18, 121, M22, L28, V29, G33, 136, L39, L46, L53 (see highlighted residues below). Thus, in one embodiment, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, or all 13 of L8, L12, V15, V18, 121, M22, L28, V29, G33, 136, L39, L46, L53 are conserved (i.e., identical) in the polypeptide relative to SEQ ID NO:156 (see below).











SEQ ID NO: 156



SSSSNEKLRETLREVEDVKNIMEDNRRLVF







RQGRQIDRLEEKADDLERSAERLSDNSE






In another embodiment, the X2 domain comprises an amino acid sequence at least 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the amino acid sequence selected from the group consisting of SEQ ID NO:209-222 and 456, or selected from the group consisting of SEQ ID NO:213 and 214. The amino acid sequences of the X2 JMDs are provided in Table 3.











TABLE 3









KLKKKKKKKKKK SEQ ID NO: 209







KIKKKFFFKKFK SEQ ID NO: 210







RIRRRFFFRRFR SEQ ID NO: 211







KLTKYYEEKESK SEQ ID NO: 212







KLKRKYWWKNLK SEQ ID NO: 213







KLKRKYWWKNSK SEQ ID NO: 214







KIKKKFFFKKSK SEQ ID NO: 215







KIKKKWWWKKSK SEQ ID NO: 216







KIKKKYYYKKSK SEQ ID NO: 217







KIKKKSSSKKSK SEQ ID NO: 218







KIKKKYYYKKFK SEQ ID NO: 219







KIKKKSSSKKFK SEQ ID NO: 220







KIKKKWWWKKFK SEQ ID NO: 221







KLKKYYEEKQTK SEQ ID NO: 222







KAKRKYWWKNSK SEQ ID NO: 456










In a further embodiment, X3 comprises an amino acid sequence at least 50%, 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the amino acid sequence selected from the group consisting of SEQ ID NO: SEQ ID NO: 223-234, or selected from the group consisting of SEQ ID NO:223 or 232. The amino acid sequences of the X3 TMDs is provided in Table 4.











TABLE 4









Native



MMIILGVICAIILIIIIVYFST SEQ ID NO: 223







VSV-G



FFFIIGLIIGLFLVLRVGIHLST SEQ ID NO: 224







Flu-HA



ILWISFAISCFLLCVVLLGFIST SEQ ID NO: 225







EGFR



IATGMVGALLLLLVVALGIGLEST SEQ ID NO: 226







PDGFR



AAVLVLLVIVIISLIVLVVIWST SEQ ID NO: 227







Syntaxin 1A



IMIIICCVILGIVIASTVGGIST SEQ ID NO: 228







polyVal



MMVVVVVVVVVVVVVVVVYFST SEQ ID NO: 229







polyIle



MMIIIIIIIIIIIIIIIIYFST SEQ ID NO: 230







polyLeu



MMLLLLLLLLLLLLLLLLYFST SEQ ID NO: 231







Native with C-terminal deletion



MMIILGVICAIILIIIIVYFS SEQ ID NO: 232







IMIIICCVILGIVIASTVGGIFA SEQ ID NO: 233







AAVLVLLVIVIISLIVLVVIWFA SEQ ID NO: 234










In one embodiment, the polypeptide comprises the genus B2-X1-X2-X3, wherein B2 comprises an amino acid sequence at least 50%, 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the amino acid sequence of SEQ ID NO:235.











(SEQ ID NO: 235)



SATAATAPPAAPAGEGGPPAPPP






Some v-SP designs contain a Pro-rich region (SATAATAPPAAPAGEGGPPAPPP, (SEQ ID NO: 235)) at the N terminus derived from native VAMP2, but this region is dispensable for fusion activity, and thus is optional in the present designs, and may be present or absent.


In another embodiment of this first aspect, the nucleic acid encodes a polypeptide comprises an amino acid sequence at least 50%, 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the amino acid sequence selected from the group consisting of SEQ ID NO:1-37, 147, and 236-289, or at least 50%, 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the amino acid sequence of SEQ ID NO:8. In a further embodiment, the nucleic acid encodes an amino acid sequence at least 50%, 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the amino acid sequence of SEQ ID NO:235 N-terminal to the polypeptide comprising an amino acid sequence at least 50%, 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the amino acid sequence selected from the group consisting of SEQ ID NO:1-37, 147, and 236-289.


In one embodiment of this first aspect, the nucleic acid encodes a fusion protein, comprising:

    • (a) the nucleic acid of any embodiment of this first aspect; and
    • (b) a nucleic acid domain encoding an amino acid sequence at least 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the amino acid sequence of SEQ ID NO: 290 or 291;
    • optionally wherein the encoded polypeptide and the polypeptide domain are connected by an amino acid linker.











(SEQ ID NO: 290)



GVQVETISPGDGRTFPKRGQTCVVHYTGMLEDGKKFDSSRDRNK







PFKFMLGKQEVIRGWEEGVAQMSVGQRAKLTISPDYAYGATGHP







GIIPPHATLVEDVELLKLE







(SEQ ID NO: 291)



VAILWHEMWHEGLEEASRLYFGERNVKGMFEVLEPLHAMMERGP







QTLKETSENQAYGRDLMEAQEWCRKYMKSGNVKDLTQAWDLYYH







VERRIS






In these embodiments the fusion protein can be used for inducible binding to sc-t-SP (see below) in the presence of rapamycin. The domain of SEQ ID NO:290 is an FKBP domain that can bind to its cognate binding partner FRB domain (SEQ ID NO:291) fused to the N-terminus of inducible sc-t-SPs (e.g. SEQ ID NO 148) in the presence of rapamycin and induce fusion. FKBP domain fused to v-SPs and FRB domain fused to sc-t-SPs would function similarly if they were interchanged with each other. In one such embodiment, the nucleic acid encodes a fusion protein comprising an amino acid sequence at least 50%, 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the amino acid sequence of SEQ ID NO:147 and 244-258.


The sequences of these full length VAMP2 redesigned proteins are shown in Tables 5 and 6.









TABLE 5







>SEQ ID NO: 1



SSSSSEKLRETQAQVDEVVDIMRVNVDKVLERDQKLSELDDRADALQAGASQFETSAA
KLKRK




YWWKNLK
MMIILGVICAIILIIIIVYFST






> SEQ ID NO: 2



NLASNRRLQQTSEEVREVNDIMRVNVDKVLERDQKLSELDDRADALQAGASQFETSAA
KLKRK




YWWKNLK
MMIILGVICAIILIIIIVYFST






> SEQ ID NO: 3



NLASNRRLQQTQAQVDEVVDVMRDNRNLVDERDQKLSELDDRADALQAGASQFETSAA
KLKRK




YWWKNLK
MMIILGVICAIILIIIIVYFST






> SEQ ID NO: 4



NLASNRRLQQTQAQVDEVVDIMRVNVDKVLRQGEQIDRLEDRADALQAGASQFETSAA
KLKRK




YWWKNLK
MMIILGVICAIILIIIIVYFST






> SEQ ID NO: 5



NLASNRRLQQTQAQVDEVVDIMRVNVDKVLERDQKLSELDERADELEKSASQFETSAA
KLKRK




YWWKNLK
MMIILGVICAIILIIIIVYFST






> SEQ ID NO: 6



NLASNRRLQQTQAQVDEVVDIMRVNVDKVLERDQKLSELDDRADALQAGAERLEENAT
KLKRK




YWWKNLK
MMIILGVICAIILIIIIVYFST






> SEQ ID NO: 7



NLASNRRLQQTQAQVDEVVDIMRVNVDKVLERDQKLSELDDRADALQAGASQFETSAA
KLTKY




YEEKESK
MMIILGVICAIILIIIIVYFST






> SEQ ID NO: 8



SSSSNEKLRETLREVEDVKNIMEDNRRLVERQGRQIDRLEEKADDLERSAERLSDNSE
KLKRK




YWWKNSK
MMIILGVICAIILIIIIVYFST






> SEQ ID NO: 9



SSSDSSKLRETEEETRDVIDIMRDNRRSVEERGRQIDRLEERADDLEDSAERLEENAK
KLKRK




YWWKNSK
MMIILGVICATILIIIIVYFST






> SEQ ID NO: 10



SSSSNEKLRETLREVEDVKNIMEDNRRLVERQGRQIDRLEEKADDLERSAERLSDNSE
KLKRK




YWWKNSK
MMIILGVICAIILIIIIVYFST






> SEQ ID NO: 11



SGSSNERLREVSKEAREVREMAMDVKEKIEEQGRKIEELEEKAESLKDSAERFDENAK
KLKRK




YWWKNLK
MMIILGVICAIILIIIIVYFST






> SEQ ID NO: 12



SGTTNEKLRKVSSEADEVKEMGMDVKEKVEEQGRKIEELEEKAEDLKDSAERFDENAK
KLKRK




YWWKNLK
MMIILGVICAIILIIIIVYFST






> SEQ ID NO: 13



SGSSSEKLRQISSEAEEVKEMGMDILKKIEEQGEKIERLEEKAESLKDSAERFADNAK
KLKRK




YWWKNLK
MMIILGVICAIILIIIIVYFST






> SEQ ID NO: 14



DGTSNERLRETSKEAREVRDMAMDNMKKVEEQGEKIEELEEKAEELKDSAERLDDNAK
KLKRK




YWWKNLK
MMIILGVICAIILIIIIVYFST






> SEQ ID NO: 15



DGTSNEKLRETSEQAREVRDMALDNKEKIEEQGEKIDRLEEKAESLKDSAERFAENAK
KLKRK




YWWKNLK
MMIILGVICAIILIIIIVYFST






> SEQ ID NO: 16



SEEMSKKLEETSKEVDEVLEIMEEIREMLEEQGRRIDRLEKKAEELEEGAEKFEELSE
KLKRK




YWWKNLK
MMIILGVICATILIIIIVYFST






> SEQ ID NO: 17



SEERKEKLEETLKEVDEVLEIMKENKEMLEEQGERLERLEEKAEELEEGAEKFEELAE
KLKRK




YWWKNLK
MMIILGVICAIILIIIIVYFST






> SEQ ID NO: 18



SKERSEKLKETMEEVEEVLEIMKEIRRMMEEQGERIDRLEEKAEELEEGAEKFEELAE
KLKRK




YWWKNLK
MMIILGVICAIILIIIIVYFST






> SEQ ID NO: 19



SSSSNEKLRETLREVEDVKNIMEDNRRLVERQGRQIDRLEEKADDLERSAERLSDNSE
KLKRK




YWWKNLK
MMIILGVICAIILIIIIVYFST






> SEQ ID NO: 20



SSSSNEKLRETLREVEDVKNIMEDNRRLVERQGRQIDRLEEKADDLERSAERLSDNSE
KLKKK




KKKKKKK
MMIILGVICAIILIIIIVYFST






> SEQ ID NO: 21



SSSSNEKLRETLREVEDVKNIMEDNRRLVERQGRQIDRLEEKADDLERSAERLSDNSE
KLKRK




YWWKNLK
AAVLVLLVIVIISLIVLVVIWST






> SEQ ID NO: 22



SSSSNEKLRETLREVEDVKNIMEDNRRLVERQGRQIDRLEEKADDLERSAERLSDNS
EKLKRK




YWWKNLK
MMVVVVVVVVVVVVVVVVYFST






> SEQ ID NO: 23



SSSSNEKLRETLREVEDVKNIMEDNRRLVERQGRQIDRLEEKADDLERSAERLSDNSE
KLKRK




YWWKNLK
MMIIIIIIIIIIIIIIIIYFST






> SEQ ID NO: 24



SSSSNEKLRETLREVEDVKNIMEDNRRLVERQGRQIDRLEEKADDLERSAERLSDNSE
KLKKK




KKKKKKK
AAVLVLLVIVIISLIVLVVIWST






> SEQ ID NO: 25



SSSSNEKLRETLREVEDVKNIMEDNRRLVERQGRQIDRLEEKADDLERSAERLSDNSE
KLKKK




KKKKKKK
MMVVVVVVVVVVVVVVVVYFST






> SEQ ID NO: 26



NLASNRRLQQTQAQVDEVVDIMRVNVDKVLERDQKLSELDDRADALQAGASQFETSAA
KLKKK




KKKKKKK
MMIILGVICAIILIIIIVYFST






> SEQ ID NO: 27



NLASNRRLQQTQAQVDEVVDIMRVNVDKVLERDQKLSELDDRADALQAGASQFETSAA
KLKRK




YWWKNLK
MMLLLLLLLLLLLLLLLLYFST






> SEQ ID NO: 28



NLASNRRLQQTQAQVDEVVDIMRVNVDKVLERDQKLSELDDRADALQAGASQFETSAA
KLKRK




YWWKNLK
MMVVVVVVVVVVVVVVVVYFST






> SEQ ID NO: 29



NLASNRRLQQTQAQVDEVVDIMRVNVDKVLERDQKLSELDDRADALQAGASQFETSAA
KLKRK




YWWKNLK
FFFIIGLIIGLFLVLRVGIHLST






> SEQ ID NO: 30



NLASNRRLQQTQAQVDEVVDIMRVNVDKVLERDQKLSELDDRADALQAGASQFETSAA
KLKRK




YWWKNLK
ILWISFAISCFLLCVVLLGFIST






> SEQ ID NO: 31



NLASNRRLQQTQAQVDEVVDIMRVNVDKVLERDQKLSELDDRADALQAGASQFETSAA
KLKRK




YWWKNLK
IATGMVGALLLLLVVALGIGLFST






> SEQ ID NO: 32



NLASNRRLQQTQAQVDEVVDIMRVNVDKVLERDQKLSELDDRADALQAGASQFETSAA
KLKRK




YWWKNLK
IMIIICCVILGIVIASTVGGIST






> SEQ ID NO: 33



NLASNRRLQQTQAQVDEVVDIMRVNVDKVLERDQKLSELDDRADALQAGASQFETSAA
KLKRK




YWWKNLK
AAVLVLLVIVIISLIVLVVIWST






> SEQ ID NO: 34



SSSSNEKLRETLREVEDVKNIMEDNRRLVERQGRQIDRLEEKADDLERSAERLSDNSE
KIKKK




FFFKKEK
MMIILGVICAIILIIIIVYFST






> SEQ ID NO: 35



SSSSNEKLRETLREVEDVKNIMEDNRRLVERQGRQIDRLEEKADDLERSAERLSDNSE
RIRRR




FFFRRFR
MMIILGVICAIILIIIIVYFST






> SEQ ID NO: 36



SSSSNEKLRETLREVEDVKNIMEDNRRLVERQGRQIDRLEEKADDLERSAERLSDNSE
KIKKK




FFFKKFK
AAVLVLLVIVIISLIVLVVIWST






> SEQ ID NO: 37



SSSSNEKLRETLREVEDVKNIMEDNRRLVERQGRQIDRLEEKADDLERSAERLSDNSE
KIKKK




FFFKKFK
MMVVVVVVVVVVVVVVVVFST






SEQ ID NO : 147


> SEQ ID NO: 147 (v-SP part is identical to WT-VAMP2, N001)


GVQVETISPGDGRTFPKRGQTCVVHYTGMLEDGKKFDSSRDRNKPFKFMLGKQEVIRGWEEGV


AQMSVGQRAKLTISPDYAYGATGHPGIIPPHATLVFDVELLKLEGGSGGSNLASNRRLQQTQA



QVDEVVDIMRVNVDKVLERDQKLSELDDRADALQAGASQFETSAA
KLKRKYWWKNLK
MMIILG




VICAIILIIIIVYFST






Coiled-coil domain (Bold font)


JMD: (Underlined)


TMD: (in italics)














TABLE 6





#
amino acid sequence







N1
SSSSNEKLRETLREVEDVKNIMEDNRRLVERQGRQIDRLEEKADDLERSAERLSDNSEK



IKKKFFFKKSKMMIILGVICAIILIIIIVYEST



SEQ ID NO: 236





N2
SSSSNEKLRETLREVEDVKNIMEDNRRLVERQGRQIDRLEEKADDLERSAERLSDNSEK



IKKKWWWKKSKMMIILGVICAIILIIIIVYFST



SEQ ID NO: 237





N3
SSSSNEKLRETLREVEDVKNIMEDNRRLVERQGRQIDRLEEKADDLERSAERLSDNSEK



IKKKYYYKKSKMMIILGVICAIILIIIIVYFST



SEQ ID NO: 238





N4
SSSSNEKLRETLREVEDVKNIMEDNRRLVERQGRQIDRLEEKADDLERSAERLSDNSEK



IKKKSSSKKSKMMIILGVICAIILIIIIVYFST



SEQ ID NO: 239





N5
SSSSNEKLRETLREVEDVKNIMEDNRRLVERQGRQIDRLEEKADDLERSAERLSDNSEK



IKKKYYYKKFKMMIILGVICAIILIIIIVYFST



SEQ ID NO: 240





N6
SSSSNEKLRETLREVEDVKNIMEDNRRLVERQGRQIDRLEEKADDLERSAERLSDNSEK



IKKKSSSKKFKMMIILGVICAIILIIIIVYEST



SEQ ID NO: 241





N7
SSSSNEKLRETLREVEDVKNIMEDNRRLVERQGRQIDRLEEKADDLERSAERLSDNSEK



IKKKWWWKKFKMMIILGVICAIILIIIIVYFST



SEQ ID NO: 242





N8
SATAATAPPAAPAGEGGPPAPPPSSSSNEKLRETSREVEEVNDIMRDNRNLVDRQGEQI



DRLEERADELKDSAERLSENSKKLKKYYEEKQTKMMIILGVICAIILIIIIVYFST



SEQ ID NO: 243





N13
GVQVETISPGDGRTFPKRGQTCVVHYTGMLEDGKKFDSSRDRNKPFKFMLGKQEVIRGW



EEGVAQMSVGQRAKLTISPDYAYGATGHPGIIPPHATLVEDVELLKLEGGSGGSSSSSN



EKLRETQAQVDEVVDIMRVNVDKVLERDQKLSELDDRADALQAGASQFETSAAKLKRKY



WWKNLKMMIILGVICAIILIIIIVYFST



SEQ ID NO: 244





N14
GVQVETISPGDGRTFPKRGQTCVVHYTGMLEDGKKFDSSRDRNKPFKFMLGKQEVIRGW



EEGVAQMSVGQRAKLTISPDYAYGATGHPGIIPPHATLVEDVELLKLEGGSGGSNLASN



RRLQQTLREVEDVKNIMRVNVDKVLERDQKLSELDDRADALQAGASQFETSAAKLKRKY



WWKNLKMMIILGVICAIILIIIIVYFST



SEQ ID NO: 245





N15
GVQVETISPGDGRTFPKRGQTCVVHYTGMLEDGKKFDSSRDRNKPFKFMLGKQEVIRGW



EEGVAQMSVGQRAKLTISPDYAYGATGHPGIIPPHATLVEDVELLKLEGGSGGSNLASN



RRLQQTQAQVDEVVDIMEDNRRLVEERDQKLSELDDRADALQAGASQFETSAAKLKRKY



WWKNLKMMIILGVICAIILIIIIVYFST



SEQ ID NO: 246





N16
GVQVETISPGDGRTFPKRGQTCVVHYTGMLEDGKKFDSSRDRNKPFKFMLGKQEVIRGW



EEGVAQMSVGQRAKLTISPDYAYGATGHPGIIPPHATLVFDVELLKLEGGSGGSNLASN



RRLQQTQAQVDEVVDIMRVNVDKVLRQGRQIDRLEDRADALQAGASQFETSAAKLKRKY



WWKNLKMMIILGVICAIILIIIIVYFST



SEQ ID NO: 247





N17
GVQVETISPGDGRTFPKRGQTCVVHYTGMLEDGKKFDSSRDRNKPFKFMLGKQEVIRGW



EEGVAQMSVGQRAKLTISPDYAYGATGHPGIIPPHATLVEDVELLKLEGGSGGSNLASN



RRLQQTQAQVDEVVDIMRVNVDKVLERDQKLSELDEKADDLERSASQFETSAAKLKRKY



WWKNLKMMIILGVICAIILIIIIVYFST



SEQ ID NO: 248





N18
GVQVETISPGDGRTFPKRGQTCVVHYTGMLEDGKKFDSSRDRNKPFKFMLGKQEVIRGW



EEGVAQMSVGQRAKLTISPDYAYGATGHPGIIPPHATLVEDVELLKLEGGSGGSNLASN



RRLQQTQAQVDEVVDIMRVNVDKVLERDQKLSELDDRADALQAGAERLSDNSEKLKRKY



WWKNLKMMIILGVICAIILIIIIVYFST



SEQ ID NO: 249





N19
GVQVETISPGDGRTFPKRGQTCVVHYTGMLEDGKKFDSSRDRNKPFKFMLGKQEVIRGW



EEGVAQMSVGQRAKLTISPDYAYGATGHPGIIPPHATLVEDVELLKLEGGSGGSNLASN



RRLQQTQAQVDEVVDIMRVNVDKVLERDQKLSELDDRADALQAGASQFETSAAKLKRKY



WWKNSKMMIILGVICAIILIIIIVYFST



SEQ ID NO: 250





N20
GVQVETISPGDGRTFPKRGQTCVVHYTGMLEDGKKFDSSRDRNKPFKFMLGKQEVIRGW



EEGVAQMSVGQRAKLTISPDYAYGATGHPGIIPPHATLVEDVELLKLEGGSGGSSSSSN



EKLRETLREVEDVKNIMEDNRRLVERQGRQIDRLEEKADDLERSAERLSDNSEKLKRKY



WWKNSKMMIILGVICAIILIIIIVYFST



SEQ ID NO: 251





N21
GVQVETISPGDGRTFPKRGQTCVVHYTGMLEDGKKFDSSRDRNKPFKFMLGKQEVIRGW



EEGVAQMSVGQRAKLTISPDYAYGATGHPGIIPPHATLVEDVELLKLEGGSGGSNLASN



RRLQQTLREVEDVKNIMEDNRRLVERQGRQIDRLEEKADDLERSAERLSDNSEKLKRKY



WWKNSKMMIILGVICAIILIIIIVYFST



SEQ ID NO: 252





N22
GVQVETISPGDGRTFPKRGQTCVVHYTGMLEDGKKFDSSRDRNKPFKFMLGKQEVIRGW



EEGVAQMSVGQRAKLTISPDYAYGATGHPGIIPPHATLVEDVELLKLEGGSGGSSSSSN



EKLRETQAQVDEVVDIMEDNRRLVERQGRQIDRLEEKADDLERSAERLSDNSEKLKRKY



WWKNSKMMIILGVICAIILIIIIVYFST



SEQ ID NO: 253





N23
GVQVETISPGDGRTFPKRGQTCVVHYTGMLEDGKKFDSSRDRNKPFKFMLGKQEVIRGW



EEGVAQMSVGQRAKLTISPDYAYGATGHPGIIPPHATLVEDVELLKLEGGSGGSSSSSN



EKLRETLREVEDVKNIMRVNVDKVLRQGRQIDRLEEKADDLERSAERLSDNSEKLKRKY



WWKNSKMMIILGVICAIILIIIIVYFST



SEQ ID NO: 254





N24
GVQVETISPGDGRTFPKRGQTCVVHYTGMLEDGKKFDSSRDRNKPFKFMLGKQEVIRGW



EEGVAQMSVGQRAKLTISPDYAYGATGHPGIIPPHATLVEDVELLKLEGGSGGSSSSSN



EKLRETLREVEDVKNIMEDNRRLVEERDQKLSELDEKADDLERSAERLSDNSEKLKRKY



WWKNSKMMIILGVICAIILIIIIVYFST



SEQ ID NO: 255





N25
GVQVETISPGDGRTFPKRGQTCVVHYTGMLEDGKKFDSSRDRNKPFKFMLGKQEVIRGW



EEGVAQMSVGQRAKLTISPDYAYGATGHPGIIPPHATLVEDVELLKLEGGSGGSSSSSN



EKLRETLREVEDVKNIMEDNRRLVERQGRQIDRLEDRADALQAGAERLSDNSEKLKRKY



WWKNSKMMIILGVICAIILIIIIVYEST



SEQ ID NO: 256





N26
GVQVETISPGDGRTFPKRGQTCVVHYTGMLEDGKKFDSSRDRNKPFKFMLGKQEVIRGW



EEGVAQMSVGQRAKLTISPDYAYGATGHPGIIPPHATLVEDVELLKLEGGSGGSSSSSN



EKLRETLREVEDVKNIMEDNRRLVERQGRQIDRLEEKADDLERSASQFETSAAKLKRKY



WWKNSKMMIILGVICAIILIIIIVYFST



SEQ ID NO: 257





N27
GVQVETISPGDGRTFPKRGQTCVVHYTGMLEDGKKFDSSRDRNKPFKFMLGKQEVIRGW



EEGVAQMSVGQRAKLTISPDYAYGATGHPGIIPPHATLVEDVELLKLEGGSGGSSSSSN



EKLRETLREVEDVKNIMEDNRRLVERQGRQIDRLEEKADDLERSAERLSDNSEKLKRKY



WWKNLKMMIILGVICAIILIIIIVYFST



SEQ ID NO: 258





N34
SEEEEKKKEELKKKLKEALEEAKKAKELAKKALELAERQGRQIDRLEEKADDLERSAER



LSDNSEKLKRKYWWKNSKMMIILGVICAIILIIIIVYES



SEQ ID NO: 259





N35
EEEKEKKKEELKEKAKKALEEAKKTKELAKEALELAERQGRQIDRLEEKADDLERSAER



LSDNSEKLKRKYWWKNSKMMIILGVICAIILIIIIVYES



SEQ ID NO: 260





N36
SLEAEKKEKEEKEKKKKILELLKELLEETEELKEEAEEIKREVERQGRQIDRLEEKADD



LERSAERLSDNSEKLKRKYWWKNSKMMIILGVICAIILIIIIVYFS



SEQ ID NO: 261





N37
ELEEELKKKEEEEKRKEILELLKELLEETEELKEEAEEIKEEVERQGRQIDRLEEKADD



LERSAERLSDNSEKLKRKYWWKNSKMMIILGVICAIILIIIIVYFS



SEQ ID NO: 262





N38
SSSSNEKARETLREVEDVKNIMEDNRRLVERQGRQIDRLEEKADDLERSAERLSDNSEK



LKRKYWWKNSKMMIILGVICAIILIIIIVYFST



SEQ ID NO: 263





N39
SSSSNEKLRETAREVEDVKNIMEDNRRLVERQGRQIDRLEEKADDLERSAERLSDNSEK



LKRKYWWKNSKMMIILGVICAIILIIIIVYEST



SEQ ID NO: 264





N40
SSSSNEKLRETLREAEDVKNIMEDNRRLVERQGRQIDRLEEKADDLERSAERLSDNSEK



LKRKYWWKNSKMMIILGVICAIILIIIIVYFST



SEQ ID NO: 265





N41
SSSSNEKLRETLREVEDAKNIMEDNRRLVERQGRQIDRLEEKADDLERSAERLSDNSEK



LKRKYWWKNSKMMIILGVICAIILIIIIVYFST



SEQ ID NO: 266





N42
SSSSNEKLRETLREVEDVKNAMEDNRRLVERQGRQIDRLEEKADDLERSAERLSDNSEK



LKRKYWWKNSKMMIILGVICAIILIIIIVYEST



SEQ ID NO: 267





N43
SSSSNEKLRETLREVEDVKNIAEDNRRLVERQGRQIDRLEEKADDLERSAERLSDNSEK



LKRKYWWKNSKMMIILGVICAIILIIIIVYFST



SEQ ID NO: 268





N44
SSSSNEKLRETLREVEDVKNIMEDNRRAVERQGRQIDRLEEKADDLERSAERLSDNSEK



LKRKYWWKNSKMMIILGVICAIILIIIIVYFST



SEQ ID NO: 269





N45
SSSSNEKLRETLREVEDVKNIMEDNRRLAERQGRQIDRLEEKADDLERSAERLSDNSEK



LKRKYWWKNSKMMIILGVICAIILIIIIVYEST



SEQ ID NO: 270





N46
SSSSNEKLRETLREVEDVKNIMEDNRRLVERQARQIDRLEEKADDLERSAERLSDNSEK



LKRKYWWKNSKMMIILGVICAIILIIIIVYFST



SEQ ID NO: 271





N47
SSSSNEKLRETLREVEDVKNIMEDNRRLVERQGRQADRLEEKADDLERSAERLSDNSEK



LKRKYWWKNSKMMIILGVICAIILIIIIVYFST



SEQ ID NO: 272





N48
SSSSNEKLRETLREVEDVKNIMEDNRRLVERQGRQIDRAEEKADDLERSAERLSDNSEK



LKRKYWWKNSKMMIILGVICAIILIIIIVYEST



SEQ ID NO: 273





N49
SSSSNEKLRETLREVEDVKNIMEDNRRLVERQGRQIDRLEEKADDAERSAERLSDNSEK



LKRKYWWKNSKMMIILGVICAIILIIIIVYEST



SEQ ID NO: 274





N50
SSSSNEKLRETLREVEDVKNIMEDNRRLVERQGRQIDRLEEKADDLERSAERASDNSEK



LKRKYWWKNSKMMIILGVICAIILIIIIVYEST



SEQ ID NO: 275





N51
SSSSNEKLRETLREVEDVKNIMEDNRRLVERQGRQIDRLEEKADDLERSAERLSDNSEK



AKRKYWWKNSKMMIILGVICAIILIIIIVYFST



SEQ ID NO: 276





N52
SSSSNEKARETAREAEDVKNIMEDNRRLVERQGRQIDRLEEKADDLERSAERLSDNSEK



LKRKYWWKNSKMMIILGVICAIILIIIIVYFST



SEQ ID NO: 277





N53
SSSSNEKARETAREVEDVKNIMEDNRRLVERQGRQIDRLEEKADDLERSAERLSDNSEK



LKRKYWWKNSKMMIILGVICAIILIIIIVYFST



SEQ ID NO: 278





N54
SSSSNEKARETAREAEDAKNIMEDNRRLVERQGRQIDRLEEKADDLERSAERLSDNSEK



LKRKYWWKNSKMMIILGVICAIILIIIIVYFST



SEQ ID NO: 279





N55
SSSSNEKARETAREAEDAKNAMEDNRRLVERQGRQIDRLEEKADDLERSAERLSDNSEK



LKRKYWWKNSKMMIILGVICAIILIIIIVYFST



SEQ ID NO: 280





N56
SSSSNEKARETAREAEDAKNAAEDNRRLVERQGRQIDRLEEKADDLERSAERLSDNSEK



LKRKYWWKNSKMMIILGVICAIILIIIIVYFST



SEQ ID NO: 281





N57
SSSSNEKARETLREVEDVKNIAEDNRRLVERQGRQIDRAEEKADDLERSAERLSDNSEK



LKRKYWWKNSKMMIILGVICAIILIIIIVYFST



SEQ ID NO: 282





N58
SSSSNEKLKETLKEVEDVKNIMEDNKKLVEKQGKQIDKLEEKADDLEKSAEKLSDNSEK



LKRKYWWKNSKMMIILGVICAIILIIIIVYFST



SEQ ID NO: 283





N59
SSSSNEKLEETLEEVEDVKNIMEDNEELVEEQGEQIDELEEKADDLEESAEELSDNSEK



LKRKYWWKNSKMMIILGVICAIILIIIIVYFST



SEQ ID NO: 284





N60
SSSSNEKLRETLREVEDVKNIMEDNRRLVERQGRQIDRLEEKADDLEKSAERLSDNSEK



LKRKYWWKNSKMMIILGVICAIILIIIIVYFST



SEQ ID NO: 285





N61
SSSSNEKLRETLREVEDVKNIMEDNRRLVERQGRQIDRLEEKADDLEESAERLSDNSEK



LKRKYWWKNSKMMIILGVICAIILIIIIVYFST



SEQ ID NO: 286





N62
SSSSNEKLRETLREVEDVKNIMEDNRRLVERQGRQIDRLEEKADDLERTAERLSDNSEK



LKRKYWWKNSKMMIILGVICAIILIIIIVYFST



SEQ ID NO: 287





N63
SSSSNEKLRETLREVEDVKNIMEDNRRLVERQGRQIDRLEEKADDLERAAERLSDNSEK



LKRKYWWKNSKMMIILGVICAIILIIIIVYFST



SEQ ID NO: 288





N64
SSSSNEKLRETLREVEDVKNIMEDNRRLVERQGRQIDRLEEKADDLEREAERLSDNSEK



LKRKYWWKNSKMMIILGVICAIILIIIIVYFST



SEQ ID NO: 289









In a further embodiment of all aspects of the disclosure, the nucleic acid encodes a polypeptide that further comprises a signal peptide at its amino-terminus. Any signal peptide may be used as suitable for an intended purpose. The signal peptide may be directly linked to the polypeptide, or may be connected via an amino acid linker. In some embodiments, the signal peptide comprises the amino acid sequence selected from the group consisting of SEQ ID NO: 292-309. The amino acid sequence of these exemplary signal peptides are provided in Table 7.













TABLE 7







SEQ





ID





NO
Name
Sequence









292
Bovine
MDSKGSSQKGSRLLLLLVVSN




prolactin
LLLCQGVVST







293
Human
MYRMQLLSCIALSLALVINS




interleukin-2








294
Human OSM
MGVLLTQRTLLSLVLALLFPS





MASM







295
VSV-G
MKCLLYLAFLFIGVNC







296
Mouse Ig Kappa
METDTLLLWVLLLWVPGSTGD







297
Mouse Ig Heavy
MGWSCIILFLVATATGVHS







298
BM40
MRAWIFFLLCLAGRALA







299
Secrecon
MWWRLWWLLLLLLLLWPMVWA







300
Human IgKVIII
MDMRVPAQLLGLLLLWLRGARC







301
CD33
MPLLLLLPLLWAGALA







302
tPA
MDAMKRGLCCVLLLCGAVEVS





PS







303
Human
MAFLWLLSCWALLGTTFG




Chymotrypsinogen








304
Human
MNLLLILTFVAAAVA




trypsinogen-2








305
Silkworm 
MKPIFLVLLVVTSAYA




Fibroin LC








306
Gaussia luc
MGVKVLFALICIAVAEA







307
Albumin (HSA)
MKWVT FISLLESSAYS







308
Influenza
MKTIIALSYIFCLVLG




Haemagglutinin








309
Human insulin
MALWMRLLPLLALLALWGP





DPAAA










In a further embodiment of any aspect of the disclosure, the nucleic acid comprises an expression vector comprising the nucleic acid operatively linked to a control sequence, such as a promoter.


SNAP25-Redesigns

In a second aspect, the disclosure provides nucleic acids encoding SNAP25-redesigned polypeptide comprising an amino acid sequence at least 50%, 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the amino acid sequence selected from the group consisting of SEQ ID NO:310-316, wherein X1 is an amino acid linker.


In this second aspect, the disclosure provides redesigned SNAP25 proteins in which one of the two coiled-coil domains is an anti-parallel coiled-coil, as described above. When combined with v-SP and native or redesigned Syn1A, redesigned SNAP25 is capable of inducing cell-cell fusion when displayed on the surface of mammalian cells, or liposome fusion when displayed on the surface of liposomes. For membrane fusion to occur, v-SP is presented on one membrane and SNAP25 and Syn1A on the other.


The amino acid sequences of SEQ ID NO:310-316 are provided in Table 9.









TABLE 8







>SEQ ID NO: 310



AEDADLEKQKQEEEKRGETLKDESLEATRKMVNMVREAREMAMRNGELLESQGEKLDRIEEKADRMETKLDE




ADEDLKKIEG-X1-




DARENEMDENLEQVSGIIGNLRHMALDMGNEIDTQNRQIDRIMEKADSAKTRIDEANQRATKMLGSG






> SEQ ID NO: 311



AEDADSLAQQQQEEQRGSTLIDESLEATRKMKEMVEEAVRMAMDNGELLRSQGEKLDRIEEKADRMESLLDE




ADENLDKIEG-X1-




DARENEMDENLEQVSGIIGNLRHMALDMGNEIDTQNRQIDRIMEKADSAKTRIDEANQRATKMLGSG






> SEQ ID NO: 312



AEDADMRNELEEMQRRADQLADESLESTRRMLQLVEESKDAGIRTLVMLDEQGEQLERIEEGMDQINKDMKE




AEKNLADLGK-X1-




PSYIREVNNSEKEKEINEGLGRVDQQVQELKDMAVVMGEKVDEQNEKIDRINEKADKNEQRVNDLTKEAEKL




LNSG






> SEQ ID NO: 313



AEDADMRNELEEMQRRADQLADESLESTRRMLQLVEESKDAGIRTLVMLDEQGEQLERIEEGMDQINKDMKE




AEKNLADLGK-X1-




SSFIRRVNGSEREREIDRGLERVDQQVKELKDMARVMGDKTDEQGEKIDRIEEKADRNEERVEKLVKEAKEL




LESG






> SEQ ID NO: 314



DARENEMDENLEQVSGIIGNLRHMALDMGNEIDTQNRQIDRIMEKADSAKTRIDEANQRATKMLGSG




X1-EELKDLEKEGKELKELVEELDREVKELKESMEKLKEMTEEAAELSSQALEIMRRTRKLSEELLKEAKE




EEEEEEEEEEEEE






> SEQ ID NO: 315



DARENEMDENLEQVSGIIGNLRHMALDMGNEIDTQNRQIDRIMEKADSAKTRIDEANQRATKMLGSG-X1-




EELKKLEKEGEKLKELVEELDREIKELKEGMERLREMFEEAAKLSEEALEIMRRTRKLSEEELEEAKQKAKE




QEKEKALKEK






> SEQ ID NO: 316



NKREEEIDKGLDRVGEIISKLNEMAREMGEKIEEQNQKISEIEKKADEAIEKVEKLIKDAEKLLGSG-X1-




EELKKLEKEGEKLKELVEELDREIKELKEGMERLREMFEEAAKLSEEALEIMRRTRKLSEEELEEAKQKAKE




QEKEKALKEK










In one embodiment, the polypeptide comprises an amino acid sequence at least 50%, 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the amino acid sequence selected from the group consisting of SEQ ID NO:314-316, wherein X1 is an amino acid linker.


The XI linker may be any linker suitable for an intended purpose. In some embodiments, the amino acid linker is a GS-rich linker of less than 20, less than 15, or less than 10 amino acids in length. As used here, “GS-rich” means at least 50% G or S residues.


In a further embodiment, the nucleic acid encodes a polypeptide comprising an amino acid sequence at least 50%, 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the amino acid sequence selected from the group consisting of SEQ ID NO:38-44. In a further embodiment, the nucleic acid encodes a polypeptide comprising an amino acid sequence at least 50%, 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the amino acid sequence selected from the group consisting of SEQ ID NO:42-44.


The amino acid sequence of SEQ ID NO:38-44 are provided in Table 9.









TABLE 9







>SEQ ID NO: 38



AEDADLEKQKQEEEKRGETLKDESLEATRKMVNMVREAREMAMRNGELLESQGEKLDRIEEKADRMETKLDE




ADEDLKKIEG FSGLSVSPSNKLKSSDAYKKAWGNNQDGVVASQPARVVDEREQMAISGGFIRRVTNDARENE




MDENLEQVSGIIGNLRHMALDMGNEIDTQNRQIDRIMEKADSAKTRIDEANQRATKMLGSG






> SEQ ID NO: 39



AEDADSLAQQQQEEQRGSTLIDESLEATRKMKEMVEEAVRMAMDNGELLRSQGEKLDRIEEKADRMESLLDE




ADENLDKIEGFSGLSVSPSNKLKSSDAYKKAWGNNQDGVVASQPARVVDEREQMAISGGFIRRVTNDARENE




MDENLEQVSGIIGNLRHMALDMGNEIDTQNRQIDRIMEKADSAKTRIDEANQRATKMLGSG






> SEQ ID NO: 40



AEDADMRNELEEMQRRADQLADESLESTRRMLQLVEESKDAGIRTLVMLDEQGEQLERIEEGMDQINKDMKE




AEKNLADLGKFSGLSVSPSNKLKSSDAYKKAWGNNQDGVVASQPARVVDEREQMAISPSYIREVNNSEKEKE




INEGLGRVDQQVQELKDMAVVMGEKVDEQNEKIDRINEKADKNEQRVNDLTKEAEKLLNSG






> SEQ ID NO: 41



AEDADMRNELEEMQRRADQLADESLESTRRMLQLVEESKDAGIRTLVMLDEQGEQLERIEEGMDQINKDMKE




AEKNLADLGKFSGLSVSPSNKLKSSDAYKKAWGNNQDGVVASQPARVVDEREQMAISSSFIRRVNGSERERE




IDRGLERVDQQVKELKDMARVMGDKTDEQGEKIDRIEEKADRNEERVEKLVKEAKELLESG






> SEQ ID NO: 42



DARENEMDENLEQVSGIIGNLRHMALDMGNEIDTQNRQIDRIMEKADSAKTRIDEANQRATKMLGSGGGSGG



SEELKDLEKEGKELKELVEELDREVKELKESMEKLKEMTEEAAELSSQALEIMRRTRKLSEELLKEAKEEEE



EEEEEEAEEEE






> SEQ ID NO: 43



DARENEMDENLEQVSGIIGNLRHMALDMGNEIDTQNRQIDRIMEKADSAKTRIDEANQRATKMLGSGGGSGG



SEELKKLEKEGEKLKELVEELDREIKELKEGMERLREMFEEAAKLSEEALEIMRRTRKLSEEELEEAKQKAK



EQEKEKALKEK






> SEQ ID NO: 44



NKREEEIDKGLDRVGEIISKLNEMAREMGEKIEEQNQKISEIEKKADEAIEKVEKLIKDAEKLLGSGGGSGG



SEELKKLEKEGEKLKELVEELDREIKELKEGMERLREMFEEAAKLSEEALEIMRRTRKLSEEELEEAKQKAK



EQEKEKALKEK










In a further embodiment, the nucleic acids of this second aspect encode a polypeptide that further comprises a signal peptide at its amino-terminus. Any signal peptide may be used as suitable for an intended purpose. The signal peptide may be directly linked to the polypeptide, or may be connected via an amino acid linker. In some embodiments, the signal peptide comprises the amino acid sequence selected from the group consisting of SEQ ID NO:292-309. The amino acid sequence of these exemplary signal peptides are provided in Table 7.


In a further embodiment, the nucleic acids of the second aspect comprise an expression vector comprising the nucleic acid operatively linked to a control sequence, such as a promoter.


Syn1A-Redesigns

In a third aspect, the disclosure provides nucleic acids encoding Syn1A-redesigned polypeptide comprising the formula X1-X2-X3, wherein:

    • X1 comprises an amino acid sequence at least 50%, 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the amino acid sequence selected from the group consisting of SEQ ID NO: 317-330;
    • X2 comprises a juxtamembrane domain (JMD); and
    • X3 comprises a transmembrane domain (TMD).


This aspect provides redesigned Syntaxin 1A (Syn1A) variants as described above. When combined with v-SP and native or redesigned SNAP25, redesigned Syn1A is capable of inducing cell-cell fusion when displayed on the surface of mammalian cells, or liposome fusion when displayed on the surface of liposomes. For membrane fusion to occur, v-SP is presented on one membrane and Syn1A and SNAP25 on the other.


The amino acid sequence of SEQ ID NO:317-330 are provide in Table 10.









TABLE 10







>SEQ ID NO: 317



SIEMEELSEIETRHSEIIKLENSIRELHDMEMDMAMLVESQGEMIDRIEYNVEHAVDYVERAVSD






> SEQ ID NO: 318



SISKQALKRLEERHSEIIKLENSIRELHDMEMDMAMLVESQGEMIDRIEYNVEHAVDYVERAVSD






> SEQ ID NO: 319



SISKQALSEIETNNEQVIKLENSIRELHDMFMDMAMLVESQGEMIDRIEYNVEHAVDYVERAVSD






> SEQ ID NO: 320



SISKQALSEIETRHSEIRRLLESIRELHDMEMDMAMLVESQGEMIDRIEYNVEHAVDYVERAVSD






> SEQ ID NO: 321



SISKQALSEIETRHSEIIKLENSVEEMHDMEMDMAMLVESQGEMIDRIEYNVEHAVDYVERAVSD






> SEQ ID NO: 322



SISKQALSEIETRHSEIIKLENSIRELKDMARDMAMLVESQGEMIDRIEYNVEHAVDYVERAVSD






> SEQ ID NO: 323



SISKQALSEIETRHSEIIKLENSIRELHDMEMRLGDMVESQGEMIDRIEYNVEHAVDYVERAVSD






> SEQ ID NO: 324



SISKQALSEIETRHSEIIKLENSIRELHDMEMDMAMLVDEQGEMIDRIEYNVEHAVDYVERAVSD






> SEQ ID NO: 325



SISKQALSEIETRHSEIIKLENSIRELHDMEMDMAMLVESQGEKISRIEYNVEHAVDYVERAVSD






> SEQ ID NO: 326



SISKQALSEIETRHSEIIKLENSIRELHDMEMDMAMLVESQGEMIDRIEERVEHAVDYVERAVSD






> SEQ ID NO: 327



SISKQALSEIETRHSEIIKLENSIRELHDMEMDMAMLVESQGEMIDRIEYNVEAAEAYVERAVSD






> SEQ ID NO: 328



SISKQALSEIETRHSEIIKLENSIRELHDMEMDMAMLVESQGEMIDRIEYNVEHAVDGVKAAVSD






> SEQ ID NO: 329



SISKQALSEIETRHSEIIKLENSIRELHDMEMDMAMLVESQGEMIDRIEYNVEHAVDYVERAKDN






> SEQ ID NO: 330



SISKQALSEIETRHSEIIKLENSIRELHDMFMDMAMLVESQGEMIDRIEYNVEHAVDYVERAVSD










In one embodiment of this third aspect, X2 comprises an amino acid sequence at least 50%, 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the amino acid sequence selected from the group consisting of SEQ ID NO:331-332.











SEQ ID NO: 331



TKKAVKYQSKARRKK







SEQ ID NO: 332



TKKAVKYQSRRRRRR






In a further embodiment, X3 comprises an amino acid sequence at least 50%, 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the amino acid sequence selected from the group consisting of SEQ ID NO: SEQ ID NO: 223-234, or selected from the group consisting of SEQ ID NO:223 or 232. The amino acid sequences of the X3 TMDs is provided in Table 4.


In another embodiment of this third aspect, the nucleic acid encodes a polypeptide comprising an amino acid sequence at least 50%, 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the amino acid sequence selected from the group consisting of SEQ ID NO:45-63. The amino acid sequences of SEQ ID NO:45-63 are provided in Table 11.









TABLE 11







>SEQ ID NO: 45



SIEMEELSEIETRHSEIIKLENSIRELHDMEMDMAMLVESQGEMIDRIEYNVEHAVDYVERAVSD
TKKAVKY




QSKARRKK
IMIIICCVILGIVIASTVGGIFA






> SEQ ID NO: 46



SISKQALKRLEERHSEIIKLENSIRELHDMEMDMAMLVESQGEMIDRIEYNVEHAVDYVERAVSD
TKKAVKY




QSKARRKKIMIIICCVILGIVIASTVGGIFA






> SEQ ID NO: 47



SISKQALSEIETNNEQVIKLENSIRELHDMFMDMAMLVESQGEMIDRIEYNVEHAVDYVERAVSD
TKKAVKY




QSKARRKK
IMIIICCVILGIVIASTVGGIFA






> SEQ ID NO: 48



SISKQALSEIETRHSEIRRLLESIRELHDMEMDMAMLVESQGEMIDRIEYNVEHAVDYVERAVSD
TKKAVKY




QSKARRKK
IMIIICCVILGIVIASTVGGIFA






> SEQ ID NO: 49



SISKQALSEIETRHSEIIKLENSVEEMHDMEMDMAMLVESQGEMIDRIEYNVEHAVDYVERAVSD
TKKAVKY




QSKARRKK
IMIIICCVILGIVIASTVGGIFA






> SEQ ID NO: 50



SISKQALSEIETRHSEIIKLENSIRELKDMARDMAMLVESQGEMIDRIEYNVEHAVDYVERAVSD
TKKAVKY




QSKARRKK
IMIIICCVILGIVIASTVGGIFA






> SEQ ID NO: 51



SISKQALSEIETRHSEIIKLENSIRELHDMEMRLGDMVESQGEMIDRIEYNVEHAVDYVERAVSD
TKKAVKY




QSKARRKK
IMIIICCVILGIVIASTVGGIFA






> SEQ ID NO: 52



SISKQALSEIETRHSEIIKLENSIRELHDMEMDMAMLVDEQGEMIDRIEYNVEHAVDYVERAVSD
TKKAVKY




QSKARRKK
IMIIICCVILGIVIASTVGGIFA






> SEQ ID NO: 53



SISKQALSEIETRHSEIIKLENSIRELHDMEMDMAMLVESQGEKISRIEYNVEHAVDYVERAVSD
TKKAVKY




QSKARRKK
IMIIICCVILGIVIASTVGGIFA






> SEQ ID NO: 54



SISKQALSEIETRHSEIIKLENSIRELHDMFMDMAMLVESQGEMIDRIEERVEHAVDYVERAVSD
TKKAVKY




QSKARRKK
IMIIICCVILGIVIASTVGGIFA






> SEQ ID NO: 55



SISKQALSEIETRHSEIIKLENSIRELHDMFMDMAMLVESQGEMIDRIEYNVEAAEAYVERAVSD
TKKAVKY




QSKARRKK
IMIIICCVILGIVIASTVGGIFA






> SEQ ID NO: 56



SISKQALSEIETRHSEIIKLENSIRELHDMEMDMAMLVESQGEMIDRIEYNVEHAVDGVKAAVSD
TKKAVKY




QSKARRKK
IMIIICCVILGIVIASTVGGIFA






> SEQ ID NO: 57



SISKQALSEIETRHSEIIKLENSIRELHDMEMDMAMLVESQGEMIDRIEYNVEHAVDYVERAKDN
TKKAVKY




QSKARRKK
IMIIICCVILGIVIASTVGGIFA



> SEQ ID NO: 58



SISKQALSEIETRHSEIIKLENSIRELHDMEMDMAMLVESQGEMIDRIEYNVEHAVDYVERAKDN
TKKAVKY




QSKARRKK
IMIIICCVILGIVIASTVGGIFA






> SEQ ID NO: 59



SISKQALSEIETRHSEIIKLENSIRELHDMEMDMAMLVESQGEMIDRIEYNVEHAVDYVERAVSD
TKKAVKY




QSKARRKKFFFIIGLIIGLFLVLRVGIHLFA






> SEQ ID NO: 60



SISKQALSEIETRHSEIIKLENSIRELHDMEMDMAMLVESQGEMIDRIEYNVEHAVDYVERAVSD
TKKAVKY




QSKARRKKILWISFAISCFLLCVVLLGFIFA






> SEQ ID NO: 61



SISKQALSEIETRHSEIIKLENSIRELHDMEMDMAMLVESQGEMIDRIEYNVEHAVDYVERAVSD
TKKAVKY




QSKARRKKIATGMVGALLLLLVVALGIGLFFA






> SEQ ID NO: 62



SISKQALSEIETRHSEIIKLENSIRELHDMEMDMAMLVESQGEMIDRIEYNVEHAVDYVERAVSD
TKKAVKY




QSKARRKKMMIILGVICAIILIIIIVYFFA






> SEQ ID NO: 63



SISKQALSEIETRHSEIIKLENSIRELHDMEMDMAMLVESQGEMIDRIEYNVEHAVDYVERAVSD
TKKAVKY




QSKARRKKAAVLVLLVIVIISLIVLVVIWFA






Coiled-coil domain (bold font)


JMD: (underlined)


TMD: (italicized)






In a further embodiment, the nucleic acids of this third aspect encode a polypeptide that further comprises a signal peptide at its amino-terminus. Any signal peptide may be used as suitable for an intended purpose. The signal peptide may be directly linked to the polypeptide, or may be connected via an amino acid linker. In some embodiments, the signal peptide comprises the amino acid sequence selected from the group consisting of SEQ ID NO:292-309. The amino acid sequence of these exemplary signal peptides are provided in Table 7.


In a further embodiment, the nucleic acids of the second aspect comprise an expression vector comprising the nucleic acid operatively linked to a control sequence, such as a promoter.


sc-t-SP Designs


In a fourth aspect, the disclosure provides nucleic acids encoding single-chain t-SNARE-like proteins (sc-t-SPs) comprising the formula X1-X2-X3, wherein:

    • X1 comprises an amino acid sequence at least 50%, 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the amino acid sequence selected from the group consisting of the first set bold font residues in SEQ ID NO: 333-425, wherein the non-highlighted residues are amino acid linkers that may be substituted with any other amino acid linker;
    • X2 comprises a juxtamembrane domain (JMD); and
    • X3 comprises a transmembrane domain (TMD).


In this fourth aspect, the disclosure provides single-chain t-SNARE-like proteins (sc-t-SPs) which fuse the C-terminus of redesigned SNAP25 to the N-terminus of Syn1A sequences as described below. The sc-t-SP designs have three coiled-coil domains, and one of them is anti-parallel as it is derived from the redesigned SNAP25 described above. The sc-t-SP designs can bind to v-SPs and form a four-helix bundle like the native SNARE complex, though one helix is anti-parallel unlike the native SNARE complex. When combined with v-SP, sc-t-SPs are capable of inducing membrane fusion in mammalian cells or liposomes. The sc-t-SP should be present on one membrane and v-SP on the other to induce membrane fusion. The amino acid sequences of the X1 domains of SEQ ID NO:333-425 are provided in Tables 12 and 13.









TABLE 12







>SEQ ID NO: 333



DARENEMDENLEQVSGIIGNLRHMALDMGNEIDTQNRQIDRIMEKADSAKTRIDEANQRATKMLGSGGGSGG



SEELKDLEKEGKELKELVEELDREVKELKESMEKLKEMTEEAAELSSQALEIMRRTRKLSEELLKEAKEEEE



EEEEEEAEEEEGGSGGSGGSSISKQALSEIETRHSEIIKLENSIRELHDMEMDMAMLVESQGEMIDRIEYNV




EHAVDYVERAVSD






> SEQ ID NO: 334



DARENEMDENLEQVSGIIGNLRHMALDMGNEIDTQNRQIDRIMEKADSAKTRIDEANQRATKMLGSGGGSGG



SEELKKLEKEGEKLKELVEELDREIKELKEGMERLREMFEEAAKLSEEALEIMRRTRKLSEEELEEAKQKAK



EQEKEKALKEKGGSGGSGGSSISKQALSEIETRHSEIIKLENSIRELHDMEMDMAMLVESQGEMIDRIEYNV




EHAVDYVERAVSD






> SEQ ID NO: 335



DARENEMDENLEQVSGIIGNLRHMALDMGNEIDTQNRQIDRIMEKADSAKTRIDEANQRATKMLGSGGGSGG



SEELKDLEKEGKELKELVEELDREVKELKESMEKLKEMTEEAAELSSQALEIMRRTRKLSEELLKEAKEEEE



EEEEEEGGSGGSGGSSISKQALSEIETRHSEIIKLENSIRELHDMEMDMAMLVESQGEMIDRIEYNVEHAVD




YVERAVSD






> SEQ ID NO: 336



DARENEMDENLEQVSGIIGNLRHMALDMGNEIDTQNRQIDRIMEKADSAKTRIDEANQRATKMLGSGGGSGG



SEELKDLEKEGKELKELVEELDREVKELKESMEKLKEMTEEAAELSSQALEIMRRTRKLSEELLKEAKEEEE



EGGSGGSGGSSISKQALSEIETRHSEIIKLENSIRELHDMEMDMAMLVESQGEMIDRIEYNVEHAVDYVERA




VSD






> SEQ ID NO: 337



DARENEMDENLEQVSGIIGNLRHMALDMGNEIDTQNRQIDRIMEKADSAKTRIDEANQRATKMLGSGGGSGG



SEELKDLEKEGKELKELVEELDREVKELKESMEKLKEMTEEAAELSSQALEIMRRTRKLSEELLKEAKGGSG


GSGGSSISKQALSEIETRHSEIIKLENSIRELHDMEMDMAMLVESQGEMIDRIEYNVEHAVDYVERAVSD





> SEQ ID NO: 338



DARENEMDENLEQVSGIIGNLRHMALDMGNEIDTQNRQIDRIMEKADSAKTRIDEANQRATKMLGSGGGSGG



SEELKDLEKEGKELKELVEELDREVKELKESMEKLKEMTEEAAELSSQALEIMRRTRKLSEELGGSGGSGGS



SISKQALSEIETRHSEIIKLENSIRELHDMEMDMAMLVESQGEMIDRIEYNVEHAVDYVERAVSD






> SEQ ID NO: 339



DARENEMDENLEQVSGIIGNLRHMALDMGNEIDTQNRQIDRIMEKADSAKTRIDEANQRATKMLGSGGGSGG



SEELKDLEKEGKELKELVEELDREVKELKESMEKLKEMTEEAAELSSQALEIMRRTRKGGSGGSGGSSISKQ



ALSEIETRHSEIIKLENSIRELHDMEMDMAMLVESQGEMIDRIEYNVEHAVDYVERAVSD






> SEQ ID NO: 340



DARENEMDENLEQVSGIIGNLRHMALDMGNEIDTQNRQIDRIMEKADSAKTRIDEANQRATKMLGSGGGSGG



SEELKDLEKEGKELKELVEELDREVKELKESMEKLKEMTEEAAELSSQALEIMRRTRKLSEELLKEAKEEEE



EEEEEEGGSGGSGGSALSEIETRHSEIIKLENSIRELHDMEMDMAMLVESQGEMIDRIEYNVEHAVDYVERA




VSD






> SEQ ID NO: 341



DARENEMDENLEQVSGIIGNLRHMALDMGNEIDTQNRQIDRIMEKADSAKTRIDEANQRATKMLGSGGGSGG



SEELKDLEKEGKELKELVEELDREVKELKESMEKLKEMTEEAAELSSQALEIMRRTRKLSEELLKEAKEEEE



EGGSGGSGGSALSEIETRHSEIIKLENSIRELHDMFMDMAMLVESQGEMIDRIEYNVEHAVDYVERAVSD






> SEQ ID NO: 342



DARENEMDENLEQVSGIIGNLRHMALDMGNEIDTQNRQIDRIMEKADSAKTRIDEANQRATKMLGSGGGSGG



SEELKDLEKEGKELKELVEELDREVKELKESMEKLKEMTEEAAELSSQALEIMRRTRKLSEELLKEAKGGSG


GSGGSALSEIETRHSEIIKLENSIRELHDMEMDMAMLVESQGEMIDRIEYNVEHAVDYVERAVSD





> SEQ ID NO: 343



DARENEMDENLEQVSGIIGNLRHMALDMGNEIDTQNRQIDRIMEKADSAKTRIDEANQRATKMLGSGGGSGG



SEELKDLEKEGKELKELVEELDREVKELKESMEKLKEMTEEAAELSSQALEIMRRTRKLSEELGGSGGSGGS



ALSEIETRHSEIIKLENSIRELHDMEMDMAMLVESQGEMIDRIEYNVEHAVDYVERAVSD






> SEQ ID NO: 344



DARENEMDENLEQVSGIIGNLRHMALDMGNEIDTQNRQIDRIMEKADSAKTRIDEANQRATKMLGSGGGSGG



SEELKKLEKEGEKLKELVEELDREIKELKEGMERLREMFEEAAKLSEEALEIMRRTRKLSEEELEEAKQKAK



EQEKEKALKEKGGSGGSGGSEKVKEELAKVEERHKQIQALLDKIEELYEMEKEMSEKISEQGQKIDRIEEKV




SKASEHVSKGVED






> SEQ ID NO: 345



DARENEMDENLEQVSGIIGNLRHMALDMGNEIDTQNRQIDRIMEKADSAKTRIDEANQRATKMLGSGGGSGG



SEELKKLEKEGEKLKELVEELDREIKELKEGMERLREMFEEAAKLSEEALEIMRRTRKLSEEELEEAKQKAK



EQEKEKALKEKGGSGGSGGSEKVKKELAEVEKRHKQILELEEKIKELYEMEKEMSEKIEKQGQKIDRIDDKV




SEAKKHVEKAVED






> SEQ ID NO: 346



DARENEMDENLEQVSGIIGNLRHMALDMGNEIDTQNRQIDRIMEKADSAKTRIDEANQRATKMLGSGGGSGG



SEELKKLEKEGEKLKELVEELDREIKELKEGMERLREMFEEAAKLSEEALEIMRRTRKLSEEELEEAKQKAK



EQEKEKALKEKGGSGGSGGSEKVKRELAQIEERHQQILELEEKIKELLEMFKELSEKIEEQGQKIDRIEDKV




SKAKEHVEKGVED






> SEQ ID NO: 347



DARENEMDENLEQVSGIIGNLRHMALDMGNEIDTQNRQIDRIMEKADSAKTRIDEANQRATKMLGSGGGSGG



SEELKKLEKEGEKLKELVEELDREIKELKEGMERLREMFEEAAKLSEEALEIMRRTRKLSEEELEEAKQKAK



EQEKEKALKEKGGSGGSGGSEAVKKSLAAKEERHKQILELLEKIKELHEMFKELSEKIEKQGQKIDRIEDKV




SKASEHVSKGVED






> SEQ ID NO: 348



DARENEMDENLEQVSGIIGNLRHMALDMGNEIDTQNRQIDRIMEKADSAKTRIDEANQRATKMLGSGGGSGG



SEELKKLEKEGEKLKELVEELDREIKELKEGMERLREMFEEAAKLSEEALEIMRRTRKLSEEELEEAKQKAK



EQEKEKALKEKGGSGGSGGSEAVKKELAAIEERHEQILELLKKIEELYEMFKELSEKIEKQGQKIDRIEKKV




SEASRHVSKAVED






> SEQ ID NO: 349



DARENEMDENLEQVSGIIGNLRHMALDMGNEIDTQNRQIDRIMEKADSAKTRIDEANQRATKMLGSGGGSGG



SEELKKLEKEGEKLKELVEELDREIKELKEGMERLREMFEEAAKLSEEALEIMRRTRKLSEEELEEAKQKAK



EQEKEKALKEKGGSGGSGGSEKVKKDLAAIEERHQQILELEEKIKELHEMFKEMSEKISEQMQKIDRIEEKV




SKASEHVSKGVED






> SEQ ID NO: 350



DARENEMDENLEQVSGIIGNLRHMALDMGNEIDTQNRQIDRIMEKADSAKTRIDEANQRATKMLGSGGGSGG



SEELKKLEKEGEKLKELVEELDREIKELKEGMERLREMFEEAAKLSEEALEIMRRTRKLSEEELEEAKQKAK



EQEKEKALKEKGGSGGSGGSEKVRRELAAIEERHRQILELLEKIEELHEMFKEMSEKISKQMEKIDRIDDRV




SEASRHVEKGVED






> SEQ ID NO: 351



DARENEMDENLEQVSGIIGNLRHMALDMGNEIDTQNRQIDRIMEKADSAKTRIDEANQRATKMLGSGGGSGG



SEELKKLEKEGEKLKELVEELDREIKELKEGMERLREMFEEAAKLSEEALEIMRRTRKLSEEELEEAKQKAK



EQEKEKALKEKGGSGGSGGSKAVKEELANIENRHKQIDALYEKIKELHEMFLEMSERIEAQLQKIDRIDDKV




SKAKAHVEKGVED






> SEQ ID NO: 352



NKREEEIDKGLDRVGEIISKLNEMAREMGEKIEEQNQKISEIEKKADEAIEKVEKLIKDAEKLLGSGGGSGG



SEELKKLEKEGEKLKELVEELDREIKELKEGMERLREMFEEAAKLSEEALEIMRRTRKLSEEELEEAKQKAK



EQEKEKALKEKGGSGGSGGSSISKQALSEIETRHSEIIKLENSIRELHDMFMDMAMLVESQGEMIDRIEYNV




EHAVDYVERAVSD






> SEQ ID NO: 353



NKREEEIDKGLDRVGEIISKLNEMAREMGEKIEEQNQKISEIEKKADEAIEKVEKLIKDAEKLLGSGGGSGG



SEELKKLEKEGEKLKELVEELDREIKELKEGMERLREMFEEAAKLSEEALEIMRRTRKLSEEELEEAKQKAK



EQEKEKALKEKGGSGGSGGSALSEIETRHSEIIKLENSIRELHDMEMDMAMLVESQGEMIDRIEYNVEHAVD




YVERAVSD






> SEQ ID NO: 354



NKREEEIDKGLDRVGEIISKLNEMAREMGEKIEEQNQKISEIEKKADEAIEKVEKLIKDAEKLLGSGGGSGG



SEELKKLEKEGEKLKELVEELDREIKELKEGMERLREMFEEAAKLSEEALEIMRRTRKLSEEELEEAKQKAK



EQEKEKALKEKGGSGGSGGSSISKQALSEIETRHSEIIKLENSIRELHDMEMDMAMLVESQGEMIDRIEYNV




EHAVDYVERAVSD






> SEQ ID NO: 355



NKREEEIDKGLDRVGEIISKLNEMAREMGEKIEEQNQKISEIEKKADEAIEKVEKLIKDAEKLLGSGGGSGG



SEELKKLEKEGEKLKELVEELDREIKELKEGMERLREMFEEAAKLSEEALEIMRRTRKLSEEELEEAKQKAK



EQEKEKALKEKGGSGGSGGSSISKQALSEIETRHSEIIKLENSIRELHDMEMDMAMLVESQGEMIDRIEYNV




EHAVDYVERAVSD






> SEQ ID NO: 356



NKREEEIDKGLDRVGEIISKLNEMAREMGEKIEEQNQKISEIEKKADEAIEKVEKLIKDAEKLLGSGGGSGG



SEELKKLEKEGEKLKELVEELDREIKELKEGMERLREMFEEAAKLSEEALEIMRRTRKLSEEELEEAKQKAK



EQEKEKALKEKGGSGGSGGSSISKQALSEIETRHSEIIKLENSIRELHDMEMDMAMLVESQGEMIDRIEYNV




EHAVDYVERAVSD






> SEQ ID NO: 357



NEREKEIDEGLERVGELISKLKELAREMSEKIEEQNQKLSEIDKKAEEAIKLLEKANASAKKLLEKPGGSGG



SEELKKLEKEGEKLKELVEELDREIKELKEGMERLREMFEEAAKLSEEALEIMRRTRKLSEEELEEAKQKAK



EQEKEKALKEKGGSGGSGGSEKVKRELAQIEERHQQILELEEKIKELLEMFKELSEKIEEQGQKIDRIEDKV




SKAKEHVEKGVED






> SEQ ID NO: 358



NEREKEIEEGLERVGELISELKEMAREMSEKIEEQNKKLDEISKKADEAIKLLEKANKGAEELLKKPGGSGG



SEELKKLEKEGEKLKELVEELDREIKELKEGMERLREMFEEAAKLSEEALEIMRRTRKLSEEELEEAKQKAK



EQEKEKALKEKGGSGGSGGSEKVKRELAQIEERHQQILELEEKIKELLEMFKELSEKIEEQGQKIDRIEDKV




SKAKEHVEKGVED






> SEQ ID NO: 359



NEREKEIDEGLEKIGELISKLKEMAREMSEKIEEQNEKLDEIDKKADEAIKLLEEANKKAEKLLKKKGGSGG



SEELKKLEKEGEKLKELVEELDREIKELKEGMERLREMFEEAAKLSEEALEIMRRTRKLSEEELEEAKQKAK



EQEKEKALKEKGGSGGSGGSEKVKRELAQIEERHQQILELEEKIKELLEMFKELSEKIEEQGQKIDRIEDKV




SKAKEHVEKGVED






> SEQ ID NO: 360



NEREKEIEEGLERIGELISKLKELAREMSEKIEEQNEKLSEISEKADEAIKLLEKANASAQKLLEKPGGSGG



SEELKKLEKEGEKLKELVEELDREIKELKEGMERLREMFEEAAKLSEEALEIMRRTRKLSEEELEEAKQKAK



EQEKEKALKEKGGSGGSGGSEKVKRELAQIEERHQQILELEEKIKELLEMFKELSEKIEEQGQKIDRIEDKV




SKAKEHVEKGVED






> SEQ ID NO: 361



NPREEEIDKGLEEIGKLISELKELAREMSEKIEEQNEKISEIDEKAKEAIELLKKANEKAKELLEKEGGSGG



SEELKKLEKEGEKLKELVEELDREIKELKEGMERLREMFEEAAKLSEEALEIMRRTRKLSEEELEEAKQKAK



EQEKEKALKEKGGSGGSGGSEKVKRELAQIEERHQQILELEEKIKELLEMFKELSEKIEEQGQKIDRIEDKV




SKAKEHVEKGVED






> SEQ ID NO: 362



SPREKEIDEGLERVSELVKKLKELAEKMKEMIEEQGRRIERIERKAEEAKERIEKLNEKAEKLLEDPGGSGG



SEELKKLEKEGEKLKELVEELDREIKELKEGMERLREMFEEAAKLSEEALEIMRRTRKLSEEELEEAKQKAK



EQEKEKALKEKGGSGGSGGSEKVKRELAQIEERHQQILELEEKIKELLEMFKELSEKIEEQGQKIDRIEDKV




SKAKEHVEKGVED






> SEQ ID NO: 363



SEREKEIDEGLDRVSEIVKELKKMAEEMRRMIEEQGRRIERIEEKAEEAKEKIEEANERAEKLLKDPGGSGG



SEELKKLEKEGEKLKELVEELDREIKELKEGMERLREMFEEAAKLSEEALEIMRRTRKLSEEELEEAKQKAK



EQEKEKALKEKGGSGGSGGSEKVKRELAQIEERHQQILELEEKIKELLEMFKELSEKIEEQGQKIDRIEDKV




SKAKEHVEKGVED






> SEQ ID NO: 364



SEREKEIDEGLEKVSEIVKELKEMAEEMREMIERQGEQIERIEKKAEEAKKKIEEQNERAERLLKDPGGSGG



SEELKKLEKEGEKLKELVEELDREIKELKEGMERLREMFEEAAKLSEEALEIMRRTRKLSEEELEEAKQKAK



EQEKEKALKEKGGSGGSGGSEKVKRELAQIEERHQQILELEEKIKELLEMFKELSEKIEEQGQKIDRIEDKV




SKAKEHVEKGVED






> SEQ ID NO: 365



SEREKEIEEGLERVSEIVRRLKELAEEMRRMIEEQGRRIDRIEEKADKAKEEIEKQNEKLEKLLKDPGGSGG



SEELKKLEKEGEKLKELVEELDREIKELKEGMERLREMFEEAAKLSEEALEIMRRTRKLSEEELEEAKQKAK



EQEKEKALKEKGGSGGSGGSEKVKRELAQIEERHQQILELEEKIKELLEMFKELSEKIEEQGQKIDRIEDKV




SKAKEHVEKGVED






> SEQ ID NO: 366



SEREKEIDEGLEKVSEIVKELKELAKEMKEMIEEQGRRIDRIERKAEETKKKIEELNEQAERLLKDPGGSGG



SEELKKLEKEGEKLKELVEELDREIKELKEGMERLREMFEEAAKLSEEALEIMRRTRKLSEEELEEAKQKAK



EQEKEKALKEKGGSGGSGGSEKVKRELAQIEERHQQILELEEKIKELLEMFKELSEKIEEQGQKIDRIEDKV




SKAKEHVEKGVED






> SEQ ID NO: 367



SEREEEIDKGLERVSEIVKKLKELAEKMKEEIERQGEQIDRIEKKADETIKEIERLNESADRLLKSPGGSGG



SEELKKLEKEGEKLKELVEELDREIKELKEGMERLREMFEEAAKLSEEALEIMRRTRKLSEEELEEAKQKAK



EQEKEKALKEKGGSGGSGGSEKVKRELAQIEERHQQILELEEKIKELLEMFKELSEKIEEQGQKIDRIEDKV




SKAKEHVEKGVED






> SEQ ID NO: 368



SEREKEIDEGLDRVSEIVKELKKMAEEMRRMIEEQGRRIERIEEKAEEAKEKIEEANERAEKLLKDPGGSGG



SEELKKLEKEGEKLKELVEELDREIKELKEGMERLREMFEEAAKLSEEALEIMRRTRKLSEEELEEAKQKAK



EQEKEKALKEKGGSGGSGGSEKVKRELAQIEERHQQILELEEKIKELLEMFKELSEKIEEQGQKIDRIEDKV




SKAKEHVEKGVED






> SEQ ID NO: 369



SEREKEIDEGLDRVSEIVKELKKMAEEMRRMIEEQGRRIERIEEKAEEAKEKIEEANERAEKLLKDPGGSGG



SEELKKLEKEGEKLKELVEELDREIKELKEGMERLREMFEEAAKLSEEALEIMRRTRKLSEEELEEAKQKAK



EQEKEKALKEKGGSGGSGGSEKVKRELAQIEERHQQILELEEKIKELLEMFKELSEKIEEQGQKIDRIEDKV




SKAKEHVEKGVED






> SEQ ID NO: 370



SEREKEIDEGLDRVSEIVKELKKMAEEMRRMIEEQGRRIERIEEKAEEAKEKIEEANERAEKLLKDPGGSGG



SEELKKLEKEGEKLKELVEELDREIKELKEGMERLREMFEEAAKLSEEALEIMRRTRKLSEEELEEAKQKAK



EQEKEKALKEKGGSGGSGGSEKVKRELAQIEERHQQILELEEKIKELLEMFKELSEKIEEQGQKIDRIEDKV




SKAKEHVEKGVED






> SEQ ID NO: 371



SEREKEIDEGLDRVSEIVKELKKMAEEMRRMIEEQGRRIERIEEKAEEAKEKIEEANERAEKLLKDPGGSGG



SEELKKLEKEGEKLKELVEELDREIKELKEGMERLREMFEEAAKLSEEALEIMRRTRKLSEEELEEAKQKAK



EQEKEKALKEKGGSGGSGGSEKVKRELAQIEERHQQILELEEKIKELLEMFKELSEKIEEQGQKIDRIEDKV




SKAKEHVEKGVED






> SEQ ID NO: 372



SEREKEIDEGLDRVSEIVKELKKMAEEMRRMIEEQGRRIERIEEKAEEAKEKIEEANERAEKLLKDPGGSGG



SEELKKLEKEGEKLKELVEELDREIKELKEGMERLREMFEEAAKLSEEALEIMRRTRKLSEEELEEAKQKAK



EQEKEKALKEKGGSGGSGGSEKVKRELAQIEERHQQILELEEKIKELLEMFKELSEKIEEQGQKIDRIEDKV




SKAKEHVEKGVED






> SEQ ID NO: 373



SEREKEIDEGLDRVSEIVKELKKMAEEMRRMIEEQGRRIERIEEKAEEAKEKIEEANERAEKLLKDPGGSGG



SEELKKLEKEGEKLKELVEELDREIKELKEGMERLREMFEEAAKLSEEALEIMRRTRKLSEEELEEAKQKAK



EQEKEKALKEKGGSGGSGGSEKVKRELAQIEERHQQILELEEKIKELLEMFKELSEKIEEQGQKIDRIEDKV




SKAKEHVEKGVED






> SEQ ID NO: 374



SEREKEIDEGLDRVSEIVKELKKMAEEMRRMIEEQGRRIERIEEKAEEAKEKIEEANERAEKLLKDPGGSGG



SEELKKLEKEGEKLKELVEELDREIKELKEGMERLREMFEEAAKLSEEALEIMRRTRKLSEEELEEAKQKAK



EQEKEKALKEKGGSGGSGGSEKVKRELAQIEERHQQILELEEKIKELLEMFKELSEKIEEQGQKIDRIEDKV




SKAKEHVEKGVED






> SEQ ID NO: 375



SEREKEIDEGLDRVSEIVKELKKMAEEMRRMIEEQGRRIERIEEKAEEAKEKIEEANERAEKLLKDPGGSGG



SEELKKLEKEGEKLKELVEELDREIKELKEGMERLREMFEEAAKLSEEALEIMRRTRKLSEEELEEAKQKAK



EQEKEKALKEKGGSGGSGGSEKVKRELAQIEERHQQILELEEKIKELLEMFKELSEKIEEQGQKIDRIEDKV




SKAKEHVEKGVED






> SEQ ID NO: 376



SEREKEIDEGLDRVSEIVKELKKMAEEMRRMIEEQGRRIERIEEKAEEAKEKIEEANERAEKLLKDPGGSGG



SEELKKLEKEGEKLKELVEELDREIKELKEGMERLREMFEEAAKLSEEALEIMRRTRKLSEEELEEAKQKAK



EQEKEKALKEKGGSGGSGGSEKVKRELAQIEERHQQILELEEKIKELLEMFKELSEKIEEQGQKIDRIEDKV




SKAKEHVEKGVED






> SEQ ID NO: 377



DARENEMDENLEQVSGIIGNLRHMALDMGNEIDTQNRQIDRIMEKADSAKTRIDEANQRATKMLGSGGGSGG



SEELKKLEKEGEKLKELVEELDREIKELKEGMERLREMFEEAAKLSEEALEIMRRTRKLSEEELEEAKQKAK



EQEKEKALKEKGGSGGSGGSEKVKESLANKEERHKQILELEEKIKELYEMEKELSEKIEEQLKKIDRIEEKV




SEASRHVSKGVES






> SEQ ID NO: 378



DARENEMDENLEQVSGIIGNLRHMALDMGNEIDTQNRQIDRIMEKADSAKTRIDEANQRATKMLGSGGGSGG



SEELKKLEKEGEKLKELVEELDREIKELKEGMERLREMFEEAAKLSEEALEIMRRTRKLSEEELEEAKQKAK



EQEKEKALKEKGGSGGSGGSEKTRRTLAEIEERHRQILELEEKIEELYEMFKELSEKISEQGQKISRIEDKV




SKASEHVSKGVEN






SEQ ID NO: 379



DARENEMDENLEQVSGIIGNLRHMALDMGNEIDTQNRQIDRIMEKADSAKTRIDEANQRATKMLGSGGGSGG



SEELKKLEKEGEKLKELVEELDREIKELKEGMERLREMFEEAAKLSEEALEIMRRTRKLSEEELEEAKQKAK



EQEKEKALKEKGGSGGSGGSEKVKKSLAEIEKRHEQILQLEKQIEELHEMFKELSEKISKQGQKIDRIEEKV




EEAKRHVEKAVKD






> SEQ ID NO: 380



DARENEMDENLEQVSGIIGNLRHMALDMGNEIDTQNRQIDRIMEKADSAKTRIDEANQRATKMLGSGGGSGG



SEELKKLEKEGEKLKELVEELDREIKELKEGMERLREMFEEAAKLSEEALEIMRRTRKLSEEELEEAKQKAK



EQEKEKALKEKGGSGGSGGSKKVKEELARIEARHQQILALEEKIRELYEMEKELSEKIEEQGKKIDRIEDKV




SKASEHVSKGVEN






> SEQ ID NO: 381



DARENEMDENLEQVSGIIGNLRHMALDMGNEIDTQNRQIDRIMEKADSAKTRIDEANQRATKMLGSGGGSGG




SEELKKLEKEGEKLKELVEELDREIKELKEGMERLREMFEEAAKLSEEALEIMRRTRKLSEEELEEAKQKAK




EQEKEKALKEKGGSGGSGGSKKVKEELKEKEKRHRQIEELLKKIEELHEMFEELSERISEQGQKIDRIDDKV




SKASEHVSKGVED






> SEQ ID NO: 382



DARENEMDENLEQVSGIIGNLRHMALDMGNEIDTQNRQIDRIMEKADSAKTRIDEANQRATKMLGSGGGSGG



SEELKKLEKEGEKLKELVEELDREIKELKEGMERLREMFEEAAKLSEEALEIMRRTRKLSEEELEEAKQKAK



EQEKEKALKEKGGSGGSGGSEEVKKSLAEIEKRHEQILALEKKIEELYEMEKELGEKIEKQLQKISRIEEKV




SEASRHVSKGVED






> SEQ ID NO: 383



DARENEMDENLEQVSGIIGNLRHMALDMGNEIDTQNRQIDRIMEKADSAKTRIDEANQRATKMLGSGGGSGG



SEELKKLEKEGEKLKELVEELDREIKELKEGMERLREMFEEAAKLSEEALEIMRRTRKLSEEELEEAKQKAK



EQEKEKALKEKGGSGGSGGSEKVKKELAEIEARHQQIEALLEQIKELYEMEKELSEKIEEQGQKISRIEDKV




SKASEHVSKGVEQ






> SEQ ID NO: 384



DARENEMDENLEQVSGIIGNLRHMALDMGNEIDTQNRQIDRIMEKADSAKTRIDEANQRATKMLGSGGGSGG



SEELKKLEKEGEKLKELVEELDREIKELKEGMERLREMFEEAAKLSEEALEIMRRTRKLSEEELEEAKQKAK



EQEKEKALKEKGGSGGSGGSEKVKKELAEKEKRHKQIDELLEKIKELYEMFKEMGEKIEKQGEKIDRIEKKV




SEASKHVSKAVED






> SEQ ID NO: 385



DARENEMDENLEQVSGIIGNLRHMALDMGNEIDTQNRQIDRIMEKADSAKTRIDEANQRATKMLGSGGGSGG



SEELKKLEKEGEKLKELVEELDREIKELKEGMERLREMFEEAAKLSEEALEIMRRTRKLSEEELEEAKQKAK



EQEKEKALKEKGGSGGSGGSEAVKKELAAIEARHKQIDALLEKIKELHEMFEEMSKKIEEQMQKISRIEDKV




SEASRHVSKAVSD






> SEQ ID NO: 386



DARENEMDENLEQVSGIIGNLRHMALDMGNEIDTQNRQIDRIMEKADSAKTRIDEANQRATKMLGSGGGSGG



SEELKKLEKEGEKLKELVEELDREIKELKEGMERLREMFEEAAKLSEEALEIMRRTRKLSEEELEEAKQKAK



EQEKEKALKEKGGSGGSGGSEKVKKELAEIEKRHKQILELEEKIKELHEMFKELGEKIEKQGQKISRIDDKV




SEAKRHVEKGVED






> SEQ ID NO: 387



DARENEMDENLEQVSGIIGNLRHMALDMGNEIDTQNRQIDRIMEKADSAKTRIDEANQRATKMLGSGGGSGG



SEELKKLEKEGEKLKELVEELDREIKELKEGMERLREMFEEAAKLSEEALEIMRRTRKLSEEELEEAKQKAK



EQEKEKALKEKGGSGGSGGSKKVKEELKKIEERHKQILELEEKIEELYEMEKELAERIEKQGEKIDRIDEKV




SEAKRNVEKAVED






> SEQ ID NO: 388



DARENEMDENLEQVSGIIGNLRHMALDMGNEIDTQNRQIDRIMEKADSAKTRIDEANQRATKMLGSGGGSGG



SEELKKLEKEGEKLKELVEELDREIKELKEGMERLREMFEEAAKLSEEALEIMRRTRKLSEEELEEAKQKAK



EQEKEKALKEKGGSGGSGGSEKVKKELEEKEKRHKQILELEEKIKELYEMEKELSEKIEEQLQKIDRIDDKV




SEASRHVSKGVED






> SEQ ID NO: 389



DARENEMDENLEQVSGIIGNLRHMALDMGNEIDTQNRQIDRIMEKADSAKTRIDEANQRATKMLGSGGGSGG



SEELKKLEKEGEKLKELVEELDREIKELKEGMERLREMFEEAAKLSEEALEIMRRTRKLSEEELEEAKQKAK



EQEKEKALKEKGGSGGSGGSEEVRRSLEEIERRHRQILELEEKIEELYEMEKEMSEKIEEQGQKISRIEEKV




SKASEHVSKAVED






> SEQ ID NO: 390



DARENEMDENLEQVSGIIGNLRHMALDMGNEIDTQNRQIDRIMEKADSAKTRIDEANQRATKMLGSGGGSGG



SEELKKLEKEGEKLKELVEELDREIKELKEGMERLREMFEEAAKLSEEALEIMRRTRKLSEEELEEAKQKAK



EQEKEKALKEKGGSGGSGGSEEVKKELAEIEARHEQIKELEKQIEELHEMFKELGEKIEKQGEKIDRIDEKV




SEASRHVSKAVED






> SEQ ID NO: 391



DARENEMDENLEQVSGIIGNLRHMALDMGNEIDTQNRQIDRIMEKADSAKTRIDEANQRATKMLGSGGGSGG



SEELKKLEKEGEKLKELVEELDREIKELKEGMERLREMFEEAAKLSEEALEIMRRTRKLSEEELEEAKQKAK



EQEKEKALKEKGGSGGSGGSEKVKEELAKKEARHEQILELTEKIEELSEMFKELSEKISEQGQKIDRIEDKV




SKASEHVSKAVED






> SEQ ID NO: 392



SELEKKIDELLEEISRLVRELKEIAKELRRLTERQGRQVERIEREVEEAEREIEELNKEAEELLEKEDSEDE



LEKLKKLLEESKEQLREVERIEREVRRLREEQRRLLELTERAARLAEEALEKMEKMLELQEKILESMKEPDK



PYTPEELEKVKERHELIKKLKEEIKELKEMFEELRELVRRQGERLDRIEEKVRRAVEHVKKAEEN






> SEQ ID NO: 393



SEKEKEIDELLDKVSEIVKELKKLAEELKRRTERQGRQIEEIERKTEEAKRKIEELNKKAEELLKKEDDDSD



LEKTKELLKEAKEQLREVKEIKRRVEELKREQEETLKLTKEAAELAEEAKELMEEMLELSEEILEEMLENPK



PYTPEELEKVRERHELIKKLLEEIEELEEMFEELERLVEEQGRRLERIEEKVSRAVRHVERAEEN






> SEQ ID NO: 394



SSKEEEIEELLDEVSEIVRRLKEMAREIREMVERQGRQIERIERKVEEAKRKIEELNKKAEELLEKEDDESE



LEELEKLVEEAKEQLREVEEINREVEELGREQERLLRKTREAAKLAEKAEELMKKMLELSEEILEEMKEKPK



EYTPEELEEVEERHKLIQKLLEEIKELKEMFEELERLVEEQGRRLERIEEKVRRAVEHVKRALEN






> SEQ ID NO: 395


SELEKKIDELLEEISRLVRELKEIAKELRRLTERQGRQVERIEREVEEAEREIEELNKEAEELLEKEDSEDE


LEKLKKLLEESKEQLREVERIEREVRRLREEQRRLLELTERAARLAEEALEKMEKMLELQEKILESMKEPDK



PYTPEELEKVKERHELIKKLKEEIKELKEMFEELRELVRRQGERLDRIEEKVRRAVEHVKKAEEN






> SEQ ID NO: 396



SEKEKEIDELLDKVSEIVKELKKLAEELKRRTERQGRQIEEIERKTEEAKRKIEELNKKAEELLKKEDDDSD



LEKTKELLKEAKEQLREVKEIKRRVEELKREQEETLKLTKEAAELAEEAKELMEEMLELSEEILEEMLENPK



PYTPEELEKVRERHELIKKLLEEIEELEEMFEELERLVEEQGRRLERIEEKVSRAVRHVERAEEN






> SEQ ID NO: 397



SETEKKENEALEELERLLEEAKKLLEEQRRLLEAQGEVQKEQEKLEDELEEIQEEAEKYQNKLLESKDEEDE



MSLLKKALELLEKASKLLEELEALLKKQKELLEKQKELMKELEEVLKKIEEKLKKIKELQEEELKEKKKELA



EAEAAEKAGKAAGVSLKEEVEKVKRELAQIEERHQQILELEEKIKELLEMFKELSEKIEEQGQKIDRIEDKV




SKAKEHVEKGVED






> SEQ ID NO: 398



SSLEKKIDENLEKALELLEELKEKLEEMRRLLEESGRLQDELEELMDETQKQQEELEKLLEKLLKMDDSDEQ



YELLKEALKKQKELKEQLEELEEKLKELRRAHEETRRKMEEAEELLKELEEVMEELKKAQEELLKEKKKKYE



EAKKELEEAKKKGEEGKEKLEKVKRELAQIEERHQQILELEEKIKELLEMFKELSEKIEEQGQKIDRIEDKV




SKAKEHVEKGVED






> SEQ ID NO: 399



SEEKKKMEELLDKIKELLEELKKLAEEIKKLLEEQGRQLEKLEEEADKALRQAEEAIRLQEKALELEDDEEI



DEALKELEEKQKKLKEQLEKLEEQISELKKLFEEQKKKMEEAEELLKEMLELIKEMKENHEKLLEEAKKRYE



EKLKEYEELKKLGILPKEELEKVKRELAQIEERHQQILELEEKIKELLEMFKELSEKIEEQGQKIDRIEDKV




SKAKEHVEKGVED






> SEQ ID NO: 400



EEFEKKENELLEELKKKLEEAKKLLKENRRLLEEQGRQLEEIEEKMEEAEELQEKALEYQEKAEKAGFSDES



FEYLKEALKVLEELEEQLEEIEEKLEEQRELLEKQRELLKEAEKKLKEAEEVCKKLKELIEKRKEEAEEKLK



KAEEKAKEAAKKGVDLSEELEKVKRELAQIEERHQQILELEEKIKELLEMFKELSEKIEEQGQKIDRIEDKV




SKAKEHVEKGVED






> SEQ ID NO: 401



SEEEEKFNELLEKIEEELEEIKELAEELREKLEELGRLTEKALELADELEKLFEEAEKLLEEALKLGDGEEL



EEVLKEALEKLKEAKEKLEKLEEELSKLKEAQEEAKELLEELEEELKELEEEIKKLKELSEETLKKAKEKLK



EAEKKAEELKKLGIDPTEELEKVKRELAQIEERHQQILELEEKIKELLEMFKELSEKIEEQGQKIDRIEDKV




SKAKEHVEKGVED






> SEQ ID NO: 402



SSLKEKFNELLDELLKELEEAKELLEEIREQLERIGEQLEELEEQFDEILKEQEELEKQQKKLLESPGSEEE



EEQLKEIEEKQKKIKEKIEELEEQIEELKEQQEKLKELTKELEEKLKEISETLKELKKVQEELLKEKKKKYE



EAKKKYEEKKKKGINGTEELEKVKRELAQIEERHQQILELEEKIKELLEMFKELSEKIEEQGQKIDRIEDKV




SKAKEHVEKGVED






> SEQ ID NO: 403



KESEEKFEEKLKELEKLLEEAKELLEKQREYLEESGRLLDEAEKLMDETERIFEETLKLQDKLLAAKDEEDQ



MSLLKKALELLEKASKLLDELEATLKELKALLEKQKELMEELEKVLKEIEEKMKEIKKLQEEELKEQKKKLK



EAEEKEKEGEKKGVSYKEEVEKVKRELAQIEERHQQILELEEKIKELLEMFKELSEKIEEQGQKIDRIEDKV




SKAKEHVEKGVED






> SEQ ID NO: 404



SKLKEEFEKYLEELLKQLEKLKEKLKELREKLEEQGKQLEKLEEQFDRILEQQEKLLEQQEKLLEDEGSEEE



EELLKEIEKQQEKLKEEIEKLEEQIKKLKEQQEELKEISEKAKELLKKTAEILKKLKEVQEKLLEEKKKELE



EAEKKYEELKKKGINGTEELEKVKRELAQIEERHQQILELEEKIKELLEMFKELSEKIEEQGQKIDRIEDKV




SKAKEHVEKGVED






> SEQ ID NO: 405



SEREKEFNERLEEMEKLLEKIKKLAEEIRRLLEKQGELLDKLEELADEALRLQEKAIEKSEKILEKGYNEET



EEELKELLKLLKELEELLDEAEELIDEIKRLLEEQKKLMEEMEKALKKLEELTKKLKELIEKELEEQRKRLE



ELEKRKEEYEKLGIDLSEELEKVKRELAQIEERHQQILELEEKIKELLEMFKELSEKIEEQGQKIDRIEDKV




SKAKEHVEKGVED






> SEQ ID NO: 406



SSFEEEINKLLEELKRKLEELKEILEEIRKLLEEQGRQLDEIEEKMDEAEELAEKAEEYLKKAEEAGGGEES



YEYLKKALETLKELEEKLDEIEEKLSEQKKLLEETREKLEEAEKKLKEAEKVIKKLKELIEKEKKEKEAELK



KAEAAAAEAAKLGIDKSEELEKVKRELAQIEERHQQILELEEKIKELLEMFKELSEKIEEQGQKIDRIEDKV




SKAKEHVEKGVED






> SEQ ID NO: 407



SEEEEKFNELLEKIEEKLEEAKELAEELREELEKIGELTDEAERLADEALKLAEEAEKLLKEALKLGDEDEL



DKILKEAEKTLEELKKKLEELEEKLKELKEAQEKAKELLKELEETLKELEELIKELKKFSEETLEKAKEKYK



KAEEKYKEDLKKGIDNTEEIEKVKRELAQIEERHQQILELEEKIKELLEMFKELSEKIEEQGQKIDRIEDKV




SKAKEHVEKGVED






> SEQ ID NO: 408



ESFEKELEELLEKIQELMEKIKELAEKLREALEESGRLLEEIEEAVDKLEEKFEEIEKLQENAEKYEDTEEA



EKYLKEMEEKLKKAKELLDKLEELVSKLKELQEKQRELMEKLEEKLKELLELLKKLKELIEKLKEKKKKELE



EAEKKLKEAEEYNEELEKEVEKVKRELAQIEERHQQILELEEKIKELLEMFKELSEKIEEQGQKIDRIEDKV




SKAKEHVEKGVED






> SEQ ID NO: 409



SELEEKENKYLEELLETLEKLKEALEKIREKLEEQGKQLDKIEEAFDELLKQQEELLKQQEELLADPGSEES



EKKLKEIEKQQEKIKEQIEKLEEQIKKLRELQEKQKELTEKAKELLEKLEEILKKLKEVQEKLLEEKKKEYE



EAEKEYKEDKKKGINNKEKLEKVKRELAQIEERHQQILELEEKIKELLEMFKELSEKIEEQGQKIDRIEDKV




SKAKEHVEKGVED






> SEQ ID NO: 410



SSLEKKIDENLEKALELLEELKEKLEEMRRLLEESGRLQDELEELMDETQKQQEELEKLLEKLLKMDDSDEQ



YELLKEALKKQKELKEQLEELEEKLKELRRAHEETRRKMEEAEELLKELEEVMEELKKAQEELLKEKKKKYE



EAKKELEEAKKKGEEGKEKLEKVKRELAQIEERHQQILELEEKIKELLEMFKELSEKIEEQGQKIDRIEDKV




SKAKEHVEKGVED






> SEQ ID NO: 411



SSLEKKIDENLEKALELLEELKEKLEEMRRLLEESGRLQDELEELMDETQKQQEELEKLLEKLLKMDDSDEQ



YELLKEALKKQKELKEQLEELEEKLKELRRAHEETRRKMEEAEELLKELEEVMEELKKAQEELLKEKKKKYE



EAKKELEEAKKKGEEGKEKLEKVKRELAQIEERHQQILELEEKIKELLEMFKELSEKIEEQGQKIDRIEDKV




SKAKEHVEKGVED






> SEQ ID NO: 412



GELKEKKEKLSKEFEKLLKESKRLAEELKEKLEELGRALDEAEELADEVERQQEELEKLQEEILKSEENEDE



KKQLEELEKKLKELEELLKELEEKLKEVEELMKEVEELMEELEKTMEEMEKAIEELEKVYKEELKKTEAKLK



ATKAEAEAAKAKGEDISDKLEAAEKEYKSVKEELKLVEEIKKKVEEIKEMLEEMKERIEEMEEKVKRIEEKL




KRIEESLKRVEEN






> SEQ ID NO: 413



DELEKKIKELEEKSEEELKEAKELAEELRRLLEELERALDEAERLADEVERKQEELEKLMEEMLKSEDNESD



EEDLKKLKEKLEELEKLLEELEERAREVEELMERVEETMEELEEEMEELLETLKKLLEVYEELLKKKKKELE



ETKKKAEEMKKKGIDISEELEKAKEELESVKKNLELVKKILEEVKEIKEELEEMGEEIERMEEKVDRIEEKL




ERVEESLERVSKN






> SEQ ID NO: 414



SEEDKKMEELLEEALKLLEELKELLEKNRELLEELGRQQEELEKLQDEAERLQEELEEAFKKMEENEESEEG



KKYLEEAEKLLKELKKLLEEIEKKTKEIEELVKKQEELMKKIKEVMKKLEEKMKELYRISKERLERAKEEAA



RAEAARAEYEAAGSPEVERAEQVLEEYREAKEFYEKVEELLREVKEIKEEIKEMEERIKEIGERIKRIEEKI




ERVEKLLERTEKN






> SEQ ID NO: 415



SEKEKEFNELLEEALRELEKLKELLEENGRLLERTGEQLERMEELMDEAEEKQEELEEAIKKMEKYEDSEEG



DEYLEEAEELLEELEELLEEIEAQTEEIEALIKEQEELMKKIKEEMEKLKEAVEKLYEISKEMLEEAKKEYE



KAEKAKAEYEAAGKDEVKECEKVKEKYEEAKKRYEQVEKLLKEVEEIKEEIERMGEEIKRQGERIERIEEKI




ERVEEELERLEEN


















TABLE 13





#
amino aciduence







N9

KPGEEKLNKLLEELLKKLEELKKLAEENRRLLERQGRQLEELERRFEELNRRMEELNEKLEKLLKEEPNEE




TG EKLEEIKKELEELSRELKELEERVRRQEEEHERQREVVEEIKKELEEAKKYCEELLKTSEEILEEMLEN



PKPYTPEELEKVRERHELIKKLLEEIEELEEMFEELERLVEEQGRRLERIEEKVSRAVRHVERAEEN



SEQ ID NO: 416





N10

EPKEKELEELLEELLRELEEIKKLLEEFRRLQEEIGRQIEEIERQLEELLERLEELNEKLENLLKREDNEN




DLEELKELLEEMRELGREMRELERRVEELGRLLEEQRRLVEELKKKLERLLELVKRLLELVEEILEEMLEN



PKPYTPEELEKVRERHELIKKLLEEIEELEEMFEELERLVEEQGRRLERIEEKVSRAVRHVERAEEN



SEQ ID NO: 417





N11

RPEEEKLNELLDELLRLLEEIKKLLEENRALLEEIGRQIDRIEEQLDRLLRELKELNEKLEALLKREDNEN




DLEELKELLEEIKRLSEEMKELEREVERLGELLEEQRRKVEELKRKLEELLELTEEALELVEEILEEMLEN



PKPYTPEELEKVRERHELIKKLLEEIEELEEMFEELERLVEEQGRRLERIEEKVSRAVRHVERAEEN



SEQ ID NO: 418





N12

SLEEILEKLKEIAELLEEVEELTEELKEETERAGRELEELERRLEELVRRAEELNRKLEKILEEEDSDDIL





ERLKEARRELRELRERLEEVEREIERLIREAEEQSELLEELERELEEIKELLKELLEKEEELSEEELELIK





KLLEEIEELEEMFEELERLVEEQGRRLERIEEKVSRAVRHVERAEEN SEQ ID NO: 419






N28
VAILWHEMWHEGLEEASRLYFGERNVKGMFEVLEPLHAMMERGPQTLKETSFNQAYGRDLMEAQEWCRKYM



KSGNVKDLTQAWDLYYHVFRRISGGSGGSGGSGGSDARENEMDENLEQVSGIIGNLRHMALDMGNEIDT




QNRQIDRIMEKADSAKTRIDEANQRATKMLGSGGGSGGSEELKKLEKEGEKLKELVEELDREIKELKE





GMERLREMFEEAAKLSEEALEIMRRTRKLSEEELEEAKQKAKEQEKEKALKEKGGSGGSGGSEKVKRE





LAQIEERHQQILELEEKIKELLEMFKELSEKIEEQGQKIDRIEDKVSKAKEHVEKGVED




SEQ ID NO: 420





N29
VAILWHEMWHEGLEEASRLYFGERNVKGMFEVLEPLHAMMERGPQTLKETSFNQAYGRDLMEAQEWCRKYM



KSGNVKDLTQAWDLYYHVFRRISGGSGGSGGSGGSGGSGGSGGSGGSDARENEMDENLEQVSGIIGNLRH




MALDMGNEIDTQNRQIDRIMEKADSAKTRIDEANQRATKMLGSGGGSGGSEELKKLEKEGEKLKELVE





ELDREIKELKEGMERLREMFEEAAKLSEEALEIMRRTRKLSEEELEEAKQKAKEQEKEKALKEKGGSG




GSGGSEKVKRELAQIEERHQQILELEEKIKELLEMFKELSEKIEEQGQKIDRIEDKVSKAKEHVEKGV




ED SEQ ID NO: 421






N30
VAILWHEMWHEGLEEASRLYFGERNVKGMFEVLEPLHAMMERGPQTLKETSFNQAYGRDLMEAQEWCRKYM



KSGNVKDLTQAWDLYYHVFRRISGGSGGSGGSGGSSEREKEIDEGLDRVSEIVKELKKMAEEMRRMIEE




QGRRIERIEEKAEEAKEKIEEANERAEKLLKDPGGSGGSEELKKLEKEGEKLKELVEELDREIKELKE





GMERLREMFEEAAKLSEEALEIMRRTRKLSEEELEEAKQKAKEQEKEKALKEKGGSGGSGGSEKVKRE





LAQIEERHQQILELEEKIKELLEMFKELSEKIEEQGQKIDRIEDKVSKAKEHVEKGVED




SEQ ID NO: 422





N31
VAILWHEMWHEGLEEASRLYFGERNVKGMFEVLEPLHAMMERGPQTLKETSFNQAYGRDLMEAQEWCRKYM



KSGNVKDLTQAWDLYYHVERRISGGSGGSGGSGGSGGSGGSGGSGGSSEREKEIDEGLDRVSEIVKELKK




MAEEMRRMIEEQGRRIERIEEKAEEAKEKIEEANERAEKLLKDPGGSGGSEELKKLEKEGEKLKELVE





ELDREIKELKEGMERLREMFEEAAKLSEEALEIMRRTRKLSEEELEEAKQKAKEQEKEKALKEKGGSG




GSGGSEKVKRELAQIEERHQQILELEEKIKELLEMFKELSEKIEEQGQKIDRIEDKVSKAKEHVEKGV




ED SEQ ID NO: 423






N32
VAILWHEMWHEGLEEASRLYFGERNVKGMFEVLEPLHAMMERGPQTLKETSFNQAYGRDLMEAQEWCRKYM



KSGNVKDLTQAWDLYYHVFRRISGGSGGSSEREKEIDEGLDRVSEIVKELKKMAEEMRRMIEEQGRRIE




RIEEKAEEAKEKIEEANERAEKLLKDPGGSGGSEELKKLEKEGEKLKELVEELDREIKELKEGMERLR





EMFEEAAKLSEEALEIMRRTRKLSEEELEEAKQKAKEQEKEKALKEKGGSGGSGGSEKVKRELAQIEE





RHQQILELEEKIKELLEMFKELSEKIEEQGQKIDRIEDKVSKAKEHVEKGVED SEQ ID NO: 424






N33
VAILWHEMWHEGLEEASRLYFGERNVKGMFEVLEPLHAMMERGPQTLKETSFNQAYGRDLMEAQEWCRKYM



KSGNVKDLTQAWDLYYHVERRISGGSGGSSEKEKEIDELLDKVSEIVKELKKLAEELKRRTERQGRQIE




EIERKTEEAKRKIEELNKKAEELLKKEDDDSDLEKTKELLKEAKEQLREVKEIKRRVEELKREQEETL





KLTKEAAELAEEAKELMEEMLELSEEILEEMLENPKPYTPEELEKVRERHELIKKLLEEIEELEEMFE





ELERLVEEQGRRLERIEEKVSRAVRHVERAEEN SEQ ID NO: 425










In a further embodiment of this fourth aspect, the X2 JMD domain comprises an amino acid sequence at least 50%, 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the amino acid sequence selected from the group consisting of SEQ ID NO:331-332 and 426-445. The amino acid sequences of SEQ ID NO: 426-445 are shown in Table 14.











TABLE 14









TKKAVKYQSRRRRRR SEQ ID NO: 426







TKKAVKYQSKKKKKK SEQ ID NO: 427







LKEAVEYDEKARRKK SEQ ID NO: 428







LKKAVEYDEKARRKK SEQ ID NO: 429







LKEAVEYEEKARRKK SEQ ID NO: 430







LKEAVKYREESEKME SEQ ID NO: 431







LKEAVKYNEEGKKME SEQ ID NO: 432







LKEAVEYREKSEKME SEQ ID NO: 433







LKEAVKYKEESEKME SEQ ID NO: 434







LKKAVEYKEKSEKKE SEQ ID NO: 435







TKKAVKYQSESEKME SEQ ID NO: 436







TKKAVKYQSEAEKME SEQ ID NO: 437







TKKAVKYQSEAEKKE SEQ ID NO: 438







IGEAVKYLEKSKELE SEQ ID NO: 439







LGEAVEYLEKSKKLE SEQ ID NO: 440







LKEAKEYRKKNEELE SEQ ID NO: 441







LKEIKELAKKREEKG SEQ ID NO: 442







LEEIERLFEERKEKG SEQ ID NO: 443







LKEIKELRDKIEKNG SEQ ID NO: 444







LEEIKKLREKIKENG SEQ ID NO: 445










In another embodiment, the X3 TMD domain comprises an amino acid sequence at least 50%, 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the amino acid sequence selected from the group consisting of SEQ ID NO:223-234. The amino acid sequences of the X3 TMDs is provided in Table 4.


In further embodiments of this fourth aspect, the nucleic acid encodes a polypeptide comprising the formula B1-B2-X1-X2-X3, wherein

    • B1 comprises the amino acid sequence at least 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% of SEQ ID NO:290 or 291; and
    • B2 comprises an optional amino acid linker, which may be present or absent.


In these embodiments the fusion protein can be used for inducible binding to v-SPs (described above) in the presence of rapamycin. The sc-t-SPs can be fused to the FRB domain (SEQ ID NO:291) at the N-terminus and FRB can bind to its cognate binding partner FKBP domain (e.g. SEQ ID NO:290) fused to the N-terminus of v-SPs (e.g. SEQ ID NO 148) only in the presence of rapamycin. The fusion activity of designed fusogens fused to FKB and FRB can be induced in the presence of rapamycin. FRB domain fused to sc-t-SPs and FKBP domain fused to v-SPs would function similarly if they were interchanged with each other.


In one embodiment, the nucleic acids of this fourth aspect encode a polypeptide comprising an amino acid sequence at least 50%, 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the amino acid sequence selected from the group consisting of SEQ ID NO:64-146, 148, and 446-455


The amino acid sequence of SEQ ID NO:64-146 and 446-455 are shown in Tables 15 and 16.


In a further embodiment, the nucleic acids of this fourth aspect encode a polypeptide that further comprises a signal peptide at its amino-terminus. Any signal peptide may be used as suitable for an intended purpose. The signal peptide may be directly linked to the polypeptide, or may be connected via an amino acid linker. In some embodiments, the signal peptide comprises the amino acid sequence selected from the group consisting of SEQ ID NO:292-309. The amino acid sequence of these exemplary signal peptides are provided in Table 7.


In a further embodiment, the nucleic acids of the second aspect comprise an expression vector comprising the nucleic acid operatively linked to a control sequence, such as a promoter.









TABLE 15







>SEQ ID NO: 64



DARENEMDENLEQVSGIIGNLRHMALDMGNEIDTQNRQIDRIMEKADSAKTRIDEANQRATKMLGSGGGSGG



SEELKDLEKEGKELKELVEELDREVKELKESMEKLKEMTEEAAELSSQALEIMRRTRKLSEELLKEAKEEEE



EEEEEEEEEEGGSGGSGGSSISKQALSEIETRHSEIIKLENSIRELHDMFMDMAMLVESQGEMIDRIEYNV




EHAVDYVERAVSD
TKKAVKYQSKARRKK
IMIIICCVILGIVIASTVGGIFA






> SEQ ID NO: 65



DARENEMDENLEQVSGIIGNLRHMALDMGNEIDTQNRQIDRIMEKADSAKTRIDEANQRATKMLGSGGGSGG



SEELKKLEKEGEKLKELVEELDREIKELKEGMERLREMFEEAAKLSEEALEIMRRTRKLSEEELEEAKQKAK



EQEKEKALKEKGGSGGSGGSSISKQALSEIETRHSEIIKLENSIRELHDMEMDMAMLVESQGEMIDRIEYNV




EHAVDYVERAVSD
TKKAVKYQSKARRKK
IMIIICCVILGIVIASTVGGIFA






> SEQ ID NO: 66



DARENEMDENLEQVSGIIGNLRHMALDMGNEIDTQNRQIDRIMEKADSAKTRIDEANQRATKMLGSGGGSGG



SEELKDLEKEGKELKELVEELDREVKELKESMEKLKEMTEEAAELSSQALEIMRRTRKLSEELLKEAKEEEE


EEEEEEGGSGGSGGSSISKQALSEIETRHSEIIKLENSIRELHDMEMDMAMLVESQGEMIDRIEYNVEHAVD



YVERAVSD
TKKAVKYQSKARRKK
IMIIICCVILGIVIASTVGGIFA






> SEQ ID NO: 67



DARENEMDENLEQVSGIIGNLRHMALDMGNEIDTQNRQIDRIMEKADSAKTRIDEANQRATKMLGSGGGSGG



SEELKDLEKEGKELKELVEELDREVKELKESMEKLKEMTEEAAELSSQALEIMRRTRKLSEELLKEAKEEEE



EGGSGGSGGSSISKQALSEIETRHSEIIKLENSIRELHDMEMDMAMLVESQGEMIDRIEYNVEHAVDYVERA




VSD
TKKAVKYQSKARRKK
IMIIICCVILGIVIASTVGGIFA






> SEQ ID NO: 68



DARENEMDENLEQVSGIIGNLRHMALDMGNEIDTQNRQIDRIMEKADSAKTRIDEANQRATKMLGSGGGSGG



SEELKDLEKEGKELKELVEELDREVKELKESMEKLKEMTEEAAELSSQALEIMRRTRKLSEELLKEAKGGSG


GSGGSSISKQALSEIETRHSEIIKLENSIRELHDMEMDMAMLVESQGEMIDRIEYNVEHAVDYVERAVSDTK



KAVKYQSKARRKKIMIIICCVILGIVIASTVGGIFA






> SEQ ID NO: 69



DARENEMDENLEQVSGIIGNLRHMALDMGNEIDTQNRQIDRIMEKADSAKTRIDEANQRATKMLGSGGGSGG



SEELKDLEKEGKELKELVEELDREVKELKESMEKLKEMTEEAAELSSQALEIMRRTRKLSEELGGSGGSGGS



SISKQALSEIETRHSEIIKLENSIRELHDMEMDMAMLVESQGEMIDRIEYNVEHAVDYVERAVSD
TKKAVKY




QSKARRKK
IMIIICCVILGIVIASTVGGIFA






> SEQ ID NO: 70



DARENEMDENLEQVSGIIGNLRHMALDMGNEIDTQNRQIDRIMEKADSAKTRIDEANQRATKMLGSGGGSGG



SEELKDLEKEGKELKELVEELDREVKELKESMEKLKEMTEEAAELSSQALEIMRRTRKGGSGGSGGSSISKQ



ALSEIETRHSEIIKLENSIRELHDMEMDMAMLVESQGEMIDRIEYNVEHAVDYVERAVSD
TKKAVKYQSKAR




RKK
IMIIICCVILGIVIASTVGGIFA






> SEQ ID NO: 71



DARENEMDENLEQVSGIIGNLRHMALDMGNEIDTQNRQIDRIMEKADSAKTRIDEANQRATKMLGSGGGSGG



SEELKDLEKEGKELKELVEELDREVKELKESMEKLKEMTEEAAELSSQALEIMRRTRKLSEELLKEAKEEEE



EEEEEEGGSGGSGGSALSEIETRHSEIIKLENSIRELHDMFMDMAMLVESQGEMIDRIEYNVEHAVDYVERA




VSD
TKKAVKYQSKARRKK
IMIIICCVILGIVIASTVGGIFA






> SEQ ID NO: 72



DARENEMDENLEQVSGIIGNLRHMALDMGNEIDTQNRQIDRIMEKADSAKTRIDEANQRATKMLGSGGGSGG



SEELKDLEKEGKELKELVEELDREVKELKESMEKLKEMTEEAAELSSQALEIMRRTRKLSEELLKEAKEEEE



EGGSGGSGGSALSEIETRHSEIIKLENSIRELHDMEMDMAMLVESQGEMIDRIEYNVEHAVDYVERAVSDTK




KAVKYQSKARRKK
IMIIICCVILGIVIASTVGGIFA









> SEQ ID NO: 73



DARENEMDENLEQVSGIIGNLRHMALDMGNEIDTQNRQIDRIMEKADSAKTRIDEANQRATKMLGSGGGSGG



SEELKDLEKEGKELKELVEELDREVKELKESMEKLKEMTEEAAELSSQALEIMRRTRKLSEELLKEAKGGSG


GSGGSALSEIETRHSEIIKLENSIRELHDMFMDMAMLVESQGEMIDRIEYNVEHAVDYVERAVSDTKKAVKY



QSKARRKK
IMIIICCVILGIVIASTVGGIFA






> SEQ ID NO: 74



DARENEMDENLEQVSGIIGNLRHMALDMGNEIDTQNRQIDRIMEKADSAKTRIDEANQRATKMLGSGGGSGG



SEELKDLEKEGKELKELVEELDREVKELKESMEKLKEMTEEAAELSSQALEIMRRTRKLSEELGGSGGSGGS



ALSEIETRHSEIIKLENSIRELHDMEMDMAMLVESQGEMIDRIEYNVEHAVDYVERAVSD
TKKAVKYQSKAR




RKK
IMIIICCVILGIVIASTVGGIFA






> SEQ ID NO: 75



DARENEMDENLEQVSGIIGNLRHMALDMGNEIDTQNRQIDRIMEKADSAKTRIDEANQRATKMLGSGGGSGG



SEELKKLEKEGEKLKELVEELDREIKELKEGMERLREMFEEAAKLSEEALEIMRRTRKLSEEELEEAKQKAK



EQEKEKALKEKGGSGGSGGSEKVKEELAKVEERHKQIQALLDKIEELYEMFKEMSEKISEQGQKIDRIEEKV




SKASEHVSKGVED
TKKAVKYQSKARRKK
IMIIICCVILGIVIASTVGGIFA






> SEQ ID NO: 76



DARENEMDENLEQVSGIIGNLRHMALDMGNEIDTQNRQIDRIMEKADSAKTRIDEANQRATKMLGSGGGSGG



SEELKKLEKEGEKLKELVEELDREIKELKEGMERLREMFEEAAKLSEEALEIMRRTRKLSEEELEEAKQKAK



EQEKEKALKEKGGSGGSGGSEKVKKELAEVEKRHKQILELEEKIKELYEMEKEMSEKIEKQGQKIDRIDDKV




SEAKKHVEKAVED
TKKAVKYQSKARRKK
IMIIICCVILGIVIASTVGGIFA






> SEQ ID NO: 77



DARENEMDENLEQVSGIIGNLRHMALDMGNEIDTQNRQIDRIMEKADSAKTRIDEANQRATKMLGSGGGSGG



SEELKKLEKEGEKLKELVEELDREIKELKEGMERLREMFEEAAKLSEEALEIMRRTRKLSEEELEEAKQKAK



EQEKEKALKEKGGSGGSGGSEKVKRELAQIEERHQQILELEEKIKELLEMFKELSEKIEEQGQKIDRIEDKV




SKAKEHVEKGVED
TKKAVKYQSKARRKK
IMIIICCVILGIVIASTVGGIFA






> SEQ ID NO: 78



DARENEMDENLEQVSGIIGNLRHMALDMGNEIDTQNRQIDRIMEKADSAKTRIDEANQRATKMLGSGGGSGG



SEELKKLEKEGEKLKELVEELDREIKELKEGMERLREMFEEAAKLSEEALEIMRRTRKLSEEELEEAKQKAK



EQEKEKALKEKGGSGGSGGSEAVKKSLAAKEERHKQILELLEKIKELHEMFKELSEKIEKQGQKIDRIEDKV




SKASEHVSKGVED
TKKAVKYQSKARRKK
IMIIICCVILGIVIASTVGGIFA






> SEQ ID NO: 79



DARENEMDENLEQVSGIIGNLRHMALDMGNEIDTQNRQIDRIMEKADSAKTRIDEANQRATKMLGSGGGSGG



SEELKKLEKEGEKLKELVEELDREIKELKEGMERLREMFEEAAKLSEEALEIMRRTRKLSEEELEEAKQKAK



EQEKEKALKEKGGSGGSGGSEAVKKELAAIEERHEQILELLKKIEELYEMEKELSEKIEKQGQKIDRIEKKV




SEASRHVSKAVED
TKKAVKYQSKARRKK
IMIIICCVILGIVIASTVGGIFA






> SEQ ID NO: 80



DARENEMDENLEQVSGIIGNLRHMALDMGNEIDTQNRQIDRIMEKADSAKTRIDEANQRATKMLGSGGGSGG



SEELKKLEKEGEKLKELVEELDREIKELKEGMERLREMFEEAAKLSEEALEIMRRTRKLSEEELEEAKQKAK



EQEKEKALKEKGGSGGSGGSEKVKKDLAAIEERHQQILELEEKIKELHEMFKEMSEKISEQMQKIDRIEEKV




SKASEHVSKGVED
TKKAVKYQSKARRKK
IMIIICCVILGIVIASTVGGIFA









> SEQ ID NO: 81



DARENEMDENLEQVSGIIGNLRHMALDMGNEIDTQNRQIDRIMEKADSAKTRIDEANQRATKMLGSGGGSGG



SEELKKLEKEGEKLKELVEELDREIKELKEGMERLREMFEEAAKLSEEALEIMRRTRKLSEEELEEAKQKAK



EQEKEKALKEKGGSGGSGGSEKVRRELAAIEERHRQILELLEKIEELHEMFKEMSEKISKQMEKIDRIDDRV




SEASRHVEKGVED
TKKAVKYQSKARRKK
IMIIICCVILGIVIASTVGGIFA






> SEQ ID NO: 82



DARENEMDENLEQVSGIIGNLRHMALDMGNEIDTQNRQIDRIMEKADSAKTRIDEANQRATKMLGSGGGSGG



SEELKKLEKEGEKLKELVEELDREIKELKEGMERLREMFEEAAKLSEEALEIMRRTRKLSEEELEEAKQKAK



EQEKEKALKEKGGSGGSGGSKAVKEELANIENRHKQIDALYEKIKELHEMFLEMSERIEAQLQKIDRIDDKV




SKAKAHVEKGVED
TKKAVKYQSKARRKK
IMIIICCVILGIVIASTVGGIFA






> SEQ ID NO: 83



NKREEEIDKGLDRVGEIISKLNEMAREMGEKIEEQNQKISEIEKKADEAIEKVEKLIKDAEKLLGSGGGSGG



SEELKKLEKEGEKLKELVEELDREIKELKEGMERLREMFEEAAKLSEEALEIMRRTRKLSEEELEEAKQKAK



EQEKEKALKEKGGSGGSGGSSISKQALSEIETRHSEIIKLENSIRELHDMEMDMAMLVESQGEMIDRIEYNV




EHAVDYVERAVSD
TKKAVKYQSKARRKK
IMIIICCVILGIVIASTVGGIFA






> SEQ ID NO: 84



NKREEEIDKGLDRVGEIISKLNEMAREMGEKIEEQNQKISEIEKKADEAIEKVEKLIKDAEKLLGSGGGSGG



SEELKKLEKEGEKLKELVEELDREIKELKEGMERLREMFEEAAKLSEEALEIMRRTRKLSEEELEEAKQKAK



EQEKEKALKEKGGSGGSGGSALSEIETRHSEIIKLENSIRELHDMEMDMAMLVESQGEMIDRIEYNVEHAVD




YVERAVSD
TKKAVKYQSKARRKK
IMIIICCVILGIVIASTVGGIFA






> SEQ ID NO: 85



NKREEEIDKGLDRVGEIISKLNEMAREMGEKIEEQNQKISEIEKKADEAIEKVEKLIKDAEKLLGSGGGSGG




SEELKKLEKEGEKLKELVEELDREIKELKEGMERLREMFEEAAKLSEEALEIMRRTRKLSEEELEEAKQKAK




EQEKEKALKEKGGSGGSGGSSISKQALSEIETRHSEIIKLENSIRELHDMEMDMAMLVESQGEMIDRIEYNV




EHAVDYVERAVSD
TKKAVKYQSKARRKKLLLLLLLLLLLLLLLLLLLLLFA






> SEQ ID NO: 86



NKREEEIDKGLDRVGEIISKLNEMAREMGEKIEEQNQKISEIEKKADEAIEKVEKLIKDAEKLLGSGGGSGG



SEELKKLEKEGEKLKELVEELDREIKELKEGMERLREMFEEAAKLSEEALEIMRRTRKLSEEELEEAKQKAK



EQEKEKALKEKGGSGGSGGSSISKQALSEIETRHSEIIKLENSIRELHDMEMDMAMLVESQGEMIDRIEYNV




EHAVDYVERAVSD
TKKAVKYQSKARRKKMMIILGVICAIILIIIIVYFFA






> SEQ ID NO: 87



NKREEEIDKGLDRVGEIISKLNEMAREMGEKIEEQNQKISEIEKKADEAIEKVEKLIKDAEKLLGSGGGSGG



SEELKKLEKEGEKLKELVEELDREIKELKEGMERLREMFEEAAKLSEEALEIMRRTRKLSEEELEEAKQKAK



EQEKEKALKEKGGSGGSGGSSISKQALSEIETRHSEIIKLENSIRELHDMEMDMAMLVESQGEMIDRIEYNV




EHAVDYVERAVSDTKKAVKYQSRRRRRRMMIILGVICAIILIIIIVYFFA






> SEQ ID NO: 88



NEREKEIDEGLERVGELISKLKELAREMSEKIEEQNQKLSEIDKKAEEAIKLLEKANASAKKLLEKPGGSGG



SEELKKLEKEGEKLKELVEELDREIKELKEGMERLREMFEEAAKLSEEALEIMRRTRKLSEEELEEAKQKAK



EQEKEKALKEKGGSGGSGGSEKVKRELAQIEERHQQILELEEKIKELLEMFKELSEKIEEQGQKIDRIEDKV




SKAKEHVEKGVED
TKKAVKYQSKARRKK
IMIIICCVILGIVIASTVGGIFA






> SEQ ID NO: 89



NEREKEIEEGLERVGELISELKEMAREMSEKIEEQNKKLDEISKKADEAIKLLEKANKGAEELLKKPGGSGG



SEELKKLEKEGEKLKELVEELDREIKELKEGMERLREMFEEAAKLSEEALEIMRRTRKLSEEELEEAKQKAK



EQEKEKALKEKGGSGGSGGSEKVKRELAQIEERHQQILELEEKIKELLEMFKELSEKIEEQGQKIDRIEDKV




SKAKEHVEKGVED
TKKAVKYQSKARRKK
IMIIICCVILGIVIASTVGGIFA









> SEQ ID NO: 90



NEREKEIDEGLEKIGELISKLKEMAREMSEKIEEQNEKLDEIDKKADEAIKLLEEANKKAEKLLKKKGGSGG



SEELKKLEKEGEKLKELVEELDREIKELKEGMERLREMFEEAAKLSEEALEIMRRTRKLSEEELEEAKQKAK



EQEKEKALKEKGGSGGSGGSEKVKRELAQIEERHQQILELEEKIKELLEMFKELSEKIEEQGQKIDRIEDKV




SKAKEHVEKGVED
TKKAVKYQSKARRKK
IMIIICCVILGIVIASTVGGIFA






> SEQ ID NO: 91



NEREKEIEEGLERIGELISKLKELAREMSEKIEEQNEKLSEISEKADEAIKLLEKANASAQKLLEKPGGSGG



SEELKKLEKEGEKLKELVEELDREIKELKEGMERLREMFEEAAKLSEEALEIMRRTRKLSEEELEEAKQKAK



EQEKEKALKEKGGSGGSGGSEKVKRELAQIEERHQQILELEEKIKELLEMFKELSEKIEEQGQKIDRIEDKV




SKAKEHVEKGVED
TKKAVKYQSKARRKK
IMIIICCVILGIVIASTVGGIFA






> SEQ ID NO: 92



NPREEEIDKGLEEIGKLISELKELAREMSEKIEEQNEKISEIDEKAKEAIELLKKANEKAKELLEKEGGSGG



SEELKKLEKEGEKLKELVEELDREIKELKEGMERLREMFEEAAKLSEEALEIMRRTRKLSEEELEEAKQKAK



EQEKEKALKEKGGSGGSGGSEKVKRELAQIEERHQQILELEEKIKELLEMFKELSEKIEEQGQKIDRIEDKV




SKAKEHVEKGVED
TKKAVKYQSKARRKK
IMIIICCVILGIVIASTVGGIFA






> SEQ ID NO: 93



SPREKEIDEGLERVSELVKKLKELAEKMKEMIEEQGRRIERIERKAEEAKERIEKLNEKAEKLLEDPGGSGG



SEELKKLEKEGEKLKELVEELDREIKELKEGMERLREMFEEAAKLSEEALEIMRRTRKLSEEELEEAKQKAK



EQEKEKALKEKGGSGGSGGSEKVKRELAQIEERHQQILELEEKIKELLEMFKELSEKIEEQGQKIDRIEDKV




SKAKEHVEKGVED
TKKAVKYQSKARRKK
IMIIICCVILGIVIASTVGGIFA






> SEQ ID NO: 94



SEREKEIDEGLDRVSEIVKELKKMAEEMRRMIEEQGRRIERIEEKAEEAKEKIEEANERAEKLLKDPGGSGG



SEELKKLEKEGEKLKELVEELDREIKELKEGMERLREMFEEAAKLSEEALEIMRRTRKLSEEELEEAKQKAK



EQEKEKALKEKGGSGGSGGSEKVKRELAQIEERHQQILELEEKIKELLEMFKELSEKIEEQGQKIDRIEDKV




SKAKEHVEKGVED
TKKAVKYQSKARRKK
IMIIICCVILGIVIASTVGGIFA






> SEQ ID NO: 95



SEREKEIDEGLEKVSEIVKELKEMAEEMREMIERQGEQIERIEKKAEEAKKKIEEQNERAERLLKDPGGSGG



SEELKKLEKEGEKLKELVEELDREIKELKEGMERLREMFEEAAKLSEEALEIMRRTRKLSEEELEEAKQKAK



EQEKEKALKEKGGSGGSGGSEKVKRELAQIEERHQQILELEEKIKELLEMFKELSEKIEEQGQKIDRIEDKV




SKAKEHVEKGVED
TKKAVKYQSKARRKK
IMIIICCVILGIVIASTVGGIFA






> SEQ ID NO: 96



SEREKEIEEGLERVSEIVRRLKELAEEMRRMIEEQGRRIDRIEEKADKAKEEIEKQNEKLEKLLKDPGGSGG



SEELKKLEKEGEKLKELVEELDREIKELKEGMERLREMFEEAAKLSEEALEIMRRTRKLSEEELEEAKQKAK



EQEKEKALKEKGGSGGSGGSEKVKRELAQIEERHQQILELEEKIKELLEMFKELSEKIEEQGQKIDRIEDKV




SKAKEHVEKGVED
TKKAVKYQSKARRKK
IMIIICCVILGIVIASTVGGIFA






> SEQ ID NO: 97



SEREKEIDEGLEKVSEIVKELKELAKEMKEMIEEQGRRIDRIERKAEETKKKIEELNEQAERLLKDPGGSGG



SEELKKLEKEGEKLKELVEELDREIKELKEGMERLREMFEEAAKLSEEALEIMRRTRKLSEEELEEAKQKAK



EQEKEKALKEKGGSGGSGGSEKVKRELAQIEERHQQILELEEKIKELLEMFKELSEKIEEQGQKIDRIEDKV




SKAKEHVEKGVED
TKKAVKYQSKARRKK
IMIIICCVILGIVIASTVGGIFA






> SEQ ID NO: 98



SEREEEIDKGLERVSEIVKKLKELAEKMKEEIERQGEQIDRIEKKADETIKEIERLNESADRLLKSPGGSGG



SEELKKLEKEGEKLKELVEELDREIKELKEGMERLREMFEEAAKLSEEALEIMRRTRKLSEEELEEAKQKAK



EQEKEKALKEKGGSGGSGGSEKVKRELAQIEERHQQILELEEKIKELLEMFKELSEKIEEQGQKIDRIEDKV




SKAKEHVEKGVED
TKKAVKYQSKARRKK
IMIIICCVILGIVIASTVGGIFA






> SEQ ID NO: 99



SEREKEIDEGLDRVSEIVKELKKMAEEMRRMIEEQGRRIERIEEKAEEAKEKIEEANERAEKLLKDPGGSGG



SEELKKLEKEGEKLKELVEELDREIKELKEGMERLREMFEEAAKLSEEALEIMRRTRKLSEEELEEAKQKAK



EQEKEKALKEKGGSGGSGGSEKVKRELAQIEERHQQILELEEKIKELLEMFKELSEKIEEQGQKIDRIEDKV




SKAKEHVEKGVEDTKKAVKYQSRRRRRRIMIIICCVILGIVIASTVGGIFA






> SEQ ID NO: 100



SEREKEIDEGLDRVSEIVKELKKMAEEMRRMIEEQGRRIERIEEKAEEAKEKIEEANERAEKLLKDPGGSGG



SEELKKLEKEGEKLKELVEELDREIKELKEGMERLREMFEEAAKLSEEALEIMRRTRKLSEEELEEAKQKAK



EQEKEKALKEKGGSGGSGGSEKVKRELAQIEERHQQILELEEKIKELLEMFKELSEKIEEQGQKIDRIEDKV




SKAKEHVEKGVED
TKKAVKYQSKKKKKK
IMIIICCVILGIVIASTVGGIFA






> SEQ ID NO: 101



SEREKEIDEGLDRVSEIVKELKKMAEEMRRMIEEQGRRIERIEEKAEEAKEKIEEANERAEKLLKDPGGSGG



SEELKKLEKEGEKLKELVEELDREIKELKEGMERLREMFEEAAKLSEEALEIMRRTRKLSEEELEEAKQKAK



EQEKEKALKEKGGSGGSGGSEKVKRELAQIEERHQQILELEEKIKELLEMFKELSEKIEEQGQKIDRIEDKV




SKAKEHVEKGVED
TKKAVKYQSKARRKK
AAVLVLLVIVIISLIVLVVIW






> SEQ ID NO: 102



SEREKEIDEGLDRVSEIVKELKKMAEEMRRMIEEQGRRIERIEEKAEEAKEKIEEANERAEKLLKDPGGSGG




SEELKKLEKEGEKLKELVEELDREIKELKEGMERLREMFEEAAKLSEEALEIMRRTRKLSEEELEEAKQKAK




EQEKEKALKEKGGSGGSGGSEKVKRELAQIEERHQQILELEEKIKELLEMFKELSEKIEEQGQKIDRIEDKV




SKAKEHVEKGVED
TKKAVKYQSKARRKK
MMVVVVVVVVVVVVVVVVYF






> SEQ ID NO: 103



SEREKEIDEGLDRVSEIVKELKKMAEEMRRMIEEQGRRIERIEEKAEEAKEKIEEANERAEKLLKDPGGSGG



SEELKKLEKEGEKLKELVEELDREIKELKEGMERLREMFEEAAKLSEEALEIMRRTRKLSEEELEEAKQKAK



EQEKEKALKEKGGSGGSGGSEKVKRELAQIEERHQQILELEEKIKELLEMFKELSEKIEEQGQKIDRIEDKV




SKAKEHVEKGVED
TKKAVKYQSKARRKK
MMIIIIIIIIIIIIIIIIYF






> SEQ ID NO: 104



SEREKEIDEGLDRVSEIVKELKKMAEEMRRMIEEQGRRIERIEEKAEEAKEKIEEANERAEKLLKDPGGSGG




SEELKKLEKEGEKLKELVEELDREIKELKEGMERLREMFEEAAKLSEEALEIMRRTRKLSEEELEEAKQKAK




EQEKEKALKEKGGSGGSGGSEKVKRELAQIEERHQQILELEEKIKELLEMFKELSEKIEEQGQKIDRIEDKV




SKAKEHVEKGVED
TKKAVKYQSRRRRRR
AAVLVLLVIVIISLIVLVVIW






> SEQ ID NO: 105



SEREKEIDEGLDRVSEIVKELKKMAEEMRRMIEEQGRRIERIEEKAEEAKEKIEEANERAEKLLKDPGGSGG



SEELKKLEKEGEKLKELVEELDREIKELKEGMERLREMFEEAAKLSEEALEIMRRTRKLSEEELEEAKQKAK



EQEKEKALKEKGGSGGSGGSEKVKRELAQIEERHQQILELEEKIKELLEMFKELSEKIEEQGQKIDRIEDKV




SKAKEHVEKGVED
TKKAVKYQSRRRRRR
MMVVVVVVVVVVVVVVVVYF






> SEQ ID NO: 106



SEREKEIDEGLDRVSEIVKELKKMAEEMRRMIEEQGRRIERIEEKAEEAKEKIEEANERAEKLLKDPGGSGG



SEELKKLEKEGEKLKELVEELDREIKELKEGMERLREMFEEAAKLSEEALEIMRRTRKLSEEELEEAKQKAK



EQEKEKALKEKGGSGGSGGSEKVKRELAQIEERHQQILELEEKIKELLEMFKELSEKIEEQGQKIDRIEDKV




SKAKEHVEKGVED
TKKAVKYQSKKKKKK
AAVLVLLVIVIISLIVLVVIW






> SEQ ID NO: 107



SEREKEIDEGLDRVSEIVKELKKMAEEMRRMIEEQGRRIERIEEKAEEAKEKIEEANERAEKLLKDPGGSGG



SEELKKLEKEGEKLKELVEELDREIKELKEGMERLREMFEEAAKLSEEALEIMRRTRKLSEEELEEAKQKAK



EQEKEKALKEKGGSGGSGGSEKVKRELAQIEERHQQILELEEKIKELLEMFKELSEKIEEQGQKIDRIEDKV




SKAKEHVEKGVED
TKKAVKYQSKKKKKK
MMVVVVVVVVVVVVVVVVYF






> SEQ ID NO: 108



DARENEMDENLEQVSGIIGNLRHMALDMGNEIDTQNRQIDRIMEKADSAKTRIDEANQRATKMLGSGGGSGG



SEELKKLEKEGEKLKELVEELDREIKELKEGMERLREMFEEAAKLSEEALEIMRRTRKLSEEELEEAKQKAK



EQEKEKALKEKGGSGGSGGSEKVKESLANKEERHKQILELEEKIKELYEMFKELSEKIEEQLKKIDRIEEKV




SEASRHVSKGVES
LKEAVEYDEKARRKK
IMIIICCVILGIVIASTVGGIFA






> SEQ ID NO: 109



DARENEMDENLEQVSGIIGNLRHMALDMGNEIDTQNRQIDRIMEKADSAKTRIDEANQRATKMLGSGGGSGG



SEELKKLEKEGEKLKELVEELDREIKELKEGMERLREMFEEAAKLSEEALEIMRRTRKLSEEELEEAKQKAK



EQEKEKALKEKGGSGGSGGSEKTRRTLAEIEERHRQILELEEKIEELYEMEKELSEKISEQGQKISRIEDKV




SKASEHVSKGVEN
LKKAVEYDEKARRKK
IMIIICCVILGIVIASTVGGIFA






> SEQ ID NO: 110



DARENEMDENLEQVSGIIGNLRHMALDMGNEIDTQNRQIDRIMEKADSAKTRIDEANQRATKMLGSGGGSGG



SEELKKLEKEGEKLKELVEELDREIKELKEGMERLREMFEEAAKLSEEALEIMRRTRKLSEEELEEAKQKAK



EQEKEKALKEKGGSGGSGGSEKVKKSLAEIEKRHEQILQLEKQIEELHEMEKELSEKISKQGQKIDRIEEKV




EEAKRHVEKAVKD
LKEAVEYEEKARRKK
IMIIICCVILGIVIASTVGGIFA






> SEQ ID NO: 111



DARENEMDENLEQVSGIIGNLRHMALDMGNEIDTQNRQIDRIMEKADSAKTRIDEANQRATKMLGSGGGSGG



SEELKKLEKEGEKLKELVEELDREIKELKEGMERLREMFEEAAKLSEEALEIMRRTRKLSEEELEEAKQKAK



EQEKEKALKEKGGSGGSGGSKKVKEELARIEARHQQILALEEKIRELYEMFKELSEKIEEQGKKIDRIEDKV




SKASEHVSKGVEN
LKEAVEYDEKARRKK
IMIIICCVILGIVIASTVGGIFA






> SEQ ID NO: 112



DARENEMDENLEQVSGIIGNLRHMALDMGNEIDTQNRQIDRIMEKADSAKTRIDEANQRATKMLGSGGGSGG



SEELKKLEKEGEKLKELVEELDREIKELKEGMERLREMFEEAAKLSEEALEIMRRTRKLSEEELEEAKQKAK



EQEKEKALKEKGGSGGSGGSKKVKEELKEKEKRHRQIEELLKKIEELHEMFEELSERISEQGQKIDRIDDKV




SKASEHVSKGVED
LKEAVEYEEKARRKK
IMIIICCVILGIVIASTVGGIFA






> SEQ ID NO: 113



DARENEMDENLEQVSGIIGNLRHMALDMGNEIDTQNRQIDRIMEKADSAKTRIDEANQRATKMLGSGGGSGG



SEELKKLEKEGEKLKELVEELDREIKELKEGMERLREMFEEAAKLSEEALEIMRRTRKLSEEELEEAKQKAK



EQEKEKALKEKGGSGGSGGSEEVKKSLAEIEKRHEQILALEKKIEELYEMEKELGEKIEKQLQKISRIEEKV




SEASRHVSKGVED
LKEAVKYREESEKME
IMIIICCVILGIVIASTVGGIFA






> SEQ ID NO: 114



DARENEMDENLEQVSGIIGNLRHMALDMGNEIDTQNRQIDRIMEKADSAKTRIDEANQRATKMLGSGGGSGG



SEELKKLEKEGEKLKELVEELDREIKELKEGMERLREMFEEAAKLSEEALEIMRRTRKLSEEELEEAKQKAK



EQEKEKALKEKGGSGGSGGSEKVKKELAEIEARHQQIEALLEQIKELYEMFKELSEKIEEQGQKISRIEDKV




SKASEHVSKGVEQ
LKEAVKYNEEGKKME
IMIIICCVILGIVIASTVGGIFA






> SEQ ID NO: 115



DARENEMDENLEQVSGIIGNLRHMALDMGNEIDTQNRQIDRIMEKADSAKTRIDEANQRATKMLGSGGGSGG



SEELKKLEKEGEKLKELVEELDREIKELKEGMERLREMFEEAAKLSEEALEIMRRTRKLSEEELEEAKQKAK



EQEKEKALKEKGGSGGSGGSEKVKKELAEKEKRHKQIDELLEKIKELYEMFKEMGEKIEKQGEKIDRIEKKV




SEASKHVSKAVED
LKEAVEYREKSEKME
IMIIICCVILGIVIASTVGGIFA






> SEQ ID NO: 116



DARENEMDENLEQVSGIIGNLRHMALDMGNEIDTQNRQIDRIMEKADSAKTRIDEANQRATKMLGSGGGSGG



SEELKKLEKEGEKLKELVEELDREIKELKEGMERLREMFEEAAKLSEEALEIMRRTRKLSEEELEEAKQKAK



EQEKEKALKEKGGSGGSGGSEAVKKELAAIEARHKQIDALLEKIKELHEMFEEMSKKIEEQMQKISRIEDKV




SEASRHVSKAVSD
LKEAVKYKEESEKME
IMIIICCVILGIVIASTVGGIFA






> SEQ ID NO: 117



DARENEMDENLEQVSGIIGNLRHMALDMGNEIDTQNRQIDRIMEKADSAKTRIDEANQRATKMLGSGGGSGG



SEELKKLEKEGEKLKELVEELDREIKELKEGMERLREMFEEAAKLSEEALEIMRRTRKLSEEELEEAKQKAK



EQEKEKALKEKGGSGGSGGSEKVKKELAEIEKRHKQILELEEKIKELHEMFKELGEKIEKQGQKISRIDDKV




SEAKRHVEKGVED
LKKAVEYKEKSEKKE
IMIIICCVILGIVIASTVGGIFA






> SEQ ID NO: 118



DARENEMDENLEQVSGIIGNLRHMALDMGNEIDTQNRQIDRIMEKADSAKTRIDEANQRATKMLGSGGGSGG



SEELKKLEKEGEKLKELVEELDREIKELKEGMERLREMFEEAAKLSEEALEIMRRTRKLSEEELEEAKQKAK



EQEKEKALKEKGGSGGSGGSKKVKEELKKIEERHKQILELEEKIEELYEMEKELAERIEKQGEKIDRIDEKV




SEAKRNVEKAVED
TKKAVKYQSESEKME
IMIIICCVILGIVIASTVGGIFA






> SEQ ID NO: 119



DARENEMDENLEQVSGIIGNLRHMALDMGNEIDTQNRQIDRIMEKADSAKTRIDEANQRATKMLGSGGGSGG



SEELKKLEKEGEKLKELVEELDREIKELKEGMERLREMFEEAAKLSEEALEIMRRTRKLSEEELEEAKQKAK



EQEKEKALKEKGGSGGSGGSEKVKKELEEKEKRHKQILELEEKIKELYEMEKELSEKIEEQLQKIDRIDDKV




SEASRHVSKGVED
TKKAVKYQSEAEKME
IMIIICCVILGIVIASTVGGIFA






> SEQ ID NO: 120



DARENEMDENLEQVSGIIGNLRHMALDMGNEIDTQNRQIDRIMEKADSAKTRIDEANQRATKMLGSGGGSGG



SEELKKLEKEGEKLKELVEELDREIKELKEGMERLREMFEEAAKLSEEALEIMRRTRKLSEEELEEAKQKAK



EQEKEKALKEKGGSGGSGGSEEVRRSLEEIERRHRQILELEEKIEELYEMFKEMSEKIEEQGQKISRIEEKV




SKASEHVSKAVED
TKKAVKYQSEAEKKE
IMIIICCVILGIVIASTVGGIFA






> SEQ ID NO: 121



DARENEMDENLEQVSGIIGNLRHMALDMGNEIDTQNRQIDRIMEKADSAKTRIDEANQRATKMLGSGGGSGG



SEELKKLEKEGEKLKELVEELDREIKELKEGMERLREMFEEAAKLSEEALEIMRRTRKLSEEELEEAKQKAK



EQEKEKALKEKGGSGGSGGSEEVKKELAEIEARHEQIKELEKQIEELHEMFKELGEKIEKQGEKIDRIDEKV




SEASRHVSKAVED
TKKAVKYQSESEKME
IMIIICCVILGIVIASTVGGIFA






> SEQ ID NO: 122



DARENEMDENLEQVSGIIGNLRHMALDMGNEIDTQNRQIDRIMEKADSAKTRIDEANQRATKMLGSGGGSGG



SEELKKLEKEGEKLKELVEELDREIKELKEGMERLREMFEEAAKLSEEALEIMRRTRKLSEEELEEAKQKAK



EQEKEKALKEKGGSGGSGGSEKVKEELAKKEARHEQILELTEKIEELSEMFKELSEKISEQGQKIDRIEDKV




SKASEHVSKAVED
TKKAVKYQSESEKME
IMIIICCVILGIVIASTVGGIFA






> SEQ ID NO: 123



SELEKKIDELLEEISRLVRELKEIAKELRRLTERQGRQVERIEREVEEAEREIEELNKEAEELLEKEDSEDE



LEKLKKLLEESKEQLREVERIEREVRRLREEQRRLLELTERAARLAEEALEKMEKMLELQEKILESMKEPDK



PYTPEELEKVKERHELIKKLKEEIKELKEMFEELRELVRRQGERLDRIEEKVRRAVEHVKKAEEN
IGEAVKY




LEKSKELE
IMIIICCVILGIVIASTVGGIFA






> SEQ ID NO: 124



SEKEKEIDELLDKVSEIVKELKKLAEELKRRTERQGRQIEEIERKTEEAKRKIEELNKKAEELLKKEDDDSD



LEKTKELLKEAKEQLREVKEIKRRVEELKREQEETLKLTKEAAELAEEAKELMEEMLELSEEILEEMLENPK



PYTPEELEKVRERHELIKKLLEEIEELEEMFEELERLVEEQGRRLERIEEKVSRAVRHVERAEEN
LGEAVEY




LEKSKKLE
IMIIICCVILGIVIASTVGGIFA






> SEQ ID NO: 125



SSKEEEIEELLDEVSEIVRRLKEMAREIREMVERQGRQIERIERKVEEAKRKIEELNKKAEELLEKEDDESE




LEELEKLVEEAKEQLREVEEINREVEELGREQERLLRKTREAAKLAEKAEELMKKMLELSEEILEEMKEKPK




EYTPEELEEVEERHKLIQKLLEEIKELKEMFEELERLVEEQGRRLERIEEKVRRAVEHVKRALEN
LKEAKEY




RKKNEELE
IMIIICCVILGIVIASTVGGIFA






> SEQ ID NO: 126



SELEKKIDELLEEISRLVRELKEIAKELRRLTERQGRQVERIEREVEEAEREIEELNKEAEELLEKEDSEDE



LEKLKKLLEESKEQLREVERIEREVRRLREEQRRLLELTERAARLAEEALEKMEKMLELQEKILESMKEPDK



PYTPEELEKVKERHELIKKLKEEIKELKEMFEELRELVRRQGERLDRIEEKVRRAVEHVKKAEEN
IGEAVKY



LEKSKELEMMVVVVVVVVVVVVVVVVYF





> SEQ ID NO: 127



SEKEKEIDELLDKVSEIVKELKKLAEELKRRTERQGRQIEEIERKTEEAKRKIEELNKKAEELLKKEDDDSD



LEKTKELLKEAKEQLREVKEIKRRVEELKREQEETLKLTKEAAELAEEAKELMEEMLELSEEILEEMLENPK



PYTPEELEKVRERHELIKKLLEEIEELEEMFEELERLVEEQGRRLERIEEKVSRAVRHVERAEEN
LGEAVEY



LEKSKKLEMMVVVVVVVVVVVVVVVVYF





> SEQ ID NO: 128



SETEKKENEALEELERLLEEAKKLLEEQRRLLEAQGEVQKEQEKLEDELEEIQEEAEKYQNKLLESKDEEDE



MSLLKKALELLEKASKLLEELEALLKKQKELLEKQKELMKELEEVLKKIEEKLKKIKELQEEELKEKKKELA



EAEAAEKAGKAAGVSLKEEVEKVKRELAQIEERHQQILELEEKIKELLEMFKELSEKIEEQGQKIDRIEDKV




SKAKEHVEKGVED
TKKAVKYQSKARRKK
IMIIICCVILGIVIASTVGGIFA









> SEQ ID NO: 129



SSLEKKIDENLEKALELLEELKEKLEEMRRLLEESGRLQDELEELMDETQKQQEELEKLLEKLLKMDDSDEQ



YELLKEALKKQKELKEQLEELEEKLKELRRAHEETRRKMEEAEELLKELEEVMEELKKAQEELLKEKKKKYE



EAKKELEEAKKKGEEGKEKLEKVKRELAQIEERHQQILELEEKIKELLEMFKELSEKIEEQGQKIDRIEDKV




SKAKEHVEKGVED
TKKAVKYQSKARRKK
IMIIICCVILGIVIASTVGGIFA






> SEQ ID NO: 130



SEEKKKMEELLDKIKELLEELKKLAEEIKKLLEEQGRQLEKLEEEADKALRQAEEAIRLQEKALELEDDEEI



DEALKELEEKQKKLKEQLEKLEEQISELKKLFEEQKKKMEEAEELLKEMLELIKEMKENHEKLLEEAKKRYE



EKLKEYEELKKLGILPKEELEKVKRELAQIEERHQQILELEEKIKELLEMFKELSEKIEEQGQKIDRIEDKV




SKAKEHVEKGVED
TKKAVKYQSKARRKK
IMIIICCVILGIVIASTVGGIFA






> SEQ ID NO: 131



EEFEKKENELLEELKKKLEEAKKLLKENRRLLEEQGRQLEEIEEKMEEAEELQEKALEYQEKAEKAGFSDES



FEYLKEALKVLEELEEQLEEIEEKLEEQRELLEKQRELLKEAEKKLKEAEEVCKKLKELIEKRKEEAEEKLK



KAEEKAKEAAKKGVDLSEELEKVKRELAQIEERHQQILELEEKIKELLEMFKELSEKIEEQGQKIDRIEDKV




SKAKEHVEKGVED
TKKAVKYQSKARRKK
IMIIICCVILGIVIASTVGGIFA






> SEQ ID NO: 132



SEEEEKFNELLEKIEEELEEIKELAEELREKLEELGRLTEKALELADELEKLFEEAEKLLEEALKLGDGEEL



EEVLKEALEKLKEAKEKLEKLEEELSKLKEAQEEAKELLEELEEELKELEEEIKKLKELSEETLKKAKEKLK



EAEKKAEELKKLGIDPTEELEKVKRELAQIEERHQQILELEEKIKELLEMFKELSEKIEEQGQKIDRIEDKV




SKAKEHVEKGVED
TKKAVKYQSKARRKK
IMIIICCVILGIVIASTVGGIFA






> SEQ ID NO: 133



SSLKEKFNELLDELLKELEEAKELLEEIREQLERIGEQLEELEEQFDEILKEQEELEKQQKKLLESPGSEEE



EEQLKEIEEKQKKIKEKIEELEEQIEELKEQQEKLKELTKELEEKLKEISETLKELKKVQEELLKEKKKKYE



EAKKKYEEKKKKGINGTEELEKVKRELAQIEERHQQILELEEKIKELLEMFKELSEKIEEQGQKIDRIEDKV




SKAKEHVEKGVED
TKKAVKYQSKARRKK
IMIIICCVILGIVIASTVGGIFA






> SEQ ID NO: 134



KESEEKFEEKLKELEKLLEEAKELLEKQREYLEESGRLLDEAEKLMDETERIFEETLKLQDKLLAAKDEEDQ



MSLLKKALELLEKASKLLDELEATLKELKALLEKQKELMEELEKVLKEIEEKMKEIKKLQEEELKEQKKKLK



EAEEKEKEGEKKGVSYKEEVEKVKRELAQIEERHQQILELEEKIKELLEMFKELSEKIEEQGQKIDRIEDKV




SKAKEHVEKGVED
TKKAVKYQSKARRKK
IMIIICCVILGIVIASTVGGIFA






> SEQ ID NO: 135



SKLKEEFEKYLEELLKQLEKLKEKLKELREKLEEQGKQLEKLEEQFDRILEQQEKLLEQQEKLLEDEGSEEE



EELLKEIEKQQEKLKEEIEKLEEQIKKLKEQQEELKEISEKAKELLKKTAEILKKLKEVQEKLLEEKKKELE



EAEKKYEELKKKGINGTEELEKVKRELAQIEERHQQILELEEKIKELLEMFKELSEKIEEQGQKIDRIEDKV




SKAKEHVEKGVED
TKKAVKYQSKARRKK
IMIIICCVILGIVIASTVGGIFA






> SEQ ID NO: 136



SEREKEFNERLEEMEKLLEKIKKLAEEIRRLLEKQGELLDKLEELADEALRLQEKAIEKSEKILEKGYNEET



EEELKELLKLLKELEELLDEAEELIDEIKRLLEEQKKLMEEMEKALKKLEELTKKLKELIEKELEEQRKRLE



ELEKRKEEYEKLGIDLSEELEKVKRELAQIEERHQQILELEEKIKELLEMFKELSEKIEEQGQKIDRIEDKV




SKAKEHVEKGVED
TKKAVKYQSKARRKK
IMIIICCVILGIVIASTVGGIFA






> SEQ ID NO: 137



SSFEEEINKLLEELKRKLEELKEILEEIRKLLEEQGRQLDEIEEKMDEAEELAEKAEEYLKKAEEAGGGEES



YEYLKKALETLKELEEKLDEIEEKLSEQKKLLEETREKLEEAEKKLKEAEKVIKKLKELIEKEKKEKEAELK



KAEAAAAEAAKLGIDKSEELEKVKRELAQIEERHQQILELEEKIKELLEMFKELSEKIEEQGQKIDRIEDKV




SKAKEHVEKGVED
TKKAVKYQSKARRKK
IMIIICCVILGIVIASTVGGIFA






> SEQ ID NO: 138



SEEEEKFNELLEKIEEKLEEAKELAEELREELEKIGELTDEAERLADEALKLAEEAEKLLKEALKLGDEDEL



DKILKEAEKTLEELKKKLEELEEKLKELKEAQEKAKELLKELEETLKELEELIKELKKESEETLEKAKEKYK



KAEEKYKEDLKKGIDNTEEIEKVKRELAQIEERHQQILELEEKIKELLEMFKELSEKIEEQGQKIDRIEDKV



SKAKEHVEKGVEDTKKAVKYQSKARRKKIMIIICCVILGIVIASTVGGIFA





> SEQ ID NO: 139



ESFEKELEELLEKIQELMEKIKELAEKLREALEESGRLLEEIEEAVDKLEEKFEEIEKLQENAEKYEDTEEA



EKYLKEMEEKLKKAKELLDKLEELVSKLKELQEKQRELMEKLEEKLKELLELLKKLKELIEKLKEKKKKELE



EAEKKLKEAEEYNEELEKEVEKVKRELAQIEERHQQILELEEKIKELLEMFKELSEKIEEQGQKIDRIEDKV




SKAKEHVEKGVED
TKKAVKYQSKARRKK
IMIIICCVILGIVIASTVGGIFA






> SEQ ID NO: 140



SELEEKFNKYLEELLETLEKLKEALEKIREKLEEQGKQLDKIEEAFDELLKQQEELLKQQEELLADPGSEES



EKKLKEIEKQQEKIKEQIEKLEEQIKKLRELQEKQKELTEKAKELLEKLEEILKKLKEVQEKLLEEKKKEYE



EAEKEYKEDKKKGINNKEKLEKVKRELAQIEERHQQILELEEKIKELLEMFKELSEKIEEQGQKIDRIEDKV




SKAKEHVEKGVED
TKKAVKYQSKARRKK
IMIIICCVILGIVIASTVGGIFA






> SEQ ID NO: 141



SSLEKKIDENLEKALELLEELKEKLEEMRRLLEESGRLQDELEELMDETQKQQEELEKLLEKLLKMDDSDEQ



YELLKEALKKQKELKEQLEELEEKLKELRRAHEETRRKMEEAEELLKELEEVMEELKKAQEELLKEKKKKYE



EAKKELEEAKKKGEEGKEKLEKVKRELAQIEERHQQILELEEKIKELLEMFKELSEKIEEQGQKIDRIEDKV




SKAKEHVEKGVED
TKKAVKYQSKARRKK
AAVLVLLVIVIISLIVLVVIW






> SEQ ID NO: 142



SSLEKKIDENLEKALELLEELKEKLEEMRRLLEESGRLQDELEELMDETQKQQEELEKLLEKLLKMDDSDEQ



YELLKEALKKQKELKEQLEELEEKLKELRRAHEETRRKMEEAEELLKELEEVMEELKKAQEELLKEKKKKYE



EAKKELEEAKKKGEEGKEKLEKVKRELAQIEERHQQILELEEKIKELLEMFKELSEKIEEQGQKIDRIEDKV




SKAKEHVEKGVED
TKKAVKYQSKARRKK
MMVVVVVVVVVVVVVVVVYF






> SEQ ID NO: 143



GELKEKKEKLSKEFEKLLKESKRLAEELKEKLEELGRALDEAEELADEVERQQEELEKLQEEILKSEENEDE



KKQLEELEKKLKELEELLKELEEKLKEVEELMKEVEELMEELEKTMEEMEKAIEELEKVYKEELKKTEAKLK



ATKAEAEAAKAKGEDISDKLEAAEKEYKSVKEELKLVEEIKKKVEEIKEMLEEMKERIEEMEEKVKRIEEKL




KRIEESLKRVEEN
LKEIKELAKKREEKG
IMIIICCVILGIVIASTVGGIFG






> SEQ ID NO: 144



DELEKKIKELEEKSEEELKEAKELAEELRRLLEELERALDEAERLADEVERKQEELEKLMEEMLKSEDNESD



EEDLKKLKEKLEELEKLLEELEERAREVEELMERVEETMEELEEEMEELLETLKKLLEVYEELLKKKKKELE



ETKKKAEEMKKKGIDISEELEKAKEELESVKKNLELVKKILEEVKEIKEELEEMGEEIERMEEKVDRIEEKL




ERVEESLERVSKN
LEEIERLFEERKEKG
IMIIICCVILGIVIASTVGGIFG






> SEQ ID NO: 145



SEEDKKMEELLEEALKLLEELKELLEKNRELLEELGRQQEELEKLQDEAERLQEELEEAFKKMEENEESEEG



KKYLEEAEKLLKELKKLLEEIEKKTKEIEELVKKQEELMKKIKEVMKKLEEKMKELYRISKERLERAKEEAA



RAEAARAEYEAAGSPEVERAEQVLEEYREAKEFYEKVEELLREVKEIKEEIKEMEERIKEIGERIKRIEEKI




ERVEKLLERTEKN
IKEIKELRDKIEKNG
IMIIICCVILGIVIASTVGGIFG






> SEQ ID NO: 146



SEKEKEFNELLEEALRELEKLKELLEENGRLLERTGEQLERMEELMDEAEEKQEELEEAIKKMEKYEDSEEG



DEYLEEAEELLEELEELLEEIEAQTEEIEALIKEQEELMKKIKEEMEKLKEAVEKLYEISKEMLEEAKKEYE



KAEKAKAEYEAAGKDEVKECEKVKEKYEEAKKRYEQVEKLLKEVEEIKEEIERMGEEIKRQGERIERIEEKI




ERVEEELERLEEN
LEEIKKLREKIKENG
IMIIICCVILGIVIASTVGGIFN






1st Coiled-coil domain (Bold font) (corresponds to C-terminal coiled-coil domain of native SNAP25, the sequence is either identical to native SNAP25 or redesigned)


2nd Coiled-coil domain: (Bold font) (corresponds to N-terminal coiled-coil domain of native SNAP25 but the sequence is redesigned)


3rd Coiled-coil domain: (Bold font) (corresponds to native Synla coiled- coil domain but the sequence is either identical to native Syn1A or redesigned)


JMD: (underlined)


TMD: 22 aa (italicized)


*GS linkers between coiled-coil domains can be modified to any appropriate linker)














TABLE 16





#
amino acid sequence







N9

KPGEEKLNKLLEELLKKLEELKKLAEENRRLLERQGROLEELERRFEELNRRMEELNEKLEKLLKEEPNEE




TGEKLEEIKKELEELSRELKELEERVRRQEEEHERQREVVEEIKKELEEAKKYCEELLKTSEEILEEMLEN



PKPYTPEELEKVRERHELIKKLLEEIEELEEMFEELERLVEEQGRRLERIEEKVSRAVRHVERAEENLGEA




VEYLEKSKKLE
IMIIICCVILGIVIASTVGGIFA SEQ ID NO: 446






N10

EPKEKELEELLEELLRELEEIKKLLEEFRRLQEEIGRQIEEIERQLEELLERLEELNEKLENLLKREDNEN




DLEELKELLEEMRELGREMRELERRVEELGRLLEEQRRLVEELKKKLERLLELVKRLLELVEEILEEMLEN



PKPYTPEELEKVRERHELIKKLLEEIEELEEMFEELERLVEEQGRRLERIEEKVSRAVRHVERAEENLGEA




VEYLEKSKKLE
IMIIICCVILGIVIASTVGGIFA SEQ ID NO: 447






N11

RPEEEKLNELLDELLRLLEEIKKLLEENRALLEEIGROIDRIEEQLDRLLRELKELNEKLEALLKREDNEN




DLEELKELLEEIKRLSEEMKELEREVERLGELLEEQRRKVEELKRKLEELLELTEEALELVEEILEEMLEN



PKPYTPEELEKVRERHELIKKLLEEIEELEEMFEELERLVEEQGRRLERIEEKVSRAVRHVERAEENLGEA




VEYLEKSKKLE
IMIIICCVILGIVIASTVGGIFA SEQ ID NO: 448






N12

SLEEILEKLKEIAELLEEVEELTEELKEETERAGRELEELERRLEELVRRAEELNRKLEKILEEEDSDDIL





ERLKEARRELRELRERLEEVEREIERLIREAEEQSELLEELERELEEIKELLKELLEKEEELSEEELELIK




KLLEEIEELEEMFEELERLVEEQGRRLERIEEKVSRAVRHVERAEENLGEAVEYLEKSKKLEIMIIICCVI




LGIVIASTVGGILA SEQ ID NO: 449






N28
VAILWHEMWHEGLEEASRLYFGERNVKGMFEVLEPLHAMMERGPQTLKETSFNQAYGRDLMEAQEWCRKYM



KSGNVKDLTQAWDLYYHVERRISGGSGGSGGSGGSDARENEMDENLEQVSGIIGNLRHMALDMGNEIDT




QNRQIDRIMEKADSAKTRIDEANQRATKMLGSGGGSGGSEELKKLEKEGEKLKELVEELDREIKELKE





GMERLREMFEEAAKLSEEALEIMRRTRKLSEEELEEAKOKAKEQEKEKALKEKGGSGGSGGSEKVKRE





LAQIEERHQQILELEEKIKELLEMFKELSEKIEEQGQKIDRIEDKVSKAKEHVEKGVED
TKKAVKYQS





KARRKK
IMIIICCVILGIVIASTVGGIFA SEQ ID NO: 450






N29
VAILWHEMWHEGLEEASRLYFGERNVKGMFEVLEPLHAMMERGPQTLKETSFNQAYGRDLMEAQEWCRKYM



KSGNVKDLTQAWDLYYHVFRRISGGSGGSGGSGGSGGSGGSGGSGGSDARENEMDENLEQVSGIIGNLRH




MALDMGNEIDTQNRQIDRIMEKADSAKTRIDEANQRATKMLGSGGGSGGSEELKKLEKEGEKLKELVE





ELDREIKELKEGMERLREMFEEAAKLSEEALEIMRRTRKLSEEELEEAKOKAKEQEKEKALKEKGGSG




GSGGSEKVKRELAQIEERHOQILELEEKIKELLEMFKELSEKIEEQGQKIDRIEDKVSKAKEHVEKGV




ED
TKKAVKYQSKARRKK
IMIIICCVILGIVIASTVGGIFA SEQ ID NO: 451






N30
VAILWHEMWHEGLEEASRLYFGERNVKGMFEVLEPLHAMMERGPQTLKETSFNQAYGRDLMEAQEWCRKYM




KSGNVKDLTQAWDLYYHVERRISGGSGGSGGSGGSSEREKEIDEGLDRVSEIVKELKKMAEEMRRMIEE





QGRRIERIEEKAEEAKEKIEEANERAEKLLKDPGGSGGSEELKKLEKEGEKLKELVEELDREIKELKE





GMERLREMFEEAAKLSEEALEIMRRTRKLSEEELEEAKQKAKEQEKEKALKEKGGSGGSGGSEKVKRE





LAQIEERHOQILELEEKIKELLEMFKELSEKIEEQGQKIDRIEDKVSKAKEHVEKGVED
TKKAVKYQS





KARRKK
IMIIICCVILGIVIASTVGGIFA SEQ ID NO: 452






N31
VAILWHEMWHEGLEEASRLYFGERNVKGMFEVLEPLHAMMERGPQTLKETSFNQAYGRDLMEAQEWCRKYM



KSGNVKDLTQAWDLYYHVERRISGGSGGSGGSGGSGGSGGSGGSGGSSEREKEIDEGLDRVSEIVKELKK




MAEEMRRMIEEQGRRIERIEEKAEEAKEKIEEANERAEKLLKDPGGSGGSEELKKLEKEGEKLKELVE





ELDREIKELKEGMERLREMFEEAAKLSEEALEIMRRTRKLSEEELEEAKOKAKEQEKEKALKEKGGSG




GSGGSEKVKRELAQIEERHQQILELEEKIKELLEMFKELSEKIEEQGQKIDRIEDKVSKAKEHVEKGV




ED
TKKAVKYQSKARRKK
IMIIICCVILGIVIASTVGGIFA SEQ ID NO: 453






N32
VAILWHEMWHEGLEEASRLYFGERNVKGMFEVLEPLHAMMERGPQTLKETSFNQAYGRDLMEAQEWCRKYM



KSGNVKDLTQAWDLYYHVERRISGGSGGSSEREKEIDEGLDRVSEIVKELKKMAEEMRRMIEEQGRRIE




RIEEKAEEAKEKIEEANERAEKLLKDPGGSGGSEELKKLEKEGEKLKELVEELDREIKELKEGMERLR





EMFEEAAKLSEEALEIMRRTRKLSEEELEEAKQKAKEQEKEKALKEKGGSGGSGGSEKVKRELAQIEE





RHQQILELEEKIKELLEMFKELSEKIEEQGQKIDRIEDKVSKAKEHVEKGVED
TKKAVKYQSKARRKK





IMIIICCVILGIVIASTVGGIFA SEQ ID NO: 454






N33
VAILWHEMWHEGLEEASRLYFGERNVKGMFEVLEPLHAMMERGPQTLKETSFNQAYGRDLMEAQEWCRKYM



KSGNVKDLTQAWDLYYHVERRISGGSGGSSEKEKEIDELLDKVSEIVKELKKLAEELKRRTERQGRQIE




EIERKTEEAKRKIEELNKKAEELLKKEDDDSDLEKTKELLKEAKEQLREVKEIKRRVEELKREQEETL





KLTKEAAELAEEAKELMEEMLELSEEILEEMLENPKPYTPEELEKVRERHELIKKLLEEIEELEEMFE





ELERLVEEQGRRLERIEEKVSRAVRHVERAEEN
LGEAVEYLEKSKKLEI
MIIICCVILGIVIASTVGG





IFA SEQ ID NO: 455










The nucleic acids of all aspects of the disclosure may comprise single stranded or double stranded RNA or DNA in genomic or cDNA form, or DNA-RNA hybrids, each of which may include chemically or biochemically modified, non-natural, or derivatized nucleotide bases. Such nucleic acid sequences may comprise additional sequences useful for promoting expression and/or purification of the encoded peptide or chimeric molecular construct, including but not limited to polyA sequences, modified Kozak sequences, and sequences encoding epitope tags, export signals, and secretory signals, nuclear localization signals, and plasma membrane localization signals. It will be apparent to those of skill in the art, based on the teachings herein, what nucleic acid sequences will encode the polypeptide or fusion protein of the disclosure. 10


The expression vectors of all aspects of the disclosure comprise the nucleic acid of any aspect of the disclosure operatively linked to a suitable control sequence, such as a promoter. “Expression vector” includes vectors that operatively link a nucleic acid coding region or gene to any control sequences capable of effecting expression of the gene product. “Control sequences” operably linked to the nucleic acid sequences of the disclosure are nucleic acid sequences capable of effecting the expression of the nucleic acid molecules. The control sequences need not be contiguous with the nucleic acid sequences, so long as they function to direct the expression thereof. Thus, for example, intervening untranslated yet transcribed sequences can be present between a promoter sequence and the nucleic acid sequences and the promoter sequence can still be considered “operably linked” to the coding sequence. Other such control sequences include, but are not limited to, polyadenylation signals, termination signals, and ribosome binding sites. Such expression vectors can be of any type, including but not limited plasmid and viral-based expression vectors. The control sequence used to drive expression of the disclosed nucleic acid sequences in a mammalian system may be constitutive (driven by any of a variety of promoters, including but not limited to, CMV, SV40, RSV, actin, EF) or inducible (driven by any of a number of inducible promoters including, but not limited to, tetracycline, ecdysone, steroid-responsive). The expression vector must be replicable in the host organisms either as an episome or by integration into host chromosomal DNA. In various embodiments, the expression vector may comprise a plasmid, viral-based vector, or any other suitable expression vector.


In a fifth aspect, the disclosure provides polypeptides or fusion proteins encoded by the nucleic acid of any embodiment herein.


In a sixth aspect, the disclosure provides host cells comprising the nucleic acid, expression vector, polypeptide, and/or fusion protein of any embodiment or combination of embodiments herein. In one embodiment, the host cell comprises a membrane fusion protein complex anchored in a lipid bilayer membrane of the cell, wherein the membrane fusion protein complex comprises the following components:

    • (a) a polypeptide encoded by the nucleic acid of embodiment of the first aspect of the disclosure (VAMP2 redesign/v-SNARE-like); and
    • (b) a polypeptide encoded by the nucleic acid of any embodiment of the second aspect of the disclosure (SNAP25 redesigns); and
    • (c) a polypeptide encoded by the nucleic acid of any embodiment of the third aspect of the disclosure (Syn1A redesigns);
    • wherein components (a)-(c) form a hetero-oligomeric complex anchored in a lipid bilayer membrane of the cell, and wherein the hetero-oligomeric complex is capable of inducing membrane fusion.


As described in the examples, the disclosure provides a series of membrane fusion proteins that can induce cell-cell fusion when expressed on the surface of mammalian cells, or liposome fusion when displayed on the surface of liposomes. The designed proteins are based on the human neuronal SNARE complex (which is composed of three proteins, VAMP2, Syntaxin 1A or Syn1A, and SNAP25), which has a parallel four-helical bundle structure and transmembrane domains at the C-terminus of VAMP2 and Syn1A (see FIG. 1). VAMP2 is called v-SNARE, and Syn1A and SNAP25 are called t-SNARE since they exist on the vesicle (v-) or target (t-) membrane inside cells. The four alpha helices of the SNARE complex are composed of one helix from each of VAMP2 and Syn1A and two helices from SNAP25. The nucleic acids of this aspect encode the helix (X1 domain) and membrane domains (X2 and X3) of redesigned VAMP2 (hereafter v-SNARE-like proteins or v-SPs). For membrane fusion to occur, v-SP is presented on the surface of one membrane and SNAP25 redesign and Syn1A redesign on the other.


In another embodiment, the host cell comprises a membrane fusion protein complex anchored in a lipid bilayer membrane of the cell, wherein the membrane fusion protein complex comprises the following components:

    • (a) a polypeptide encoded by the nucleic acid of any embodiment of the first aspect of the disclosure (VAMP2 redesign/v-SNARE-like); and
    • (b) a polypeptide encoded by the nucleic acid of any embodiment of the fourth aspect of the disclosure (sc-t-SP);
    • wherein components (a)-(b) form a hetero-oligomeric complex anchored in a lipid bilayer membrane of the cell, wherein the hetero-oligomeric complex is capable of inducing membrane fusion.


As further described in the examples, new sequences were generated that are believed to fold into the four-helix bundle structure like the parental SNARE complex, followed by engineering SNAP25 so that one of the two coiled-coil domains of SNAP25 is an anti-parallel coiled-coil (FIG. 2, first modification). By combining engineered SNAP25 which has one anti-parallel coiled-coil domain and Syn1A into a single protein, a two-component fusion machinery was generated (one v-SP and one t-SNARE, rather than three components of the original neuronal SNARE; FIG. 2, second modification). Based on the single chain t-SNARE (sc-t-SNARE) backbone, dozens of further sequences that are capable of inducing membrane fusion in a mammalian cell-cell fusion assay (5.s.7-5.s.12 in FIG. 2, third modification) were generated, including those that showed a 10-fold increased fusion efficiency compared to the parental neuronal SNARE complex. These sc-t-SNAREs are designated as single-chain t-SNARE-like proteins or sc-t-SPs. For membrane fusion to occur, v-SP is present on the surface of one membrane and sc-t-SP on the other.


In a seventh aspect, the disclosure provides vesicles, comprising one or more polypeptide or fusion protein of any embodiment herein incorporated into the lipid envelope of the vesicle. The vesicle may be any vesicle that comprises a lipid envelope. In various non-limiting embodiments, the vesicle comprises a liposome, a lipid nanoparticle, a viral vector, or an enveloped particle that may optionally comprise any suitable cargo, including but not limited to a protein or nucleic acid cargo. In some embodiments, one or more polypeptide or fusion protein of any embodiment herein are anchored on a surface of the liposome, the lipid nanoparticle, the viral vector, or the enveloped particle.


All embodiments of the host cells and vesicles disclosed herein may further comprise a therapeutic or diagnostic moiety loaded in the host cell or vesicle. The host cells and vesicles may be used, for example, for intracellular delivery of such therapeutic or diagnostic moieties. Any therapeutic or diagnostic moiety may be loaded into the host cell or vesicle as appropriate for an intended use. In non-limiting embodiments, the therapeutic or diagnostic moiety may comprise a protein or nucleic acid therapeutic or diagnostic moiety.


In an eight aspect, the disclosure provides kits, comprising

    • (a) a first host cell or vesicle comprising the nucleic acid of any embodiment of the first aspect of the disclosure (VAMP2 redesign/v-SNARE-like); and
    • (b) a second host cell or vesicle comprising the nucleic acid of any embodiment of the second aspect of the disclosure (SNAP25), and the nucleic acid of any embodiment of the third aspect of the disclosure (Syn1A).


In one embodiment, the first host cell comprises a polypeptide encoded by the nucleic acid of any embodiment of the first aspect of the disclosure (VAMP2 redesign/v-SNARE-like) anchored in a lipid bilayer membrane of the cell or vesicle. In another embodiment, the second host cell comprises a polypeptide encoded by the nucleic acid of any embodiment of the third aspect of the disclosure (Syn1A) anchored in a lipid bilayer membrane of the cell or vesicle.


In a ninth aspect, the disclosure provides kits comprising

    • (a) a first host cell or vesicle comprising the nucleic acid of any embodiment of the first aspect of the disclosure (VAMP2 redesign/v-SNARE-like); and
    • (b) a second host cell or vesicle comprising polypeptide encoded by the nucleic acid of any embodiment of the fourth aspect of the disclosure (sc-t-SP).


In one embodiment, the first host cell or vesicle comprises a polypeptide encoded by the nucleic acid of any embodiment of the first aspect of the disclosure (VAMP2 redesign/v-SNARE-like) anchored in a lipid bilayer membrane of the cell or vesicle. In another embodiment, the second host cell or vesicle comprises a polypeptide encoded by the nucleic acid of any embodiment of the fourth aspect of the disclosure anchored in a lipid bilayer membrane of the cell or vesicle.


In all embodiments of the kits of the disclosure, the first host cell or vesicle and/or the second host cell or vesicle may further comprise a therapeutic or diagnostic moiety loaded in the cell or vesicle, as described herein.


In a tenth aspect, the disclosure provides methods for inducing membrane fusion, comprising mixing:

    • (a) a first host cell or vesicle comprising a polypeptide encoded by the nucleic acid of any embodiment of the first aspect of the disclosure (VAMP2 redesign/v-SNARE-like) anchored in a lipid bilayer membrane of the cell or vesicle; and
    • (b) a second host cell or vesicle comprising a polypeptide encoded by the nucleic acid of any embodiment of the third aspect of the disclosure (Syn1A) anchored in a lipid bilayer membrane of the cell; wherein the polypeptide encoded by the nucleic acid of any embodiment of the third aspect of the disclosure (Syn1A) is non-covalently bound to a polypeptide encoded by the nucleic acid of any embodiment of the second aspect of the disclosure (SNAP25);
    • under conditions to promote fusion of the first host cell or vesicle and the second host cell or vesicle.


In another embodiment, the methods for inducing membrane fusion comprise mixing:

    • (a) a first host cell or vesicle comprising a polypeptide encoded by the nucleic acid of any embodiment of the first aspect of the disclosure (VAMP2 redesign/v-SNARE-like) anchored in a lipid bilayer membrane of the cell or vesicle; and
    • (b) a second host cell or vesicle comprising a polypeptide encoded by the nucleic acid of any embodiment of the fourth aspect of the disclosure (sc-t-SP);
    • under conditions to promote fusion of the first host cell or vesicle and the second host cell or vesicle.


In one embodiment, the methods comprise first delivering the nucleic acids or expression vectors of the disclosure into target cells in vivo by a conventional delivery system (viral vector, etc.) so that the target cell becomes a first host cell as recited above, and then, delivering therapeutic or other moiety to the target cell by using a vesicle that is a second vesicle as described above. In another embodiment, the methods comprise first delivering the nucleic acids of the disclosure into target cells in vivo by a conventional delivery system (viral vector, etc.) so that the target cell becomes a second host cell as recited above, and then, delivering therapeutic or other moiety to the target cell by using a vesicle that is a first vesicle as described above


The host cells of the disclosure may comprise the polypeptide, fusion protein nucleic acid and/or expression vector (i.e.: episomal or chromosomally integrated) disclosed herein, wherein the host cells can be either prokaryotic or eukaryotic. The cells can be transiently or stably engineered to incorporate the expression vector of the disclosure, using techniques including but not limited to bacterial transformations, calcium phosphate co-precipitation, electroporation, or liposome mediated-, DEAE dextran mediated-, polycationic mediated-, or viral mediated transfection. In some embodiments, the cells are eukaryotic cells comprising lipid bilayers, such as mammalian cells including but not limited to human cells.


Examples

We made a series of membrane fusion proteins (see Tables above) that can induce cell-cell fusion when expressed on the surface of mammalian cells, or liposome fusion when displayed on the surface of liposomes. The human neuronal SNARE complex (which is composed of three proteins, VAMP2, Syntaxin 1A or Syn1A, and SNAP25) has a parallel four-helical bundle structure and transmembrane domains at the C-terminus of VAMP2 and Syn1A (see FIG. 1). VAMP2 is called v-SNARE and Syn1A and SNAP25 are called t-SNARE since they exist on the vesicle (v-) or target (t-) membrane inside cells. The four alpha helices of the SNARE complex are composed of one helix from each of VAMP2 and Syn1A and two helices from SNAP25.


We first redesigned the amino acid sequence of the human neuronal SNARE and generated new sequences that are likely to fold into the four-helix bundle structure like the parental SNARE complex. Next, we engineered SNAP25 so that one of the two coiled-coil domains of SNAP25 is an anti-parallel coiled-coil (FIG. 2, first modification). By combining engineered SNAP25 which has one anti-parallel coiled-coil domain and Syn1A into a single protein, we successfully generated the two-component fusion machinery (one v-SNARE and one t-SNARE, rather than three components of the original neuronal SNARE; FIG. 2, second modification). Based on the single chain t-SNARE (sc-t-SNARE) backbone, we further generated dozens of new sequences that are capable of inducing membrane fusion in a mammalian cell-cell fusion assay (5.s.7-5.s.12 in FIG. 2, third modification). Some of the best designs showed over 10-fold increased fusion efficiency compared to the parental neuronal SNARE complex. Hereafter, redesigned VAMP2 proteins and sc-t-SNARE proteins are designated as v-SNARE-like proteins (v-SPs) and sc-t-SNARE-like proteins (sc-t-SPs), respectively.


Furthermore, we have generated new protein backbones based on the structure of sc-t-SP and made new sequences for these backbones. These sequences are likely to fold into SNARE complex-like structures, but their predicted structures are slightly different from the original neuronal SNARE (single-digit RMSD). These new proteins also showed significantly higher fusion activity compared to native neuronal SNARE.


Our studies demonstrated that the juxtamembrane domain (JMD) of native VAMP2 and v-SP is important for activity, but various non-native sequences (K9, KIF, and RIF) showed substantial fusion activity. Our studies further demonstrated that the transmembrane domain of native VAMP2, v-SPs, native t-SNAREs, and sc-t-SPs can be replaced with non-native sequences, including TMD derived from VSV-G, flu HA, EGFR, PDGFR, and non-cognate SNARE (like VAMP2 protein with Syn1A-TMD or vice versa). Finally, while Syn1A JMD (TKKAVKYQSKARRKK, (SEQ ID NO: 331)) is critical for fusion activity in native three-component fusion machinery, in our designs, this JMD sequence is not essential for activity and can be replaced with non-native sequences, as shown in various sc-t-SP designs disclosed herein.


We describe designed proteins that have membrane fusion activity, and are useful, for example, in intracellular delivery and synthetic intracellular membrane trafficking systems.


Computationally designed amino acid sequences that fold into a SNARE complex-like four-helix bundle structure and are capable of inducing the fusion of two membranes when displayed on the lipid bilayer membrane such as cell membrane and liposomal membrane. The designed protein complex is composed of two (SEQ ID: 64-146) or three (SEQ ID: 38-63) protein components and anchored into the membrane by their transmembrane domains.


The new sequences were designed using the native SNARE structure as a template (SEQ ID: 1-63, except 26-33, 42-44, and 58-63). The predicted structure of these designs is identical to that of the parental SNARE complex (FIG. 3). One of the v-SNARE-like proteins (v-SP), SEQ ID 8, showed improved fusion activity compared to native VAMP2 in cell-cell fusion assay (FIG. 4). While native neuronal SNARE is composed of three protein components (one v-SNARE and two t-SNAREs), we generated a single-chain t-SNARE-like protein (sc-t-SP) by flipping the backbone of one helix from the coiled-coil domain of SNAP25 and genetically fusing the C terminus of SNAP25 to the N terminus of Syntaxin 1A (SEQ ID: 64-65). By making truncation mutants, some part of the sc-t-SP was found to be indispensable for fusion activity (SEQ ID: 66-74). Further sequence redesign led to the creation of new proteins that have over 10-fold increased fusion activity compared to the parental SNARE complex (FIG. 5) (SEQ ID: 75-122). We then removed the 20 N-terminal amino acids from sc-t-SP that are dispensable and further redesigned the sequence (SEQ ID: 123-127). These shorter designs showed comparable activity to the longer sc-t-SP (FIG. 6). These synthetic fusogens can induce fusion of liposome membrane.


Furthermore, we generated the new backbone of sc-t-SP. The structure of parental neuronal SNARE was “partially diffused” by RFdiffusion and the newly generated backbones and sequences were predicted to fold into SNARE complex-like four-helix bundle structures (SEQ ID: 128-146). These designs showed superior fusion activity compared to the parental native SNARE complex (FIG. 7).


When combined with small molecule-dependent heterodimeric domains, the fusogenic activity of these designed fusion proteins can be controlled by the presence of specific small molecules (chemically induced dimerization; exemplified by rapamycin induced binding herein FIG. 8) (SEQ ID: 147-148).


Materials and Methods

Genes for designed proteins were synthetized and cloned into mammalian expression vectors such as pCMV or pcDNA3.1. All designs were expressed in human embryonic kidney cell line HEK293T by transfection of plasmid DNA using polyethyleneimine (PEI). Designed SNARE-like proteins were expressed on the surface of HEK293T cells as flipped SNARE3. The v-cells express v-SP and T7 RNA polymerase while t-cells express t-SP and reporter luciferase under T7 promoter. In this assay, only after the cell-cell fusion between v-cells and t-cells, reporter luciferase gene is expressed. Transfected cells were mixed together and after overnight incubation, cell-cell fusion was quantitatively assessed by luciferase assay.


REFERENCES



  • 1. J. Dauparas et al., “Robust deep learning-based protein sequence design using ProteinMPNN,” Science, vol. 378, no. 6615, pp. 49-56, September 2022.

  • 2. J. L. Watson et al., “De novo design of protein structure and function with RFdiffusion,” Nature, vol. 620, no. 7976, pp. 1089-110 August 2023.

  • 3. C. Hu, M. Ahmed, T. J. Melia, T. H. Söllner, T. Mayer, and J. E. Rothman, “Fusion of Cells by Flipped SNAREs,” Science, vol. 300, no. 5626, pp. 1745-1749 June 2003.


Claims
  • 1. A nucleic acid encoding a polypeptide comprising the formula X1-X2-X3, wherein X1 comprises an amino acid sequence at least 50%, 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the amino acid sequence selected from the group consisting of the bold font residues in SEQ ID NO:149-208;X2 comprises a juxtamembrane domain (JMD), wherein X2 comprises an amino acid sequence at least 50%, 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the amino acid sequence selected from the group consisting of SEQ ID NO:500-505; andX3 comprises a transmembrane domain (TMD).
  • 2. The nucleic acid of claim 1, wherein X1 comprises an amino acid sequence at least 50%, 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the amino acid sequence of SEQ ID NO:156.
  • 3. The nucleic acid of claim 2, wherein 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, or all 13 of L8, L12, V15, V18, 121, M22, L28, V29, G33, 136, L39, L46, L53 are conserved (i.e., identical) in the polypeptide relative to SEQ ID NO:156.
  • 4. The nucleic acid of claim 1, wherein X2 comprises an amino acid sequence at least 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the amino acid sequence selected from the group consisting of SEQ ID NO:209-222 and 456.
  • 5. (canceled)
  • 6. The nucleic acid of claim 1, wherein X3 comprises an amino acid at least 50%, 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the amino acid sequence selected from the group consisting of SEQ ID NO: SEQ ID NO:223-234.
  • 7. (canceled)
  • 8. The nucleic acid of claim 1, encoding a polypeptide comprising an amino acid sequence at least 50%, 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the amino acid sequence selected from the group consisting of SEQ ID NO:1-37, 147, and 236-289.
  • 9. The nucleic acid of claim 8, encoding a polypeptide comprising an amino acid sequence at least 50%, 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the amino acid sequence of SEQ ID NO:8.
  • 10. The nucleic acid of claim 9 wherein 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, or all 13 of L8, L12, V15, V18, 121, M22, L28, V29, G33, 136, L39, L46, L53 are conserved (i.e., identical) in the polypeptide relative to SEQ ID NO:8.
  • 11. (canceled)
  • 12. The nucleic acid of claim 11, encoding a fusion protein comprising an amino acid sequence at least 50%, 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the amino acid sequence of SEQ ID NO:147 and 244-258.
  • 13-15. (canceled)
  • 16. A nucleic acid encoding (I) a polypeptide comprising an amino acid sequence at least 50%, 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the amino acid sequence selected from the group consisting of SEQ ID NO:310-316, wherein X1 is an amino acid linker; or(II) a polypeptide comprising the formula X1-X2-X3, wherein X1 comprises an amino acid sequence at least 50%, 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the amino acid sequence selected from the group consisting of SEQ ID NO: 317-330;X2 comprises a juxtamembrane domain (JMD); andX3 comprises a transmembrane domain (TMD).
  • 17-18. (canceled)
  • 19. The nucleic acid of claim 16, encoding a polypeptide comprising an amino acid sequence at least 50%, 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the amino acid sequence selected from the group consisting of SEQ ID NO:38-44.
  • 20-26. (canceled)
  • 27. The nucleic acid of claim 16, encoding a polypeptide comprising an amino acid sequence at least 50%, 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the amino acid sequence selected from the group consisting of SEQ ID NO:45-63.
  • 28-30. (canceled)
  • 31. A nucleic acid encoding a polypeptide comprising the formula X1-X2-X3, wherein X1 comprises an amino acid sequence at least 50%, 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the amino acid sequence selected from the group consisting of the first set bold font residues in SEQ ID NO: 333-425, wherein the non-highlighted residues are amino acid linkers that may be substituted with any other amino acid linker;X2 comprises a juxtamembrane domain (JMD); andX3 comprises a transmembrane domain (TMD).
  • 32-34. (canceled)
  • 35. The nucleic acid of claim 31, encoding a polypeptide comprising an amino acid sequence at least 50%, 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical to the amino acid sequence selected from the group consisting of SEQ ID NO:64-146, 148, and 446-455.
  • 36-40. (canceled)
  • 41. A host cell, wherein the host cell comprises a membrane fusion protein complex anchored in a lipid bilayer membrane of the cell, wherein the membrane fusion protein complex comprises the following components: (I) (a) a polypeptide encoded by the nucleic acid of claim 1; and(b) a polypeptide encoded by the nucleic acid of any embodiment of the second aspect of the disclosure; and(c) a polypeptide encoded by the nucleic acid of any embodiment of the third aspect of the disclosure;wherein components (a)-(c) form a hetero-oligomeric complex anchored in a lipid bilayer membrane of the cell, wherein the hetero-oligomeric complex is capable of inducing membrane fusion; or(II) (a) a polypeptide encoded by the nucleic acid of claim 1; and(b) a polypeptide encoded by the nucleic acid of any embodiment of the fourth aspect of the disclosure; wherein components (a)-(b) form a hetero-oligomeric complex anchored in a lipid bilayer membrane of the cell, wherein the hetero-oligomeric complex is capable of inducing membrane fusion.
  • 42. (canceled)
  • 43. A vesicle, comprising one or more polypeptide of claim 1 incorporated into the lipid envelope of the vesicle.
  • 44-46. (canceled)
  • 47. A kit, comprising: (I) (a) a first host cell or vesicle comprising the nucleic acid of claim 1; and(b) a second host cell or vesicle comprising the nucleic acid of any embodiment of the second aspect of the disclosure, and the nucleic acid of any embodiment of the third aspect of the disclosure; or(II) (a) a first host cell or vesicle comprising the nucleic acid of claim 1; and(b) a second host cell or vesicle comprising polypeptide encoded by the nucleic acid of any embodiment of the fourth aspect of the disclosure.
  • 48-53. (canceled)
  • 54. A method for inducing membrane fusion, comprising mixing: (I) (a) a first host cell or vesicle comprising a polypeptide encoded by the nucleic acid of claim 1 anchored in a lipid bilayer membrane of the cell; and(b) a second host cell or vesicle comprising a polypeptide encoded by the nucleic acid of any embodiment of the third aspect of the disclosure anchored in a lipid bilayer membrane of the cell; wherein the polypeptide encoded by the nucleic acid of any embodiment of the third aspect of the disclosure is non-covalently bound to a polypeptide encoded by the nucleic acid of any embodiment of the second aspect of the disclosure; or(II) (a) a first host cell or vesicle comprising a polypeptide encoded by the nucleic acid of claim 1 anchored in a lipid bilayer membrane of the cell; and(b) a second host cell or vesicle comprising a polypeptide encoded by the nucleic acid of any embodiment of the fourth aspect of the disclosure;under conditions to promote fusion of the first host cell or vesicle and the second host cell or vesicle.
  • 55. (canceled)
Provisional Applications (1)
Number Date Country
63582937 Sep 2023 US