MEMBRANE HAVING A PORE-FREE SEPARATING LAYER AND USE AND METHOD OF MANUFACTURING A MEMBRANE

Abstract
The invention relates to a membrane having a pore-free separating laye including a polymer mixture for separating simple alcohols and water fr their mixtures with other organic fluids by means of pervaporation or vapor permeation. In accordance with the invention, the polymer mixtu is composed of at least two polymer components which are taken from t group of polymer components which includes of the following polymer components: Polyvinyl alcohol, other polymers such as poly N-N-dimethylaminoethyl methacrylate (poly DMAEMA), a copolymer of DMAEMA and N-vinyl pyrrolidone (NVP) or of DMAEMA and N-vinyl caprolactam (NVCL), a terpolymer of DMAE, NVP and NVCL or of vinyl acetate ethylene vinyl chloride or from vinyl chloride ethylene acrylic es or from vinyl acetate vinyl chloride acrylic ester. The invention further relates to the use and to a method for manufacturing a membrane in accordance with the invention.
Description

The invention relates to a membrane having a pore-free separating layetext missing or illegible when filed including a polymer mixture for separating simple alcohols and water frtext missing or illegible when filed their mixtures with other organic fluids by means of pervaporation or vapor permeation, as well as to the use and to a method of manufacturitext missing or illegible when filed such a membrane in accordance with the preamble of the independent claim of the respective category.


The invention thus relates, in addition to a new composite polymer membrane as such, in particular to a method of manufacturing compostext missing or illegible when filed polymer membranes and to their use for separating simple alcohols frotext missing or illegible when filed their mixtures with organic liquids in accordance with the methods of pervaporation and vapor permeation. Furthermore, these membranes ctext missing or illegible when filed also be used for the simultaneous separation of water and simple alcohtext missing or illegible when filed from their mixtures with organic liquids in accordance with the aforesaitext missing or illegible when filed methods.


It is known that, for example, simple alcohols such as methanol, ethantext missing or illegible when filed and propanol are very easily miscible with organic liquids such as liquitext missing or illegible when filed hydrocarbons, ethers, ketones, acetates, esters and amines. It is furthetext missing or illegible when filed known that such mixtures can only be separated by distillation under a substantial effort and/or cost because azeotropes frequently occur. In azeotropic mixtures, the liquid phase has the same composition as the vapor phase in balance. The further distilling separation is thereby not possible without the use of entrainers.


It is known to the skilled person that in this case some components catext missing or illegible when filed also be separated by pervaporation or vapor permeation with the azeotropic composition.


In EP 0 096 339, EP 0 442 557 and U.S. Pat. No. 4,802,988 as well as U.S. Pat. No. 4,892,661, membranes are e.g. described which are suitable to separattext missing or illegible when filed water from its mixtures with organic liquids by pervaporation. It is knotext missing or illegible when filed that the liquid mixture is brought into contact with the one side of the polymer membrane, whereas on the other side a vacuum is applied or a inert gas flow is conducted past. One or more components of the liquid mixture can permeate through the polymer membrane. Components which permeate less easily remain in the liquid phase and are enriched with it. The separating layer of the membrane is in practice often composed of cross-linked polyvinyl alcohol (PVA) which is applied to a porous support layer of a material which is suitable for an ultrafiltratiotext missing or illegible when filed membrane. Due to the desired thermal stability and chemical resistanctext missing or illegible when filed porous support layers of polyacrylonitrile (PAN), polysulfone (PSU) and text missing or illegible when filed the hydrolyzed or saponified cellulose acetates are preferred. The poroutext missing or illegible when filed support layer is usually applied to a fleece or to a woven cloth as a carrtext missing or illegible when filed layer.


The separation of methanol from mixtures with dimethyl carbonate (DMtext missing or illegible when filed and methyl-t-butyl ether (MTBE) is described in U.S. Pat. No. 4,877,829; the membranes used have separating layers made of PVA or of a perfluorinated acid ion exchanger whose acid group is neutralized by quaternary ammonium salt.


DE 4 234 521 describes a membrane having a separating layer which is manufactured by plasma polymerization and which is suitable for separating methanol from its mixtures with e.g. MTBE and DMC.


A method is described in U.S. Pat. No. 4,960,519 for separating methanol from its mixtures with compounds containing oxygen; the latter include organic ethers, aldehydes, ketones and esters. The membrane is composed of a non-porous separating layer made from a mixture of PVA and PVA polyacrylic acid. This separating layer is applied to a support layer of PAtext missing or illegible when filed


EP 0 674 940 describes the use of a membrane for separating simple alcohols, in particular ethanol, from mixtures with other organic liquids accordance with the methods of pervaporation and vapor permeation. Ttext missing or illegible when filed separating layer of the membrane is composed of a film of a homopolymtext missing or illegible when filed copolymer or terpolymer. Poly N-N-dimethylaminoethyl methacrylate (potext missing or illegible when filed DMAEMA) is used as the homopolymer; a copolymer from DMAEMA and N-vinyl pyrrolidone (NVP) or from DMAEMA and N-vinyl caprolactam (NVCL) is used as the copolymer; and a terpolymer from DMAEMA, NVP and NVCL is used as the terpolymer. Such polymers are particularly preferred in which the nitrogen atom of the amine group of the DMAEMtext missing or illegible when filed is present as a quaternary ammonium. Preferred quaternary agents are dimethyl sulfate and, diethyl sulfate as well as monochloromethane and monochloroethane, monoiodide methane and monobromomethane and monoiodide ethane and monobromoethane. To manufacture the separating layer, the homopolymer, copolymer or terpolymer is dissolved in water, ethanol or their mixtures and is applied to a porous support layer. The vaporization of the solvent takes place at 50° C.-100° C., the filtext missing or illegible when filed is subsequently cross-linked by heat treatment, particularly preferably a temperatures between 120° C.-160° C. The polymer film as stated becotext missing or illegible when filed insoluble in water and ethanol by the thermal treatment.


The technical use of membranes known from the prior art for separatintext missing or illegible when filed light alcohols from organic mixtures is, however, greatly restricted, abotext missing or illegible when filed all in the presence of water at higher temperatures. The membrane thetext missing or illegible when filed swells up so much in part in a plurality of organic solvents such as ethtext missing or illegible when filed ketones and multivalent alcohols that it can be destroyed. Membranes having solid ions change their behavior when they come into contact witext missing or illegible when filed water or salts.


It is therefore the object of the invention to provide a membrane for separating simple alcohols from organic mixtures as well as to provide text missing or illegible when filed use of and to provide a method of manufacturing such a membrane whtext missing or illegible when filed avoids the disadvantages known from the prior art. The membrane shotext missing or illegible when filed above all, but not only, also be able to be used reliably in the presence text missing or illegible when filed water and at higher temperatures and should in this respect, contrary text missing or illegible when filed the prior art, not swell up so much that it can be destroyed in organic solvents such as ethers, ketones and multivalent alcohols. In this respetext missing or illegible when filed the membrane should simultaneously show good selectivities, flows antext missing or illegible when filed stability even at higher water concentrations and higher temperatures text missing or illegible when filed should show a high selectivity and simultaneously a high flow for alcohtext missing or illegible when filed in the absence of water.


The subjects of the invention satisfying these objects in an apparatus atext missing or illegible when filed a technical process respect are characterized by the features of independent claims 1, 5 and 7.


The respective dependent claims relate to particularly advantageous embodiments of the invention.


The invention thus relates to a membrane having a pore-free separatintext missing or illegible when filed layer including a polymer mixture for separating simple alcohols and water from their mixtures with other organic fluids by means of pervaporation or vapor permeation. In accordance with the invention, ttext missing or illegible when filed polymer mixture is composed of at least two polymer components whictext missing or illegible when filed are taken from the group of polymer components which includes the following polymer components: Polyvinyl alcohol, other polymers such text missing or illegible when filed poly N-N-dimethylaminoethyl methacrylate (poly DMAEMA), a copolymtext missing or illegible when filed of DMAEMA and N-vinyl pyrrolidone (NVP) or of DMAEMA and N-vinyl caprolactam (NVCL), a terpolymer of DMAEMA, NVP and NVCL or of vintext missing or illegible when filed acetate ethylene vinyl chloride or from vinyl chloride ethylene acrylic estext missing or illegible when filed or from vinyl acetate vinyl chloride acrylic ester.


It has been found in a surprising manner that membranes can be manufactured whose use in accordance with the present invention for separating simple alcohols or simple alcohols and water simultaneousltext missing or illegible when filed shows good selectivities, flows and stabilities even at higher water concentrations and higher temperatures. The selectivity and flow for alcohols are also very high in the absence of water.


In this respect, in a preferred embodiment, the polymer solution is appltext missing or illegible when filed to a porous sub-structure having an asymmetrical pore structure and ttext missing or illegible when filed porous sub-structure lies in turn on a carrier layer.


A membrane in accordance with the invention is used for separating simple alcohols and water from their mixtures with other organic fluids means of pervaporation or vapor permeation.


On the use of a membrane in accordance with the invention, the alcohotext missing or illegible when filed permeating through the membrane is preferably a methanol, an ethanotext missing or illegible when filed a propanol and the substance held back by the membrane is specificalltext missing or illegible when filed an aliphatic or aromatic hydrocarbon, an ether, ketone, ester or a hightext missing or illegible when filed alcohol or a mixture of components from this group.


The invention further relates to a method of manufacturing a membrantext missing or illegible when filed having a pore-free separating layer including a polymer mixture for separating simple alcohols and water from their mixtures with other organic fluids by means of pervaporation or vapor permeation. In accordance with the present invention, the polymer mixture is manufactured from two polymer components which are taken from the group of polymer components including: Polyvinyl alcohol, other polymtext missing or illegible when filed such as poly N-N-dimethylaminoethyl methacrylate (poly DMAEMA), a copolymer of DMAEMA and N-vinyl pyrrolidone (NVP) or of DMAEMA artext missing or illegible when filed


N-vinyl caprolactam (NVCL), a terpolymer of DMAE, NVP and NVCL or text missing or illegible when filed vinyl acetate ethylene vinyl chloride or from vinyl chloride ethylene acrytext missing or illegible when filed ester or from vinyl acetate vinyl chloride acrylic ester.


In a specific embodiment of the present invention, in this respect, a solvent of the homopolymers, copolymers or terpolymers and polyvinyl alcohol in water, ethanol or an ethanol-water mixture is used for manufacturing the separating layer. The polymer solution is preferably applied to a porous sub-structure having an asymmetrical pore structutext missing or illegible when filed and the porous sub-structure is in turn applied to a carrier layer.


After the application of the polymer solution, the solvent can be vaporiztext missing or illegible when filed and the membrane can be subjected to a heat treatment. In an embodiment particularly important for practice, the heat treatment taktext missing or illegible when filed place at a temperature between 100° C. and 200° C., preferably at a temperature from 130° C. to 180° C. In a plurality of practical cases, in ttext missing or illegible when filed respect, the heat treatment is carried out during a time period from 1 text missing or illegible when filed to 60 min, preferably during a time period from 5 min to 30 min. The heat treatment is particularly preferably carried out in one or more stages, particularly preferably in two stages. The temperature of a following stage can in this respect, for example, be higher than the temperature of a preceding stage.


In the following, some embodiments of the present invention particulartext missing or illegible when filed important for practice will be described in somewhat more detail.


The separating layer of the membranes used in accordance with the present invention is composed of a polymer blend film produced from atext missing or illegible when filed least two polymers. The polymers can be homopolymers, copolymers an terpolymers. Polyvinyl alcohol and poly-N-N-dimethylaminoethyl methacrylate (poly DMAEMA) are used as the homopolymer; a copolymtext missing or illegible when filed of DMAEMA and N-vinyl pyrrolidone (NVP) or of DMAEMA and N-vinyl caprolactam (NVCL) is used as the copolymer; a terpolymer of DMAEMtext missing or illegible when filed NVP and NVCL, of vinyl acetate ethylene vinyl chloride, of vinyl chloride ethylene acrylic ester or of vinyl acetate vinyl chloride acrylic ester is ustext missing or illegible when filed as the terpolymer.


The content of polyvinyl alcohol can amount to between 1% by weight ttext missing or illegible when filed 90% by weight, preferably 3% by weight to 80% by weight; the content text missing or illegible when filed other polymers can amount to between 10% by weight to 99% by weightext missing or illegible when filed


preferably 20% by weight to 97% by weight. Polyvinyl alcohol is admixetext missing or illegible when filed as a watery solution; the cross-linking takes place by esterification with dicarboxylic acids, preferably those which additionally contain hydroxyl groups and/or keto groups, by etherification under the catalytic effect ctext missing or illegible when filed the acids, by acetalization by means of aldehydes or dialdehydes or by text missing or illegible when filed combined application of these methods.


To manufacture the separating layer, the homopolymers, copolymers or terpolymers are dissolved in water, ethanol or a mixture of water-ethantext missing or illegible when filed


The concentrations between 2% by weight and 60% by weight (in dependence on the molecular weight) are preferred; concentrations between 3% by weight and 20% by weight are particularly preferred. Thtext missing or illegible when filed solution is applied to a substrate by means of a method known per se ttext missing or illegible when filed the skilled person. The pore-free separating layer is preferably located otext missing or illegible when filed porous support layer. Applying the polymer film as a separating layer ttext missing or illegible when filed composite structure has proved to be particularly advantageous. As is known to the skilled person, it is composed of a carrier layer, e.g. of a fleece or fabric of polyester, polypropylene, polyethylene, polyamide, polyphenylene sulfide or other polymers. A porous structure having an asymmetrical pore structure, preferably made of polyacrylonitrile, polysulfone, polyvinylidene fluoride, polyamide, polyetherimide or other polymers is located on this carrier layer.


After the application and the vaporization of the solvent, a pore-free, detext missing or illegible when filed polymer film is formed whose thickness is dependent on the concentrattext missing or illegible when filed and on the application method. Polymer films between 0.5 μm and 20 μtext missing or illegible when filed thickness are preferred; polymer films from 1 μm to 6 μm are particular preferred.


The vaporization of the solvent takes place at 60° C. to 160° C. The film is subsequently cross-linked through heat treatment, preferably at temperatures from 100° C. to 200° C., particularly preferably 130° C. to 180° C., in times between 1 min to 60 min. It has proved to be advantageous to carry out the heat treatment in a plurality of stages, wherein a two-stage procedure is preferred, e.g. at 100° C. to 140° C. for 1 min to 6 min, then in a second stage at 150° C. to 180° C. for 6 min to 30 min.







EXAMPLE 1

A solution of 6% polymer mixture in water is applied with an applicatitext missing or illegible when filed roller onto a porous support layer of polyacrylonitrile (PAN) which has a asymmetrical pore structure and which is applied to a carrier layer of a polyester fleece. The polymer mixture is composed of polymers in a ratitext missing or illegible when filed 70% by weight of a copolymer of vinyl pyrrolidone and dimethylaminoettext missing or illegible when filed methacrylate and a 30% by weight portion of polyvinyl alcohol and is applied using an application roller. The solvent is evaporated at 125° C. itext missing or illegible when filed min. The membrane is then thermally treated at 150° C. for 20 min. and a second step further thermally cross-linked at 170° C. for 10 min. The separating layer of the finished membrane has a thickness of approximately 3 μm. In a pervaporation trial, it is tested at 80° C. with atext missing or illegible when filed inflow mixture of 40% methanol and 60% tetrahydrofuran. The permeatext missing or illegible when filed contains 72% by weight methanol, the methanol flow amounts to 8 kg/m2h at a pressure on the permeate side of 20 mbar. The permeate itext missing or illegible when filed condensed by cooling with a mixture of dry ice and ethanol.


EXAMPLE 2

A 5% watery polymer mixture, composed of a 90% by weight portion of text missing or illegible when filed quaternary copolymer of vinyl pyrrolidone and dimethylaminoethyl methacrylate and a 10% by weight portion of a copolymer of vinyl acetatext missing or illegible when filed ethylene and vinyl chloride (VAC/E/VC), is applied to the same sub-structure as in Example 1 using an application roller. The evaporation text missing or illegible when filed the solvent took place after 7 min at 130° C.; the membrane is then heat treated at 150° C. for 21 min. A pervaporization trial with an inflow mixtutext missing or illegible when filed of 21% by weight ethanol and 79% by weight ethyl-t-butylether (ETBE) a 62° C. produced 94% by weight ethanol in the permeate at 1.35 kg/m2h ethanol flow at a pressure on the permeate side of 13 mbar. The permeatext missing or illegible when filed is condensed by cooling with a mixture of dry ice and ethanol.


EXAMPLE 3

A 4.5% watery polymer mixture, composed of a 30% by weight portion of copolymer of vinyl pyrrolidone and dimethylaminoethyl methacrylate antext missing or illegible when filed of a 70% by weight portion of polyvinyl alcohol, is applied to the same sub-structure as in Example 1 using an application roller. The evaporation of the solvent takes place after 6 min at 150° C.; the membrane is then post cross-linked at 145° C. for 24 min. A pervaporization trial with an inflow mixture of 6% by weight water, 14% weight acetone, 50% by weight methanol and 30% by weight ketal at 95° produced 33% by weight water, 60% by weight methanol and 7% acetontext missing or illegible when filed in the permeate at 2.1 kg/m2h methanol flow and 1.1 kg/m2h water flow with a pressure at the permeate side of 13 mbar. The permeate is condensed by cooling with a mixture of dry ice and ethanol.


EXAMPLE 4

A 4.5% watery polymer mixture, composed of a 60% by weight portion of copolymer of vinyl pyrrolidone and dimethylaminoethyl methacrylate antext missing or illegible when filed of a 40% by weight portion of polyvinyl alcohol, is applied to the same sub-structure as in Example 1 using an application roller. The evaporation of the solvent took place after 6 min at 150° C., the membrantext missing or illegible when filed is then thermally treated at 150° for 15 min and is further cross-linked itext missing or illegible when filed a second step at 180° C. for 10 min. A pervaporation trial with an inflow mixture of 30% by weight methanol and 70% by weight acetone at 60° C. produced 70% by weight methanol in the permeate at 2.5 kg/m2h methanol flow at a pressure on the permeate side of 10 mbar. The permeate is condensed by cooling with a mixture of dry ice and ethanol.


EXAMPLE 5

A 5% watery polymer mixture, composed of a 90% by weight portion of a quaternary copolymer of vinyl pyrrolidone and dimethylaminoethyl methacrylate and a 7% by weight portion of a copolymer of vinyl acetate, ethylene and vinyl chloride (VAC/E/VC) and a 3% by weight portion of polyvinyl alcohol, is applied to the same sub-structure as in Example 1 using an application roller. The evaporation of the solvent took place afttext missing or illegible when filed 7 min at 130° C.; the membrane is then heat treated at 150° C. for 21 min. pervaporization trial with an inflow mixture of 21% by weight ethanol an 79& by weight ethyl-t-butylether (ETBE) at 62° VC produced 97% by weight ethanol in the permeate at 0.65 kg/m2h ethanol flow at a pressurtext missing or illegible when filed on the permeate side of 13 mbar. The permeate is condensed by cooling with a mixture of dry ice and ethanol.


It is understood that the present invention is not restricted to the embodiments explicitly described within the framework of this applicatiotext missing or illegible when filed but also includes in total all combinations which the skilled person easiltext missing or illegible when filed understands in an obvious manner for the formation of further embodiments.

Claims
  • 1. A membrane having a pore-free separating layer including a polymer mixture for separating simple alcohols and water from their mixtures with other organic fluids by means of pervaporation or vapor permeation, characterized in that the polymer mixture is composed of at least two polymer components which are taken from the group of polymer components including: polyvinyl alcohol;other polymers such as poly N-N-dimethylaminoethyl methacrylate (poly DMAEMA);a copolymer of DMAEMA and N vinyl pyrrolidone (NVP) or of DMAEMA and N vinyl caprolactam (NVCL);a terpolymer of DMAEMA, NVP and NVCL or of vinyl acetate ethylene vinyl chloride or of vinyl chloride ethylene acrylic ester or of vinyl acetate vinyl chloride acrylic ester.
  • 2. A membrane in accordance with claim 1, wherein the polymer solution is applied to a porous sub-structure having an asymmetrical pore structure and the porous sub-structure in turn lies on a carrier layer.
  • 3. A membrane in accordance with claim 1, wherein the content of polyvinyl alcohol amounts to between 1% by weight to 90% by weight, preferably 3% by weight to 80% by weight.
  • 4. A membrane in accordance with claim 1, wherein the content of other polymers amounts to between 10% by weight to 99% by weight, preferably between 20% by weight and 97% by weight.
  • 5. Use of a membrane for separating simple alcohols and water from their mixtures with other organic fluids by means of pervaporation or vapor permeation, wherein the membrane includes a pore-free separating layer with a polymer mixture, characterized in that the polymer mixture is composed of at least two polymer components which are taken from the group of polymer components including: polyvinyl alcohol;other polymers such as poly N-N-dimethylaminoethyl methacrylate (poly DMAEMA);a copolymer of DMAEMA and N vinyl pyrrolidone (NVP) or of DMAEMA and N vinyl caprolactam (NVCL);a terpolymer of DMAEMA, NVP and NVCL or of vinyl acetate e thylene vinyl chloride or of vinyl chloride ethylene acrylic ester or of vinyl acetate vinyl chloride acrylic ester.
  • 6. Use of a membrane in accordance with claim 5, wherein the alcohol permeating through the membrane is a methanol, ethanol or a propanol, and the substance held back by the membrane is an aliphatic or aromatic hydrocarbon, an ether, keton, ester or a higher alcohol or a mixture of components from this group.
  • 7. A method for manufacturing a membrane having a pore-free separating layer including a polymer mixture for separating simple alcohols and water from their mixtures with other organic fluids by means of pervaporation or vapor permeation, characterized in that the polymer mixture is composed of at least two polymer components which are taken from the group of polymer components including: polyvinyl alcohol;other polymers such as poly N-N-dimethylaminoethyl methacrylate (poly DMAEMA);a copolymer of DMAEMA and N vinyl pyrrolidone (NVP) or of DMAEMA and N vinyl caprolactam (NVCL);a terpolymer of DMAEMA, NVP and NVCL or of vinyl acetate ethylene vinyl chloride or of vinyl chloride ethylene acrylic ester or of vinyl acetate vinyl chloride acrylic ester.
  • 8. A method in accordance with claim 7, wherein a solution of the homopolymers, copolymers or terpolymers and polyvinyl alcohol in water, ethanol or in ethanol-water mixtures is used to manufacture the separating layer.
  • 9. A method in accordance with claim 7, wherein the polymer solution is applied to a porous sub-structure having an asymmetrical pore structure and the porous sub-structure is in turn applied to a carrier layer.
  • 10. A method in accordance with claim 7, wherein the solvent is vaporized after the application of the polymer solution and the membrane is subjected to a heat treatment.
  • 11. A method in accordance with claim 7, wherein the heat treatment takes place at a temperature between 100° C. and 200° C., preferably from 130° C. to 180° C.
  • 12. A method in accordance with claim 7, wherein the heat treatment is carried out during a time period of 1 min to 60 min, preferably during a time period of 5 min to 30 min.
  • 13. A method in accordance with claim 7, wherein the heat treatment is carried out in one or more stages.
  • 14. A method in accordance with claim 13, wherein the heat treatment is carried out in two stages.
  • 15. A method in accordance with claim 13, wherein the temperature of a following stage is higher than the temperature of a preceding stage.
Priority Claims (1)
Number Date Country Kind
10177656.5 Sep 2010 EP regional
PCT Information
Filing Document Filing Date Country Kind 371c Date
PCT/EP11/61405 7/6/2011 WO 00 3/20/2013