This application claims benefit of Japanese Patent Application No. 2012-021304 filed on Feb. 2, 2012, which is hereby incorporated by reference.
1. Field of the Invention
The present invention relates to membrane switch units and keyboard devices including the membrane switch unit. In particular, the present invention relates to membrane switch units having an illumination function for illuminating operation keys and to keyboard devices including the membrane switch unit.
2. Description of the Related Art
Electronic apparatuses such as portable computers include a keyboard with which information such as alphanumerical characters is manually input by an operator. In general, the keyboard is formed of a plurality of key tops and a membrane switch unit.
The membrane switch unit includes a plurality of fixed contacts and movable contacts corresponding to key tops. When a user depresses a desired key top, a movable contact and a fixed contact corresponding to the depressed key top come into contact with each other, whereby a membrane switch corresponding to the key top is closed. As a result, an operation detection signal indicating that a key top has been depressed is transmitted from the membrane switch unit to a keyboard controller.
Recently, computers have become increasingly used for various purposes and in various environments. In particular, there are many cases in which portable computers are used in remote locations, where the computers may be used in an environment with insufficient illumination. In such a case, it is difficult for a user to recognize the key tops, which might cause an error in an operation.
Examples of related methods of solving the problem described above include a keyboard disclosed in Japanese Patent No. 4491033 in which key tops having transparency are used and the keyboard includes a light source for radiating light, a light guide allowing the light of the light source to pass therethrough, and a light diffusion board with a light diffusion portion that diffuses light passing through the light guide over a wide area, whereby the key tops are illuminated by light that is radiated from the light source.
In a keyboard device used in a computer, since many key tops are arranged in a matrix, a plurality of light sources need to be provided to illuminate all the key tops even if, for example, a light diffusion board is used. Referring to
The configuration in which the plurality of the light sources 151 are connected in series with one another has an advantage in that minimum wiring is required for the light sources 151, and a conductor pattern 156 of the first sheet 130 can be easily formed even when the plurality of the light sources 151 are arranged on the first sheet 130, having a plurality of the fixed contacts 133 formed thereon, of the membrane sheet 129.
However, in the case where eight white LEDs are used as the light sources, lighting of the eight serially connected white LEDs requires a power supply having a voltage of at least eight times the forward drop voltage (usually about 3.5 volts or higher) of the white LED, i.e., a voltage of at least 28 volts.
Usually, a power supply of 28 volts is not connected to a keyboard device and, hence, a measure needs to be taken such as providing a voltage step-up circuit in the keyboard device or supplying the keyboard device with a power supply voltage specifically for lighting white LEDs. This configuration leads to an increase in the number of components and, hence, is difficult to put into practical use.
In view of the above-described situation, the present invention provides a membrane switch unit that does not require a voltage step-up circuit or a dedicated lighting power supply even when a plurality of light sources are arranged in the membrane switch unit.
To solve the above-described problems, in a membrane switch unit according to a first aspect of the present invention that has an illumination function and a plurality of light sources arranged therein, the membrane switch includes: a pair of sheets that are formed of an insulator and are arranged in such a manner as to face each other; and a plurality of contact portions each formed of a pair of contacts respectively formed on opposing surfaces of the pair of sheets. First contacts of the plurality of the contact portions are a plurality of fixed contacts formed of first fixed contacts and second fixed contacts provided on one sheet of the pair of sheets. Second contacts of the plurality of the contact portions are a plurality of movable contacts provided on the other sheet of the pair of sheets. The plurality of the movable contacts are arranged in such a manner as to contact the first fixed contacts and be able to come into and out of contact with the second fixed contacts of the plurality of the fixed contacts. The plurality of the movable contacts provided on the other sheet are formed independently of one another, and the plurality of the light sources are provided on the other sheet and are connected in parallel with a power supply.
With this configuration, since all of the plurality of the light sources are connected in parallel, the light sources can be lit using a low voltage and there is no need to provide a step-up circuit for stepping up a power supply voltage in the membrane switch unit. Further, since the plurality of the light sources are provided on the other sheet of the pair of sheets forming the membrane switch unit, where the plurality of the movable contacts are provided independently of one another and there is no wiring among the plurality of the movable contacts, wiring paths to the plurality of the light sources can be freely provided, whereby the plurality of the light sources can be easily built into the other membrane sheet.
As a result, even when the plurality of the light sources are arranged in the membrane switch unit, a membrane switch unit that does not require a voltage step-up circuit or a dedicated lighting power supply can be provided.
In the membrane switch unit, resistances of wiring lines respectively connecting the plurality of the light sources to the power supply are preferably respectively made to be current limiting resistances for the plurality of the light sources.
With this configuration, since resistances of wiring lines respectively connecting the plurality of the light sources to the power supply are preferably respectively made to be current limiting resistances of the plurality of the light sources, current limiting resistances for the respective light sources need not be provided in the membrane switch unit and, hence, arrangement of the light sources in the membrane switch unit is easy.
In the membrane switch unit, lengths and widths of the wiring lines respectively connected to the plurality of the light sources are preferably adjusted in accordance with respective positions of the plurality of the light sources.
With this configuration, the lengths and widths of the wiring lines respectively connected to the plurality of the light sources are preferably adjusted in accordance with the respective positions of the plurality of the light sources, whereby the respective total resistances of the wiring lines connected to the plurality of the light sources can be made to have desired values. Hence, currents flowing through the respective light sources can be set at desired levels without newly providing a plurality of resistors for limiting the currents respectively supplied to the light sources. As a result, a membrane switch unit can be provided in which the plurality of the key tops can be illuminated with uniform brightness using a simple structure.
In the membrane switch unit, wiring for a switch operation detection circuit of the membrane switch unit is preferably formed only on the one sheet.
With this configuration, since a configuration is employed in which the plurality of the fixed contacts each formed of the first fixed contact and the second fixed contact are provided on the one sheet of the pair of the sheets forming the membrane switch unit and the plurality of the movable contacts are provided independently of one another on the other sheet, and wiring for a switch operation detection circuit of the membrane switch unit is preferably formed only on the one sheet, wiring for the plurality of the light sources can be freely provided on the other sheet, whereby the degree of freedom of design is increased.
A keyboard device according to a second aspect of the present invention includes the membrane switch unit having an illumination function according to the first aspect of the present invention.
With this configuration, since the membrane switch unit having an illumination function according to the first aspect of the present invention is used, a keyboard device that does not require a voltage step-up circuit or a dedicated lighting power supply can be provided.
As described above, according to the present invention, a membrane switch unit that does not require a voltage step-up circuit or a dedicated lighting power supply can be provided even when a plurality of light sources are arranged in the membrane switch unit.
Hereinafter, a membrane switch unit 10 according to a first embodiment of the present invention will be described with reference to
Hereinafter, the membrane switch unit 10 according to the present embodiment of the invention will be mainly described regarding the membrane switch unit 10 used in a notebook personal computer. However, the application area of the membrane switch unit 10 according to the present embodiment is not limited to this and can be applied to keyboard devices used in various computers and electronic apparatuses.
Referring to
Note that although the present invention employs a configuration in which light propagates within the membrane switch unit 10, a configuration may be used in which a light guide is separately provided, as will be described later.
Referring to
The membrane switch unit 10 is formed of a flexible upper membrane sheet 11 and a flexible lower membrane sheet 12 that are stacked in such a manner as to face each other. On the membrane switch unit 10, a plurality of membrane switches 10a are provided in such a manner as to correspond to the positions of the plurality of the key tops 20 (refer to
The upper membrane sheet 11 is made of an insulating film material formed in a substantially rectangular shape and has the movable contacts 11a of the plurality of the membrane switches 10a formed thereon. A plurality of white LEDs 13 that illuminate the plurality of the key tops 20 are arranged on the bottom surface of the upper membrane sheet 11 near the two short sides of the upper membrane sheet 11.
The lower membrane sheet 12 is made of an insulating film material formed in a substantially rectangular shape and has the fixed contacts 12a of the plurality of the membrane switches 10a formed thereon. Further, the lower membrane sheet 12 has a plurality of cut-out portions 12e at the two short sides thereof into which the plurality of the white LEDs 13 arranged on the upper membrane sheet 11 are inserted.
Referring now to
Referring to
Referring to
Wiring portions 12g for connecting of the plurality of the membrane switches 10a in a predetermined manner are respectively connected to the first fixed contact 12b and the second fixed contact 12c. The wiring portion 12g connected to the second fixed contact 12c at the center extends to the outside of the fixed contact 12a through the open portion of the substantially ring-shaped first fixed contact 12b.
The steps of manufacturing the fixed contact 12a are as follows. First the second fixed contact 12c at the center and the wiring portion 12g connected to the second fixed contact 12c are formed and, next, an insulating ring 12d is formed. The insulating ring 12d is formed using, for example, insulating ink in the shape of a ring in such a manner as to have a smaller inner diameter than the first fixed contact 12b and a larger outer diameter than the first fixed contact 12b. After the insulating ring 12d has been formed, the first fixed contact 12b and the wiring portion 12g are formed in such a manner as to be layered on the top surface of the insulating ring 12d. As a result, the first fixed contact 12b becomes slightly higher than the second fixed contact 12c. Further, the wiring portions 12g are subjected to insulating processing, as described later, at the same time as the step of forming the insulating ring 12d, as required.
When the upper membrane sheet 11 and the lower membrane sheet 12 are stacked in such a manner as to face each other, the first fixed contact 12b of the fixed contact 12a comes in contact with the movable contact 11a, as illustrated in
Usually, the membrane switch unit 10 is built into a keyboard device, and the plurality of the key tops 20 are arranged above the membrane switch unit 10 (refer to
As described above, when the key top 20 is depressed, the first fixed contact 12b and the second fixed contact 12c of the lower membrane sheet 12 are electrically connected to each other through the movable contact 11a of the upper membrane sheet 11, whereby the depression of the key top 20 is detected. As a result, all of the wiring for detecting the states of the contacts is provided on the lower membrane sheet 12 on which the fixed contacts 12a are formed, and the movable contacts 11a do not have wiring for connecting the movable contacts 11a to the outside. Hence, on the upper membrane sheet 11, only the movable contacts 11a are provided and wiring for the membrane switches 10a is not provided.
Referring to
Referring to
Note that the white LEDs 13 may be appropriately arranged, for example, near the four corner portions of the upper membrane sheet 11, rather than near the short sides of the upper membrane sheet 11. Further, although the present embodiment employs a structure in which light propagates through the lower membrane sheet 12, light guides or the like may be used instead.
Power supply wiring for the plurality of the white LEDs 13 is arranged on the bottom surface of the upper membrane sheet 11 and is formed of a pair of wiring lines consisting of a positive electrode wiring line 11c and a negative electrode wiring line 11d, as illustrated in
Note that in the case where the negative electrode wiring line 11d is arranged in such a manner as to surround the movable contacts 11a, when the upper membrane sheet 11 is stacked on the lower membrane sheet 12 (refer to
The shapes of the plurality of the meandering portions 11e that are respectively connected to the plurality of the white LEDs 13 are different from one another in accordance with the respective positions of the white LEDs 13. The meandering portion 11e arranged on the second end side of the positive electrode wiring line 11c or the negative electrode wiring line 11d, i.e., arranged at a position farthest from the connector portion 11b of the upper membrane sheet 11 is the shortest, and is substantially a simple straight wiring line. On the other hand, the meandering portion 11e connected to the white LED 13 arranged nearest to the connector portion 11b of the upper membrane sheet 11 is the longest. The meandering portions 11e connected to the white LEDs 13 arranged in the middle positions have a length that changes such that the shorter the distance between the white LED 13 and the connector portion 11b, the longer the length of the meandering portion 11e.
As a result, the total resistance of the positive electrode wiring line 11c, the negative electrode wiring line 11d, and the meandering portion 11e can be substantially made to have a predetermined constant value for all of the white LEDs 13, whereby all of the plurality of the white LEDs 13 can be lit at substantially the same current.
When the meandering portions 11e are provided between the negative electrode wiring line 11d and the white LEDs 13 as in the present embodiment, a wider area for wiring is required. However, in the present embodiment, only the movable contacts 11a of the contacts that form the membrane switches 10a are provided on the upper membrane sheet 11, and there is no wiring for connecting the movable contacts 11a to the outside. Hence, there is no wiring for the membrane switches 10a on the upper membrane sheet 11. As a result, wiring for connection of the white LEDs 13 can be freely provided on the upper membrane sheet 11 and, hence, the meandering portions 11e can be provided together with the positive electrode wiring line 11c and the negative electrode wiring line 11d for the plurality of the white LEDs 13.
As described above, the membrane switch unit 10 according to the present embodiment is configured as follows. In the membrane switch unit 10 having an illumination function that has a plurality of light sources arranged therein, the membrane switch unit 10 includes a pair of sheets consisting of the upper membrane sheet 11 and the lower membrane sheet 12, which are formed of an insulator and are arranged in such a manner as to face each other, and a plurality of the membrane switches 10a (contact portions) each formed of a pair of contacts respectively formed on the opposing surfaces of the pair of the sheets consisting of the upper membrane sheet 11 and the lower membrane sheet 12. First contacts of the plurality of the membrane switches 10a are the plurality of the fixed contacts 12a respectively formed of the first fixed contacts 12b and the second fixed contacts 12c provided on the lower membrane sheet 12 (one sheet) of the pair of the sheets consisting of the upper membrane sheet 11 and the lower membrane sheet 12. The second contacts of the plurality of the membrane switches 10a are the plurality of the movable contacts 11a provided on the upper membrane sheet 11 (the other sheet) of the pair of the sheets consisting of the upper membrane sheet 11 and the lower membrane sheet 12. The plurality of the movable contacts 11a are arranged in such a manner as to contact the first fixed contact 12b and be able to come into and out of contact with the second fixed contacts 12c of the plurality of the fixed contacts 12a. The plurality of the movable contacts 11a provided on the upper membrane sheet 11 are formed independently of one another, and the plurality of the white LEDs 13 (light sources) are provided on the upper membrane sheet 11 and are connected in parallel with a power supply.
In this manner, in the membrane switch unit 10 according to the present embodiment, since all of the plurality of the white LEDs 13 are connected in parallel, the white LEDs 13 can be lit using a low voltage and there is no need to provide a step-up circuit for stepping up a power supply voltage in the membrane switch unit 10. Further, since the plurality of the white LEDs 13 are provided on the upper membrane sheet 11 of the pair of the upper membrane sheet 11 and the lower membrane sheet 12 forming the membrane switch unit 10, where the plurality of the movable contacts 11a are provided independently of one another and there is no wiring among the plurality of the movable contacts 11a, wiring paths to the plurality of the white LEDs 13 can be freely provided, whereby the plurality of the white LEDs 13 can be easily built into the upper membrane sheet 11.
As a result, in the membrane switch unit 10 according to the present embodiment, even when the plurality of the white LEDs 13 are arranged in the membrane switch unit 10, a voltage step-up circuit or a dedicated lighting power supply is not required.
In the membrane switch unit 10 according to the present embodiment, since resistances of wiring lines respectively connecting the plurality of the white LEDs 13 (light sources) to the power supply are preferably respectively made to be current limiting resistances of the plurality of the white LEDs 13, current limiting resistances for the respective white LEDs 13 need not be provided in the membrane switch unit 10 and, hence, arrangement of the white LEDs 13 in the membrane switch unit 10 is easy.
In the membrane switch unit 10 according to the present embodiment, the lengths and widths of the wiring lines respectively connected to the plurality of the white LEDs 13 (light sources) are preferably adjusted in accordance with the respective positions of the plurality of the white LEDs 13, whereby the respective total resistances of the wiring lines connected to the plurality of the white LEDs 13 can be made to have desired values. Hence, currents flowing through the respective white LEDs 13 can be set at desired levels without newly providing a plurality of resistors for limiting the currents respectively supplied to the white LEDs 13. This enables illumination of the plurality of the key tops 20 with uniform brightness using a simple structure.
In the membrane switch unit 10 according to the present embodiment, since wiring for a switch operation detection circuit of the membrane switch unit 10 is preferably formed only on the lower membrane sheet 12 (one sheet), wiring for the plurality of the white LEDs 13 (light sources) can be freely provided on the upper membrane sheet 11 (the other sheet).
As described above, according to the present embodiment, even when the plurality of the white LEDs 13 (light sources) are arranged in the membrane switch unit 10, the membrane switch unit 10 that does not require a voltage step-up circuit or a dedicated lighting power supply can be provided.
Note that the present invention is not limited to the above-described embodiment and various modifications are possible as described below, for example, within the technical scope of the present invention.
In the membrane switch unit 10 described above, although only the lengths of the meandering portions 11e are changed for ease of understanding, the widths of the meandering portions 11e, the width of the positive electrode wiring line 11c, and the width of the negative electrode wiring line 11d may also be changed to make the total resistances of the wiring lines be made to have desired values.
Although the meandering portions 11e are connected to the negative electrode wiring line 11d, the meandering portions 11e may be connected to the positive electrode wiring line 11c. Alternatively, the meandering portions 11e may be provided in both of the positive electrode wiring line 11c and the negative electrode wiring line 11d.
Although the light sources are the white LEDs 13 in the membrane switch unit 10 according to the above-described embodiment, the LEDs need not be white LEDs. Further, the light sources may not be LEDs.
Although, in the fixed contact 12a of the membrane switch unit 10 according to the above-described embodiment, the insulating ring 12d is formed substantially in the shape of a ring in such a manner as to have a smaller inner diameter than the first fixed contact 12b and a larger outer diameter than the first fixed contact 12b, the size of the insulating ring 12d may be appropriately changed.
Hereinafter, a keyboard device according to a second embodiment of the present invention will be described with reference to
The keyboard device of the present embodiment includes a plurality of key tops 20, a membrane switch unit 10, a reflection member 31, and a metal frame 32, and the membrane switch unit 10 having an illumination function according to the present invention is used as the membrane switch unit 10.
Since the membrane switch unit 10 having an illumination function according to the present invention is used in the keyboard device of the present embodiment, a keyboard device that does not require a voltage step-up circuit or a dedicated lighting power supply can be provided.
Note that the keyboard device according to the present invention is not limited to the above-described embodiment, and various modifications are possible within the technical scope of the present invention. For example, the reflection member 31 may be omitted or another sheet may be provided on the bottom surface of the metal frame 32.
Number | Date | Country | Kind |
---|---|---|---|
2012-021304 | Feb 2012 | JP | national |